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1. Introduction

The integration of second-order initial value problems (IVPs) with periodic or oscillatory solutions
has attracted the attention of numerical researchers in recent times. Second-order IVPs of the type ÿ(t) = ψ(t, y(t), ẏ(t))

y(t0) = y0, ẏ(t0) = ẏ0

(1.1)

whose solutions are periodic in nature and the suitable frequency, ς , is roughly known in advance,
with ψ : R × R2n −→ Rn a sufficiently differentiable function satisfying the conditions of existence and
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uniqueness of solution (Wend [47,48]), are regularly encountered in sciences and engineering, a list of
which is provided in Abdulganiy et al. [28] and Jator et al. [31].

A special case of the ODEs in Eq (1.1) is the generalized non-linear Duffing oscillator given by ÿ(t) + δy(t) + ϕy3(t) = Γ(t)

y(t0) = y0, ẏ(t0) = ẏ0

(1.2)

where δ, ϕ ∈ R are real constants and Γ (t) is a periodic function, usually a sinusoidal function or its
combinations. Most phenomena in our world are described by non-linear equations. Consequently,
this makes the study of non-linear oscillators in physics, engineering and other physical sciences of
great importance (Liu and Jhao [49], and Li et al. [62]). Non-linear oscillatory problems are essential
tools in physical sciences and other engineering disciplines, and in particular, non-linear differential
equations with oscillatory solutions are related to many practical problems such as non-linear stiffness,
snap-through mechanism, the pendulum problem, non-linear electric circuit among others (Kovacic
and Brennan [52], and Razzak [30]).

Many interesting methods have appeared in literature for the integration of the general initial-value
problems (1.1) and also for the particular Eq (1.2). Some of these methods are based on series solution
(Schovanec and White [33], and Liu and Jhao [49]), variational iteration (Ozis and Yildirim [56]),
perturbation methods or semi analytic approaches (He [43], Belendez et al. [38] , and Younesian
et al. [58]), modified differential transformed methods (Nourazar and Mirzabeigy [34]), explicit and
exact solutions (Marinca and Herisan [60], and Gholam-Ali and Emmanuel [61]) and the analytical
prediction of the periodic motions of a periodically forced, damped, duffing oscillator through the
discrete implicit mappings (Guo and Luo [63], and Luo [64]).

From a numerical perspective, some methods have been considered for the integration of Eqs (1.1)
and (1.2) either directly or after transforming each of them into a corresponding system of first-order
ODEs of the following structure

ẏ = f (t, y(t)), y(t0) = y0 (1.3)

where f :R ×Rθ → Rθ is a smooth function that satisfies the Lipchitz condition, and θ is the dimension
of the system. Among such methods we find ones with constant coefficients (Lambert [41], Jator and
Oladejo [1], Sunday et al. [3], Enright [4], Hairer et al. [5], Lambert and Watson [6], and Jator [7]),
adapted methods, viz, exponentially fitted methods (Vanden Berghe et al. [21], Franco [8, 9, 16, 17],
Ixaru et al. [20], Martı́n-Vaquero and Vigo-Aguiar [22], You and Chen [24], Li et al. [51], Konguetsof
and Simos [26], Tsitouras [57], and Fang et al. [18,19]), and trigonometrically fitted methods (Gautschi
[10], Neta and Ford [11], Neta [12], Vigo-Aguiar and Ramos [36], Jator et al. [23, 27, 29, 31, 35, 40],
Ramos and Vigo-Aguiar [32], Monovasilis et al. [2], Abdulganiy et al. [28, 37, 46, 53–55], Senu et
al. [50], and Samat and Ismail [59]).

Most of the numerical methods mentioned are applied in stepwise form that turns out to be incapable
of achieving highly accurate results due to the oscillatory features of the solutions.

It is against this background that we propose an adapted block hybrid method (ABHM) with
trigonometric coefficients to integrate exactly the IVP in Eq (1.3) when the solutions are in the linear
space generated by

{
1, t, t2, t3, sin (ςt) , cos (ςt)

}
. This set of basis functions is considered for its ease

to be analyzed (Ngwane and Jator [23]) and the provision of an improved extension for solving IVPs
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with periodic results (Coleman and Duxbury [15]). Other probable basis functions are enumerated in
Nguyen et al. [39]. The remaining part of this article is organised as follows: The construction of
the proposed ABHM is presented in Section 2. The essential features of the method are illustrated in
Section 3, whereas the implementation and some numerical experiments are exemplified in Section 4
to demonstrate the efficiency of the new method. Finally, some concluding comments are provided in
Section 5.

2. Preliminaries

2.1. Construction of ABHM

In order to integrate the IVP in (1.3) numerically, we proceed by considering that we have a scalar
equation and assuming that the exact solution y (t) can be approximated by a fitted function I (t, u)
which incorporates a parameter u. A continuous adapted block hybrid method (CABHM) on the
interval [tn, tn+2] is developed to produce a discrete formula. Three secondary formulas as a by-product
via the CABHM are produced too, to form the ABHM. The CABHM has the general form.

I(t, u) = α(t, u)yn + h(δ0(t, u) fn + δv(t, u) fn+v+δ1(t, u) fn+1 + δµ(t, u) fn+µ + δ2(t, u) fn+2) (2.1)

where tn+κ = tn + κh, yn+κ ' y(tn+κ), fn+κ = f (tn+κ, yn+κ), κ = 0, v, 1, µ, 2, u = ςh, and ς is the fitting
frequency, {v, µ} = {12 ,

3
2 } are off node points, and δ0, δv, δ1, δµ, δ2 are parameters to be found from

the multistep collocation technique, that depend on the parameter frequency, ς, and the step length
h = tn+1 − tn.

