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Abstract
This article models a hybrid power plant (HPP), including a compressed air energy
storage (CAES) aggregator with a wind power aggregator (WPA) considering network
constraints. Three objective functions are considered including electricity market profit
maximization, congestion management, and voltage stability improvement. In order to
accurately model the WPA, pitch control curtailment wind power levels are also added to
the wind power generator models. To optimize all the mentioned objective functions, a
multi‐objective Pareto front solution strategy is used. Finally, a fuzzy method is used to
find the best compromise solution. The proposed approach is tested on a realistic case
study based on an electricity market and wind farm located in Spain, and IEEE 57‐bus
test system is used to evaluate the network constraint effects on the HPP scheduling for
different objective functions.

1 | INTRODUCTION

Owing to the non‐dispatchable, unstable, and stochastic nature
of wind power, it is a challenging issue for wind power
aggregators (WPAs) and producers to participate in electric
power markets, especially competing with traditional fuel‐
based power plants. Therefore, adopting an optimal strategy
for WPAs to overcome such difficulties is of importance.

Currently, energy storage systems, especially CAES, have
attracted the significant attention of the researchers as a potential
and mature, extensive scale energy storage technology with the
ability of operation as a gas turbine when the pressured air is
depleted in the reservoir [1]. Merchant CAES units can provide
the role of an energy shifter when there aremany variations in the
hourly price of energy in themarket. However, their capability of
working as a gas turbine, in the simple cycle mode, makes large‐
scale CAES technology utterly different than other types of
storage systems. A more optimized scheduling approach can be
reached for CAES by catching sparks of energy prices in the
market while following their predefined schedule [2].

The network constraints can also affect the scheduling of the
generators and storage units likeWPA andCAES.Depending on
the objective function that the decision‐maker aims to optimize,
the power scheduling of the mentioned aggregators can be
different. For example, if the objective function is to optimize the
electricity market profit, the aggregators would follow the price
of electricity markets, but if the objective function is to minimize
the congestion, the scheduling would be different to change the
power flow through the network.

1.1 | Literature review

In this regard, some researchers study the best strategies of
CAES self‐scheduling to formulate their income from energy
arbitrage in different electric power markets [3]. As an illus-
tration, a co‐optimized model for the CAES dispatching is
presented in [4] to highlight the importance of energy and
reserves arbitrage provision in various U.S. electric power
markets. Authors in [2] propose a risk‐constrained bidding
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approach for the day‐ahead (DA) market participation of a
commercial CAES plant.

Besides, a number of studies present offering strategies for
WPA participation in the electric power markets. Reference [5]
proposes a WPA offering strategy for different electricity mar-
kets to consider the uncertainties of wind power and the price in
different electricity markets. Reference [6] proposes an offering
strategy for a price‐maker WPA to participate in a DA electricity
market. A similar study has been accomplished in [7] for a WPA
as a price‐maker in the balancingmarket while being a price‐taker
in the DAmarket. A hybrid stochastic‐information gap decision
theory algorithm is used to handle the wind uncertainty and
power equipment failure in [8, 9].

Besides, some articles propose offering strategies for joint
operation of WPAs with other producers. In this regard, au-
thors in [10] formulate offering an approach to a thermal unit
aggregator to participate in the market in collaboration with
the WPA. A similar study is accomplished in [11] for a hybrid
WPA and pumped‐storage system considering uncertainties of
wind generation and electricity prices in the market. Reference
[4] investigates wind uncertainty effects on the stored energy of
pumped‐hydro in the future U.K. system. A CVaR model‐
based offering strategy is proposed in [12] for a joint wind‐
hydro aggregator to handle the financial risk of participating in
the DA market. Two different models for aggregation of a
WPA with a CAES and a gas turbine unit are presented in [13].
A flexible load to support imbalances of WPA is employed in
[14] to battle uncertainties of participation in DA electric po-
wer market. The model proposed in [15] aims at minimizing
the total operating costs (i.e. including imbalance fines) as a
result of wind power over/underestimation. The strategy is
formulated based on critical peak pricing to model the demand
response programme involved in the DA participation
approach. In [16], all the electricity markets (i.e. including DA,
intraday and balancing markets) are considered in the joint
offering strategy of a WPA and a demand response resource.

