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Abstract 23 

Land surface phenology (LSP) plays a critical role in the regulation of photosynthesis, 24 

evapotranspiration, and energy fluxes. Significant progress has been made in extracting LSP 25 

information over large areas using satellite data, yet LSP retrievals remain a challenge over vast arid 26 

and semi-arid ecosystems because of sparse greenness, high variability and the lack of distinct annual 27 

patterns; for example, the MODerate Imaging Spectrometer (MODIS) Land Cover Dynamics Product 28 

MCD12Q2 that provides LSP metrics globally often failed to provide LSP information in these 29 

ecosystems. In this study, we used a modified threshold algorithm to extract LSP timing metrics, 30 

including the start, peak, and end of growing seasons, using the 16-day composite Enhanced 31 

Vegetation Index (EVI) time series from MODIS data. We applied this regionally customized 32 

algorithm across all arid and semi-arid climate regions of Australia (75% of the continental land area) 33 

encompassing shrublands, grasslands, savannas, woodlands, and croplands, extracting LSP metrics 34 

annually from 2003 to 2018, with up to two (phenology) seasons accounted for in each year. Our 35 

algorithm yielded an average of 64.9% successful rate of retrieval (proportion of pixels with retrieved 36 

LSP metrics) across 16 years in Arid and Semi-arid AUStralia (AS-AUS), which was a significant 37 

increase compared to the 14.5% rate of retrieval yielded in our study area by the global product and 38 

the major cause of the different performances between these two approaches was the different EVI 39 

amplitude restrictions utilized to avoid spurious peaks (i.e. EVI amplitude ≥ 0.1 used by the global 40 
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product and peak EVI ≥ time series average EVI used by our algorithm). Gross primary productivity 41 

(GPP) measurements at OzFlux eddy covariance (EC) tower sites were used to cross-compare with the 42 

presence/absence of growing seasons detected by our algorithm, and 97% of our retrieved seasons 43 

matched with those extracted using EC data. Preliminary tests at five OzFlux sites showed that our 44 

algorithm was robust to view angle-induced sensitivity of the input data and showed similar 45 

performance when using EVI data calculated using MODIS Nadir BRDF-Adjusted Reflectance 46 

product. Our retrieved LSP metrics revealed that vegetation growth in arid ecosystems is highly 47 

irregular and can occur at any time of the year, more than once in a year, or can skip a year. The 48 

proportion of pixels with two growing seasons was found to be correlated with the average annual 49 

precipitation of the study area (p<0.01), providing an estimation approach of LSP via rainfall. Our 50 

study improves the detection and measurement of vegetation phenology in arid and semi-arid regions 51 

by improving the spatial extend of LSP retrievals, which contributes to studies on LSP variations and 52 

dryland ecosystem resilience to climate change. More evaluation is planned for future work to assess 53 

and further improve the accuracy of the retrieved LSP metrics.  54 

Key words: 55 
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1 Introduction 58 

Vegetation phenology, the study of life cycle events in plants, including germination, bud break, 59 

flowering, and leaf senescence (Henebry and de Beurs, 2013), plays a critical role in the expression of 60 

photosynthesis and evapotranspiration, as well as land surface water, carbon and energy fluxes (Aires 61 

et al., 2008; White et al., 2009; Vivoni, 2012; Puma et al., 2013; Delbart et al., 2015; Ehleringer et al., 62 

2019). Given this critical role, phenology has been widely studied to quantify the effect of climate 63 

change on terrestrial ecosystems. For example, increasingly early spring phenology has been 64 

associated with warming trends in the Northern Hemisphere (Myneni et al., 1997; Linderholm, 2006; 65 

Richardson et al., 2013; Xu et al., 2019). Additionally, the spatial and temporal dynamics of vegetation 66 

phenology can support the modelling of biospheric processes, detection of land cover and land use 67 

change, and agricultural management (Lymburner et al., 2011; Kennedy et al., 2014; Ma et al., 2015; 68 

Wang et al., 2017).  69 

With nearly five decades of Earth observation developments, an increasing number of satellite sensors 70 

provide regular measurements of land surface properties with global coverage. Examples include the 71 

Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging 72 
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Spectroradiometer (MODIS), and the Landsat and Copernicus Sentinel-2 missions. The increasing 73 

archive of satellite data has greatly benefited the observation of vegetation dynamics (Huete et al., 74 

2002; Melaas et al., 2013; Keenan and Richardson, 2015). There have been a wide range of studies 75 

using various methods and satellite data, among which many have used vegetation index products to 76 

retrieve phenological metrics and most of those studies were focused on the Northern Hemisphere 77 

(Buitenwerf et al., 2015; Melaas et al., 2016; Wu et al., 2016; Liu et al., 2017; Peng et al., 2017; 78 

Thompson and Paull, 2017; Zhang et al., 2018a, 2018b; Moon et al., 2019; Bolton et al., 2020). The 79 

MODIS Land Cover Dynamics Product (MCD12Q2), referred to as the global product hereafter, 80 

provides global LSP from MODIS data (Zhang et al., 2003, 2006). Validations with field observations 81 

have demonstrated the reliability of this product over large regions, especially in temperate deciduous 82 

vegetation and agricultural areas. However, the algorithm used for the global product took a 83 

conservative approach that did not produce results if data were missing during transition periods or if 84 

the input vegetation index amplitude was very low (Ganguly et al., 2010; Gray et al., 2019), resulting 85 

in failed retrievals over arid and semi-arid areas (Broich et al., 2015). 86 

Arid and semi-arid biomes cover around 40% of the Earth’s terrestrial surface and provide important 87 

ecosystem services (James et al., 2013; Smith et al., 2019). Extensive arid regions occur in Australia, 88 

Africa, and extend from the Middle East through Central Asia. For example, Australia is covered with 89 

75% arid and semi-arid (annual rainfall < 500 mm yr-1) regions (Hughes, 2011). The positive anomaly 90 

in global land carbon uptake in 2010-11 was largely driven by semi-arid ecosystems in the Southern 91 

Hemisphere, with 60% of the global carbon uptake anomaly attributed to Australia’s arid and semi-92 

arid ecosystems (Poulter et al., 2014). The highly variable climate and irregular rainfall in arid and 93 

semi-arid regions can cause rapid vegetation greening and browning and hence irregular phenological 94 

patterns (Ma et al., 2013; Liu et al., 2017). These highly variable phenological patterns pose challenges 95 

for extracting LSP information from current remote sensing data products. Due to these issues, 96 

algorithms developed for LSP extraction from ecosystems with regular and defined phenological 97 

events often result in poorly-constrained or inaccurate retrievals from arid and semi-arid vegetation.  98 

The lack of detailed characterization of biogeographical patterns in phenological cycles in arid and 99 

semi-arid regions greatly limits our understanding of ecosystem carbon exchange and future climate 100 

impacts on vegetation composition, functioning, and response to fire (Beringer et al., 2011, 2015; 101 