The exact solution y (t) is assumed to be approximated by a fitted function defined by

y(t) � I(t, u) =

3∑
j=0

a jt j + a4 sin(ςt) + a5 cos(ςt) (2.2)

In view of this approximation, we impose that the following system of six equations be satisfied I (tn, u) = yn

I
′ (t, u) |t=tn+ j = fn+ j , j = 0, v, 1, µ, 2

(2.3)

The theorem that aids the development of the continuous method is stated as follows:

Theorem 1. Let I (t, u) be the fitting function associated to the set Pi(t) = {1, t, t2, t3, sin(ςt), cos(ςt)}
and the vector K = (yn, fn, fn+v, fn+1, fn+µ, fn+2)T , where T denotes the transpose. Consider the
following 6 × 6 matrix coefficient of the system in (2.3)

W =



1 tn tn
2 tn

3 sin (ς tn) cos (ς tn)

0 1 2 tn 3 tn
2 cos (ς tn) ς − sin (ς tn) ς

0 1 2 tn+v 3 tn+v
2 cos (ς tn+v) ς − sin (ς tn+v) ς

0 1 2 tn+1 3 tn+1
2 cos (ς tn+1) ς − sin (ς tn+1) ς

0 1 2 tn+µ 3 tn+µ
2 cos

(
ς tn+µ

)
ς − sin

(
ς tn+µ

)
ς

0 1 2 tn+2 3 tn+2
2 cos (ς tn+2) ς − sin (ς tn+2) ς
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and Wi obtained after substituting the i-th column of W with the vector K. If we impose that I(t, u)
agrees with the system of six equations in (2.3) then the continuous approximation from which the
ABHM will be generated can be written as

I(t, u) =

5∑
i=0

det(Wi)
det(W)

Pi (t) (2.4)

Proof. We necessitate that the Eq (2.1) be characterized by the expected fitted function as follows

α (t, u) =

5∑
i=0

α (t, u) Pi (t) , j = 0 (2.5)

hδ j (t, u) =

5∑
i=0

hδi, j (t, u) Pi (t) , j = 0, v, 1, µ, 2 (2.6)

Substituting Eqs (2.5) and (2.6) into Eq (2.1) yield

I(t, u) =

2∑
j=0

(
5∑

i=0

αi, j(t, u)Pi(t)yn+ j + hδi, j(t, u)Pi(t) fn+ j) +

5∑
i=0

hδi,v(t, u)Pi(t) fn+v +

5∑
i=0

hδi,µ(t, u)Pi(t) fn+µ

I(t, u) =

5∑
i=0

{αi, j(t, u)yn+ j + h
2∑

j=0

δi, j(t, u) fn+ j + hδi,v(t, u) fn+v + hδi,v(t, u) fn+v}Pi(t) (2.7)

We let

Λi = α (t, u) yn+ j + h
∑2

j=0 δi, j (t, u) fn+ j + hδi,v (t, u) fn+v + hδi,v (t, u) fn+v

so that Eq (2.7) becomes

5∑
i=0

ΛiPi (t) (2.8)

If we impose the conditions in Eq (2.3) on Eq (2.8), we obtain a system of six equations which is
expressed as WΛ = K , where Λ = (Λ0,Λ1,Λ2,Λ3,Λ4,Λ5)T is a vector form of six undetermined
coefficients that can be obtained by Crammer’s rule as follows:

Λi =
det (Wi)
det (W)

, i = 0, 1, 2, 3, 4, 5 (2.9)

Wi is found by substituting the i-th column of W by Λ. Equation (2.8) through the substitution of
Eq (2.9) becomes

I (t, u) =

5∑
i=0

det (Wi)
det (W)

Pi (t) (2.10)

�

Remark 1. We emphasize that the equation in (2.10) provides a continuous approximation of the true
solution, and has the form of Eq (2.1).
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2.2. Specific of ABHM

We evaluate the equation in (2.1) at t = tn+v , t = tn+1 , t = tn+µ , and t = tn+2, respectively, to obtain
our proposed method, ABHM, which constitutes three secondary formulas given as


yn+v − yn = h(δ0,1(u) fn + δv,1(u) fn+v + δ1,1(u) fn+1 + δµ,1(u) fn+µ + δ2,1(u) fn+2)
yn+1 − yn = h(δ0,2(u) fn + δv,2(u) fn+v + δ1,2(u) fn+1 + δµ,2(u) fn+µ + δ2,2(u) fn+2)
yn+µ − yn = h(δ0,3(u) fn + δv,3(u) fn+v + δ1,3(u) fn+1 + δµ,3(u) fn+µ + δ2,3(u) fn+2)

(2.11)

and one primary formula which results in

yn+2 − yn = h(δ0(u) fn + δv(u) fn+v + δ1(u) fn+1 + δµ(u) fn+µ + δ2(u) fn+2) (2.12)

The coefficients of these formulas are provided in Eqs (2.13)–(2.16) as follows:

δ0,1 =
−23 u cos(u) − 12 u cos (u/2) + 24 sin (3/2 u) − 24 sin (u/2) + 11 u

24(u(cos(3/2 u) − 2 cos(u) − cos(u/2) + 2))

δv,1 =
23u cos(3/2u) + 28u cos(u) + 25u cos(u/2) − 72 sin(3/2u) − 24 sin(u) + 72 sin(u/2) + 20u

24(u(cos(3/2 u) − 2 cos(u) − cos(u/2) + 2))

δ1,1 = −
4u cos(3/2u) + 13u cos(u) + 14u cos(u/2) − 18 sin(3/2u) − 18 sin(u) + 18 sin(u/2) + 5u

6(u(cos(3/2 u) − 2 cos(u) − cos(u/2) + 2))

δµ,1 =
5u cos(3/2u) + 28u cos(u) + 43u cos(u/2) − 24 sin(3/2u) − 72 sin(u) + 24 sin(u/2) + 20u

24(u(cos(3/2 u) − 2 cos(u) − cos(u/2) + 2))

δ2,1 = −
5u cos(u) + 12u cos(u/2) − 24 sin(u) + 7u

24(u(cos(3/2u) − 2 cos(u) − cos(u/2) + 2))
(2.13)

δ0,2 =
−7 u cos (u/2) + 6 sin (u) − 6 sin (u/2) + 4 u

6 (cos (u) + 3 − 4 cos (u/2)) u

δv,2 =
7 u cos (u) − 6 u cos (u/2) − 18 sin (u) + 12 sin (u/2) + 11 u

6 (cos (u) + 3 − 4 cos (u/2)) u

δ1,2 = −
u cos (u) + 8 u cos (u/2) − 9 sin (u)

3 (cos (u) + 3 − 4 cos (u/2)) u

δµ,2 = −
u cos (u/2) − 6 sin (u/2) + 2 u
6 (cos (u) + 3 − 4 cos (u/2)) u

δ2,2 = −
u cos (u/2) − 6 sin (u/2) + 2 u
6 (cos (u) + 3 − 4 cos (u/2)) u

(2.14)
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δ0,3 =
−9 u cos (u) − 12 u cos (u/2) + 8 sin (3/2 u) + 8 sin (u) + 8 sin (u/2) − 3 u