Some research has been accomplished in the case of
network constrained offering strategies of different aggre-
gators. Such the approach considering uncertainties of wind
power and loads is studied in [17, 18] to present a corrective
voltage control that can cope with voltage instability resulted
from severe contingencies. A similar approach using a proba-
bilistic optimal power flow is presented in [19] to set a
compromise among involvement of wind, photovoltaic, and
plug‐in electric vehicle energy sources in the form of a hybrid
power plant (HPP), while the probability distribution factor
required to generate the stochastic powers is based on Monte
Carlo simulation. A security‐constrained optimal power flow
problem incorporating thermal power units and wind genera-
tors, considering Weibull probability function to model wind
power uncertainties, is solved in [20].

1.2 | Approach and contribution

The participation of an HPP (including a WPA and a CAES
aggregator) in the DA electricity market considering network

constraints is proposed. The CAES unit is capable of
working as a gas turbine in the simple cycle mode. The
proposed methodology uses CAES to control uncertainties
of the price in different electricity markets as well as wind
power forecasting, while WPA assists the CAES aggregator
to schedule simple cycle mode, charging and discharging
more economically. A multi‐objective mixed integer
nonlinear programming problem for three objective func-
tions including electricity market profit maximization, voltage
stability improvement, and congestion management is
formulated which is solved using an improved Jaya algo-
rithm [21]. The contributions of the paper are given as
follows:

� An HPP including a CAES aggregator and a WPA is
modelled considering network constraints.

� Three objective functions are considered, including elec-
tricity market profit maximization, congestion management,
and voltage stability improvement.

� In order to properly model the WPA, pitch control for wind
power curtailment is added to wind generator modelling.

� The IEEE57‐bus system is used to integrateWPA andCAES,
to validate the proposed bidding strategy, and to analyse the
effects of network constraint on the HPP scheduling for
different objective functions, while the real data of wind farm
and electricity market located in Spain are used.

1.3 | Paper organization

The rest of the articler is structured as follows: Section 2
provides the problem formulation of three objective functions
including profit maximization, voltage stability, and congestion
management. Section 3 deliberates the case study and delivers
the results. To conclude, Section 4 summarizes the achieve-
ment of the article.

2 | PROBLEM FORMULATION

Three objective functions are considered including profit
maximization, voltage stability, and congestion management.
The first objective function is profit maximization, which is
equal to the HPP revenue minus its total operating costs.

maxΘht;sZ1

Z1 ¼
XNs

s¼1

XNT

t¼1
πs

h
ρDA

t;s : PhDA
t;s − OCt;s

i ð1Þ

where Θht;s ¼ fPhDA
t;s ; UwDA

t;s ; PwDA
t;s ; PcDA

t;s ; PcDA;Dis
t;s ;

PcDA;Sim
t;s ; PcDA;Cha

t;s ; UcDA;Di
t;s ; ℶt;UcDA;Sim

t;s ;UcDA;Cha
t;s ;EcDA

t;s g;

are the variables related to the HPP optimization problem. The
CAES operational cost OCt,s is calculated in Equation (16) as
the function of power dispatch in charging, discharging, and
simple cycle modes.
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The first objective function (Equation 1) is subject to the
combined and individual constraints in the case of merchant
CAES unit and WPA.

The limit of HPP offer in the DA market is defined as
follows:

PhDA
t;s ¼ PwDA

t;s þ PcDA
t;s ∀t; ∀s ð2Þ

where Pwt,s
DA and Pct,s

DA are limited to the following
constraints:

0 ≤ PwDA
t;s ≤ PwMax ∀t; ∀s ð3Þ

−PcMax
Com ≤ PcDA

t;s ≤ PcMax
Exp ∀t; ∀s ð4Þ

Noteworthy, getting positive/negative values of PcDA
t;s in

Equation (4) permits HPP to both buy/sell in the DA market.
In order to properly model the WPA, the pitch angle

control is added to wind generators using Equation (5) to
curtail the wind power level. Equation (5) refers to how the
wind power PDF is modified after curtailment [22]. The pitch
power control is a mechanism using changes in the blade pitch
angle in the wind turbines to reduce the power generation. It is
implemented to cut the extra power generation when the
generated wind power is more than the forecasted value.

The wind curtailment level is carried out based on the
‘discretized probability density function’.

