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ABSTRACT In recent studies, emphasis has been placed on optimal power flow (OPF) problems in
traditional thermal, wind, and solar energy sources-based hybrid power systems. Various metaheuristic
algorithms have been proposed to find optimal solutions to the OPF problems in the hybrid power system.
The OPF, due to the quadratic nature of its primary objective function, is a nonlinear, nonconvex, and
quadratic optimization problem. In this study, we have proposed a bio-inspired bird swarm algorithm (BSA)
to find an optimal solution to the OPF problem in the hybrid power system because it performs well in
the case of optimizing the well-known Rastrigin quadratic benchmark function. In this study, uncertainty of
utility load demand and stochastic electricity output from renewable energy resources (RESs) including wind
and solar are incorporated into the hybrid power system for achieving accuracy in operations and planning
of the system. We have used a modified IEEE-30 bus test system to verify and measure the performance of
BSA and a comparison is made with well-known evolutionary metaheuristic algorithms. The proposed BSA
consistently achieves more accurate and stable results than other metaheuristic algorithms. Simulation-based
optimization results have shown the superiority of BSA approach to solve the OPF problems by satisfying all
constraints and minimum power generation cost 863.121 $/h is achieved in case study 1. Simulation-based
experiment results have indicated that by imposing the carbon tax (ton/h) the power generation from RESs
was increased. In case study 2, the proposed BSA approach has also outperformed and minimum electricity
cost 890.728 $/h is achieved as compared to other algorithms.

INDEX TERMS Deterministic optimal power flow, uncertainty of utility load demand, bio-inspired bird
swarm algorithm, stochastic solar and wind power.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Generally, an electric power grid or power system consists of
power generation plants, electricity transmission and distribu-
tion systems. The power generation plants generate electrical
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power through electricity generation units or power plants.
The transmission system carries the electricity through trans-
mission lines from electricity generation plants to utilities
or load centers. The electricity distribution system feeds
the electricity through distribution lines to nearby homes,
agricultural units, industries, and commercial buildings. The
traditional electric power grids are responsible for produc-
ing electricity and carrying it to residential, industrial, and
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commercial consumers through electricity transmission and
distribution lines. Two authorities, 1) independent system
operator (ISO) and 2) electric utility, are responsible to con-
trol operations and planning of the power system in a country.
The ISO is an independent authority established by the gov-
ernment to ensure reliability of electricity generation and the
transmission system in the electrical power grid. An electric
utility is an authority that engages in feeding the electricity
through distribution lines to consumers by balancing the
demand and supply of the electrical load.

In the electrical power grid operations and planning, the
control always resides on the generation side and the power
generation plants adjust their electricity generation accord-
ing to the changes in electricity demand from consumers.
Sometimes power generation plants produce surplus electric-
ity, which is transmitted to the nearby area by transmission
lines or stored [1]. Therefore, it is of practical importance
to balance load demand and electricity supply in the power
system. For this purpose, many techniques have been applied
in the research literature. On the generation side, to address
optimal power flow (OPF) problems in the power system
is considered as a technique for finding stable and secure
operating points of electricity generation plants and their
optimal scheduling on an hourly basis [2]–[5].

In 1962, Carpentier first introduced economic dispatch
problem extension as the OPF problem in traditional thermal
energy sources-based power systems [6]. The OPF is one
of the well-known and well-studied research areas in the
power system. It can be defined as: ‘‘To find out the stable
and secure operating points (levels) for electricity generation
plants in order tomeet load demand of utility in power system,
generally with attention to minimize electricity generation
cost’’ [6]. In traditional thermal energy sources-based power
systems, the OPF is a nonconvex, nonlinear, and quadratic
problem due to the quadratic nature of its primary objective
function to reduce electricity generation cost. The primary
objective function of OPF problem has been modeled as
quadratic curve and its various forms such as valve-point
loading effect quadratic curve, piecewise quadratic curve,
and prohibited operating zones quadratic curve for the tra-
ditional thermal energy source [6], [7]. Researchers have
also proposed various techniques for solving the OPF prob-
lems considering other objectives, in addition to the primary
electricity generation cost minimization objective. These
objectives include minimizing voltage deviation, power loss
in transmission lines, and emission pollution and enhancing
voltage stability index [6]–[9].

In the last decade, integration of environment friendly
and clean electricity output from renewable energy
sources (RESs) including wind and solar into thermal power
systems have become necessary due to the rising demand for
electricity and global warming issues. Therefore, the power
systems are striving towards a sustainable system future due
to rapidly growing integration of RESs in power systems.
On the electricity generation side, the RESs such as solar
photovoltaic (PV) units and windfarms are being owned

by private parties in a power system. The ISO purchases
scheduled renewable electricity from private parties in order
to cater the growing consumers’ load demand. Wind power
generation depends upon stochastic wind speed at different
times of day. Similarly solar PV power generation depends
upon uncertain solar irradiance during the day time. Due to
the fluctuant and intermittent solar and wind power output,
the available power from solar PV units and windfarms may
be more or less than wind-scheduled power at different times
of day. In an overestimation scenario, the ISO is required to
have a spinning reserve based on utility load demand, when
power supplied by solar PV units and windfarms operators
is less than wind-scheduled power. The ISO has to increase
the reserve cost associated with reserve electricity generation
units to balance the supply and demand in this scenario.
An underestimation scenario may arise when actual renew-
able energy received from RESs is greater than scheduled
power. In that case, the surplus power output from RESs is
wasted and ISO bears a penalty cost if it is not stored or
transmitted to a nearby area [8], [9]. Incorporating stochastic
power generation from wind and solar into the system raises
the complexity of power system operations and planning. The
utility load demand is also uncertain in nature due to variation
in consumers’ load demand that directly affects spinning
reserve cost in the power system. Moreover, considering the
uncertainty of utility load demand has significant importance
to achieve accuracy in the operations and planning of the sys-
tem. Therefore, an effective technique is required to reduce
the overall electricity generation cost.

B. LITERATURE REVIEW
In the research literature, various studies have been
documented using two types of optimization algorithms
for solving the OPF problems in the power system. These
optimization algorithm types are traditional mathemati-
cal algorithms or methods and metaheuristic algorithms.
Numerous mathematical optimization methods including lin-
ear programming [10], linear/quadratic programming [11],
sequential linear programming [12], newton method [13],
generalized benders decomposition (GBD) [14], nonlinear
programming [15]–[17], mixed integer nonlinear program-
ming (MINLP), [18], interior point method [19], [20], and
simplified gradient method [21] have been applied to solve
the OPF problems. In these traditional methods, nonlinear
objective function and constraints are converted into linear
form before solving the OPF problem because the mathe-
matical method cannot handle the nonlinear properties of the
problem [22]. This convergence in constraints and objective
functions may affect the accuracy of operations and planning
of the power system.