Moore et al., 2016; Z. Fu et al., 2019; Yu et al., 2020) and impedes our understanding of biodiversity 102 

as LSP is an indicator of biodiversity patterns (Vina et al., 2016). Studies have also reported that our 103 

knowledge of dryland ecosystems remains relatively limited because the structural and functional 104 

variability of vegetation dynamics occur at fine scales due to irregular rainfall patterns and due to 105 
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underrepresentation of these ecosystems in long-term field measurements that are synthesized into 106 

larger networks (Smith et al., 2019).  107 

It is a common practice to retrieve plant phenology from seasonal changes in satellite greenness indices 108 

using threshold-based algorithms that define phenology based on the date when a vegetation index 109 

reaches a predefined threshold (White et al., 1997), or curve-fitting algorithms that identify 110 

phenological metrics from a predefined mathematical function (Zhang et al., 2006; Zhang, 2015). The 111 

effectiveness of curve-fitting models, e.g. logistic methods, is dependent on the basic assumption that 112 

vegetation growth follows a well-defined S-shaped temporal profile, which would suffer from 113 

uncertainties in logistic curve fitting in arid and semi-arid areas due to the fact that the time series may 114 

deviate greatly from this sigmoid curve (Cao et al., 2015). As such, for Collection 6 of the global 115 

product (Friedl et al., 2019), the algorithm was changed from logistic methods used in Collection 5 to 116 

a threshold-based algorithm to increase the reliability of retrieved phenometrics in tropical, arid, and 117 

semi-arid ecosystems (Gray et al., 2019). Yet there are still missing values of the Collection 6 global 118 

product over large areas in arid and semi-arid ecosystems in Australia. Therefore, an algorithm 119 

designed for such areas is necessary to improve phenology monitoring in these globally significant 120 

ecosystems. For successful characterization of LSP in these regions, algorithms must be able to 121 

account for irregular phenological cycles that vary drastically in their timing, length, amplitude, and 122 

reoccurrence intervals (Ma et al., 2013; Cleverly et al., 2016a; Eamus et al., 2016). 123 

Commonly used methods to validate satellite land surface phenology (LSP) include using traditional 124 

visual inspection (Liang and Schwartz, 2009); ground measurements of leaf area index; foliage 125 

biomass; leaf pigments (e.g. carotenoids and chlorophyll); time series of eddy covariance (EC) flux 126 

tower measurements (Nasahara and Nagai, 2015; Peng et al., 2017); multispectral images from time-127 

lapse cameras located in carbon flux measurement sites (Peichl et al., 2015; Moore et al., 2016; 128 

Richardson et al., 2018a); photosynthetically active radiation; short-wave radiation sensor 129 

measurements; airborne hyperspectral/multi-spectral measurements; and citizen science observations 130 

(Zhang et al., 2018b). Satellite greenness indices have been directly related to EC tower carbon flux 131 

measurements across a wide range of ecosystems (Rahman et al., 2005; Gitelson et al., 2006; Ma et 132 

al., 2013). EC data represent fluxes which encompass diurnal and seasonal ecosystem processes, whilst 133 

satellite greenness measures operate at coarser time scales, but the two data sources are related and 134 

comparable.  135 

Due to the importance of both arid and semi-arid regions as well as missing values of current LSP 136 

products in these regions, we aimed to improve the LSP retrieval algorithms that can subsequently be 137 
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used to enhance our understanding of these variable ecosystem processes and functions. The objectives 138 

of this paper were (1) to improve LSP retrieval in terms of the rate of successful retrievals (proportion 139 

of pixels with successfully retrieved LSP metrics) in arid and semi-arid ecosystems, using Australia as 140 

a test case; (2) to evaluate the performance of our algorithm by comparing with the existing global 141 

LSP product MCD12Q2 and eddy covariance (EC) flux tower gross primary productivity data; and (3) 142 

to investigate the variability of LSP in these arid and semi-arid ecosystems and their response to 143 

climate drivers. We hypothesized that LSP would be characterized by intermittent growing seasons 144 

both intra-annually (i.e., with multiple growing seasons in a given year) and across years (i.e., with an 145 

absence of a detectable growing season in any given year), and that the seasonal amplitude of LSP 146 

would be smaller in arid and semi-arid regions of Australia than the threshold (amplitude ≥ 0.1) 147 

imposed by the latest version (Collection 6) of the global product.  148 

2 Methods 149 

2.1 Study area 150 

For this study, we focused on arid and semi-arid regions in Australia according to the Köppen 151 

classification maps (Australian Bureau of Meteorology, 2016), which cover a wide geographical range 152 

(112 °E – 147 °E, 15 °S – 37 °S, Figure 1) (Davis et al., 2013) and shrubland, grassland, savanna, 153 

woodland, and cropland land cover types. The region is characterized by extremely low and 154 

unpredictable annual precipitation (100 – 500 mm y-1, 30-year climatology 1981-2010) and high 155 

potential evaporation (2880 – 4000 mm y-1, 30-year climatology 1961-1990)  (www.bom.gov.au). The 156 

climate in Australia’s arid and semi-arid regions can vary greatly from one year to the next, with much 157 

of the variability connected to the El Niño-Southern Oscillation (ENSO), a major air pressure and sea 158 

surface temperature relationship between the Australian/Indonesian region and the eastern Pacific 159 

(Heberger, 2012; Australian Bureau of Meteorology, 2014; Rogers and Beringer, 2017; Yang and 160 

Huang, 2021).  161 



 

6 
 

 162 

Figure 1. Study area. Upper left: extent of the arid and semi-arid regions in Australia according to the Köppen classification 163 
maps (http://www.bom.gov.au/ ). Right: land cover map showing vegetation types in the study area according to MODIS 164 
Land Cover Type (MCD12Q1) Version 6 data in 2018, and locations of five OzFlux eddy covariance sites in the study 165 
area. Forests include Evergreen Needleleaf Forests, Evergreen Broadleaf Forests, Deciduous Needleleaf Forests, 166 
Deciduous Broadleaf Forests, and Mixed Forests; Shrublands include Closed Shrublands and Open Shrublands; Savannas 167 
include Woody Savannas and Savannas. Figures of each site were obtained from http://www.ozflux.org.au/index.html  168 

2.2 Data preprocessing  169 

The data used for extraction of phenological metrics were from the 16-day 500 m MODIS vegetation 170 

index product MYD13A1, downloaded from NASA Land Processes Distributed Active Archive 171 

Centre (https://e4ftl01.cr.usgs.gov/). The MYD13A1 Enhanced Vegetation Index (EVI) (Huete et al., 172 

2002) time series from July 2002 to June 2019 was used to calculate 500 m resolution gridded LSP 173 

metrics on an annual basis from 2003 to 2018. Note that for generating LSP metrics in each calendar 174 

year the length of the time series was extended by 6 months from the start and end of the calendar year 175 

(two years total). Similar to the global product, we used the EVI as input data because it provides a 176 

greater dynamic range than the normalized difference vegetation index (NDVI) (Zhang et al., 2003).  177 

Quality control of the EVI images were achieved according to the quality assurance (QA) flags 178 

provided by the MYD13A1 product. We discarded observations with VI quality = ‘10’ (Pixel produced, 179 

but most probably cloudy) or ‘11’ (Pixel not produced due to other reasons than clouds), VI usefulness > 180 

10 (Lowest quality; Quality so low that it is not useful; L1B data faulty; Not useful for any other 181 

reason/not processed), Aerosol Quantity = ‘11’ (high), mixed clouds present, or adjacent cloud 182 

detected (Didan et al., 2015). We then gap-filled the low quality observations screened in the previous 183 

step per-pixel using cubic spline interpolation of the EVI time series (Dougherty et al., 1989). Finally, 184 

the EVI time series were filtered using the Savitsky-Golay smoothing method (Savitzky and Golay, 185 

1964) a window size of 11 EVI composite periods and a 3rd order polynomial to further reduce 186 

remaining noise in the gap filled EVI time series.  187 

http://www.bom.gov.au/jsp/ncc/climate_averages/climate-classifications/index.jsp?maptype=kpngrp#maps
http://www.ozflux.org.au/index.html
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2.3 The AS-AUS phenology extraction algorithm  188 

Vegetation indices based on the contrast between the red region of the electromagnetic spectrum 189 

(where green vegetation strongly absorbs) and the near infrared region (where green vegetation 190 

strongly reflects) are commonly used to quantify vegetation greenness, e.g. the NDVI (Rouse Jr et al., 191 

1974) and EVI (Huete et al., 2002). Time series of such vegetation indices are usually used to detect 192 

phenology metrics. In this study, we modified the threshold algorithm (Ma et al., 2015; Wang et al., 193 

2018) to retrieve the LSP metrics, including the start, peak, end, and length of growing season(s) (SGS, 194 