�πwDA
t;h ¼

8
>>>>><

>>>>>:

πwDA
t;h if gDA

t;h < gDA
t;ℶt

X

j≥ℶt

πwDA
t;j if gDA

t;h ¼ gDA
t;ℶt

0 if gDA
t;h > gDA

t;ℶt

ð5Þ

where gDA
t;ℶt

is the maximum hourly caps further than which all
the wind power will be dropped, and ℶt values are between one
and seven in this paper. �πwDA

t;h is the probability of wind power
equal to gDA

t;h when the wind is curtailed. πwDA
t;h is the prob-

ability of wind power equal to gDA
t;h .

In order to demonstrate the process, examples of two wind
power PDFs are presented in Figure 1. The wind power is
distributed in seven levels with its associated probabilities as
shown in Figure 1a, while the wind power is curtailed on its
fifth level as shown in Figure 1b, and the probabilities of level
6 and 7 are added to level 5. Please note that a higher total
wind curtailment level means less wind power curtailment.
Therefore, there is no curtailment if the wind power curtail-
ment level is chosen 7.

Moreover, there are some constraints related to PcDA
t;s as

follows:

PcDA
t;s ¼ PcDA;Dis

t;s þ PcDA;Sim
t;s − PcDA;Cha

t;s ∀t; ∀s ð6Þ

The power limits of CAES in different operation modes
are as follows:

0 ≤ PcDA;Cha
t;s ≤ PMax

Com:UcDA;Cha
t;s ∀t; ∀s ð7Þ

0 ≤ PcDA;Sim
t;s ≤ PcMax

Exp :UcDA;Sim
t;s ∀t; ∀s ð8Þ

0 ≤ PcDA;Dis
t;s ≤ PcMax

Exp :UcDA;Dis
t;s ∀t; ∀s ð9Þ

As formulated in Equation (10), the CAES may operate in
one of these modes at each period.

UcDA;Dis
t;s þUcDA;Sim

t;s þUcDA;Cha
t;s ≤ 1 ∀t; ∀s ð10Þ

No uncertainty is assumed for CAES power generation.
The CAES energy level (i.e. state‐transition equation) is
modelled as follows:

EcDA
t;s ¼ EcDA

t−1;s þ Er
�

PcDA;Cha
t;s − PcDA;Dis

t;s

�
∀t > 1; ∀s

ð11Þ

EcDA
1;s ¼ EcDA

24;s ¼ EcINT ∀s ð12Þ

EcMin ≤ EcDA
t;s ≤ EcMax ∀t; ∀s ð13Þ

To include the non‐decreasing curves for DA market
bidding, the following constraints are defined [5]:

�
PhDA

t;s − PhDA
t;s;

�
:
�

ρDA
t;s − ρDA

t;s;

�
≥ 0 ∀t; ∀s; ∀s; ð14Þ

PhDA
t;s ¼ PhDA

t;s; ∀ t; ∀s; ∀s; : ρDA
t;s ¼ ρDA

t;s; ð15Þ

Finally, the equation related to the operational cost of
CAES can be written as follows:

OCt;s ¼ PcDA;Dis
t;s

�
HcDis:NGþQcExp�

þ PcDA;Sim
t;s

�
HcSim:NGþQcExp þQcCom�

þ PcDA;Cha
t;s QcCom ∀t; ∀s

ð16Þ

The second objective function considered is voltage sta-
bility improvement. The static voltage stability margin can be
defined through the minimal Ϗ index [23, 24]:

�Kj ¼

�
�
�
�
�
1 −

X

iϵBG

Иji
V i

V j

�
�
�
�
�

jϵBL ð17Þ

where BL and BG are the sets of load buses and generator
buses, respectively. �Ϗ j represents the impact of the voltage
magnitude of PV buses (buses connected to the generator)
on the voltage magnitude of PQ buses (load buses) in the
power system based on the admittance matrix (И). �Ϗ j is
only calculated for load buses in which the risk of voltage
collapse is higher than the PV buses. The matrix (И) can be
calculated as:
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½И� ¼ −½Y LL�
−1
½Y LG� ð18Þ

where [YLL] and [YLG] are the submatrices of the admittance

matrix Y bus ¼

�
Y LL Y LG
Y GL Y GG

�

partitioned in accordance with

the BL and BG.
In stable conditions, �Ϗ j indices are required to be between

0 and 1. Therefore, an overall indicator �Ϗ that defines the
stability of the whole system can be transcribed as the
maximum of the �Ϗ j indices; it gives the closeness of the system
to voltage collapse. The minimum of this overall indicator can
be defined as an objective function as shown in Equation (19):