The OPF problem in thermal energy sources-based power
systems widely has been studied by researchers using meta-
heuristic algorithms. In the last decade, numerous studies
have been documented based on metaheuristic algorithms
such as binary backtracking search algorithm (BBSA) [6],
adaptive group search optimization (AGSO) [23], improved
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colliding bodies optimization (ICBO) [25], differential search
algorithm (DSA) [24], moth swarm algorithm (MSA) [26],
stud krill herd (SKH) [27], [28], differential evolution
(DE) [29], hybrid of genetic algorithm (GA) and PSO [30],
GA based on multi-parent crossover (GA-MPC) [31],
improved social spider optimization (ISSO) [32], modified
grasshopper optimization (MGO) [33], improvedmoth flame
optimization (IMFO) [34], multi-objective EA based decom-
position (MOEA/D) [35], modified pigeon-inspired opti-
mization (MPIO) [36], and adaptive moth flame optimization
(AMFO) [37] to find optimal solutions to the OPF problems
in traditional power systems. The abbreviation of different
terms and methods are specified in Table 1.

The OPF problem primary objective – electricity genera-
tion cost minimization, is considered in all of the aforemen-
tioned studies [6], [23]–[37]. Moreover, other objectives such
as reducing power loss in transmission lines, emission pollu-
tion, etc. are considered in some studies. In these studies, the
performance of proposed metaheuristic algorithms has been
measured on one or more IEEE-30, IEEE-57 and IEEE-118,
bus test systems. The power systems are rapidly growing
with RESs integration due to increasing electricity demand
and global warming issue due to traditional thermal energy
sources.

In the literature, some studies have been documented
[38]–[42] to find optimal solutions to the OPF problems in
traditional thermal and wind energy sources-based hybrid
power systems with a focus on minimizing the overall
cost of electricity generation. In study [38], gbest guided
ABC (GABC) has been utilized to find optimal solutions
to the OPF problems in the thermal and wind energy
sources-based hybrid power systems. In which objectives
were to minimize electricity generation cost and emission
pollution. In study [39], modified bacteria foraging algo-
rithm (MBFA) is employed for solving the OPF problem in
the traditional thermal and wind energy sources-based hybrid
power system. A doubly-fed induction generator model is
utilized to justify the OPF problem inequality constraints
and problem is formulated with various objective functions
in above study. In study [40], authors applied ant colony
optimization (ACO) and MBFA for solving the OPF prob-
lems in the traditional thermal and wind energy sources-
based hybrid power systems. In study [41], authors utilized
multi-objective glowworm swarm optimization (GWSO) to
solve the OPF problems in the thermal and wind energy
sources-based hybrid power systems. In all of the aforemen-
tioned studies, [38]–[41], the authors have utilized a modified
IEEE-30 bus test system to verify and measure performance
of the applied approaches. In study [42], the authors have
adopted self-adaptive evolutionary programming (EP) for
solving the OPF problems in the traditional thermal and wind
energy sources-based hybrid power systems. In all of the
aforementioned studies [38]–[42], the authors have applied
well-known Weibull probability density function (PDF) for
modeling uncertainty of stochastic wind speed to incorporate
wind power output into hybrid power systems.

TABLE 1. Abbreviations.

In the last decade, some studies also have been doc-
umented [43]–[53] to find optimal solution to the OPF
problems in the thermal, wind, and solar energy sources-
based hybrid power systems. In recent studies [43]–[53],
different metaheuristic approaches including grey wolf opti-
mizer (GWO) [43], fuzzy membership function based PSO
(FMF-PSO) [44], improved adaptive DE (IADE) [45], mod-
ified imperialist competitive algorithm based on sequen-
tial quadratic programming (MICA-SQP) [46], modified
JAYA [47], hybrid of phasor PSO and GSA [48], barna-
cles mating optimization (BMO) [49], PSO [50], Hybrid of
DE and PSO [51], MBFA [52], and sunflower optimization
(SFO) [53] have been proposed for solving the OPF prob-
lems in hybrid power systems. In studies [43]–[53], mostly
Lognormal PDF and Weibull PDF have been applied for
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TABLE 2. Summary of studies to optimal solutions to the OPF problems in hybrid power systems.

modeling uncertainty of the stochastic solar irradiance and
wind speed, respectively.

Table 2 represents the summary of all of the aforemen-
tioned studies [38]–[53] have been conducted on thermal and
wind or thermal, wind, and solar energy sources-based hybrid
power systems. As specified in Table 2, OPF problem primary
objective – quadratic fuel cost ξq (electricity generation cost)
minimization is considered in all studies. Moreover, other
objectives such as reducing power loss in transmission lines
Ploss is considered in 9 studies and emission pollution Ep is
considered in 10 studies. It is also observed from Table 2,
in most studies the uncertainty of power output from RESs
was incorporated for solving the OPF problems in hybrid
power systems.

C. PROBLEM STATEMENT
In study [8], authors have proposed success history-based
adaptation differential evolution (SHADE) to find optimal
solution to the OPF problems in hybrid power system. The
OPF problem objectives - to reduce electricity generation
cost and emission pollution are considered. In study [9], the
author has proposed a fuzzy logic technique based on PSO
finding optimal solution to the multi-objective OPF problems
in hybrid power systems, by considering objectives to reduce
active power output cost and power loss in transmission lines.

In both studies [8], [9], uncertainty of stochastic solar irra-
diance andwind speed are incorporated into the power system
to solve the OPF problems. However, the utility load demand
uncertainty has been ignored in these studies [8], [9]. On the
other hand, SHADE and PSO may be inefficient to find

optimal solutions to the nonlinear and quadratic OPF prob-
lems because DE has a premature convergence property [54]
and PSO is incapable of searching neighborhood existing
solutions in nonlinear quadratic optimization problems [55].

D. CONTRIBUTION AND PAPER ORGANIZATION
In study [56], authors have proposed a new bio-inspired bird
swarm algorithm (BSA). In which, it has been observed that
the BSA has good diversity and can flexibly regulate its four
different search strategies such as foraging, vigilance, pro-
ducer and scrounger to explore the search space. Moreover,
BSA can improve its convergence speed without affecting
the stability and accuracy of optimal solutions by making
better balancing among exploration and exploitation of search
space. In fact, under suitable interpretations, DE and PSO
mutation operators are distinct forms of the proposed BSA
approach. In which, the bird’s social behaviour such as the
scrounger formula is similar to the DE mutation operator and
the foraging formula is similar to the PSO. Moreover, the
BSA has prominent distinguishing features, in addition to the
merits of the DE and PSO.