8u (cos (3/2 u) − 2 cos (u) − cos (u/2) + 2)

δv,3 =
9 u cos (3/2 u) + 12 u cos (u) + 39 u cos (u/2) − 24 sin (3/2 u) − 40 sin (u) − 40 sin (u/2) + 36 u

8u (cos (3/2 u) − 2 cos (u) − cos (u/2) + 2)

δ1,3 =
3(−3 u cos (u) − 6 u cos (u/2) + 2 sin (3/2 u)) + 3(6 sin (u) + 6 sin (u/2) − 3 u)

2u (cos (3/2 u) − 2 cos (u) − cos (u/2) + 2)

δµ,3 =
3 u cos (3/2 u) + 12 u cos (u) + 45 u cos (u/2) − 8 sin (3/2 u) − 56 sin (u) − 56 sin (u/2) + 36 u

8u (cos (3/2 u) − 2 cos (u) − cos (u/2) + 2)

δ2,3 = −
3 u cos (u) + 12 u cos (u/2) − 16 sin (u) − 16 sin (u/2) + 9 u

8u (cos (3/2 u) − 2 cos (u) − cos (u/2) + 2)
(2.15)

δ0 =
−4 u cos (u/2) + 3 sin (u) + u
3 (cos (u) + 3 − 4 cos (u/2)) u

δv =
4(u cos (u) − 3 sin (u) + 2 u)

3((cos (u) + 3 − 4 cos (u/2)) u)

δ1 = −
2(u cos (u) + 8 u cos (u/2) − 9 sin (u))

3((cos (u) + 3 − 4 cos (u/2)) u)

δµ =
4(u cos (u) − 3 sin (u) + 2 u)

3((cos (u) + 3 − 4 cos (u/2)) u)

δ2 =
−4 u cos (u/2) + 3 sin (u) + u

3((cos (u) + 3 − 4 cos (u/2)) u)

(2.16)

Remark 2. It is emphasized that when u → 0, the coefficients of the ABHM may suffer substantial
cancellations affecting the calculations. In this situation, the expansion of the coefficients in Taylor’s
series is usually considered (Lambert [41]). The expansion of the coefficients of ABHM in series form
up to order O

(
u10

)
are as provided below

δ0,1 =
251

1440
+

863 u2

483840
+

71 u4

2764800
+

1409 u6

2919628800
+

1461541 u8

133905855283200

δv,1 =
323
720
−

1159 u2

241920
−

589 u4

9676800
−

10519 u6

10218700800
−

135067 u8

6086629785600

δ1,1 = −
11
60

+
37 u2

10080
+

23 u4

806400
+

41 u6

212889600
+

6049 u8

5579410636800

δµ,1 =
53

720
−

5 u2

48384
+

221 u4

9676800
+

1579 u6

2043740160
+

1388953 u8

66952927641600

δ2,1 = −
19

1440
−

271 u2

483840
−

313 u4

19353600
−

8551 u6

20437401600
−

1413149 u8

133905855283200

(2.17)
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δ0,2 =
29
180

+
37 u2

30240
+

23 u4

2419200
+

41 u6

638668800
+

6049 u8

16738231910400

δv,2 =
31
45
−

53 u2

15120
−

31 u4

1209600
−

7 u6

45619200
−

5273 u8

8369115955200

δ1,2 =
2
15

+
u2

315
+

u4

50400
+

u6

13305600
−

97 u8

348713164800

δµ,2 =
1
45
−

11 u2

15120
−

u4

1209600
+

17 u6

319334400
+

8377 u8

8369115955200

δ2,2 = −
1

180
−

u2

6048
−

u4

345600
−

u6

25546752
−

691 u8

1521657446400

(2.18)

δ0,3 =
27

160
+

29 u2

17920
+

7 u4

307200
+

1007 u6

2270822400
+

17293 u8

1653158707200

δv,3 =
51
80
−

37 u2

8960
−

53 u4

1075200
−

991 u6

1135411200
−

1531 u8

75143577600

δ1,3 =
9

20
+

3 u2

1120
+

u4

89600
−

u6

23654400
−

113 u8

68881612800

δµ,3 =
21
80

+
u2

1792
+

37 u4

1075200
+

211 u6

227082240
+

18649 u8

826579353600

δ2,3 = −
3

160
−

13 u2

17920
−

41 u4

2150400
−

1039 u6

2270822400
−

18197 u8

1653158707200

(2.19)

δ0 =
7
45

+
u2

945
+

u4

151200
+

u6

39916800
−

97 u8

1046139494400

δv =
32
45
−

4 u2

945
−

u4

37800
−

u6

9979200
+

97 u8

261534873600

δ1 =
4
15

+
2 u2

315
+

u4

25200
+

u6

6652800
−

97 u8

174356582400

δµ =
32
45
−

4 u2

945
−

u4

37800
−

u6

9979200
+

97 u8

261534873600

δ2 =
7
45

+
u2

945
+

u4

151200
+

u6

39916800
−

97 u8

1046139494400

(2.20)

Remark 3. According to Lambert [41], taking limit when u→ 0 in the coefficients in (2.17)–(2.20), a
Simpson block hybrid method based on polynomial basis is recovered.

3. Basic properties of the ABHM

This section discuses the basic properties of the ABHM which include the local truncation error
(LTE) and its consequences, zero-stability, convergence and linear stability.
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3.1. Local truncation error of the ABHM and its consequences

In this subsection, the theory of linear operator (Lambert [41]) is employed to establish the local
truncation errors of the ABHM.