PGS, EGS, LGS), in each year using two-year EVI time series data (Figure 2) and our approach is 195 

called Arid and Semi-arid AUStralia LSP, hereafter AS-AUS. 196 

 197 
Figure 2. Conceptual diagram illustrating the algorithm for deriving phenological metrics in Arid and Semi-arid AUStralia 198 
(AS-AUS) from MODIS EVI time series showing example of two growing seasons in a year. 199 

The conceptual definition of the AS-AUS LSP metrics is shown in Figure 2. Based on per-pixel EVI 200 

time series, we retrieved the phenological timing metrics for each season accounting for up to two 201 

seasons per year, similar to the global product. We defined the peak of growing season(s) (PGS) as the 202 

date when the EVI reached its maximum value during the growing season(s). Each peak is a local 203 

maximum value at least 128 days after the previous and before the subsequent peak to guarantee no 204 

more than three peaks in one year, and when three peaks occur in one calendar year, the two higher 205 

peaks were considered, similar to the global product algorithm (Gray et al., 2019). For defining the 206 

start of growing season(s) (SGS), like many other threshold algorithms (Wang et al., 2018), we chose 207 

a point during the green-up phase after EVI reached its minimum value prior to the growing season 208 

plus 20% of the green-up seasonal amplitude that equals the peak EVI value minus the minimum EVI 209 

value before PGS. Likewise, to define the end of growing season(s) (EGS), we used the point when 210 

the EVI reached its minimum value after the growing season plus 20% of the brown-down seasonal 211 
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amplitude that equals the peak EVI value minus minimum EVI value after PGS. The length of growing 212 

season(s) (LGS) was the difference between EGS and SGS.  213 

To avoid spurious peaks, amplitude restrictions are usually needed for threshold algorithms, e.g., the 214 

global product (Collection 6) requires that the seasonal amplitude between the minimum value and the 215 

peak value is greater than or equal to 0.1 (Gray et al., 2019). As such, LSP metrics would not be 216 

generated in the case of no growing seasons, or growing seasons with extremely low peak EVI values. 217 

As demonstrated using Alice Springs Mulga OzFlux site in Figure 3, EVI in most years does not meet 218 

the amplitude restriction of EVI ≥ 0.1 (thus would result in no LSP retrievals) except in 2017. However, 219 

GPP time series shows obvious growing seasons associated with rainfall in many years including 2011, 220 

2014, 2015, and 2016. In this study, instead of using the same amplitude restriction for all pixels, we 221 

proposed to apply a pixel-wise seasonal amplitude restriction to capture more growing seasons with 222 

various amplitudes across arid and semi-arid Australia, i.e. for each pixel, we retrieved LSP metrics 223 

when the seasonal peak EVI value is greater than or equal to the time series average EVI value of this 224 

pixel (mean EVI value of the entire EVI time series from 2002 to 2019). 225 

 226 
Figure 3. Illustration of two types of EVI amplitude threshold at Alice Springs Mulga flux tower site. (a) Filtered MODIS 227 
EVI and flux tower GPP time series, EVI amplitude equals 0.1 demonstrated by shaded areas, and time series average EVI; 228 
(b) Monthly rainfall from the 5 km gridded monthly rainfall data obtained from Bureau of Meteorology (www.bom.gov.au). 229 

2.4 Characterisation and cross-comparison of LSP in arid and semi-arid Australia 230 

To evaluate the threshold algorithm used to retrieve LSP in our study area, the rate of retrieval (RoR) 231 

was calculated using Eq. 1 for our algorithm and for the global product (Collection 6) each year from 232 

2003 to 2018. As a case study, LSP metrics for the year when the global product was at its highest 233 

RoR were mapped for visual comparison between the global product and our LSP metrics. The 234 

absolute difference between SGS/PGS/EGS generated by AS-AUS and the global product MCD12Q2 235 

was calculated for pixels with retrievals from both for inter-comparison. 236 
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𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝 𝑤𝑤𝑝𝑝𝑤𝑤ℎ 𝑛𝑛𝑛𝑛𝑤𝑤𝑛𝑛𝑝𝑝𝑛𝑛𝑟𝑟𝑛𝑛𝑟𝑟 𝐿𝐿𝐿𝐿𝐿𝐿 𝑛𝑛𝑛𝑛𝑤𝑤𝑛𝑛𝑝𝑝𝑚𝑚𝑝𝑝 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑤𝑤𝑜𝑜𝑤𝑤𝑡𝑡𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝 𝑝𝑝𝑛𝑛 𝑡𝑡𝑛𝑛𝑝𝑝𝑟𝑟 𝑡𝑡𝑛𝑛𝑟𝑟 𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝−𝑡𝑡𝑛𝑛𝑝𝑝𝑟𝑟 𝐴𝐴𝑛𝑛𝑝𝑝𝑤𝑤𝑛𝑛𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡

 × 100%               Eq. 1 237 

Note that pixels with missing LSP values could be pixels with a growing season that algorithms failed 238 

to retrieve, or they could also be pixels without a growing season, in which case the missing values 239 

were not caused by the failure of LSP retrieval algorithms.  240 

Flux towers provide continuous measurements of carbon, water and energy exchange between 241 

ecosystems and the atmosphere and often contribute to regional and global networks that make their 242 

data freely available, such as OzFlux (Beringer et al., 2016) and FLUXNET (Baldocchi et al., 2001). 243 

EC flux data were cross-compared with the satellite-derived AS-AUS LSP retrievals in this study. Five 244 

OzFlux sites located in the study area were selected to demonstrate and cross compare with LSP 245 

retrievals from satellite EVI time series, including two grassland sites (Sturt Plains and Yanco) that 246 

represent 16.1% of the land cover in our study area, a woodland/savanna site (Alice Springs Mulga) 247 

and a sparse evergreen woodland site (Calperum) that together represent 75.7% of the study area, and 248 

a woodland site (Great Western Woodlands) that represents 5.2% of the study area; note that these 249 

ecosystem descriptions slightly differ from the MODIS classifications for Australia (cf. Figure 1 and 250 

Table 1). Data from these sites provide valuable in situ information on the seasonal dynamics and 251 

inter-annual variations of ecosystem fluxes of carbon dioxide between the land surface and atmosphere, 252 

which we used to provide an independent measurement of vegetation growth to verify signals 253 

calculated from remote sensing approaches. NEE data from the five OzFlux sites were quality assured 254 

and quality checked (QA/QC) using the PyFluxPro tool developed by the OzFlux community (Isaac 255 

et al., 2017). PyFluxPro was also used to gap fill meteorological and gas flux variables, and partition 256 

NEE into ecosystem respiration (Re) and GPP. For partitioning of NEE, we adopted the nocturnal 257 

temperature response approach in PyFluxPro using an artificial neural network to determine the Re 258 

contribution to NEE, as detailed in Isaac et al. (2017) and Beringer et al. (2017), except for data from 259 

Alice Springs Mulga, which used Bilby TS to avoid inclusion of physically unrealistic values generated 260 

by standard methods (Cleverly et al., 2016b; Cleverly and Isaac, 2018; Tarin et al., 2020). Then, using 261 

Eq. 2, we calculated GPP. 262 

eGPP R NEE= −                                                            Eq. 2 263 

With partitioned EC data, we extracted phenological metrics from the daily GPP time series data at 264 

each OzFlux site using the same threshold algorithm as for EVI data, and then compared them with 265 

those LSP metrics generated using EVI data. To keep the temporal resolution consistent with EVI data, 266 

daily GPP was averaged using a running window of 16 days from the current date through 15 days 267 

after the current date. First, seasons retrieved from the GPP time series were used to confirm whether 268 
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those generated from satellite greenness data were real seasons rather than spurious ones. Then the 269 

agreement between LSP metrics generated from EVI and GPP data were evaluated using the 270 

coefficient of determination (R2 value) and Root Mean Square Error (RMSE) as indicators of accuracy, 271 

although only three sites (Sturt Plains, Alice Springs Mulga, and Yanco) are suitable for direct 272 

comparison of SGS/PGS/EGS values where satellite greenness captures the seasonality of productivity 273 