minΘht;sZ2

Z2 ¼ �Ϗ ¼max
�
K j
�

j ∈ BL
ð19Þ

It should be noted that although the presented voltage
stability improvement index and voltage profile improvement
index [25] both improve the voltage in the system, they have
major differences. Specifically, the voltage profile index, which
is usually defined as ∑j ∈ Blj1 − Vjj, represents the deviation of
the voltage of the load buses from the nominal voltage (1 p.u.).
This index is unable to show how far is the voltage magnitude
from the stability margin. Therefore, we use the above index in
Equation (17) for voltage stability improvement.

The third objective function considered is congestion
management. For the sake of simplicity, it is assumed that
the maximum power capacity of each line is the same. In
order to consider congestion management in the problem,
we try to minimize the maximum power through the lines of
the network. Also, a penalty factor is implemented to elim-
inate the solutions which lead to congestion through the
network. The powers through the lines of the network can
be written as:

Pline ¼ ½ P1 P2 P3 … PNline �; ð20Þ

To reject the solutions which lead to congestions, the
relevant penalty factor can be formulated using:

BPl ¼

(
0 Pl ≤ Pmax

l

1 Pl > Pmax
l

; ∀lϵ½1; 2; …;Nline� ð21Þ

Penalty f actor ¼m�
XNline

l¼1

BPl ð22Þ

As mentioned earlier, the maximum power capacity of all
lines is presumed to be equal. Therefore, the third objective
function, which is to minimize the maximum power through
the lines of the network, can be written as in Equation (23).
Note that if the maximum amount of power in lines is
different, the normalized value of power passing through the
line can be considered in the formulation.

minΘht;sZ3
Z3 ¼maxðPlineÞ þ Penalty f actor ð23Þ

Usually, there is only one line that has the maximum power
passing through it. If the power in this line is reduced, the
overall power through all lines will be reduced.

2.1 | Equality constraints

The optimal power flow equality constraints, including active
and reactive powers, can be written as the following equations:

Pgi − Pdi ¼
Xnb

j¼1

V iV j
�
Gijcosθij þ Bijsinθij

�
ð24Þ

Qgi − Qdi ¼
Xnb

j¼1
V iV j

�
Gijsinθij − Bijcosθij

�
ð25Þ

where Gij and Bij are the real and imaginary parts of the
network admittance matrix element Yij, respectively, so that
Yij = Gij + jBij. Pgi and Pdi are the real power generation and
consumption of the i‐th bus. Qgi and Qdi are the reactive
power generation and consumption of the i‐th bus. θij is the
voltage angle difference between bus i and bus j.

2.2 | Inequality constraints

The optimal power flow inequality constraints include active
and reactive power generation of each generator (Equations 26
and 27), and the voltage profile of each load bus (Equation 28).

Pgi min ≤ Pgi ≤ Pgi max i ∈ BG ð26Þ

F I G U R E 1 (a) Initial wind power PDF; (b) the curtailed wind power
PDF
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Qgi min ≤ Qgi ≤ Qgi max i ∈ BG ð27Þ

V i min ≤ V i ≤ V i max i ∈ BL ð28Þ

Note that Matpower M‐file package is used to solve the
optimal power flow. Equality and inequality constraints are
completely satisfied in the process of solving optimal power
flow with Matpower.

2.3 | Multi‐objective strategy and
optimization tool

In this section, the multi‐objective technique and its concept
are introduced. Figure 2 shows the concept of multi‐objective
Pareto solutions for three objective functions. As shown in this
figure, all populations are arranged with the best values of the
objective functions, and the non‐dominated solutions are
identified (black dots).

The values of the objective functions are usually quite
different. For example, in this study, the profit maximization
objective function values are about 1 million, and voltage
stability objective function values are between 0 and 1.
Hence, solutions are derived in sequence based on the range
of the objective functions. In other words, the solutions
with the biggest range objective function (congestion man-
agement) are calculated first, and the solutions with the
smallest range objective function (negative market profit) are
lastly calculated. The reason that the negative value of the
market profit is considered is that this objective function is
required to be maximized, on the contrary, to the other
objective functions (congestion management and voltage
stability index [VSI]). Note that for calculating the objective
function in each iteration, the optimal power flow is per-
formed using Matpower.