Proposition 1. The local truncation error of each of the 3 secondary formulas for the ABHM is
C6h6(ς2y4(tn)−y(6)(tn))+O(h7), while that of the primary formula has the form C7h7(ς2y5(tn)−y(7)(tn))+

O(h8)

Proof. Associate the secondary formulas with linear difference operators Lv
[
y (tn) ; h

]
, L1

[
y (tn) ; h

]
,

Lµ
[
y (tn) ; h

]
and the primary formula with the linear difference operator L

[
y (tn) ; h

]
defined

respectively by



Lv
[
y (tn) ; h

]
= y (tn + vh) −

(
y(tn) + h

2∑
j=0
δ j,1(u)y′ (tn + jh) + hδv,1(u)y′ (tn + vh) + hδµ,1(u)y′ (tn + µh)

)
L1

[
y (tn) ; h

]
= y (tn + h) −

(
y(tn) + h

2∑
j=0
δ j,2(u)y′ (tn + jh) + hδv,2(u)y′ (tn + vh) + hδµ,2(u)y′ (tn + µh)

)
Lµ

[
y (tn) ; h

]
= y (tn + µh) −

(
y(tn) + h

2∑
j=0
δ j,3(u)y′ (tn + jh) + hδv,3(u)y′ (tn + vh) + hδµ,3(u)y′ (tn + µh)

)
L

[
y (tn) ; h

]
= y (tn + 2h) −

(
y(tn) + h

2∑
j=0
δ j(u)y′ (tn + jh) + hδv(u)y′ (tn + vh) + hδµ(u)y′ (tn + µh)

)
(3.1)

With the aid of Taylor series, we expand the right hand side of each of the formulas in Eq (3.1)
in power of h, with the assumption that y (t) is a sufficiently differentiable function. It is obvious
that the first non zero term of each formula in (3.1) is Cp+1, where Cp+1 is equivalently written as
C6h6(ς2y4(tn) + y(6)(tn)) + O(h7) and C7h7(ς2y5(tn) + y(7)(tn)) + O(h8) for the secondary and primary formulas
of ABHM respectively, and C6 and C7 are their respective error constants. �

Corollary 1. The Local truncation errors of the formulas in the ABHM are respectively given by

LT E =



3h6

10240

(
y(6) (tn) + ς2y(4) (tn)

)
+ O

(
h7

)
h6

5760

(
y(6) (tn) + ς2y(4) (tn)

)
+ O

(
h7

)
3h6

10240

(
y(6) (tn) + ς2y(4) (tn)

)
+ O

(
h7

)
−h7

15120

(
y(7) (tn) + ς2y(5) (tn)

)
+ O

(
h8

)
(3.2)

Consequently, the order p of the ABHM is at least p = 5.

Remark 4. We observe that the local truncation error of ABHM preserves its basis function. This
statement follows from the result of the differential equation y(6) (t) + ς2y(4) (t) = 0 which is a linear
combination of the fitted function of ABHM.

Remark 5. Following the definition given by Lambert [41], a numerical method is consistent if its
order p > 1. Since the order of each of the formula of ABHM is greater than 1, then it is consistent.
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3.2. Analysis of convergence of the ABHM

The analysis of convergence of the ABHM is done following the guidelines by Abdulganiy et al.
[28, 46].

Theorem 2. Let Y be a vectorial approximation of the true solution vector Y for the system
obtained from ABHM given by Eqs (2.11) and (2.12) on the successive block intervals [t0, t2],
[t2, t4], · · · , [tN−2, tN], with N even. If E = (e1, e2, · · · , eN)T denotes the error vector, where e j =

y
(
t j

)
− y j, assuming the solution in closed form is several times differentiable on [t0, tN] and if

‖E‖ = ‖Y − Y‖ , then for appropriately small h , the ABHM is a convergent method of order five,
specifically, ‖E‖ = O

(
h5

)
.

Proof. Suppose the N × N-matrices of coefficients of the ABHM method are defined as follows:

Π =



1 0 0 0 0 0 0 0 0 · · · 0
0 1 0 0 0 0 0 0 0 · · · 0
0 0 1 0 0 0 0 0 0 · · · 0
0 0 0 1 0 0 0 0 0 · · · 0
0 0 0 −1 1 0 0 0 0 · · · 0
0 0 0 −1 0 1 0 0 0 · · · 0
0 0 0 −1 0 0 1 0 0 · · · 0
0 0 0 −1 0 0 0 1 0 · · · 0
...

...
...

...
...

...
...

...
. . .

...

0 0 0 0 0 −1 1 0 · · · 0
0 0 0 0 0 −1 0 1 · · · 0
0 0 0 0 0 −1 0 0 · · · 0
0 0 0 0 0 −1 0 0 · · · 1



,

∆ = h



δv,1 δ1,1 δµ,1 δ2,1 0 0 0 0 · · · 0
δv,2 δ1,2 δµ,2 δ2,2 0 0 0 0 · · · 0
δv,3 δ1,3 δµ,3 δ2,3 0 0 0 0 · · · 0
δv δ1 δµ δ2 0 0 0 0 · · · 0
0 0 0 δ0,1 δv,1 δ1,1 δµ,1 δ2,1 · · · 0
0 0 0 δ0,2 δv,2 δ1,2 δµ,2 δ2,2 · · · 0
0 0 0 δ0,3 δv,3 δ1,3 δµ,3 δ2,3 · · · 0
0 0 0 δ0 δv δ1 δµ δ2 · · · 0
...

...
...

...
...

...
...

...
. . .

...

0 0 0 0 0 δ0,1 δv,1 δ1,1 · · · δ2,1

0 0 0 0 0 δ0,2 δv,2 δ1,2 · · · δ2,2

0 0 0 0 0 δ0,3 δv,3 δ1,3 · · · δ2,3

0 0 0 0 0 δ0 δv δ1 · · · δ2



,
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and the N-vector containing the known values given by

C = (−y0 − hδ0 f0,−y0 − hδ0,1 f0,−y0 − hδ0,2 f0,−y0 − hδ0,3 f0, 0, · · · ., 0)T .

We consider the vectors of exact values Y = (y(tv), y(t1), y(tµ), · · · , y(tN))T and F =

( f (tv, y(tv)), f (t1, y(t1)), f (tµ, y(tµ)), · · · , f (tN , y(tN)))T , the vectors of the approximate values Y =

(yv, y1, yµ, · · · , yN)T and F̄ = ( fv, f1, fµ, · · · , fN)T , and the vectors of the local truncation errors
L(h) = (Lv, L1, Lµ, · · · , LN)T .