(Restrepo-Coupe et al., 2016) and EVI synchronises with GPP. The Calperum (Mediterranean Mallee 274 

woodland) and Great Western Woodlands (Temperate Eucalypt woodland) sites are meteorological-275 

driven and satellite greenness does not capture the seasonality of productivity at these two sites. 276 

We illustrated the input and output of our algorithm at the five OzFlux sites that represent more than 277 

95% of the land cover types in our study area (cf. Figure 1 and Table 1) to demonstrate the pixel-wise 278 

input and output data of our LSP extraction model. Note that within each land cover type, plant 279 

function types may differ greatly between different species, whereby these five sites may not be highly 280 

representative.  281 

For climate analysis, 5 km gridded monthly rainfall and temperature data were obtained from Bureau 282 

of Meteorology (www.bom.gov.au) from 2003 to 2018, and then annual rainfall and annual mean 283 

temperature of the study area were calculated for each year and averaged across 16 years. P value was 284 

generated using Wald Test for the correlation between climate factors and the proportion of pixels with 285 

one, two, or no seasons. 286 

Table 1. Names, coordinates, land cover type, annual mean temperature (AMT) and annual precipitation (AP) averaged 287 
from 2003 to 2018, for the OzFlux sites (http://www.ozflux.org.au/) shown in Figure 1. % of total land cover = area of 288 
certain land cover type * 100% / total area of arid and semi-arid Australia, calculated according to the IGBP land cover. 289 

Site name Lat 
(°S) 

Lon 
(°E) 

Land Cover 
Type 

Site 
Description 

% of 
land 
cover 

AMT 
(°C) 

AP 
(mm 
y-1) 

GPP 
data  

Site 
reference 

Sturt Plains 
[AU-Stp] 

-17.151 133.350 Grasslands Grasslands 16.1% 27 730 2009-
2019 

(Beringer, 
2013a) 

Alice 
Springs 
Mulga  
[AU-ASM] 

-22.275 133.225 Shrublands Acacia 
woodland/ 
savanna 

75.7% 23 390 2011-
2019 

(Cleverly, 
2011) 

Calperum 
[AU-Cpr] 

-34.003 140.588 Shrublands Mallee 
woodland 

75.7% 18 270 2011-
2019 

(Tech, 2013) 

Great 
Western 
Woodlands 
[AU-GWW] 

-30.191 120.654 Savannas Temperate 
Eucalypt 
woodland 

4.0% 20 343 2013-
2019 

(MacFarlane, 
2013) 

Yanco 
[AU-Ync] 

-34.989 146.291 Grasslands Grasslands 16.1% 17 418 2013-
2019 

(Beringer, 
2013b) 

 290 
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2.5 Evaluation of the LSP retrieval algorithm 291 

To evaluate the sensitivity of our algorithm to input data and seasonal amplitude restrictions, and to 292 

investigate the cause of underperformance of the global product in arid and semi-arid ecosystems, we 293 

used the same input data and the same amplitude restriction (greater than or equal to 0.1) as the global 294 

product. We hypothesized that the seasonal amplitude of LSP would be smaller in arid and semi-arid 295 

regions of Australia than the threshold (EVI amplitude ≥ 0.1) imposed by the global product and we 296 

tested it at five OzFlux sites as mentioned above. The input data in this study for LSP extraction was 297 

the MYD13A1 EVI time series (Huete et al., 1999). In contrast, the global product used EVI calculated 298 

using the MODIS Nadir BRDF-Adjusted Reflectance (NBAR) product (MCD43A4) as input data to 299 

generate phenological metrics, in which NBAR data provides surface reflectances in which view angle 300 

effects have been removed. Both cloud and aerosol contamination is minimized for MYD13A1 and 301 

MCD43A4 (NBAR) data (Schaaf et al., 2002; Zhang et al., 2006). First, the EVI calculated using daily 302 

gridded 500 m MODIS NBAR product MCD43A4 was used as input data of our algorithm and the 303 

output metrics were compared with those using EVI from the 16-day gridded 500 m MODIS vegetation 304 

index product MYD13A1.  305 

The amplitude restriction was the major difference between our algorithm and the global product 306 

algorithm, and other minor differences include input data and start/end segment search windows of 307 

SGS and EGS, i.e. 185 days to 30 days before/after the PGS used in the global product and 128 days 308 

to 16 days before/after the PGS used in our study. To investigate whether the differences in amplitude 309 

restriction is the major cause of underperformance of the global product in arid and semi-arid Australia, 310 

we applied this restriction in our threshold algorithm at the five selected OzFlux sites and compared 311 

the performance with our original algorithm and the global product.  312 

3 Results 313 

3.1 LSP retrievals in arid and semi-aid Australia 314 

Throughout arid and semi-arid Australia (AS-AUS), the proportion of pixels with detected vegetation 315 

growth varied significantly from year to year across the 16 years, as shown in Figure 4, ranging from 316 

around 40% (in 2005) to nearly 90% (in 2011) (Figure 4b), among which most areas showed one 317 

growing season and a small percentage (under 10% of the study area) showed a second season. In 318 

contrast, the global product detected vegetation growth across a much smaller proportion of the area, 319 

ranging from around 10% (in 2013) to nearly 20% (in 2010) (Figure 4a). As shown in Figure 5, across 320 

AS-AUS, the RoR of the global product (MCD12Q2) was below 20% during the 16 years, whilst the 321 
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RoR of AS-AUS was much higher than that of the MCD12Q2, ranging from 40% to above 80%. The 322 

16-year average RoR was 14.5% and 64.9% for MCD12Q2 and AS-AUS, respectively. 323 

 324 
Figure 4. Proportion of pixels with no seasons, one season, and two seasons each year in arid and semi-arid Australia from 325 
2003 to 2018 generated by (a) the global product MCD12Q2, and (b) our study in Arid and Semi-arid AUStralia (AS-326 
AUS).  327 

 328 
Figure 5. Rate of successful retrieval (% of total arid and semi-arid Australia retrieved) of MCD12Q2 and the Arid and 329 
Semi-arid - AUStralia (AS-AUS) metrics each year from 2003 to 2018. 330 

Figure 6 demonstrates the start/peak/end of growing seasons (SGS/PGS/EGS) generated from the 331 

global product and our AS-AUS (Figure 6a-f) and histograms of the absolute difference between 332 

metrics retrieved by both AS-AUS and the global product (Figure 6g-i) for the first season in 2010, a 333 

year during the La Niña event when rainfall significantly increased. Through visual comparison, the 334 

metrics provided by the global product showed high consistency with the AS-AUS counterparts where 335 

both retrievals succeeded (Figure 6a-f), whilst AS-AUS performed better with successful retrievals in 336 

more areas. For pixels with retrievals from both datasets (1,048,575 pixels in total), around 90% of 337 

them showed a difference within 32 days (which equals two composite periods of the 16-day EVI) for 338 

SGS and PGS, and around 85% of them showed a difference within 32 days for EGS (Figure 6g-i), 339 

confirming the high consistency between AS-AUS and the global product. 340 
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 341 
Figure 6. (a)-(f) Start (SGS)/peak (PGS)/end (EGS) of the first growing season in 2010 generated from the global product 342 
and the AS-AUS from this study and (g)-(i) the absolute difference between SGS/PGS/EGS generated by both AS-AUS 343 
and the global product MCD12Q2 (1,048,575 pixels in total). In (a)-(f), the black line highlights the boundary of arid and 344 
semi-arid areas, and white pixels within the arid and semi-arid boundary represent areas without detectable seasons. 345 