In study [56], optimization results have proved the supe-
riority of the BSA as compared to DE and PSO to optimize
the Rastrigin function F9, which is a well-known quadratic
benchmark function for performance evaluation of optimiza-
tion algorithms. The primary objective function of the OPF
problem is to reduce power generation cost, which follows a
quadratic nature function. Inspired by the study [56], we have
proposed BSA to find an optimal solution to the OPF prob-
lem in the hybrid power system. This research study is an
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extension of [57] our conference paper already published.
It have following knowledge contribution in academic
research;
• A method based on BSA is proposed for finding an
optimal solution to the OPF problem in the hybrid power
system by incorporating uncertainty of the utility load
demand and stochastic power output from RESs.

We have used a modified IEEE-30 bus test system to
measure and evaluate the performance BSA for finding an
optimal solution tothe OPF problem in the hybrid power
system. Simulation based optimization results have shown
the superiority of BSA approach to solve the OPF problems
(see Table 10 and Figure 8).

The organization of paper is as follows: The uncertainty
modeling of utility load demand, stochastic solar irradiance,
and wind speed are described in section II. The section III
consists of OPF problem formulation, objective function,
and different constraints. In section IV, we have explained
the proposed metaheuristic method. The simulation-based
experiment results for the proposed BSA approach and other
algorithms are specified in V and concluding remarks are
written in section VI.

II. UNCERTAINTY MODELLING OF WIND SPEED, SOLAR
IRRADIANCE, AND UTILITY LOAD DEMAND
The most significant aspect of uncertainty modeling is to use
an appropriate PDF for predicting the values of uncertain or
random variables. We have used the Lognormal PDF and
Weibull PDF for modeling uncertainty of solar irradiance
and stochastic wind speed by adopting same strategy pro-
posed in study [8]. We have utilized the same formula and
approach of Gaussian (normal) PDF presented in studies
[59], [60] for modeling uncertainty of utility load demand.
The Hong’s point estimate method (PEM) proposed in
study [61] has been used for calculating the utility load
demand on load buses.

In this section, first, we have described the model for
handling the uncertainty of wind speed to incorporate wind
power output. Secondly, we have explained the model for
incorporating stochastic solar power in the power system.
Lastly, we have described Gaussian PDF for handling uncer-
tainty of utility load demand.

A. UNCERTAINTY MODELING OF STOCHASTIC WIND
SPEED
In the research literature, the well-known Weibull PDF
has been mostly applied for modeling the wind speed
v (m/s) [38]–[40], [42] to incorporate the stochastic nature
wind electricity generation into the power system. The uncer-
taintymodeling stochastic wind speed usingWeibull PDF can
be defined as:

fv(v) =
(
v
c

)(k−1)

×

(
k
c

)
× e−(v/c)

k
for 0 < v <∞,

(1)

FIGURE 1. Weibull fitting of wind speed.

where, scale factor c and shape factor k are parameters and
its mean (Mwbl) can be calculated as:

Mwbl = c× 0(1+ k−1), (2)

where, 0() represents the gamma function and it can be
formulated as:

0(x) =
∫
∞

0
e−1tx−1dt. (3)

For the performance evaluation of BSA, we have modified
standard IEEE-30 bus test system, in which two traditional
thermal energy sources at 5 and 11 generator buses are
replaced with wind energy sources (windfarms). The total
number of wind turbines (WTs) in each windfarm and values
of c and k of Weibull PDF parameters are given in Table3.
Frequency distributions and Weibull fitting of wind speed
of windfarms energy sources attached at buses 5 and 11 are
determined after execution of 8000 Monte Carlo simulation
scenarios and plotted in Figure 1.

TABLE 3. Windfarms and Weibull PDF parameters [8].
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In a windfarm, the actual power output of WT depends
upon wind speed v (m/s) it meets. In both windfarms,
each WT has a 3 MW rated power output. The cumulative
rated power generations of windfarms connected at generator
buses 5 and 11 are 75 MW from 25 WTs and 60 MW
from 20WTs, respectively. TheWT electricity generation can
be formulated as follows [8]:

Pw(v) =


Pwr , for vr < v ≤ vout ,

Pwr ×
( v− vin
vr − vin

)
, for vin ≤ v ≤ vr ,

0, for v < vin and v > vout ,

(4)

where, vin is cut-in, vout is cut-out and vr is cut-in rated wind
speed met to WT and its rated power output is represented as
Pwr . We have considered vr = 16 m/s, vout = 25 m/s, and
vin = 3 m/s for wind power output calculation purpose.

The histograms in Figure 2 indicate wind power output
based on wind speed Weibull distribution plotted in Figure 1,
from windfarms connected at bus 5 and bus 11. It is observed
from WT power output Eq. 4 that WT provides rated power
output Pwr when wind speed is in range [vr vout ]. The wind
power output is calculated as [8]:

fw(Pw){Pw=Pwr} = e−
(
vr
c

)k
− e−

(
vout
c

)k
. (5)

The WT provides wind power in continuous form when wind
speed is in range [vin vr ] andwind power output for this region
is measured as [8]:

fw(Pw) =
k(vr − vin)
ck × Pwr

×
{
vin +

Pw
Pwr

(vr − vin)
}k−1

×e−
{ vin+ Pw

Pwr
(vr−vin)

c

}k
. (6)

The electricity generation is zero when wind speed is not in
range [vin vout ].

fw(Pw){Pw=0} = 1− e−
(
vin
c

)k
+ e−

(
vout
c

)k
, (7)

B. UNCERTAINTY MODELING OF SOLAR IRRADIANCE
The probabilistic model for solar irradiance I (W/m2) fol-
lows lognormal PDF and it is generally utilized for han-
dling the stochastic solar power generation in hybrid power
systems [58]. The uncertainty of solar irradiance I (W/m2)
mathematically can be written as [58]:

fI (I ) =
1

Iσ
√
2π
× e

{
−(lnI−µ)2

2σ2

}
for I > 0, (8)

where µ in mean of solar irradiance and σ is standard devi-
ation of solar irradiance. Lognormal PDF mean (Mlgn) is
defined as:

Mlgn = e
(
µ+ σ

2
2

)
. (9)

Assumed values for mean (µ) of solar irradiance and standard
deviation (σ ) have been specified in Table 4. In a modified
IEEE-30 bus test system, we have replaced two thermal

FIGURE 2. Windfarm power output.

TABLE 4. Solar PV units and Lognormal PDF parameters [8].

energy sources connected at 8 and 13 buses with two solar
PV units. The lognormal PDF fitting and solar irradiance
frequency distributions for solar energy sources connected
at 8 and 13 buses are achieved after executing simulation
of 8000Monte Carlo scenarios, which are plotted in Figure 3.
The solar PV unit available or actual solar power generation
subject to solar irradiance I (W/m2) and solar PV unit elec-
tricity generation modeled as [8]:

Ppv(I ) =


Ppvr ×

( I
Istd

)
, for I ≥ Ic,

Ppvr ×
( I2

Istd × Ic

)
, for 0 < I < Ic,

(10)

where Istd and Ic indicate the solar irradiance and certain solar
irradiance point in a standard environment, respectively. The
solar PV unit rated power output is represented as Ppvr .