The exact form of the system formed by the formulas in Eqs (2.11) and (2.12) along the two-step
blocks on the integration intervals is

ΠY − ∆F + C = −L(h). (3.3)

On the other hand, the system that provides the approximate values may be written as

ΠȲ − ∆F̄ + C = 0. (3.4)

Subtracting Eq (3.3) from Eq (3.4) we obtain

Π(Ȳ − Y) − ∆(F̄ − F) = L(h) (3.5)

and having in mind that E = Ȳ − Y = (ev, e1, ev, · · · , eN)T , the above equation becomes

ΠE − ∆
(
F̄ − F

)
= L(h). (3.6)

We apply the Mean-Value Theorem to obtain F̄ − F = JE, where J is the Jacobian matrix

J =


∂ f
∂y (ξ1) 0 · · · 0

0 ∂ f
∂y (ξ2) · · · 0

...
...

. . .
...

0 0 · · ·
∂ f
∂y (ξN)


and the partial derivatives are applied at intermediate points {ξi}

N
i=1, which are on each corresponding

line joining (xi, y(xi)) to (xi, yi). In view of this, the equation in (3.6) can be written as

(Π − ∆J)E = L(h).

Let Υ denotes the matrix Υ = −∆J. Then we have that

(Π + Υ)E = L(h). (3.7)

For adequately small h, the matrix Π + Υ is invertible (see [28]). Therefore, if we denote by

(Π + Υ)−1 = Ω, (3.8)

and consider the maximum norm, we can obtain after expanding in Taylor series the terms in Ω that
‖Ω‖ = O(h−1). Finally, we have that

‖E‖ = ‖ΩL(h)‖ = ‖Ω‖‖L(h)‖
= O(h−1)O(h6) = O(h5).

Therefore, the ABHM is a convergent method of fifth-order. �
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3.3. Stability of ABHM

Following Fatunla [45], the ABHM can be characterized in the following block matrix form

(A(1) ⊗ I)YW+1 = (A(0) ⊗ I)YW + h(B(1) ⊗ I)FW+1 + h(B(0) ⊗ I)FW (3.9)

where YW+1 =
(
yn+v, yn+1, yn+µ, yn+2

)T
, YW =

(
yn−µ, yn−1, yn−v, yn

)T
, FW+1 =

(
fn+v, fn+1, fn+µ, fn+2

)T
,

FW =
(

fn−µ, fn−1, fn−v, fn

)T
, I is the identity matrix of dimension four, ⊗ denotes the Kronecker product

of matrices, and A(0), A(1), B(0), andB(1) are 4 × 4 matrices obtained from the coefficients of the method,
and given by

A(0) =


0 0 0 1
0 0 0 1
0 1 0 1
0 0 0 1

 , A(1) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , B(0) =


0 0 0 δ0,1

0 0 0 δ0,2

0 0 0 δ0,3

0 0 0 δ0

 , B(1) =


δv,1 δ1,1 δµ,1 δ2,1

δv,2 δ1,2 δµ,2 δ2,2

δv,3 δ1,3 δµ,3 δ2,3

δv δ1 δµ δ2

 .
3.3.1. Zero stability

Zero-stability is a type of stability that deals with the behaviour of a numerical scheme when h→ 0.

Definition 1 (Lambert [41] and Fatunla [42]). A numerical method is zero stable if the modulus of the
roots of the first characteristic equation is less than or equal to one and those of modulus one is simple.
i.e., ρ (R) = det

[
RA(1) − A(0)

]
= 0 and |Ri| ≤ 1.

Proposition 2. The ABHM is zero-stable.

Proof. As h→ 0 in Eq (3.9), we find out that(
A(1) ⊗ I

)
YW+1 −

(
A(0) ⊗ I

)
YW = 0

which gives the first characteristic equation after normalization as

ρ (R) = R3 (R + 1) = 0

and consequently, ABHM is zero-stable according to the previous definition. �

3.3.2. Linear stability of ABHM

Applying the ABHM specified by the formulas in (3.9) to the test equation y′ = λy and letting
η = λh, yields

YW+1 = M(η, u)YW , (3.10)

where
M(η, u) = (A(1) − ηB(1))−1(A(0) + ηB(0)) (3.11)

is called stability matrix which ensures the stability of the ABHM. The stability matrix M(η, u) for
ABHM has eigenvalues given by (χ1, χ2, χ3, χ4) = (0, 0, 0, χ4), where χ4 (η, u) =

σ4(η,u)
τ4(η,u) is the stability

function, and σ4 (η, u) and τ4 (η, u) are specified in the appendix.

AIMS Mathematics Volume 6, Issue 12, 14013–14034.



14024

Remark 6. We emphasise that according to the following definitions, the stability function χ4 ensures
the stability region of the ABHM.

Definition 2 (Coleman and Ixaru [25]). The region of stability of a numerical method for solving (1.3)
is the region in the (η, u)-plane for which |M (η, u)| ≤ 1.

Definition 3 (Ndukum et al. [31]). An ABHM with the coefficients A(0) (u), A(1) (u), B(0) (u),B(1)(u) with
the stability function M (η, u) is said to be A-stable at u = u0, if |M (η, u0)| < 1, for all η ∈ C−.

Remark 7. A-stability of ABHM is a property similar to A-stability for the orthodox methods which is
essential for a numerical integrator to do well on stiff problems.

The stability region of ABHM is plotted in the (η, u)− plane as shown in Figure 1 (Left) whereas
Figure 1 (Right) is the region |M (z, u)| < 1 at u0 = π

9 in the complex plane through boundary locus
method for which η ∈ C−.

Figure 1. η−u plot for ABHM (Left) and region of stability for ABHM (Right).

4. Numerical experiment

The effectiveness of ABHM is established in this section. Four well known Duffing equations in
the literature are provided. A written algorithm in Maple 2016.1 is developed for ABHM. The values
of the fitting parameters used in the numerical examples were taken from the referenced problems.
However, the strategies for the frequency choice considered by [36] can be utilized.