After finding the multi‐objective Pareto solutions, the
operator might want to select the best compromise solution
[26]. Thus, the fuzzy method is used to find this solution.
In the fuzzy method, first, a normalization method is
defined to equalize the range for the three objective func-
tions and put them between 0 and 1. This procedure is
formulated as:

NormZk;s
¼

8
>>>><

>>>>:

1

Zmax
k − Zk;s

Zmax
k − Zmin

k

0

Zk;s ≤ Zmin
k

Zmin
k < Zk;s < Zmax

k

Zk;s ≥ Zmax
k

ð29Þ

where Zk
max and Zk

min are the value of k‐th objective function
which is completely unsatisfactory and satisfactory to the de-
cision‐maker, respectively. Zk,s and NormZk;s

are the s‐th non‐
dominated solution of k‐th objective function and its
normalized value which has the values between 0 and 1,
respectively.

The membership function can be determined for each
individual as follows:

ϖs ¼

PNZ
k¼1ωk � NormZk;s

PNsol
i¼1
PNZ

k¼1ωk �NormZk;i

ð30Þ

where ϖs is the membership function of s‐th non‐dominated
solution. ωk is the weighting factor of the k‐th objective
function. For calculating the best compromise solution, the
weighting factor for each objective function is assumed to be
the same which is equal to 0.33 to calculate the best
compromise solution. This means all the objection functions
have the same importance for the decision‐maker. The solution
with the maximum membership ϖs is the best compromise
solution [26]. The procedure is also shown as a flowchart in
Figure 3. Please note that imax is the maximum number of
iterations in the algorithm. An enhanced Jaya algorithm called
LJaya‐TVAC algorithm, which is based on time‐varying ac-
celeration coefficients and learning phase introduced in
Teaching‐Learning‐Based Optimization (TLBO), is used to
solve the optimization problem. Jaya is a powerful algorithm
based on the conception that the new solution moves in the
direction of the previously found best solution and escapes
from the worst one. Jaya algorithm only needs the common
control parameters and has no algorithm‐specific control pa-
rameters. However, for higher convergence rate, variable co-
efficients and the learning phase in TLBO is added to the Jaya
algorithm. The detail about the Jaya and LJaya‐TVAC algo-
rithm is available in [21, 27].

3 | CASE STUDY

The 57‐bus test system is used to test the proposed approach
which consists of seven generator units at buses 1, 2, 3, 6, 8, 9,
and 12. The data related to the 57‐bus test system can be found
in [28]. The network in which the HPP including WPA and
CAES aggregator is tested is shown in Figure 4. In this figure,
the red and blue circles indicate the CAES and wind power
plants, respectively. The presented approach determines a co-
ordinated operation for HPP (i.e. including a WPA and a
CAES aggregator). The CAES units employ the simple cycle
mode to maximize their profit. The wind power and DA

F I G U R E 2 Pareto‐optimal front concept for three objective functions
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market price uncertainties are modelled using the scenario
generation and reduction method which are explained as fol-
lows: N1, and N2 scenarios are generated for wind power

generation, and DA market price, respectively. These uncer-
tainty sources are independent uncertainty parameters. Also,
the symmetric scenario tree is implemented to construct

F I G U R E 3 The optimization framework

F I G U R E 4 Diagram illustration of system
configurations
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NS = N1 � N2 scenarios based on the wind power (N1) and
DA market price (N2) scenarios. The presented procedure is
applied to the Sotavento wind farm [29] located in Spain. The
artificial neural network is trained by the wind power real data
records of the year 2010. The scenarios related to market prices
are obtained by the following procedure: Firstly, the prediction
of DA market price for 30 days is derived by an adapted hybrid
neural network and an improved Jaya algorithm [21, 30]. Sec-
ondly, the estimation of the error probability distribution
function (PDF) is calculated for each hour. Finally, based on
these estimations, 1000 scenarios are produced by applying the
roulette wheel mechanism for each of the wind and DA market
price. Also, the scenario reduction method is employed to

diminish the number of scenarios to 30 (N1 = 30 and N2 = 30)
by removing similar scenarios in addition to very low probable
scenarios using the fast forward algorithm [31]. The error
variance of 10% is used in the article for both wind and DA
market price scenario generations.