In this study, we assumed Istd = 800 W/m2 and
Ic = 120 W/m2. The rated power outputs related to solar
PV units that are connected at generator bus 8 and 13 are
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FIGURE 3. Lognormal fitting of solar irradiance.

Ppvr = 35 MW and Ppvr = 50 MW, respectively. The his-
tograms in Figure 4 represent the stochastic solar power
output based on solar irradiance I (W/m2) distribution shown
in Figure 3, from solar PV units.

C. UTILITY LOAD DEMAND UNCERTAINTY MODELING
The utility load demand is also stochastic due to variation in
consumers’ load demand that directly affects spinning reserve
cost in a power system. Therefore, modeling the utility load
demand uncertainty has a significant impact on solving the
OPF problem and achieving accuracy in planning and opera-
tions of the power system. In this study, utility active (real)
load is considered as a random variable and power factor
is considered as constant. According to the constant power
factor, the change in reactive power of each load bus or PQ
bus depends upon its active load in the power system.We have
used a Gaussian PDF [59], [60] to model the uncertainty of
utility load demand on each load bus in transmission system.

The prediction of load demand on a load bus follows
Gaussian PDF as:

f (Pd,i) =
1

√
(2π)σi

× e

{
−

(Pd,i−µi)
2

2σ2i

}
, (11)

where, Pd,i is active load demand, σi is standard deviation
and µi is mean value of active load at ith load bus.

FIGURE 4. Power output from solar PV units.

FIGURE 5. Modified IEEE-30 bus test system.

We have utilized modified IEEE-30 bus system for perfor-
mance evaluation of our proposed method, in which four
thermal energy sources at 5, 8, 11, and 13 generator buses
are replaced with RESs due to emission pollution and global
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FIGURE 6. Gaussian distribution of utility load demand on load or PQ buses.

warming issues. The down-arrow (↓) symbol represents load
or PQ bus shown in Figure 5. The active (real) load demand
mean value µ has been considered equal to the base active

load of each load bus, and 10% of the mean value µ has
been considered as standard deviations σ of active load on
each load bus for modeling uncertainty of utility active load
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demand across the modified IEEE-30 bus test system. Plotted
histograms in Figure 6 based on Gaussian PDF and represent
the distribution of active load demands on load or PQ buses,
which are achieved after execution of 8000 Monte-Carlo
simulation scenarios.

In the research literature, many approximation methods
based on the analytical approach have been documented [62]
for handling the uncertainty in power systems. The com-
mon uncertain source method, the discretization method,
the truncated Taylor series expansion method, and the point
estimate method are examples of these methods. Some of
the analytical approximation methods follow the uncertain or
random variable’s PDF. In 1998, H.P. Hong [61] developed an
efficient PEM to measure the moments of Z = h(x), where Z
represents an uncertain or random quantity and it is a function
of n uncertain variables. The PEM is a simple to use method
for measuring the moments Z and does not require derivatives
of h(x) or any iteration as compared to other approximation
methods such as the discretization method and Taylor series
expansion method. The PEM can be utilized directly with a
deterministic computer program. Based on the above facts,
we used Hong’s PEM for calculating the approximate load
on load buses.

Hong’s PEM concentrates upon statistical information
obtained through initial few moments of a random variable
on m concentrations for every variable. In whichm×n points
concentration matching is considered to achieve first non-
crossed moments (m×n) and crossed second-order moments
of each uncertain variable. The simplest case of Hong’s PEM
is the 2m scheme, in which skewness of an uncertain vari-
able’s PDF and correlation between the uncertain variables
are considered for predicting the value of random quantity.
Another particular case of Hong’s PEM is the 2m+1 scheme,
in addition to the skewness of the uncertain variable’s PDF
and correlation between the uncertain variables, kurtosis of
the uncertain variable’s PDF is also considered in this scheme
to calculate the random quantity. More detail of Hong’s PEM
is available in [61]–[63].

TABLE 5. Deterministic utility load on load buses.

FIGURE 7. Utility load demnd on load buses.

In this research work, we have utilized Hong’s PEM [61]
by taking Gaussian PDFs of active load demands on modified
IEEE-30 bus test system load or PQ buses as input from
plotted histograms in Figure 6, to calculate active load on
each bus. The deterministic load on each load bus obtained
from using particular schemes of Hong’s PEM such as 2m
and 2m+1 is specified in Table 5 and plotted in Figure 7. The
deterministic active load demand on each load bus based on
both 2m and 2m+1 schemes is similar. Therefore, we have
used the simplest 2m scheme of Hong’s PEM for calculating
load demand on each load bus to find an optimal solution to
the OPF problem in the hybrid power system.

III. THE OPF PROBLEM FORMULATION
The OPF in the traditional thermal energy sources-based
power system is a quadratic nature nonconvex and nonlinear
problem, in which stable and secure settings of operating
points in electricity generation plants are obtained for mini-
mizing certain objectives. The OPF problem objective written
as [45]:

Minimize: f (x, u)

s.t.: g(x, u) = 0

h(x, u) ≤ 0, (12)

where, u is a set of control variables and x is a set of state
variables. The function f (x, u) represents the objective of
the OPF problem. The function g(x, u) represents equality
constraints and h(x, u) represents inequality constraints.

The power flow in system is controlled by control or
independent variables, while state variables described power
system state. The control variables consist of all bus genera-
tors active power excluding slack (swing) bus active power,
all generators or energy sources voltage magnitudes, shunt
compensator at selected buses, and transformer tap in power
system network. The state variables consist of generators’
reactive power, swing bus active power output, line load-
ing of transmission lines, and voltages magnitude at load
buses.
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A. CONSTRAINTS
Balancing both active (real) power and reactive power follow
equality constraints, while security constraints and equip-
ment’s operating limits of transmission lines and load buses
follow inequality constraints. The description of both types
of constraints is provided herein.

1) EQUALITY CONSTRAINTS
In a power system, active (real) power generation from energy
sourcesmust be equal to active (real) load demands and power
loss in transmission lines. Similarly, reactive power output
from all energy sources alsomust be equal to demand and loss
of reactive power. In the power system, equality constraints
can be written as according to study [45]:

PGi − PDi = Vi
∑NB

j=1
Vj
{
Gijcos(θij)+ Bijsin(θij)

}
∀ i ∈ NB (13)

QGi − QDi = Vi
∑NB

j=1
Vj
{
Gijsin(θij)− Bijcos(θij)

}
∀ i ∈ NB (14)

where, the term PGi indicates the active power and term
QGi represents reactive power generation from energy source
attached at ith bus. The term PDi represents the load demand
of active power and term QDi is demand of reactive power at
ith load bus. The term Vi represents ith bus voltage magnitude,
while term Vj represents jth bus voltage magnitude. The term
θij = θi − θj shows difference of voltage angles θi and θj at
ith and jth buses. The term Gij is transfer conductance and Bij
is transfer susceptance in ith and jth buses.

