
A Low-Power, High-Accuracy with Fully On-Chip Ternary Weight
Hardware Architecture for Deep Spiking Neural Networks

Duy-Anh Nguyen1, Xuan-Tu Tran1,∗, Khanh N. Dang1, Francesca Iacopi2

Abstract

Recently, Deep Spiking Neural Network (DSNN) has emerged as a promising neuromorphic ap-

proach for various AI-based applications, such as image classification, speech recognition, robotic

control etc. on edge computing platforms. However, the state-of-the-art offline training algorithms

for DSNNs are facing two major challenges. Firstly, many timesteps are required to reach com-

parable accuracy with traditional frame-based DNNs algorithms. Secondly, extensive memory

requirements for weight storage make it impossible to store all the weights on-chip for DSNNs

with many layers. Thus the inference process requires continue access to expensive off-chip mem-

ory, ultimately leading to performance degradation in terms of throughput and power consumption.

In this work, we propose a hardware-friendly training approach for DSNN that allows the weights

to be constrained to ternary format, hence reducing the memory footprints and the energy con-

sumption. Software simulations on MNIST and CIFAR10 datasets have shown that our training

approach could reach an accuracy of 97% for MNIST (3-layer fully connected networks) and

89.71% for CIFAR10 (VGG16). To demonstrate the energy efficiency of our approach, we have

proposed a neural processing module to implement our trained DSNN. When implemented as a

fixed, 3-layers fully-connected system, the system has reached at energy efficiency of 74nJ/image

with a classification accuracy of 97% for MNIST dataset. We have also considered a scalable de-

sign to support more complex network topologies when we integrate the neural processing module

with a 3D Network-on-Chip.

Keywords: Deep Spiking Neural Network, neuromorphic, ternary-weight quantization, hardware

implementation.

Preprint submitted to Microprocessors and Microsystems November 27, 2021

1. Introduction

Recently, Deep Neural Networks (DNNs) have contributed to the success of many machine

learning tasks such as image classification [1, 2, 3], object detection [4, 5], natural language

processing [6, 7] and scene understanding [8]. However, the inference phase on such deep and

complex networks requires a significant amount of computational power and energy costs, thus

limiting the application of such networks on powerful GPUs or datacenter accelerators such as

Google’s TPU [9].

Facing such challenges, the VLSI community has made considerable research efforts to push

the AI-related applications on various embedded and mobile platforms. Notable research trends to

optimize energy efficiency include: (i) developing specialized dataflow to reduce power consump-

tion from DRAM access [10, 11, 12]; (ii) reducing the size of DNNs models [13]; (iii) pruning

redundant networks parameters while preserving accuracy [14], quantization of weight and input

activations [15, 16]; and (iv) applying novel approximating computing paradigm such as comput-

ing in log-domain [17], in frequency-domain [18] or stochastic computing [19]. These techniques

rely on the traditional frame-based operations of DNNs, where each information frame is pro-

cessed sequentially, layer-by-layer until the final decision can be made. This may result in long

latency, especially for large DNNs architectures and high volume frame inputs, and is not suitable

for applications where a fast, real-time decision is crucial.

Spiking Neural Networks (SNNs) has long been widely adopted as a model to simulate and

study the human brain’s behavior [20]. Recently, SNNs have emerged as an energy-efficient com-

puting paradigm for inference tasks on DNNs architectures[21, 22]. This is mainly due to several

reasons. Firstly, SNNs have an inherent event-based mode of operations, with spike as the basic

unit of communication between neurons. A neuron is only active when input spikes arrive, and

stay idle otherwise, reducing the energy consumption. Next, SNNs could reduce the inference

∗Corresponding author
Email address: tutx@vnu.edu.vn (Xuan-Tu Tran)

1Duy-Anh Nguyen, Xuan-Tu Tran are with The Information Technology Institute - Vietnam National University,
Hanoi (VNU), Hanoi 123106, Vietnam. Duy-Anh Nguyen is also with VNU-UET.
Khanh N. Dang is with VNU Key Laboratory for Smart Integrated Systems (SISLAB), VNU-UET, Vietnam National
University, Hanoi (VNU), Hanoi 123106, Vietnam

2Francesca Iacopi is with The University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.