The proposed method is applied on six aggregated wind
farms with 7 MW capacity for each. The maximum capacity of
15 MW is considered for each of six CAES units depicted in
Figure 4. Values of 0.4185 and 0.837 are considered for CAESs
heat rate in discharging and simple cycle modes, respectively
[32]. The price of natural gas is considered to be 3.5 €/GJ.
Besides, the equal value of 0.87 €/kWh is considered for variable
operation and maintenance cost in both modes of expansion
and compression, respectively. The air storage capacity of CAES
cavern can reach to 15 and one MWh at the highest and lowest
level, respectively. The energy level of 1 MWh is considered for
the initial stored energy of CAES cavern, while CAES energy
conversion ratio is 0.95 for both compression and expansion
modes. Pl

max is considered to be equal to 200 MW. Figure 5 also
shows the electricity price profile.

Figure 6a demonstrates the non‐dominated and best
compromise solutions for the pitch angle control and
charging and discharging levels of CAESs and WPs that are
optimally achieved by an improved Jaya algorithm for three
objective functions including congestion management, voltage
stability enhancement, and market profit maximization. Also,
as shown in the figure, the best compromise solution is
designated by a bigger blue star. This solution is obtained

F I G U R E 6 Three‐dimensional view Pareto front for market profit, VSI, and congestion (a). Two‐dimensional view Pareto front for VSI and congestion (b),
market profit and congestion (c), and market profit and VSI (d)

F I G U R E 5 Electricity price profile
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using the fuzzy method, which is explained in more detail in
Section 2.3. In the solution that is best for congestion
management, the amount of market profit, which includes
WPA and CAES aggregator, VSI, and congestion are 74,750,
0.99950752, and 174.6096, respectively. This means that the
maximum power passing through the worst congested line is
reduced to 174.6096 MW.

In the solution that has the maximum market profit, the
amount of market profit, VSI, and congestion are 79,787,
0.99950659, and 178.0979, respectively. Also, in the solution
that the voltage stability has the minimum value, which is the
best one, the amount of market profit, VSI, and congestion are

77,322, 0.99950648, and 177.7645, respectively. For the best
compromise solution, the amount of market profit, VSI, and
congestion are 77,223, 0.99950720, and 175.8644 (this means
that for the worse congested line, the maximum power passing
through that line is reduced to 175.8644 MW), respectively.
Congestion management index, VSI, and market profit value
for different weighting factors for each objective function are
tabulated in Table 1. Note that ω1, ω2, ω3 in the table refer to
weighting factors of market profit, VSI, and congestion man-
agement index, respectively.

In order to clearly see the values of objective functions,
Figure 6a is also shown in two dimensions in Figure 6b–d.

TA B L E 1 Congestion management
index, VSI, and market profit value for the
best solutions for each and the best
compromise solution

ω1 ω2 ω3 Market Profit ($) VSI Congestion Management (MW)

0.33 0.33 0.33 77,223 0.99950720 175.8644

0 0 1 74,750 0.99950752 174.6096

0 1 0 77,322 0.99950648 177.7645

1 0 0 79,787 0.99950659 178.0979

0 0.5 0.5 75,191 0.99950665 176.0082

0.5 0 0.5 76,949 0.99950717 175.0590

0.5 0.5 0 78,983 0.99950650 177.6191

(a) (b) 

(c) (d) 

F I G U R E 7 CAESs charging and discharging for (a) minimum congestion (b) minimum VSI (c) maximum profit (d) best compromise solution
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The obtained optimal schemes of CAES caverns'
charging/discharging for all installed CAESs are shown in
Figure 7a–d. The objective function to be optimized for
Figure 7a is the minimum congestion. The negative values of

this figure signify the charging of the cavern, whereas the
positive values indicate the discharging. Figure 7b shows the
optimal CAES caverns' charging and discharging of the six
installed CAESs for the minimum VSI as the objective func-
tion. In order to have a better stability boundary, the demand
load needs to be locally served [33].

The maximization of electricity market profit is the
objective function for Figure 7c. The variation of charging and
discharging of the cavern is mostly associated with the varia-
tion of the hourly electricity prices. Figure 7d shows the
optimal CAES caverns' charging and discharging for the best
compromise solution. As mentioned earlier, all the objective
functions are equally optimized using fuzzy method to achieve
the best compromise solution.