2) INEQUALITY CONSTRAINTS
In power systems, load buses and transmission lines security
constraints, secure and stable equipment’s physical settings,
and equipment’s operating lower and upper limits are con-
sidered as inequality constraints. These are mathematically
described as follows [45]:

PminTGi ≤ PTGi ≤ P
max
TGi i = 1, . . . ,NTG, (15)

Pminws,j ≤ Pws,j ≤ Pmaxws,j j = 1, . . . ,NWF , (16)

Pminpvs,k ≤ Ppvs,k ≤ Pmaxpvs,k k = 1, . . . ,NPV , (17)

QminTGi ≤ QTGi ≤ Q
max
TGi i = 1, . . . ,NTG, (18)

Qminws,j ≤ Qws,j ≤ Qmaxws,j j = 1, . . . ,NWF , (19)

Qminpvs,k ≤ Qpvs,k ≤ Qmaxpvs,k k = 1, . . . ,NPV , (20)

Vmin
Gi ≤ VGi ≤ Vmax

Gi i = 1, . . . ,NG, (21)

Vmin
Lp ≤ VLp ≤ V

max
Lp p = 1, . . . ,NL. (22)

The active (real) power output boundary limits of traditional
thermal energy source and RESs such as windfarms and solar
PV units are represented in constraints (15)-(17) and NTG,
NWF and NPV are total number of traditional thermal energy
sources, windfarms, solar PV units, respectively. The reactive
power output boundary limits of all energy sources or gen-
erators including traditional thermal energy sources, wind-
farms, and solar PV units are defined by constraints (18)-(20),

respectively. On load buses and generator buses voltage
magnitude boundary limits are defined by constraint (21)
and (22), respectively. NG is number of generator buses.
In each inequality constraints max and min superscripts show
boundary limits of the corresponding parameter. NL is num-
ber of load buses.

B. OBJECTIVE FUNCTION
To reduce electricity generation cost from traditional ther-
mal energy sources and RESs and including emission cost
(e.g., carbon tax) is our objective for finding an optimal
solution to the OPF problem in the hybrid power system. The
minimization of electricity output cost objective is stated as
follows:

Minimize ξ = ξT (PTG)+
NWF∑
j=1

ξw,j(Pw,j)

+

NPV∑
k=1

ξpv,k (Ppv,k )+ ξE . (23)

The first term ξT (PTG) represents power generation cost of
thermal energy sources, which based on valve-point loading

effects quadratic curve. The second term
∑NWF

j=1 ξw,j(Pw,j)
represents the cost of power output fromwindfarms. In objec-

tive function, the third term
∑NPV

k=1 ξpv,k (Ppv,k ) is cost of solar
power output from solar PV units. The last term ξE is the
cost of emission (e.g., carbon tax). The detailed modeling of
traditional thermal and RESs power generation cost functions
and emission cost are provided herein.

1) THERMAL POWER COST CURVE
The traditional thermal energy source required fossil fuel to
produce electricity. The power generation cost of fossil fuel
based energy sources can be calculated by regular quadratic
fuel curve, valve-point effects quadratic fuel curve, and piece-
wise quadratic fuel curve [38]. In some practical cases,
thermal power is generated from traditional thermal energy
sources using different fossil fuels like natural gases,coal and
oil. The power output cost from these types of energy sources
is calculated using the piecewise quadratic fuel cost curve.
In this study, we assumed that the same fossil fuel based

traditional thermal energy sources are used for power genera-
tion purposes. Therefore, to calculate the power cost related to
thermal energy source, we used two forms of fuel cost curve;
1) quadratic fuel curve and 2) valve-point effects quadratic
fuel curve. The generated power (MW) from thermal energy
source followed a quadratic relationship with fossil fuel cost
($/h) as [45]:

ξT0 (PTG) =
NTG∑
i=1

ai + biPTGi + ciP
2
TGi , (24)

where, PTGi is i
th thermal energy source power output. ai, bi,

and ci are ith thermal energy source cost coefficients.
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In a traditional thermal energy source-based power system,
the objective function is modeled using valve-point loading
effects quadratic fuel cost curve for more precise and realistic
measuring of thermal power cost. Because traditional thermal
energy source’s steam turbines have multi-valve, in such
case a variation befall in fuel cost curve. In such case, the
fossil fuel cost curve of thermal energy source is measured
using valve-point loading effects quadratic fuel cost curve as
follows [45]:

ξT (PTG) =
NTG∑
i=1

ai + biPTGi + ciP
2
TGi

+
∣∣di × sin{ei × (PminTGi − PTGi )

}∣∣, (25)

where, coefficients di and ei represent the valve-point loading
effect of ith TG.PminTGi represents theminimum power output of
ith TG during operation. For this study, cost coefficient values
of fuel cost curve and valve-point loading effects related to
TG1 and TG2 are specified in Table 6.

TABLE 6. Thermal power emission and cost coefficients [6].

2) WIND POWER COST FUNCTION
We have assumed that private parties hold RESs such as solar
PV units and windfarms and ISO purchases scheduled power
from private parties according to the signed agreement. The
wind power cost follows directly proportional relationship to
wind-scheduled power and can be formulated as:

λws,j(Pws,j) = gjPws,j, (26)

where, λws,j is a function to calculate power cost of wind-
scheduled power Pws,j received from jth windfarm and
gj is cost coefficient of wind-scheduled power related to
jth windfarm.

The distributions of windfarms power output are shown in
Figure 2. The available power from windfarms can be less
or more than wind-scheduled power because of fluctuant and
stochastic wind power output. In an overestimation scenario,
when wind power supplied by windfarms operators is less
than the wind-scheduled power, the ISO is required to have
a spinning reserve based on utility load demand. The wind
power reserve cost λwr,j for jth windfarm can be calculated
as [39]:

λwr,j(Pws,j − Pwav,j) = Kwr,j

∫ Pws,j

0

(
Pws,j − Pw,j

)
×fw

(
Pw,j

)
dPw,j, (27)

where, Pwav,j, Kwr,j, and fw(Pw,j) represent available wind
power, coefficient of windfarm reserve cost, and wind power
for jth windfarm, respectively.
In a scenario, when wind power supplied by windfarms

operator is greater than the wind-scheduled power, if it not
possible to reduce power generation from thermal energy
sources, the windfarms surplus electricity is dumped and
ISO bears penalty cost. The penalty cost λwp,j related to
jth windfarm can be formulated as [39]:

λwp,j(Pwav,j − Pws,j) = Kwp,j

∫ Pwr,j

Pws,j

(
Pw,j − Pws,j

)
×fw

(
Pw,j

)
dPw,j, (28)

where, Kwp,j is penalty cost coefficient of jth windfarm.
The cost related to any windfarm power is calculated by

adding penalty cost, reserve cost, and its wind-scheduled
power cost. The cost coefficients and wind-scheduled power
are specified in Table 7. The total wind power cost ξw,j(Pw,j)
for jth windfarm can be calculated by adding wind-scheduled
power cost and both penalty and reserve costs as [39]:

ξw,j(Pw,j) = λws,j(Pws,j)+ λwr,j(Pws,j − Pwav,j)

+λwp,j(Pwav,j − Pws,j). (29)

TABLE 7. Cost coefficients and wind-scheduled power.