Vegetation growing seasons in arid and semi-arid Australia showed extreme temporal and spatial 346 

variation, particularly in grasslands and shrublands (cf. Figure 1, Figure 6). In terms of temporal 347 

variation, vegetation growing seasons occurred throughout the entire year of 2010, starting from before 348 

the beginning of the year in many northern and eastern areas, extending across the end of the year in 349 

some southern areas, and occurring at any time of year across the study area. In terms of spatial 350 

variation, the patterns in our study area showed a general gradient from north to south, with growing 351 

seasons starting earlier in the north during the previous year, than those in the south, where SGS 352 

occurred during late summer or autumn (day of year around 50-150) (Figure 6d). Previous studies have 353 

reported that temperature limits the potential growing season of vegetation but, if there is no water 354 

available, plants will not grow (Winslow et al., 2003). In arid and semi-arid ecosystems, vegetation 355 

phenology is highly driven by rainfall events. Therefore, in years when rainfall is extremely low, 356 
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vegetation will appear dormant, as evident from the vast areas in Western Australia where no LSP 357 

episodes were detected in 2010 (Figure 6). 358 

3.2 Demonstration and evaluation of LSP episodes at selected OzFlux sites 359 

Figure 7 shows examples of temporal variability of the vegetation greenness (EVI), GPP, and SGS and 360 

EGS from 2010 to 2018 for five selected OzFlux sites, which represent more than 95% of the land 361 

cover types in our study area (cf. Figure 1 and Table 1). The EVI time series of these sites showed 362 

distinct seasonality. Across the sites with varied climate conditions, higher peak EVI values were 363 

associated with higher annual rainfall amounts (cf. Table 1, Figure 7). Land surface phenology in arid 364 

and semi-arid Australia was highly variable and can also be non-annual (skipping a year, or having 365 

more than one season in a year), as shown in Figure 7. For example, at the Alice Springs Mulga 366 

woodland/savanna site, the phenological timing, length, and EVI amplitude varied drastically 367 

throughout 9 years with no LSP episode detected in 2013, whilst two LSP episodes were detected in 368 

2010 and 2017. By contrast, at the Sturt Plains grassland site, all LSP metrics occurred every year with 369 

the peak of the growing season in late summer/early autumn (around February-March). 97% of seasons 370 

(31 out of 32 seasons) retrieved by our algorithm matched with those generated with GPP (Table 2), 371 

and one season in 2018 at Alice Springs Mulga generated using EVI did not match the GPP season 372 

due to low GPP amplitude. Our algorithm was designed to avoid recognising spurious local peak EVI 373 

values as the seasonal peak EVI. As such, LSP metrics were not produced when the peak EVI value 374 

was lower than the mean EVI value of the entire time series. An example of such a scenario is the peak 375 

EVI in 2016 at Calperum, which was below the restriction of our algorithm (greater than mean EVI 376 

value of the entire time series), thus it was not considered as a growing season and no LSP metrics 377 

were retrieved. However, this restriction could result in some missing values in areas of vegetation 378 

when the peak value of the current year is extremely low. For example, the LSP values in 2014 at the 379 

Calperum woodland site were missed due to the low seasonal peak value caused by a wildfire; part of 380 

the Calperum site was burned by a wildfire in January 2014 after more than 10 days with day time 381 

temperatures over 35°C (Sun et al., 2016). 382 

 383 
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 384 
Figure 7. Temporal variability of the characterized LSP episodes from 2010 to 2018 for the five OzFlux sites: Calperum, 385 
Great Western Woodlands, Alice Springs Mulga, Stuart Plains, and Yanco. The MAP of each site increases from top to 386 
down in the figure according to Table 1. Green and navy dots represent 16-day running average GPP and 16-day EVI time 387 
series, respectively. Green and navy lines represent the GPP and EVI time series after SG filtering, respectively. Pink and 388 
orange signs represent the identified start and end of growing season points using GPP and EVI, respectively.  389 

Table 2. Number of LSP episodes retrieved using EVI and GPP, respectively. 390 

Site name Years retrieved using 
both EVI and GPP 

Growing seasons 
from EVI 

Growing seasons 
from GPP 

Sturt Plains [AU-Stp] 9 9 9 
Alice Springs Mulga [AU-ASM] 8 8 7 
Calperum [AU-Cpr] 8 6 7 
Great Western Woodlands [AU-GWW] 5 5 5 
Yanco [AU-Ync] 5 4 4 

 391 

16-day EVI and 16-day running averaged daily EC tower GPP time series showed good convergences 392 

through visual comparison, at the grassland and savanna sites, i.e. Sturt Plains, Alice Springs Mulga, 393 

and Yanco (Figure 7). By contrast, EVI patterns did not match those of tower GPP at Calperum 394 
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(Mediterranean Mallee woodland) and Great Western Woodlands (Temperate Eucalypt woodland). 395 

Studies have reported that these ecosystems are meteorological-driven and changes in plant greenness 396 

do not synchronise with changes in photosynthesis, therefore, satellite greenness does not capture the 397 

seasonality of productivity (Restrepo-Coupe et al., 2016). Despite the fact that the EVI and GPP are 398 

not synchronised at these two sites, the GPP time series still provides key insights into whether a season 399 

seen from the EVI time series was a real growing season or a spurious one. As such, in years when 400 

both EVI and GPP data were available at these five sites, the LSP episodes from EVI data were all 401 

confirmed by the LSP episodes from GPP data, except the season in 2018 at Alice Springs Mulga, 402 

which had a very low amplitude of EVI and GPP (Figure 7, Table 2).  403 

Figure 8 shows the cross-comparison between LSP metrics retrieved in our study from 2010 to 2018 404 

and those retrieved using GPP data during the same period at all five OzFlux sites (red colour) and at 405 

the three grassland/savanna sites (blue colour) when excluding Calperum and Great Western 406 

Woodlands for reasons mentioned above. Therefore, only these three sites represent proper evaluation 407 

of LSP metrics retrieved from satellite EVI against those retrieved using flux tower GPP. The 408 

agreements between phenological metrics generated using EVI and GPP time series of all five sites 409 

were reasonably high with coefficients of determination (R2) equalling 0.76, 0.68, and 0.52 and RMSE 410 

equalling 45.51, 48.95, and 62.09 days, for SGS, PGS, and EGS, respectively. The accuracy was much 411 

higher at the three grassland/savanna sites with R2 equalling 0.91, 0.97, and 0.94 and RMSE equalling 412 

28.49, 16.70, and 24.56 days, for SGS, PGS, and EGS, respectively. Note that the input data of our 413 

LSP retrieval algorithm were 16-day composite EVI, hence an RMSE value of 62.09 is within 4 414 

compositing dates, and an RMSE value of 28.49 is within 2 compositing periods. 415 

 416 
Figure 8. Cross-comparison between AS-AUS phenological metrics retrieved from EVI time series and those retrieved 417 
from GPP data at all five OzFlux sites (in red colour; n=29 for the five sites altogether) and at three grassland and savanna 418 
sites (in blue colour; n=20 for the three sites altogether), Sturt Plains, Alice Springs Mulga, and Yanco. Here day of year 419 
(DOY) lower than 0 means days before the beginning of the year, and DOY exceeding 365 are in the next year. 420 
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3.3 Spatial and temporal variability of vegetation phenology in arid and semi-arid Australia  421 

The LSP metrics generated from our model show that vegetation seasons in arid and semi-arid areas 422 

of Australia are highly variable and can occur at any time of the year (albeit very unlikely in November 423 

due to low rainfall amounts in July through October), or more than once in a year, and could skip a 424 

year. For example, the histogram of per-pixel PGS in arid and semi-arid Australia varies greatly from 425 

year to year (Figure 9), demonstrating the variability in the number of pixels with detected growing 426 

seasons and the timing of the seasons. We also identified low greenness amplitude and high variability 427 

in both magnitude and timing of LSP episodes at certain sites, as shown at the demonstration sites in 428 