2

latency and workload as the output classification could be queried as soon as the first output spike

arrives, instead of waiting for the whole frame to be processed. Thirdly, efficient SNNs architec-

tures can be constructed with hardware-friendly Integrate-and-Fire (IF) neuron models, replacing

the expensive multiplication operation with addition. In addition to the energy-efficient feature,

SNNs has been reportedly proven to be equal in terms of recognition accuracy with state-of-the-art

DNN models [23, 24].

Although SNNs hold many advantages over the traditional DNNs architectures, finding ef-

ficient training algorithms for SNNs has been the major challenge that hinders the widespread

deployment of SNNs in typical AI workload. The difficulties in training SNNs come from the

complex dynamics of each neuron and the non-differentiable spike activations. The current train-

ing algorithms for SNNs can be broadly classified into two categories. The first being the online

learning methods with variants of Spike-Timing Dependent Plasticity (STDP) [25, 26, 27]. This

method is suitable for applications that require adaptation to change in environments; however,

it suffers from a great loss of accuracy compared to DNNs. The second category is the offline

learning methods, where trainable SNNs parameters are obtained once in the training phase and

deployed in the inference phase. These include pre-training adapted DNNs and convert them to

SNNs [28, 25, 23, 29] and directly training SNNs with back-propagation-based supervised learn-

ing methods [30]. These methods have been proven to be on-par in terms of classification accu-

racy with state-of-the-art DNN’s architectures on complex recognition dataset such as CIFAR-10

or ImageNet dataset [23]. However, these offline-learning methods are currently suffering from

two major drawbacks. The first is the high inference latency, as each inference requires many

timesteps to reach high accuracy. The second is the high memory storage for network parameters

as the training algorithms usually requires high precision weights (32-b floating-point [31] or 7-b

fixed-point [32]). This could hinder the deployment of such networks on embedded devices with

limited on-chip memory size and low-power consumption restraints.

In this work, we try to address the two aforementioned issues. Our approach is to train the net-

work such that it could perform well during few timesteps, while still maintaining good accuracy.

To reduce the size of the DSNN model, the trained network parameters are constrained in ternary

format. Our main contributions in this work can be summarized as:

3

• A hardware-oriented training procedure for SNNs with the network parameters (i.e. weights

and biases constrained to ternary format). The training procedure has been applied to the

image recognition tasks with the MNIST and CIFAR datasets, with both fully connected

(FC) and convolutional topologies. The trained SNNs has reached an accuracy of 97% with

MNIST (3 layers FC network) and 90% with CIFAR-10 (VGG16 network).

• An efficient neuromorphic processing core to support our trained SNN with ternary weight.

When implemented as a fixed, 3-layers fully-connected architecture, the design could reduce

the energy consumption by 2.7× at iso-accuracy between 97% and 98% for the MNIST

dataset in comparison with other fully-connected SNN hardware designs.

• To support scalable designs with large scale convolutional networks, we propose an ap-

proach to incorporate our neuromorphic processing core with a 3D Network-on-Chip.

Our paper is organized as follows. Section II presents the related works on the existing training

algorithms for SNNs and the weight quantization methods for low-precision neural networks.

Section III describes our proposed Ternary Weight Spiking Neural Networks (TW-SNN) system.

Section IV covers our proposed hardware architecture. Section V and VI list the experimental

results and discussion, while section VII concludes the paper.

2. Related Works

2.1. Training Algorithms for SNNs

For traditional DNNs, the de-facto training procedure is based on error back-propagation,

which has proven to be fast and efficient. In contrast, one of the major challenges in the study

of SNNs is to establish effective training procedure, especially for large and complex datasets.