3) SOLAR POWER COST FUNCTION
Solar power cost is also directly proportional to solar-
scheduled power. The solar-scheduled power cost λpvs,k is a
function of scheduled power provided from k th solar PV unit,
as follows [42]:

λpvs,k (Ppvs,k ) = hkPpvs,k , (30)

where, scheduled power cost coefficient hk is related to
k th solar PV unit and Ppvs,k is delivered solar-scheduled
power from k th solar PV unit.

In Figure 4, the distributions of power generation from
solar PV units are plotted. Similar to the windfarms
power output behaviour, in the underestimation scenario,
the available power from solar PV units can be more than
solar-scheduled power and in an overestimation scenario, the
available solar power can be less than solar-scheduled power.
In such a case, the ISO requires a spinning reserve energy
source. According to the concept presented in the study [42],
we have modeled solar reserve cost λpvr,k of k th solar PV
unit power output, for an overestimation scenario. It can be
formulated as [42]:

λpvr,k (Ppvs,k − Ppva,k ) = Kpvr,k × fpv(Ppva,k < Ppvs,k )

×
{
Ppvs,k − E(Ppva,k , < Ppvs,k )

}
, (31)
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where, Kpvr,k represents coefficient of reserve cost of
k th solar PV unit, Ppva,k is actual available power received
by k th solar PV unit, and fpv(Ppva,k < Ppvs,k ) represents the
calculation of overestimation scenario related to k th solar PV
unit. E(Ppva,k < Ppvs,k ) represents the prediction (expecta-
tion) of power output from solar PV unit k th below solar-
scheduled power Ppvs,k .
For underestimation scenario, the penalty cost λpvp,k

related to k th solar PV unit power output can be formulated
as [42]:

λpvp,k (Ppva,k − Ppvs,k ) = Kpvp,k × fpv(Ppva,k > Ppvs,k )

×
{
E(Ppva,k > Ppvs,k )− Ppvs,k

}
, (32)

where, Kpvp,k represents the penalty cost coefficient for
k th solar PV unit. fpv(Ppva,k > Ppvs,k ) represents the calcula-
tion of underestimation scenarios related to k th solar PV unit.
E(Ppva,k > Ppvs,k ) represents the prediction (expectation) of
power output from solar PV unit k th above solar-scheduled
power Ppvs,k .
Similar to windfarm power cost, the cost related to a solar

PV unit power is calculated by adding penalty cost, reserve
cost, and solar-scheduled power cost. The cost coefficients
and solar-scheduled power related to solar PV units are spec-
ified in Table 8. The total solar power cost ξpv,k (Ppv,k ) for
k th solar PV unit by adding solar-scheduled power cost and
both penalty and reserve cost can be measured as [42]:

ξpv,k (Ppv,k ) = λpvs,k (Ppvs,k )+ λpvr,k (Ppvs,k − Ppva,k )

+λpvp,k (Ppva,k − Ppvs,k ). (33)

TABLE 8. Cost coefficients and solar-scheduled power.

4) EMISSION COST
The combustion of fossil fuels in traditional thermal sources
of energy is the core cause of greenhouse/harmful gases
including SOx ,COx , andNOx emission into the environment.
With growing global environmental concerns, to regulate
the power system for accounting the minimum emissions is
necessary. The total emission E (ton/h) into the environment
by a traditional thermal energy source can be formulated as
follows [6]:

E=
∑NTG

i=1

{(
αi+βiPTGi+γiP

2
TGi

)
× 0.01+ωi × e(µiPTGi )

}
,

(34)

where, emission coefficient for ith TG are αi, βi, γi,ωi, andµi
and values of these coefficient related to TG1 and TG2 are
listed in Table 6.

In the recent decade, due to global environmental issues,
many countries are imposing a carbon tax to minimize carbon
emission into the environment. Therefore, carbon tax widely

Algorithm 1: Pseudocode of Proposed Method

1 Input: d: Dimension of problem or vector of control
variables Xmax = [x1max , x

2
max , . . . , x

d
max] and

Xmin = [x1min, x
2
min, . . . , x

d
min], N: Population size or birds

(uniformly distribution ∈ [Xmax ,Xmin])
2 M: Generations, P ∈ [0.8, 1]: The foraging probability,

FQ=10: Frequency of bird’s flight, FL ∈ [0.5, 0.9]:
Followed coefficient, C = S= 1.5, a1 = a2 =1:
Constant parameters and ε: Smallest constant value

3 Define the itr=0 (iteration variables), related
parameters and fitness value for evaluation of
objective function, and finding an optimal solution

4 while (itr < M ) do
5 if (itr mod FQ 6= 0) then
6 for i=1 to N do
7 if P > rand(0, 1) then
8 Individual bird in swarm switch into

foraging behaviour to explore food
patches (Eq. 36)

9 else
10 Otherwise bird switch int vigilance

behaviour(Eq. 37)
11 end
12 end
13 else
14 Based on their food reserves birds often

switched into producer birds and scrounger
birds, after arrived on new site.