Figure 7.  429 

 430 
Figure 9. Histogram of the peak of growing season each year from 2003 to 2018 across the study area. 431 

Growing seasons started, peaked, and ended earlier in northern and western edges of our study area 432 

than in southern and eastern edges (Figure 10a-c). These phenological timing gradients matched spatial 433 

variability in rainfall seasonality (CSIRO and Bureau of Meteorology, 2018). In northern, south-434 

eastern and south-western edges of the semi-arid zone, growing seasons occurred in most years over 435 

the 16-year period, whereas patches within the interior areas and along the eastern and central edges 436 

had as few as 4–8 years out of 16 with a detectable growing season (Figure 10i). Inter-annual variation 437 

(standard errors calculated from the multi-year mean) of SGS, PGS and EGS was largest in central and 438 

eastern Australia, reaching 240 days in central Australia, and smallest (30–60 days) in northern areas 439 

(Figure 10d–f). In general, variability in PGS was larger than that of EGS, which was larger than that 440 

of SGS (Figure 10d–f). The shortest lengths of LGS (90–120 days) were found in eastern semi-arid 441 

areas and along the west coast, whereas LGS reached up to 240 days in western areas (Figure 10g). Of 442 

all the metrics, LGS had the most uniform variability across the continent, with standard errors which 443 
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were 60–90 days over the majority of the continent and smaller levels of variability in the south-444 

western and south-eastern corners of the arid and semi-arid zone (Figure 10h).  445 

  446 

Figure 10. Climatology (average of 16 years) and standard error of SGS, PGS, EGS, and LGS from 2003 to 2018, and 447 
years with detected LSP episodes over the 16 years according to our algorithm. 448 

Overall, around 30% of areas were dormant (without showing active growing seasons) in half of the 449 

16 years (Figure 11i). Most pixels showed SGS to occur around the beginning of the year or the end 450 

of the previous year (Figure 11a), PGS to occur in the early to middle of the year (Figure 11b), and 451 

EGS to occur late in the year (Figure 11c). No narrow period of the growing season timing was 452 

observed in these arid and semi-arid ecosystems across 16 years due to high variance (standard error) 453 

(Figure 11d–f). As shown in Figure 11d-g, only around 30% of pixels show a standard error of SGS 454 

below 30 days and less than 20% of pixels show that of PGS, EGS, and LGS below 30 days. 455 
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  456 
Figure 11. Histogram and cumulative proportion of the climatology and standard error (SE) of SGS, PGS, EGS, and LGS 457 
from 2003 to 2018, and years with detected LSP episodes (detected LSP episodes include pixels with both one or two 458 
detected growing seasons) over the 16 years according to our algorithm.  459 

Rainfall was found to be associated with the spatial pattern of the LSP in arid and semi-arid Australia 460 

through our climate analysis. The correlations between the proportion of pixels with no seasons/one 461 

season/two seasons and annual precipitation and annual mean temperature averaged across the entire 462 

study area are shown in Figure 12. The proportion of pixels with two seasons each year significantly 463 

increased with increasing annual precipitation (R2 = 0.64, p < 0.01), i.e. an increase in the proportion 464 

of pixels with two growing seasons was associated with higher annual precipitation (p<0.01), whereas 465 

the proportion of pixels with no seasons each year showed a significant negative correlation to annual 466 

precipitation (R2 = 0.32, p = 0.02). Temperature also played an important role in regulating LSP, with 467 

the proportion of pixels with two seasons significantly decreased as temperature increased (R2 = 0.26, 468 

p = 0.04) over space.  469 

 470 
 471 
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 472 
Figure 12. Correlation between proportion of pixels with no seasons/one season/two seasons each year from 2003 to 2018 473 
with annual precipitation and annual mean temperature, respectively. Annual precipitation and annual mean temperature 474 
were averaged across the study area. P value was generated using Wald Test. 475 

3.4 Evaluation of the LSP retrieval algorithm 476 

Daily NBAR EVI, 16-day MYD13A1 EVI, and derived SGS and EGS are presented in Figure 13. 477 

Among the 80 site-years shown in Figure 13, no vegetation growth was detected in 7 years using both 478 

daily NBAR EVI and 16-day EVI retrievals: one year at Sturt Plains (2005), three years at Alice 479 

Springs Mulga (2008, 2009, and 2013), two years at Calperum (2014 and 2016), and one year at Yanco 480 

(2018). In another 9 years, vegetation growth was only detected by retrievals using either 16-day EVI 481 

or daily NBAR EVI (but not both). For example, Alice Springs Mulga in 2018 saw an LSP episode 482 

using EVI as input data but no episode was detected when using NBAR EVI. Among the 80 site-years, 483 

65 growing seasons were detected by both our algorithm using both 16-day EVI and daily NBAR EVI. 484 

Inter-comparison between SGS, PGS, and EGS retrieved using these two types of input data showed 485 

strong correlation with R2 values above 0.70 and RMSE values of around 30 days (1.9 compositing 486 

dates of the 16-day EVI data), as shown in Figure 14.   487 

  488 
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 489 
Figure 13. EVI time series and the characterized LSP episodes across 16 years for the five OzFlux sites: Sturt Plains, Alice 490 
Springs Mulga, Calperum, Great Western Woodlands, and Yanco. Grey and navy dots represent EVI time series after 491 
quality control from daily NBAR EVI and 16-day EVI, respectively. Grey and navy lines represent the EVI time series 492 
after gap filling and SG filtering from NBAR EVI and EVI, respectively. Yellow and orange dots represent the identified 493 
start and end of growing season points from daily NBAR EVI and 16-day EVI, respectively. 494 

 495 
Figure 14. Inter-comparison of phenological metrics from 2003 to 2018 at five OzFlux sites in Table 1, retrieved using 16-496 
day EVI time series against those retrieved from daily NBAR EVI calculated using NBAR reflectance data (n=65). Here 497 
day of year (DOY) lower than 0 means days before the beginning of the year, and DOY exceeding 365 are in the next year. 498 
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Figure 15 compares retrieved LSP episodes across 16 years from 2003 to 2018 generated using three 499 

approaches, i.e. the global product, our original threshold algorithm, and our threshold algorithm with 500 

the same restriction of EVI amplitude ≥ 0.1 used by the global product. No growing season was 501 

detected with the restriction of EVI amplitude ≥ 0.1 at the three shrubland sites, Alice Springs Mulga, 502 

Calperum, and Great Western Woodlands (left columns in Figure 15) with the lowest rainfall, whereas 503 

using a lower threshold produced obvious growing seasons in most years at these sites, as confirmed 504 

by GPP data (cf. Figure 7, middle columns in Figure 15). However, when applying the restriction of 505 

seasonal amplitude EVI ≥ 0.1, similar to the global product, our algorithm failed to retrieve any LSP 506 

episodes at these three sites during the 16 years, matching the retrieval rate of the global product (right 507 

columns in Figure 15). For the two wetter sites, where phenology is regular with high seasonal 508 

amplitude (Sturt Plains and Yanco, Figure 13), the global product provided similar but slightly fewer 509 

successful retrievals than those generated by our model. These results demonstrated that in arid and 510 

semi-arid ecosystems, vegetation may not show highly dynamic growing seasons with high seasonal 511 

amplitudes, thus the restriction that EVI amplitude ≥ 0.1 was a major contributor to generation of 512 

missing values in the global product. 513 

  514 
Figure 15. Comparison of the LSP episodes over 16 years from 2003 to 2018 generated from AS-AUS and the global 515 
product at the five arid and semi-arid sites. Left column: the global product; middle column: AS-AUS generate using our 516 
threshold algorithm in this study; right column: our threshold algorithm with restrictions of seasonal amplitude EVI ≥ 0.1. 517 

4 Discussion 518 

4.1 Algorithm performance 519 

The new amplitude restriction of the threshold algorithm implemented in our study detected 520 

phenological information from satellite EVI data across arid and semi-arid Australia. Through inter-521 

comparison with the global product, the LSP metrics for areas where both algorithms succeeded 522 

showed high consistency, however, the threshold algorithm used in our study showed much higher rate 523 
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of retrievals (RoR). In other words, our regionally customized phenometrics extraction algorithm 524 

yielded LSP results in larger spatial extent in arid and semi-arid areas in Australia. These LSP retrievals 525 

by our model provide us valuable information for understanding the biomes in this vast area, and the 526 

connection between vegetation dynamics and climate change. For example, the highest proportion of 527 

areas with growing seasons occurred in 2011 (cf. Figure 3b), which was in line with the La Niña in 528 