The difficulties lie in the complex nature of neuronal dynamics and the non-differentiable nature

of the spike activities. In the current literature, the training algorithms for SNNs could be broadly

classified into two major research trends. The first trend is the online, unsupervised learning rule

which usually based on some forms of conventional STDP [25, 27]. However, the major drawback

of this method is the degradation of classification accuracy in comparison with DNNs architecture,

4

even on simple datasets such as MNIST. This is due to to the local nature of the STDP learning

rule, where the strength of the synapses between neurons is only updated based on local informa-

tion, without information from the classification targets and neurons in further layers. In [25], the

author has improved the classification accuracy (up to 95% on MNIST) of unsupervised STDP-

based learning rule by adding lateral inhibition and adaptive threshold. This method is also limited

to very shallow networks, with simple fully connected topology between the layers of neurons. To

cope with this problem, the author in [27] has introduced the latency-coding scheme and reward-

modulation mechanism for STDP. This has enabled complicated network architecture such as

convolution layer for SNNs, and the author has reported an MNIST accuracy of 97.2%. However,

this method is also limited by the additional requirements of input pre-processing, in the form of

Differences-of-Gaussian (DoG) filters, which could result in additional computational complexity.

The second trend is offline, supervised learning methods. One main approach is to base on some

pre-trained, adapted DNN architectures, and then convert them to SNNs [31, 24, 23]. The adapta-

tions usually involve removing biases, using ReLU activation function, restricting average pooling,

etc. In [31], the author has introduced weight-threshold normalization to maintain accuracy. In

[24], the required adaptation are relaxed with the introduction of the spiking version of common

DNNs operations such as adding biases, max-pooling, batch normalization or soft-max operation.

The authors have successfully converted CNN architectures for CIFAR-10 dataset. The work in

[31] has been extended in [23], where the conversion methods have been successfully applied to

the ImageNet dataset. Another approach is to directly train the SNNs, based on back-propagation

supervised learning methods [30, 33, 34, 32]. Since the spike trains are non-differentiable, usu-

ally a differentiable proxy is used; for example, the membrane potential [30], the spike count [33]

or some gradient estimators are utilized [32]. Recent works include training Deep SNN with a

novel Time-to-first-Spike Coding scheme [35] or Bayesian Optimization [36], which also yield

very good accuracy results.

2.2. Weight quantization for low-precision neural networks

Recently, model compression methods for hardware implementation of neural networks have

emerged as one hot research topic. Among those methods, the weight and biases quantization

5

scheme is widely explored as there is an observation that many state-of-the-art DNNs architec-

tures could work relative well with low-precision network parameters [37]. DNNs with extreme

quantization, i.e. 1-bit binary weight and activations are the most discussed as it leads to 32×

model compression rate. BinaryConnect [38] is the first work to introduce DNNs with binary

weights. The advantage is that the floating-point multiplication operations are replaced by simple

addition/subtraction operations. XNOR-Net [16] further reduce the computational complexity by

binarizing both the activations and the weights; hence the addition/subtraction circuits could be

replaced by bit-wise XNOR and bit-count operations. The aggressive binary quantization scheme

sacrifices inference accuracy in comparison with the full-precision counterpart.

To achieve higher accuracy than binary DNNs, DNNs inference with ternary weights are in-

troduced [39, 40]. A ternary weight DNN has three weight values of {−1, 0,+1}, so they can be

fully represented with 2-bit per weight. In [39], the author proposed Ternary Weight Networks

(TWN), where they used a scaling factor of Wl and symmetric thresholds of ±∆l to quantize the

weights as {−Wl, 0,+Wl} in layer l. The values of ∆l and Wl are determined based on the statistics

of the floating-point weights w̃l. In [40], the author used two scaling factors {+W p
l ,−Wn

l } to rep-

resent positive weights and negative weights. Both scaling factors are trainable parameters in the

networks, and the threshold ±∆l is determined based on the maximum values of w̃l. For conven-

tional ternary weight DNN, the gradients in the backpropagation process are only estimated from

the ternary quantization function. Recently, the quantization problem to reduce memory footprints

for SNNs is also an interesting research topic [41, 42]. In [42] the author proposed a quantiza-

tion framework to quantize various parameters of an SNN network to lower the memory footprint,

while still be able to maintain the accuracy.

2.3. Hardware Architecture for Large-Scale SNNs

In this section, we summarize the related works on neuromorphic systems for large-scale

SNNs.