Figure 8 also shows the optimal power bids of the HPP in
the DA market for different objective functions and the best
compromise solution. As seen from the figure, for the best

TA B L E 2 Wind curtailment level for (a) congestion management
objective function (b) VSI objective function (c) profit maximization
objective function (d) the best compromise solution

(a)

Hour WP 1 WP 2 WP 3 WP 4 WP 5 WP 6 WP 7

1 7 1 1 1 1 7 7

2 1 1 1 1 7 7 1

3 1 7 1 7 1 7 1

4 7 1 7 1 7 7 7

5 7 6 1 1 1 1 7

6 7 7 7 7 1 7 7

7 1 7 7 1 3 1 1

8 7 1 7 1 1 3 7

9 1 7 1 1 7 1 1

10 1 7 7 1 1 5 1

11 7 7 1 7 7 7 7

12 1 1 7 7 7 7 1

13 7 2 7 2 1 6 7

14 1 1 7 1 7 7 1

15 7 1 7 1 7 4 7

16 1 7 7 1 1 1 1

17 6 1 7 7 1 1 6

18 1 7 2 1 1 7 1

19 1 1 7 1 1 4 1

20 7 7 7 1 7 7 7

21 1 7 1 7 7 7 1

22 1 7 7 1 7 7 1

23 1 1 7 7 1 1 1

24 1 1 1 2 7 7 1

F I G U R E 8 Optimal power bids of the HPP in the DA market for
different objective functions

F I G U R E 9 VSI during the 24‐h time horizon

F I G U R E 1 0 The bus‐VSI profile at hour #5
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(b)

Hour WP 1 WP 2 WP 3 WP 4 WP 5 WP 6 WP 7

1 2 4 5 4 2 5 2

2 1 2 6 3 7 3 1

3 4 3 7 4 6 2 4

4 6 5 6 7 6 6 6

5 3 5 3 7 3 7 3

6 2 1 6 7 2 2 2

7 5 7 4 1 2 6 5

8 1 5 2 6 7 2 1

9 5 1 5 1 4 7 5

10 1 3 1 1 1 2 1

11 3 7 2 2 2 5 3

12 3 7 1 4 3 5 3

13 6 2 4 7 2 7 6

14 2 1 2 3 2 6 2

15 5 7 3 6 6 4 5

16 5 3 4 4 6 1 5

17 2 5 6 2 5 3 2

18 3 3 5 5 5 2 3

19 7 6 3 4 6 5 7

20 5 6 7 7 2 3 5

21 7 5 2 4 1 6 7

22 3 2 7 4 3 7 3

23 5 4 3 2 1 6 5

24 2 6 3 5 7 7 2

(c)

Hour WP 1 WP 2 WP 3 WP 4 WP 5 WP 6 WP 7

1 7 2 3 2 1 6 7

2 5 2 6 4 4 3 5

3 2 4 6 4 4 2 2

4 6 2 5 1 3 1 6

5 5 3 3 6 3 4 5

6 6 4 7 4 5 5 6

7 5 2 4 2 6 5 5

8 7 6 4 2 7 7 7

9 3 2 3 7 3 1 3

10 3 4 5 1 6 4 3

11 2 3 7 7 5 4 2

12 5 6 3 3 3 5 5

(Continues)

TA B L E 2 (Continued)

(c)

Hour WP 1 WP 2 WP 3 WP 4 WP 5 WP 6 WP 7

13 2 5 4 6 7 6 2

14 4 3 2 6 2 4 4

15 4 5 5 1 7 2 4

16 6 6 7 4 7 7 6

17 6 6 6 2 4 1 6

18 2 7 2 1 3 1 2

19 5 1 3 3 7 3 5

20 1 2 3 7 5 1 1

21 3 3 6 6 1 5 3

22 1 7 5 3 6 7 1

23 5 5 5 1 5 3 5

24 3 6 2 4 6 5 3

(d)

Hour WP 1 WP 2 WP 3 WP 4 WP 5 WP 6 WP 7

1 7 4 4 1 1 1 7

2 6 2 1 1 7 7 6

3 2 7 7 6 1 7 2

4 1 2 5 4 7 5 1

5 5 5 1 3 1 5 5

6 7 7 6 5 1 6 7

7 1 7 7 3 7 1 1

8 6 1 7 6 7 7 6

9 4 1 1 1 6 2 4

10 1 5 6 1 1 4 1

11 4 4 1 7 2 7 4

12 7 7 7 7 3 2 7

13 5 5 1 7 3 1 5

14 1 1 7 3 7 3 1

15 3 6 5 1 1 2 3

16 1 7 7 5 6 7 1

17 6 3 2 1 4 5 6

18 5 5 7 1 1 4 5

19 1 6 5 1 3 1 1

20 5 7 7 1 7 7 5

21 1 6 3 5 4 5 1

22 2 7 7 1 7 4 2

23 1 6 7 7 5 2 1

24 2 7 3 1 5 7 2
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solution for market profit, the HPP prefers to sell the elec-
tricity in peak hours which are more expensive.