2010-2011 that caused flooding. The proportion of areas with LSP episodes was at one of its lowest 529 

values in 2003, associated with El Niño-induced decadal droughts (Broich et al., 2015). In this study, 530 

we found an increase in the proportion of pixels with two growing seasons (p<0.05) in arid and semi-531 

arid Australia was associated with higher annual precipitation (averaged across the study area). Some 532 

studies have highlighted the significance of sub-annual rainfall on vegetation greenness in drylands 533 

(Shen et al., 2015; Ukkola et al., 2021). Future work should include climate analysis using seasonal 534 

rainfall in addition to annual rainfall.     535 

Studies have reported that in ecosystems driven by precipitation pulses, like interior Australia, a pulse 536 

in net ecosystem productivity follows rainfall events by several days if the rainfall threshold for 537 

physiological activity has been met (Cleverly et al., 2016a). Our findings agree with previous studies 538 

that phenology can be highly irregular in arid and semi-arid ecosystems (Ma et al., 2013; Beringer et 539 

al., 2016; Wang et al., 2019). Our LSP metrics will enable such studies across the arid and semi-arid 540 

regions to test these hypotheses at large scales, and therefore, will enhance our understanding of 541 

vegetation responses to climate change and assist our prediction of vegetation growth in future climate 542 

conditions in these arid and semi-arid ecosystems. 543 

Cross-comparison between the satellite-derived phenological timing metrics and those generated using 544 

EC flux tower GPP confirmed the seasons retrieved using satellite greenness data were real seasons. 545 

Almost all retrieved seasons showed a 16-year average LGS above 100 days (cf. Figure 1110g), 546 

demonstrating that the growing seasons were consistently green for more than 100 days, thus were real, 547 

biological active seasons rather than random artefacts. Moreover, most retrieved seasons showed 548 

strong association with rainfall, i.e. an increased rainfall around SGS (Figure A1). Note that the second 549 

season in a given year could be associated with an earlier rainy season that was shifted from the 550 

beginning of the next year to the end of the given year. For example, at the Alice Springs Mulga site, 551 

two seasons were detected in 2017 and the second season was associated with rainfall events in late 552 

2017, which was shifted from early 2018 (cf. Figure 3). Cross-comparison with GPP-derived metrics 553 

also demonstrated the accuracy of the retrieved seasonal timing metrics, especially at three sites (Sturt 554 

Plains, Alice Springs Mulga, and Yanco) located in phenology-driven ecosystems, where changes in 555 

the vegetation status drove GPP, and tower-based measurements of photosynthetic activity were best 556 
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represented by VIs (Restrepo-Coupe et al., 2015). Other studies have also reported strong relationships 557 

between vegetation indices and tower GPP in phenology-driven ecosystems such as deciduous forests 558 

and grasslands (Rahman et al., 2005; Sjöström et al., 2011). Distinct differences in EVI relationships 559 

with tower GPP were found at Calperum (Mediterranean Mallee woodland) and Great Western 560 

Woodlands (Temperate Eucalypt woodland) where EVI was poorly correlated with GPP, and where 561 

productivity was primarily meteorological-driven (e.g. photosynthetic active radiation, air temperature, 562 

and/or precipitation) and photosynthetic activity was not represented by vegetation greenness. In other 563 

words, changes in plant greenness do not synchronise with changes in photosynthesis in those 564 

ecosystems, e.g. plants with high vegetation greenness values may not have intense photosynthetic 565 

activity until rainfall increases. In these meteorological-driven ecosystems, statistical significant 566 

relationships were found between the EC tower measures of photosynthetic potential (ecosystem light 567 

use efficiency (LUE), photosynthetic capacity (Pc)) and satellite greenness indices, thereby, Pc and 568 

LUE may be more suitable than GPP for validation of satellite greenness-derived phenology (Restrepo-569 

Coupe et al., 2016).  570 

The discrepancy in patterns of EVI and GPP could also be attributed to root and wood production. 571 

Woody sites, especially if they lack a highly dynamic grass layer, will divert a large proportion of fixed 572 

carbon into wood and root production, which is not detected by greenness indices. In contrast, 573 

grassland sites (and sparsely wooded sites with a dynamic grassy layer) are likely to display more 574 

similar dynamics in their greenness and GPP. Accounting for these differences is critical to a correct 575 

interpretation of the relationship between the greenness signature of the vegetation and its 576 

physiological properties and thus is essential to using flux tower GPP as an evaluation approach of 577 

satellite greenness derived phenology.  578 

In addition, the discrepancy between the metrics generated from EVI and GPP time series could be 579 

caused by the spatial-scale inconsistencies between the satellite and EC footprints. Generally, the EC 580 

represents the vegetation at a distance of 10 to 30 m from the tower per 1 meter above the surface (e.g., 581 

the footprint of Yanco flux tower is approximately 1200 m), whilst the resolution of MODIS/VIIRS 582 

EVI data in this study is 500 m (Burba and Anderson, 2010). Moreover, there may be lags between 583 

the satellite derived and the EC observed phenology, depending on the main drivers of photosynthetic 584 

potential (leaf area index and/or leaf-age). For instance, green-up phases/SGS dominated by leaf-flush 585 

will take 2 to 4 weeks to reach the maximum photosynthetic assimilation rate (Chavana‐Bryant et al., 586 

2017). Studies have also reported that differences between phenological metrics observed using 587 

greenness-based indices and those observed using photosynthesis-based indices could also be 588 
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attributed to environmental constraints (e.g. radiation limitation) in northern ecosystems (Y. Zhang et 589 

al., 2020). 590 

4.2 Algorithm sensitivity  591 

We evaluated the sensitivity of our algorithm to the view angle effects within the input data and 592 

restriction of amplitude at five OzFlux sites located across a wide geographical range (133 °E – 146 °E, 593 

17 °S – 35 °S) in arid and semi-arid Australia. Studies have reported the sun and view angle effect on 594 

vegetation indices and suggested that an ideal spectral vegetation index should retain maximum 595 

sensitivity to plant characteristics while being relatively unaffected by solar angles, topography and 596 

viewing direction (Pinter Jr et al., 1987; Ma et al., 2019). In this study, we did not identify major 597 

discrepancies between the EVI data with varying view angles from MODIS vegetation index product 598 

(MYD13A1) and the NBAR EVI data calculated using MODIS Nadir BRDF-Adjusted Reflectance 599 

(NBAR) product (MCD43A4). Only 11% (9 out of 80 site-years observed in total) of the retrievals 600 

showed inconsistency in RoR between the outputs using EVI data and those using NBAR EVI data. 601 

In those 9 site-years, LSP metrics were generated using either EVI or NBAR EVI, but not by both. 602 

Such discrepancies were mostly caused by low seasonal peak values. For instance, at Alice Springs 603 

Mulga in 2018, when EVI peak value was slightly above the climatology mean EVI, the growing 604 

season was considered by our algorithm as a real season and LSP metrics were retrieved, whilst the 605 

NBAR EVI peak value was not higher than the climatology NBAR EVI and thus not considered as a 606 

season.  607 

For the 65 site-seasons retrieved using both EVI and NBAR EVI data, the LSP metrics generated using 608 

these two types of input data showed strong agreement with each other. Although we are not able to 609 

conclusively attribute the difference in LSP detected from these two input data to a specific source, 610 

one of the most likely explanations for observed differences in phenological timing is the difference 611 

in the temporal resolution of the input data propagated into the LSP metrics, as studies have shown 612 

that vegetation phenology detection is sensitive to the temporal resolution of the input data and the 613 

accuracy is reduced when the temporal resolution of input satellite data is coarser (Zhang et al., 2009). 614 