15 for i=1 to N do
16 if ith bird is a producer then
17 ith bird explore the search space for

food patches (Eq. 40)
18 else
19 Scrounging for hunting food patches

(Eq. 41)
20 end
21 end
22 end
23 The evaluation of new solutions vector or

population
24 Greedy approach is applied by comparing the new

solutions vector (population) and previous
solutions vector

25 Search for global optimal
26 itr= itr+1.
27 end
28 Output: An optimal solution in the new solutions

vector (population)

has been applied to curb greenhouse gases and encourage
investment in clean forms of energy, [59]. Carbon tax (Ctax)
imposed on emitted greenhouse gases and emission cost
($/ton) can be calculated as:

Emission cost, ξE = CtaxE . (35)
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IV. PROPOSED APPROACH TO SOLVE THE OPF PROBLEM
Various nature-inspired metaheuristic algorithms have been
developed as a substitute to the mathematical methods
for solving optimization problems, in research literature.
Population-based BSA [56] is a new stochastic swarm intel-
ligence algorithm. To address the optimization problems,
intelligence of bird swarms extracted from bird’s social
behaviours has been utilized. The birds in the swarm improve
their fitness through social behaviours and interactions with
other birds in the swarm. The working model of BSA is
based on three types of bird behaviours such as foraging, vigi-
lance, and flight behaviour. The BSA can flexibly regulate its
four different search strategies such as foraging, vigilance,
producer, and scrounger to explore the search space. Based
on these facts, the BSA can improve its convergence speed
through better balancing between exploitation and explo-
ration of search space without affecting the stability and accu-
racy of the optimal solution. Therefore, the proposed method
based on BSA may provide a more stable and accurate
solution for the OPF problems in the hybrid power system.
A bird’s social behaviours and interactions with other birds
in the swarm can be made understand based on well-defined
rules as follows:

Rule 1: Individual birds in a swarmmay switch into two
types of behaviours; 1) foraging behaviour and 2) vigi-
lance behaviour, on the basis of the random or stochastic
decision.
Rule 2: In a swarm, the individual bird may update
or improve fitness through social behaviour and by
promptly recording self and swarm’s best memory or
previous experience to explore the food patches in a spe-
cific area during foraging behaviour. The best-recorded
experience or memory about searching food items can
be utilized to explore food patches, and social behaviour
and information are shared immediately.
Rule 3: On the basis of the bird’s vigilance behaviour,
an individual bird wishes travel to the swarm’s center.
The competition between birds’ movement towards the
center of the swarm may affect the individual bird’s
struggle to reach the center of the swarm. The proba-
bility of a bird near a swarm’s center based on birds’
food reserves and a bird having greater food reserves
than other birds will be at the swarm’s center.
Rule 4: The birds in a swarm have flight behaviour due
to foraging behaviour or any other reason. During the
flight behaviour the birds in the swarm can be often
switched again into two types of birds; 1) producer birds
and scrounger birds on the basis of their food reserves.
Birds that have food reserved between lowest and high-
est are randomly switched into scrounger and producer.
Rule 5: After arrival at a new place, birds divide into
producers and scroungers. The producers search food
items or patches and randomly followed by scroungers
to search food patches.

Precise pseudo code of proposed method based on above
defined rules of BSA is given in Algorithm 1. Three types

of bird’s behaviours such as vigilance behaviour, foraging
behaviour, and flight behaviour are briefly described here.

A. FORAGING BEHAVIOUR
Stochastic decision (Rule 1) is taken according to the prob-
ability P of bird foraging food. Individual birds in swarms
switched into foraging behaviours if probability P is greater
than randomly selected constant value from a uniform normal
distribution (0,1), otherwise the bird has vigilance behaviour.
The best recorded experience or memory about searching
food items can be utilized to explore food patches, and social
behaviour and information are shared immediately (Rule 2).
It can be mathematically modeled as [56]:

x t+1i,j = x ti,j +
(
pi,j − x ti,j

)
× C × rand

(
0, 1

)
+
(
gj − x ti,j

)
× S × rand

(
0, 1

)
, (36)

where, C represents cognitive and S represents social acceler-
ated positive coefficients. pi,j represents the past best position
(local optimal) of ith bird, while gj is the swarm shared
best (global optimal) past position. The function rand(0,1)
represents uniform distribution of numbers in (0, 1). The term
x ti,j (i ∈ {1, 2, . . . ,N }) represents N virtual birds’ position
at time t, having vigilance or foraging behaviour and term
(j ∈ {1, 2, . . . ,D}) represents dimensions of available search
space in which birds take flight.

B. VIGILANCE BEHAVIOUR
According to Rule 3, birds would not travel directly towards
the swarm’s center. However, individual birds may struggle to
travel towards the swarm’s center and birds’ movement may
be affected by competition with each other. Individual bird’s
movement or vigilance behavior modeled as [56]:

x t+1i,j = x ti,j + A1
(
meanj − x ti,j

)
× rand

(
0, 1

)
+A2

(
pk,j − x ti,j

)
× rand

(
− 1, 1

)
, (37)

A1 = a1× exp
(
−

pFiti
sumFit + ε

× N
)
, (38)

A2 = a2× exp
{(

pFiti − pFitk
|pFitk − pFiti| + ε

)
N × pFitk
sumFit + ε

}
,

(39)

where, positive constants a1 and a2 are within range [0,2].
meanj is the average position of jth bird’s swarm and k(k 6= i)
represents a random nonnegative integer (k ∈ {1, 2, . . . ,N }).
The sumFit is best fitness values sum of birds swarm and pFiti
is ith bird best fitness value. The smallest positive constant ε
is used for avoiding zero division error.

Individual birds travel towards the swarm’s center because
of indirect and direct effects. The swarm average fitness value
is measured in the form of indirect effect and induced by
environments. The direct effect is made by specific interfer-
ence and A2 is used to simulate it. If k th bird (k 6= i) best
fitness value is better as compared to ith bird best fitness
value, in that case A2 > a2. It indicates the k th bird may
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suffer a smaller interference as compared to ith bird. There-
fore, k th bird would quickly move towards the swarm center
as compared to ith bird. However, there are some random
movements of birds towards the center of the swarm. In the
case of minimizing optimization problems, the bird’s smallest
fitness value is considered a better fitness value.

C. FLIGHT BEHAVIOUR
The birds in a swarm have flight behaviour due to foraging
behaviour or any other reason. During the flight behaviour
the birds in the swarm can be often switched again into two
types of birds; 1) producer birds and scrounger birds on the
basis of their food reserves (Rule4). The producer behaviours
and scrounger behaviour can be written as, respectively [56]:

x t+1i,j = x ti,j + randn
(
0, 1

)
× x ti,j, (40)

x t+1i,j = x ti,j +
(
x tk,j − x

t
i,j
)
× FL × rand

(
0, 1

)
, (41)

where, k(k 6= i), represents a nonnegative integer (k ∈
{1, 2, . . . ,N }). FL is the following coefficient for hunt-
ing food – bird’s scrounger behaviour (Rule 5). The term
randn(0, 1) is random number normal distribution.

FIGURE 8. Optimal power generation cost convergence.

V. SIMULATION RESULTS AND CASE STUDIES
The simulation-based optimization results of the BSA are
measured and a comparison is made with other algorithms

FIGURE 9. Load or PQ buses voltage magnitude profiles.

TABLE 9. The modified IEEE-30 bus test system.

including harmony search algorithm (HSA), DE, SHADE,
PSO, and ABC. For a fair comparison, we used the same
number of iterations and parameter settings in BSA approach
and other algorithms. For experimental purposes, generator
buses voltage magnitude lower and upper limits have been
kept [0.95, 1.1] p.u. based on 100 MVA. The voltage mag-
nitudes boundary limits of load or PQ buses have been kept
[0.95 1.05]p.u.. The modified IEEE-30 bus test system has
435.0 MW power generation capacity has been utilized for
performance evaluation and its further detailed is available in
Table 9.