In the numerical investigations, we plotted the graphs of the absolute errors obtained using the
ABHM to show how the results of the ABHM and exact results agree with the errors. As a measure of
accuracy, the graphs of the absolute errors obtained using the ABHM and the exact results are plotted
on the same scale, whereas the computational efficiency is measured by the plots of the maximum
errors of the results obtained using ABHM against the number of function evaluations (NFE) required
by each integrator in comparison with the following listed methods.
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ETFFSH5S: Five stage explicit trigonometrically-fitted method of order six in Li et al. [51]
ETFFSH6S: Six stage explicit trigonometrically-fitted of method order seven in Li et al. [51]
BHTM: Block Hybrid Trigonometrically-Fitted Method in Abdulganiy et al. [37]
BHT: Block Hybrid Trigonometrically-Fitted Method in Ngwane and Jator [23]
BTDF8: Eighth order block third derivative method in Jator et al. [40]
BTDF10: Tenth order block third derivative method in Jator et al. [40]
HLMM: A seventh order hybrid linear multistep method in Jator [7]
DIRKNNew: New Diagonally Implicit Runge-Kutta Nyström Method for Periodic IVPs in Senu

et al. [50]
(TFARKN 5(3)): Trigonometrically-Fitted Runge-Kutta-Nyström method in of Fang et al. [19]
TFARKN: Trigonometrically-Fitted Adapted Runge-Kutta-Nyström method in Fang et al. [18]
EM8: An explicit eight order method in Tsitouras [57]
EFRKN: Exponentially Fitted Runge-Kutta-Nyström method in Franco [17]
ARK4: Fourth Order and Four stages adapted RK method in Franco [17]
ARK3/8: Fourth Order and Four stages adapted RK method in Franco [17]
EFRK: Exponentially Fitted Explicit Runge-Kutta Method in Franco [8]
IIIb: mixed collocation method of order 6 in Duxbury [14]
RK6: The Butcher’s sixth-order method given in Hairer et al. [5]
MEHM6: The Modified sixth-order Explicit Hybrid Method with four stages derived in Samat and

Ismail [59]

4.1. Duffing equations

4.1.1. Example 1

As our first numerical experiment, we consider the following Duffing equation in the interval [0,100]

ÿ + (ς2 + κ2)y = 2κ2y3, y(0) = 1, ẏ(0) = ς (4.1)

whose result in closed form y (t) = sn
(
ςt; k

ς

)
represents a periodic motion in terms of the Jacobian

elliptic function sn, where κ = 0.03 and ς = 5 respectively. In order to compare errors of different
methods, we use step lengths h = 1

2i , i = 3, 4, 5, 6. The accuracy of the ABHM with respect to the exact
solution is provided in Figure 2 (Left) while its efficiency is represented visually in Figure 2 (Middle).
In Figure 2 (Right), we plotted the absolute error graph with h = 1

32 to show the agreement between
the exact and the approximate solutions which confirms the accuracy of ABHM with errors less than
10−10. We see clearly that the proposed method performs better.

AIMS Mathematics Volume 6, Issue 12, 14013–14034.



14026

Figure 2. Graphical representations for Example 1: Discrete and exact solutions (Left),
efficiency curves (Middle) and absolute errors (Right).

4.1.2. Example 2

In the second example, we consider the following undamped Duffing equation

ÿ = α cos3 t − y(1 + αy2), y(0) = 1, ẏ(0) = 0, (4.2)

where α is a forcing term given as α = 0.01 in the interval 0 ≤ t ≤ 33π
4 , the analytical solution is given

as y (t) = cos t. For the numerical experiment, we select the step-sizes as h = π
2i , i = 1, 2, 3, 4, 5, 6. The

graph of absolute errors between the exact and the approximate solutions agrees with errors less than
10−22 with h = π

26 as shown in Figure 3 (Left). We present the accuracy of the ABHM with ς = 1 for
different point on the interval of integration in comparison with the exact solution in Figure (Middle)
whereas the efficiency curve plotted in Figure 3 (Right) for different step sizes evidently shows that the
ABHM outperformed some other numerical methods it compared in recent literature. Figure 4 shows
the behaviour of the results of the ABHM in relation to the exact results for a large forcing term α = 2.
For this, we select h = π

26 which reveals same behaviour as α = 0.01 with errors less than 10−22.

Figure 3. Graphical representations for Example 2: Absolute errors (Left), discrete and exact
solutions (Middle) and efficiency curves (Right).
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Figure 4. Absolute errors of ABHM for Example 2 with α = 2.

4.1.3. Example 3

The following Undamped Duffing Equation is considered as our third experiment{
ÿ + y3 + y = (ε sin (10t) + cos (t))3

− 99ε sin (10t) , 0 ≤ t ≤ 1000
y (0) = 1, ẏ (0) = 10ε

(4.3)

with ε = 10−10 and whose solution in closed form is y (t) = ε sin (10t) + cos (t).
With step-size h = 1

22 , Figure 5 (Left) shows errors less than 10−14. While Figure 5 (Middle) with
step-sizes selected as h = 1

2i , i = 1, 2, 3, 4, 5, 6 shows the performance of the proposed method with
reference to the analytic solution, the plot in Figure 5 (Right) illustrates the superiority of the ABHM
over some of the methods it compared.

Figure 5. Graphical representations for Example 3: Absolute errors (Left), discrete and exact
solutions (Middle) and efficiency curves (Right).
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4.1.4. Example 4

We consider the non-linear Duffing equation forced by a harmonic function given by

ÿ + y + y3 = ξcos (λt) (4.4)

A theoretical solution of this equation obtained by Van Dooren (1974) given by y (x) = φ1 cos (λx) +

φ2 cos (3λx) + φ3 cos (5λx) + φ4 cos (7λx) and the suitable initial conditions are y (0) = φ0, ẏ (0) = 0,
where λ = 1.01, ξ = 2.0 × 10−3, φ0 = 2.00426728069 × 10−1, φ1 = 2.00179477536 × 10−3, φ2 =

2.46946143 × 10−4, φ3 = 3.04016 × 10−7, and φ4 = 3.74 × 10−10. For this example, we select ς = 1.01
as fitting frequency. Whereas the absolute errors of the ABHM are shown in Figure 6 (Left), the
correctness of the ABHM with reference to the exact solution is plotted in Figure 6 (Middle). The good
performance of ABHM in the interval

[
0, 20.5π

1.01

]
with step length h = 1

2i , i = 1, 2, 3, 4, 5, 6 in comparison
with some numerical methods in the recent literature is plotted in Figure 6 (Right) respectively.

Figure 6. Graphical representations for Example 4: Absolute errors (Left), discrete and exact
solutions (Middle) and Efficiency curves (Right).

4.2. Related problems

As emphasised in section one, besides the Duffing equations, the proposed adapted method in the
present study can be used for solving other types of oscillatory problems. We integrate two of such
problems to establish the efficiency of the ABHM.