From preliminary tests at these five sites, our algorithm demonstrated its robustness to view angle-615 

induced sensitivity of input, therefore, view angle differences in input data are not a major reason for 616 

the differences in algorithm performance between our study and the global product. 617 

We also tested the amplitude restriction used to generate the global product MCD12Q2 (Collection 6) 618 

at the above-mentioned sites. When using the same amplitude restriction (greater than or equal to 0.1) 619 

as applied in the global product, our algorithm retrieved fewer LSP episodes at three sites in arid 620 
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regions. As demonstrated in our study, growing season amplitudes according to EVI values can be 621 

lower than 0.1, hence such a restriction on seasonal amplitude could be a major reason for missing 622 

values in the global product in arid and semi-arid ecosystems. Previous studies have reported that 623 

vegetation cover and heterogeneity are also important factors that could cause challenges to LSP 624 

retrieval in arid and semi-arid areas where vegetation greenness is low and using high resolution 625 

satellite data can improve LSP retrieval in area with low vegetation cover (Peng et al., 2021). Thus our 626 

finding about the amplitude restriction that caused the missing values of the global product in arid and 627 

semi-arid Australia indicates that LSP retrieval may also be improved by using higher spatial 628 

resolution satellite data such as Landsat and Sentinel-2 (Ke et al., 2015; Melaas et al., 2016; Y. Fu et 629 

al., 2019; Bolton et al., 2020) or using harmonized data from both high and low spatial resolution 630 

satellites (Walker et al., 2014; X. Zhang et al., 2020), besides using our proposed amplitude restriction 631 

in this study. 632 

4.3 Limitations of the algorithm 633 

A known limitation of the threshold algorithm used in our study is that it does not produce LSP metrics 634 

when the peak EVI value is lower than the average of multi-year average EVI time series value. This 635 

restriction is implemented to prevent our algorithm from retrieving false growing seasons, but this 636 

could result in missing values when the amplitude of a certain year is significantly lower than other 637 

years, which have high peak EVI values that result in a high multi-year average EVI value. For 638 

example, the growing season at Calperum in 2014 was missed by our algorithm, which was the first 639 

growing season after part of the area was burnt in January 2014 (Figure 6). On the other hand, this 640 

limitation could also result in spurious values, for example at Alice Springs Mulga in 2018, where the 641 

multi-year average EVI value is very low and so a minor increase and decrease in EVI value was 642 

considered a growing season. As such, this restriction needs further evaluation.  643 

Although simple measures of EC flux tower GPP were closely aligned with satellite greenness at the 644 

two grassland sites in semi-arid regions, in arid areas, the dynamics of vegetation may be too complex 645 

when focused on diverse vegetation types. As discussed above, careful use of flux tower measures are 646 

needed for cross-comparison with satellite phenology retrievals, and the complexity of vegetation 647 

dynamics in arid ecosystems call for more sophisticated models using both vegetation greenness and 648 

photosynthetic data. For example, at the Calperum site, mature evergreen plants can increase their GPP 649 

due to growth apart from green leaves before any change in EVI is observed, as was seen in the post-650 

fire recovery in 2014 (Figure 6). In addition, the temporal resolution of our algorithm is limited by the 651 

use of 16-day input MODIS data. The effect of temporal resolution on extracting the LSP metrics is 652 
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expected to be apparent when comparing the LSP metrics generated from 16-day EVI time series with 653 

the metrics retrieved from daily flux tower measurements. A strong validation effort is needed to better 654 

understand the ecosystem processes driving phenology and increase the reliability of remote sensing 655 

products.  656 

Camera-based phenology observation networks have been established in the US, Japan, and Europe, 657 

and are under construction in many other countries for retrieving plant phenology data at landscape or 658 

species levels (Nasahara and Nagai, 2015; Peichl et al., 2015; Richardson et al., 2018a). In addition to 659 

cross-comparison between remotely sensed metrics of phenological cycles and flux tower time series 660 

that measure plant physiological properties (Schwartz et al., 2013), further work has been planned 661 

using additional methods and extended observation dataset for validation of remotely sensed metrics 662 

of phenological cycles, including time-lapse cameras and ground-based radiation sensors that measure 663 

time series canopy spectral/greenness (Richardson et al., 2007, 2018b) as well as high resolution 664 

satellite images including Landsat, Sentinel-2, and CubeSat (Cheng et al., 2020; Wang et al., 2020; 665 

Dixon et al., 2021; Moon et al., 2021).  666 

5 Conclusion 667 

This paper presents Arid and Semi-arid AUStralia Land Surface Phenology (AS-AUS LSP) retrievals 668 

using a regionally customized approach -- a modified threshold algorithm, which significantly 669 

improved the rate of successful retrieval (% of pixels with successfully retrieved LSP metrics) over a 670 

wide geographical range (112 °E – 147 °E, 15 °S – 37 °S) when compared to the Collection 6 MODIS 671 

Global Land Cover Dynamics Product MCD12Q2, whereby the seasonal amplitude restriction (EVI 672 

amplitude ≥ 0.1) was a major factor that caused missing values of the global product. The threshold 673 

algorithm characterized phenological metrics annually from 2003 to 2018 using 16-day EVI time series 674 

obtained from MODIS at 500 m resolution. Preliminary tests at five OzFlux showed that our algorithm 675 

was robust to input data-induced sensitivity to view angles by delivering consistent LSP retrievals 676 

when using NBAR EVI time series as a comparison. Cross-comparison with seasons extracted using 677 

EC tower GPP data demonstrated the ability of this algorithm to detect phenological metrics with high 678 

accuracy in the face of the irregular seasonal patterns of vegetation growth associated with arid and 679 

semi-arid regions. The LSP metrics show that land surface phenology in the arid and semi-arid interior 680 

of Australia is highly variable inter-annually and can be non-annual, and that there are plants greening 681 

up/browning down throughout the year across Australia.  682 

Our study improved the spatial extent of LSP retrieval in arid and semi-arid ecosystems and thus meets 683 

the urgent need to understand how the arid and semi-arid ecosystems adapt to environmental variability. 684 
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The AS-AUS LSP metrics provide important information for land management and climate change 685 

studies, and assist monitoring of ecosystem carbon exchange and vegetation composition in future 686 

climate conditions, and management of bushfires. Our findings should also help advance phenological 687 

research in other regions with extensive drylands, such as Africa, the Middle East, and Central Asia, 688 

thus further contributing to our understanding of dryland phenological dynamics globally.  689 
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Appendix 973 

For each season, monthly rainfall from one month before SGS through one month after SGS was 974 
averaged and then compared with the average monthly rainfall from 2003 to 2018. For a given 975 
season, if the rainfall around SGS (from one month before SGS through one month after SGS) is 976 
above 16-year climatology, it shows that the green-up of this season was associated with an 977 
increased rainfall, thus this season is confirmed by rainfall to be a real season. As shown in Figure 978 
A1 a, c, most pixels with retrieved seasons showed higher than climatology rainfall around SGS. The 979 
histograms (Figure A1 b, d) further reveal that for the majority of pixels (more than 80%), the 980 
majority of seasons (more than 50%) showed an above climatology rainfall amount around SGS, 981 
which was true for both season 1 and season 2.  982 

 983 
Figure A1. Percent of seasons retrieved by AS-AUS with monthly average rainfall around SGS (from one month before 984 
SGS through one month after SGS) above climatology (monthly average rainfall from 2003 to 2018). (a) Map of 985 
spatially detailed percent of seasons (Season 1 in each year) retrieved by AS-AUS with monthly average rainfall around 986 
SGS above 16-year climatology; (b) Histogram of the map in (a); (c) Map of spatially detailed percent of seasons 987 
(Season 2 in each year) retrieved by AS-AUS with monthly average rainfall around SGS above 16-year climatology; (d) 988 
Histogram of the map in (c). 989 
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