We have implemented the proposedmethod and other algo-
rithms in MATLAB R2017a and used the MATPOWER6.0
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TABLE 10. Simulation results for electricity generation cost case studies.

package for load flow calculation. The execution of
simulation-based experiments have been performed on
MicrosoftWindows 10 64-bits with Intel Core(TM) i7-5500U
CPU @2.40 GHz and RAM @8.00 GB. We have conducted
two case studies for performance evaluation of the proposed
BSA method. Initially, we have solved the OPF problems
in a hybrid power system by considering the objective to
reduce electricity generation cost. In second case, carbon tax
(e.g., emission cost) is included in power generation cost min-
imization objective function to reduce emissions pollution.

A. CASE STUDY 1: GENERATION COST MINIMIZATION
The simulation-based experiments have been conducted for
performance evaluation of the BSA-based proposed method
and other metaheuristic algorithms to solve the OPF problems
in a hybrid power system. The OPF problem objective to
reduce the electricity output cost is written in Eq. 23, exclud-
ing last term (emission cost or carbon tax). In Eq. 23, the
first term ξT (PTG), represents the power output cost related
to thermal energy sources. The second term

∑NWF
j=1 ξw,j(Pw,j)

is power output cost related to windfarms and the third term∑NPV
k=1 ξpv,k (Ppv,k ) is power output cost of solar PV units.
The electricity generation cost of an individual windfarm is

calculated by adding three types of wind related cost such as
1) wind-scheduled power cost, 2) reserve cost, and 3) penalty
cost. Wind-scheduled power cost of an individual windfarm
follows a direct relationship to wind-scheduled power and
a high spinning reserve is required when wind-scheduled
power is kept high. In such a case, overall wind power
cost increases while at a lower rate penalty cost decreases.
The wind speed and wind electricity generation are highly

dependent on the value of scale parameter c of Weibull PDF
and the lowest wind power cost achieved at an intermediate
value. Similarly, the electricity generation cost of an indi-
vidual solar PV unit is also calculated by adding penalty
cost, reserve cost, and solar-scheduled power cost related to
solar PV unit. Solar-scheduled power cost related to solar
PV units also follows a direct relationship to solar-scheduled
power. It is observed that solar power output cost did not
monotonically increase with the values of lognormal PDF
parameters such as standard deviation σ and mean µ for
solar irradiance. Therefore, serious attention is required to
choose the suitable value of solar-scheduled power associated
with solar PV units. If the mean µ value is kept low, then
it is suggested to choose a smaller value for solar-scheduled
power.

TABLE 11. Case study 1: Trade-off.

In Table 10, optimal values of objective function, parame-
ters, control and state variables obtained from BSA, and other
evolutionary algorithms are given, where minimum power
output cost is represented in boldface. A minimum value of
power generation cost 863.121 $/h as specified in Table 10
was obtained in BSA approach and it has outperformed as
compared to other metaheuristic algorithms. The optimal
power generation cost 864.082 $/h, 864.344 $/h, 864.454 $/h,
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865.339 $/h, and 866.977 $/h are obtained using PSO, ABC,
DE, SHADE, and HSA, respectively. The optimal power
generation cost convergence of the proposed method based
on BSA and other metaheuristic algorithms are graphically
plotted in Figure 8a. All load or PQ buses voltage magnitude
profiles obtained during performance evaluation of BSA and
other algorithms are plotted in Figure 9a. For case study 1,
the trade-off between optimal power generation cost and
convergence time of the BSA-based proposed method and
other algorithms are presented in Table 11.

B. CASE STUDY 2: GENERATION PLUS EMISSION COST
MINIMIZATION
In case study 2, the minimum electricity generation cost
expressed in Eq. 23 including emission cost (e.g., carbon tax)
is an objective function for performance evaluation of the
BSA-based proposed method. In this study, a carbon tax rate
Ctax ($20/ton) is imposed on released NOx , SOx , and COx
from fossil fuel-based energy sources. It is observed that the
generation of the clean form of energy from solar and wind
have increased and emission (ton/h) pollution decreased in
the power system by imposing a carbon tax.

TABLE 12. Case study 2: Trade-off.

For case study 2, optimum values of objective function
related parameters, control variables, and state variables have
been specified in Table 10 by applying the proposed BSA
method and other algorithms. Simulation results indicate that
the BSA outperforms and provides minimum power gener-
ation cost 890.728 $/h in case study 2 along with satisfying
constraints. The optimal power generation cost 892.397 $/h,
892.779 $/h, 892.865 $/h, 894.076 $/h, and 895.441 $/h
are obtained from DE, ABC, PSO, SHADE, and HSA,
respectively. For case study 2, the convergence of optimal
power generation costs using the proposed BSA method and
other algorithms is plotted in Figure 8b. All load or PQ buses
voltagemagnitude profiles are plotted in Figure 9b. The trade-
off between optimal power generation cost and convergence
time of proposed method and other algorithms is represented
in Table 12. The simulation-based experiment results indicate
that power generation from RESs increased when the carbon
tax (ton/h) was imposed on carbon emission from fossil fuel-
based energy sources.

VI. CONCLUSION
We have proposed a new bio-inspired bird swarm algorithm
for finding optimal solutions to the OPF problems in the tra-
ditional thermal, wind, and solar energy sources-based hybrid
power system, in this study. In which, we have incorporated

utility load demand uncertainty and stochastic nature power
generation from RESs. The power generation cost for ther-
mal energy sources is measured using a valve-point loading
effects quadratic fuel curve. The Gaussian PDF, Lognormal
PDF, and Weibull PDF have been used for modeling uncer-
tainty of utility load demand, stochastic solar irradiance, and
wind speed, respectively. The simulation-based optimization
results have shown the superiority of the BSA to solve the
OPF problems by satisfying all constraints and minimum
power generation cost 863.121 $/h is achieved in case study 1.
It has been observed from optimization results that the gener-
ation of the clean form of energy fromRESs has increased and
emission pollution has decreased in the hybrid power system
by imposing a carbon tax. In case study 2, the proposed BSA
approach has also outperformed andminimum electricity cost
890.728 $/h is achieved as compared to other algorithms. The
comparative evaluation and simulation-based optimization
results confirmed the superiority of BSA approach over other
metaheuristic algorithms. The optimization performance of
BSA in terms of accuracy, stability, and efficiency have
made it attractive for application to real-time optimization
problems. The simulation results have encouraged for further
study. In future, the application of proposed BSA approach
can be extended in a large-scale traditional thermal energy
sources-based power system to solve the other optimization
problems such as unit commitment, chance-constrained OPF,
Transient stability constrained OPF.
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