4.2.1. Example 5

We consider the following well known two body problem{
ÿ1 (t) = −

y1
r3 , y1 (0) = 1, ẏ1 (0) = 0

ÿ2 (t) = −
y2
r3 , y2 (0) = 0, ẏ2 (0) = 0

(4.5)

where r =

√
y2

1 + y2
2 and whose analytic result is given by y1 (t) = ẏ2 (t), y2 (t) = sin (t) . The problem is

considered in the integration interval 0 ≤ t ≤ 10 with ς = 1. The absolute errors of the ABHM in terms
of agreement with the exact solution are shown in Figure 7 (Left). The numerical accuracy of ABHM
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is displayed in Figure 7 (Middle), while the graphical illustration of its efficacy in terms of number of
functions evaluation and time are shown in Figure 7 (Right) and Figure 8 respectively. Figure 7 (Right)
and Figure 8 establish the advantage of ABHM over some of the other numerical integrators in the
recent literatures.

Figure 7. Graphical representations for Example 5: Absolute errors (Left), discrete and exact
solutions (Middle) and efficiency curves (Right).

Figure 8. Efficiency of ABHM for Example 5 in relation with time.
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4.2.2. Example 6

Consider the non-linear perturbed system on the range [0, 10] with ε = 10−3ÿ1 = εϕ1 (x) − 25y1 − ε
(
y2

1 + y2
2

)
, y1 (0) = 1 , ẏ1 (0) = 0

ÿ2 = εϕ2 (x) − 25y2 − ε
(
y2

1 + y2
2

)
, y2 (0) = ε , ẏ2 (0) = 5

(4.6)

where ϕ1 (x) = 1 + 2 cos
(
x2

)
+ ε2 +

(
25 − 4x2

)
sin

(
x2

)
+ 2ε sin

(
5x + x2

)
ϕ2 (x) = 1 − 2 sin

(
x2

)
+ ε2 +

(
25 − 4x2

)
cos

(
x2

)
+ 2ε sin

(
5x + x2

)
and the solution in closed form is given as y1 (x) = ε sin

(
x2

)
+ cos (5x) , y2 (x) = ε cos

(
x2

)
+ sin (5x).

Details of the results given in Figure 9 (Left) and Figure 9 (Middle), and the efficiency curves plotted
in Figure 9 (Right), reveal that the ABHM is an efficient numerical integrator for the non-linear
perturbed system.

Figure 9. Graphical representations for Example 5: Absolute errors (left), discrete and exact
solutions (Middle) and efficiency curves (Right).

5. Conclusions

An adapted block hybrid method with trigonometric coefficients that depend on a constant
frequency and constant step length for Duffing equations has been considered in this article. The
proposed integrator has benefit of being self starting with better accuracy in comparison with the exact
solutions. Details of the numerical examples established the superiority of the ABHM on Duffing
equations and some related problems over a portion of the existing formulas in the reviewed literature.

Appendix

σ4 = (22η4+(6u2−48)η3+(−22u2+48)η2+48ηu2−48u2)(cos(u/2))4+(6ηu(η3−
22η2

3 +16η−16) sin(u/2)−
38 η4+(18 u2−80)η3+6 η2u2−32 η u2+96 u2)(cos(u/2))3+(−6 η2u(η+8)(η+2) sin(u/2)−6 η4+128 η3+

(38 u2 − 96)η2 − 16 η u2)(cos(u/2))2 + (−3 η u(η3 −
32 η2

3 + 16 η− 32) sin(u/2) + 38 η4 + (−12 u2 + 80)η3 −

AIMS Mathematics Volume 6, Issue 12, 14013–14034.



14031

6 η2u2 +32 η u2−96 u2) cos(u/2)+3 η2u(η+4)2 sin(u/2)−16 η4−80 η3 +(−16 u2 +48)η2−32 η u2 +48 u2

τ4 = −6 sin(u/2)(cos(u/2) − 1)(((11/3 η4 + (u2 + 8)η3 + (11/3 u2 + 8)η2 + 8 η u2 + 8 u2) cos(u/2) −
8/3 (η2 + 3 η + 3)(η2 + u2)) sin(u/2) − η4((cos(u/2))2 − 1/2)u)

Acknowledgments

This work is supported by Foundation of Chongqing Municipal Key Laboratory of Institutions
of Higher Education ([2017]3), Foundation of Chongqing Development and Reform Commission
(2017[1007]), and Foundation of Chongqing Three Gorges University.

The authors are grateful to Professor Higinio Ramos for carefully reading and correcting the
manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. S. N. Jator, H. B. Oladejo, Block Nyström method for singular differential equations of the Lane-
Emdem Type and problems with highly oscillatory solutions, Int. J. Appl. Comput. Math., 3 (2017),
1385–1402.

2. T. Monovasilis, Z. Kalogiratou, H. Ramos, T. E. Simos, Modified two-step hybrid methods for the
numerical integration of oscillatory problems, Math. Method Appl. Sci., 40 (2017), 5286–5294.

3. J. Sunday, Y. Skwane, M. R. Odekunle, A continuous block integrator for the solution of stiff and
oscillatory differential equations, IOSR J. Math., 8 (2013), 75–80.

4. W. H. Enright, Second derivative multistep method for stiff ODEs, SIAM J. Numer. Anal., 11
(1974), 321–331.

5. E. Hairer, S. P. Norsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems,
Springer-Verlag, Berlin, 1993.

6. J. D. Lambert, I. A. Watson, Symmetric multistep methods for periodic initial value problems, IMA
J. Appl. Math., 18 (1976), 189–202.

7. S. N. Jator, Solving second order initial value problems by a hybrid multistep method without
predictors, Appl. Math. Comput., 277 (2010), 4036–4046.

8. J. M. Franco, An embedded pair of exponentially fitted explicit Runge-Kutta methods, J. Comput.
Appl. Math., 149 (2002), 407–414.

9. J. M. Franco, Exponentially-fitted explicit Runge-Kutta-Nyström methods, J. Comput. Appl. Math.,
167 (2003), 1–19.

10. W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric
polynomials, Numer. Math., 3 (1961), 381–397.

11. B. Neta, C. H. Ford, Families of methods for ordinary differential equations based on trigonometric
polynomials, J. Comp. Appl. Math., 10 (1984), 33–38.

AIMS Mathematics Volume 6, Issue 12, 14013–14034.