Figure 9 shows the 24‐h profile of the grid voltage stability.
As can be seen, hour #5 has the worst voltage stability.
Furthermore, the bus‐VSI profile at hour #5 and the worst
bus‐VSI are shown in Figure 10. The bus 26 has the worst bus‐
VSI (bus 31 considered as the generator bus) with the value of
0.99950734 p.u.

The hourly wind curtailment levels for four solutions
including the best solution for congestion management, the
best solution for VSI, the best solution for electricity market
profit and the best compromise solution are shown in Ta-
ble 2a–d. The total wind curtailment level of the best solution
for congestion management is the smallest among the other
mentioned solutions with a value of 573. The total wind
curtailment level of the best solution for profit maximization is
589. The total wind curtailment level of the best solution for
VSI is 585. Also, the total wind curtailment level of the best
compromise solution is the largest among the other mentioned
solutions with a value of 594. Please note that the maximum
number of wind curtailment level is 7, and when the curtail-
ment level is 7, it means there is no curtailment.

It can be seen from the results that even though the wind
power is totally free, there are intervals in which WPAs are not
permitted to inject the entire obtainable wind powers to the
network and sell to the electricity markets. The reason is that
for satisfying objective functions other than market profit
maximization such as congestion management, the wind power
generation needs to be curtailed for some hours in which some
wind generators produce more than enough such that some
lines are congested.

4 | CONCLUSION

This article has modelled an HPP considering network WPA.
The wind generators are equipped with pitch angle control
ability to adjust the wind power curtailment level. In order to
analyse the effects of the network constraints, two additional
objective functions including congestion management and
voltage stability improvement have been considered, and
multi‐objective Pareto front solutions have been used to
optimize all the objective functions simultaneously. The re-
sults show that these two additional technical objectives
conflict with the profit maximization in the electricity market.
This method is used in the time that the market player gets
benefits or incentives from the network owner by bringing
congestion management and voltage stability indices to a
specific point.

Two different technical objectives from the perspective of
the power grid were considered. The problem can also be
solved in the future study based on other objectives such as
power losses and voltage profile of the network.

NOMENCLATURE

Definit ions
CVaR Conditional Value‐at‐Risk
WPA Wind Power Aggregator
CAES Compressed Air Energy Storage
HPP Hybrid Power Plant

Indices

1) Sets
s Index of scenario
T Index of time
H Index of wind power discrete level

Superscripts
Cha Index for charging mode of CAES
DA Index for offered power to day‐ahead market
Dis Index for discharging mode of CAES
INT Index for initial value
Sim Index for simple‐cycle mode of CAES

Constants
BL Set of load buses
BG Set of generator buses
Ns Total number of scenarios
NT Total period of time
Nline Total number of lines in the network
Nsol Total number of non‐dominated solutions
NZ Total number of objective functions
πs Probability of occurrence of scenario s
ζ Risk‐aversion factor
σ Confidence level with σ ∈ (0,1)
Pl Power passing from end to end

of the line l
Pl

max Maximum power capacity that can be passed
from end to end of the line l

PwMax Maximum capacity of WPA
PcExp/Com

Max Maximum expanding/compressing capacity
of CAES

m A sufficiently large number (e.g. 10100)
Er CAES energy ratio for converting power to

energy in cavern
EcMax/Min Maximum/minimum schedulable level of

energy in CAES cavern
Hc CAES heat rate in one of operating modes
NG Natural gas price
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Variables
Ph Power produced by HPP
Pw Power produced by WPA
Pc Power produced by CAES
ρ Price of electricity
ℶ Wind curtailment decision variable
g Discrete realization of wind power
OCt,s Total operational cost of CAES
Uc Binary variable to show ON/OFF operating

status of CAES
Ec Scheduled energy level of the CAES
QcExp/Com CAES variable operation and maintenance

cost for expanding/compressing modes
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