14032

12. B. Neta, Families of backward differentiation methods based on trigonometric polynomials, Int. J.
Comput. Math., 20 (1986), 67–75.

13. B. B. Sanugi, D. J. Evans, The numerical solution of oscillatory problems, Int. J. Comput. Math.,
31 (1989), 237–255.

14. S. C. Duxbury, Mixed Collocation Methods for y′′ = f (x, y), Durham Theses, Durham University,
1999.

15. J. P. Coleman, S. C. Duxbury, Mixed collocation methods for y′′ = f (x, y), J. Comput. Appl. Math.,
126 (2000), 47–75.

16. J. M. Franco, A class of explicit two-step hybrid methods for second-order IVPs, J. Comput. Appl.
Math., 187 (2006), 41–57.

17. J. M. Franco, Exponentially fitted explicit Runge-Kutta-Nyström methods, J. Comput. Appl. Math.,
167 (2004), 1–19.

18. Y. Fang, X. Wu, A trigonometrically fitted explicit Numerov-type method for second order initial
value problems with oscillating solutions, Appl. Numer. Math., 58 (2008), 341–351.

19. Y. Fang, Y. Song, X. Wu, A robust trigonometrically fitted embedded pair for perturbed oscillators,
J. Comput. Appl. Math., 225 (2009), 347–355.

20. L. Gr. Ixaru, G. Vanden Berghe, M. Van Daele, Frequency evaluation in exponentially-fitted
algorithms for ODEs, J. Comput. Appl. Math., 140 (2002),423–434.

21. G. Vanden Berhe, M.Van Daele, Exponentially-fitted Numerov methods, J. Comput. Appl. Math.,
200 (2007),140–153.

22. J. Martin-Vaquero, J. Vigo-Aguiar, Exponential fitted Gauss, Radau and Lobatto methods of low
order, Numer. Algorithms, 48 (2008), 327–346.

23. F. F. Ngwane, S. N. Jator, Solving oscillatory problems using a block hybrid trigonometrically
fitted method with two off-step points, Electron. J. Differ. Eq., 20 (2013), 119–132.

24. X. You, B. Chen, Symmetric and symplectic exponentially-Fitted Runge-Kutta-Nyström methods
for Hamiltonian Problems, Math. Comput. Simulat., 94 (2013), 76–95.

25. J. P. Coleman, L. G. Ixaru, P-stability and exponential fitting methods for y′′ = f (x, y), IMA J.
Numer. Anal., 16 (1996), 179–199.

26. A. Konguetsof, T. E. Simos, An exponentially-fitted and trigonometrically-fitted methods for the
numerical integration of periodic initial value problems, Comput. Math. Appl., 45 (2003), 547–554.

27. S. N. Jator, S. Swindell, R. D. French, Trigonmetrically fitted block numerov type method for
y′′ = f (x, y, y′), Numer. Algorithms, 62 (2013), 13–26.

28. R. I. Abdulganiy, O. A. Akinfenwa, S. A. Okunuga, Maximal order block trigonometrically fitted
scheme for the numerical treatment of second order initial value problem with oscillating solutions,
IJMSO, 2017 168–186.

29. F. F. Ngwane, S. N. Jator, Trigonometrically-fitted second derivative method for oscillatory
problems, SpringerPlus, 3 (2014).

30. M. A. Razzaq, An analytical approximate technique for solving cubic-quintic Duffing oscillator,
Alex. Eng. J., 55 (2016), 2959–2965.

AIMS Mathematics Volume 6, Issue 12, 14013–14034.



14033

31. P. L. Ndukum, T. A. Biala, S. N. Jator, R. B. Adeniyi, On a family of trigonometrically fitted
extended backward differentiation formulas for stiff and oscillatory initial value problems, Numer.
Algorithms, 74 (2017), 267–287.

32. H. Ramos, J. Vigo-Aguiar, On the frequency choice in trigonometrically fitted methods, Appl.
Math. Lett., 23 (2010), 1378–1381.

33. L. Schovanec, J. T. White, A power series method for solving initial value problems utilizing
computer algebra systems, Int. J. Comput. Math., 47 (1993), 181–189.

34. S. Nourazar, A. Mirzabeigy, Approximate solution for nonlinear Duffing oscillator with damping
effect using the modified differential transform method, Sci. Iran., 20 (2013), 364–368.

35. F. F. Ngwane, S. N. Jator, A family of trigonometrically fitted Enright second derivative methods
for stiff and oscillatory initial value problems, J. Appl. Math., 2015 (2015) 1–17.

36. J. Vigo-Aguiar, H. Ramos, On the choice of the frequency in trigonometrically fitted methods for
periodic problems, J. Comput. Appl. Math., 277 (2015), 94–105.

37. R. I. Abdulganiy, O. A. Akinfenwa, S. A. Okunuga, G. O. Oladimeji, A robust block hybrid
trigonometric method for the numerical integration of oscillatory second order nonlinear initial
value problems, Adv. Modell. Anal. A, 54 (2017), 497–518.

38. A. Belendez, C. Pascual, M. Ortuno, T. Belendez, S. Gallego, Application of a modified He’s
homotopy perturbation method to obtain higher-order aroximations to a nonlinear oscillator with
discontinuities, Nonlinear Anal-Real., 10 (2009), 601–610.

39. H. S. Nguyen, R. B. Sidje, N. H. Cong, Analysis of trigonometric implicit Runge-Kutta methods,
J. Comput. Appl. Math., 198 (2007), 187–207.

40. S. N. Jator, A. O. Akinfenwa, S. A. Okunuga, A. B. Sofoluwe, High-order continuous third
derivative formulas with block extension for y′′ = f (x, y, y′), Int. J. Comput. Math., 90 (2003),
1899–1914.

41. J. D. Lambert, Computational Methods in Ordinary Differential System, the Initial Value Problem,
New York: John Wiley & Sons, 1973.

42. S. O. Fatunla, Numerical Methods for Initial Value Problems in Ordinary Differential Equations,
Cambridge: Academic Press Inc., 1988.

43. J. He, The homotopy perturbation method for nonlinear oscillators with discontinuous, Appl. Math.
Comput., 151 (2004), 287–292.

44. A. Beléndez, A. Hernández, T. Beléndez, E. Fernández, M. L. Álvarez, C. Neipp, Application of
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