Neurogrid [43] by Stanford University if one of the earliest works on simulating the human

brain in real time. The system used a mixed-signal design for each neuron, where the capacitor’s

voltage is used to capture the neuron’s membrane potential. The dynamics of the neurons is closely

6

related to the Integrate-and-Fire model. The communication is handled with a tree-based Network-

on-Chip that supports multi-casting. To support more complex neuronal dynamics, SpiNNaker

[44] took the approach of using homogeneous ARM968 processors for emulation. Each processor

can simulate up to one thousand neurons, allowing the system to scale up to simulating billions of

neurons. The communication is based on a two-dimensional toroidal mesh where each node can

communicate with six neighbor nodes. The system also supports table-based multi-cast.

Recently, two most notable works on digital based neuromorphic systems are TrueNorth [21]

and Loihi [22] designed by IBM and Intel. Both systems utilized digital based neuron’s de-

sign, which is programmable hence allows more flexibility. The digital neuron can also be time-

multiplexed hence allowing one physical neurons to emulate multiple ones. The communication

in both systems are based on a two dimensional mesh topology which support unicast only due to

the low-cost contraints.

3. Ternary Weight Spiking Neural Networks

3.1. Preliminaries

3.1.1. Spiking Neuron Models

The basic processing units in SNNs are neurons, which are interconnected to form a large

network. Figure 1 shows a simple Leaky Integrate-and -Fire (LIF) neuron, includes its synapses,

soma and axon.

The synapses are the connection between two neurons. Each time a neuron receives input

spikes from the neurons in the previous layer, the input spikes are scaled according to the weighted

synapse strength, and those weighted inputs are integrated into the membrane potential at the

neuron’s soma. Once the membrane potential crosses a predetermined threshold value, the neuron

will fire and produce an output spike, which is transmitted to the neuron in the next layer via axon.

In this work, we adopt the discrete-time LIF neuron model from [32]. The model is based on

the traditional ANN neuron’s with a special binary-activation function and the neuronal dynamics

can be described as:

vL
k (t) =

m∑
i

aL−1
i (t)wL−1

i,k + bL
k (1)

7

LIF

NEURON

SYNAPSE

Vth

Vreset

V

t

SIMULATION

 TIM ESTEP

I1(t)

I2(t)

I3(t)

BINARY INPUT

SPIKE TRAINS

w1

w2

w3

BINARY OUPUT

SPIKE TRAINS

AXON

Figure 1: Illustration of a simple LIF neuron with its binary input and binary output spike trains, along with the

membrane potential dynamics. The inputs spike are integrated via synapses. The synapses strength determines the

amount of integrated potential at the neuron body. If the potential crosses a threshold value Vth, the neuron will fire,

and an output spike will be carried by the axon to downstream neurons. Then the potential will be reset to a Vreset

value.

where vL
k (t) is the membrane potential of neuron k in layer L at timestep t, wL−1

i,k is the synaptic

weight from neuron i in layer L − 1 to the neuron k in layer L and bL
k is a bias term for neuron k.

The binary-activation function aL
k (t) is defined as:

aL
k (t) =

1 if vL

k (t) > Vthreshold

0 otherwise
(2)

At every timestep t, the neuron integrate all the incoming pre-synaptic spikes and the bias term.

If the membrane potential exceeds threshold Vthreshold, the neuron fires (a(t) = 1), otherwise the

neuron stays silent (a(t) = 0). After reset, the neuron’s membrane potential will reset to 0.

3.1.2. Definition of time steps and inference latency in spiking neural networks

The main difference between the computation in SNN domain and DNN domain is the tem-

poral information inherent to SNNs. The biological neurons operate and evolve over time. To

simulate SNN’s activities, normally the simulation time is discretized into a number of simula-

8

tion timesteps T . The dynamics of the whole network will be simulated sequentially from start to

end layers through each timestep. In this work, the inference latency is defined as the number of

timesteps T required to reach a certain classification accuracy.

3.1.3. Rate encoding for input

In this work, we focus on the image recognition applications. Poisson rate coding are used

to convert the input pixel intensities to spike trains. The input encoding process are described in

Algorithm 1.

Algorithm 1: Input Encoding.
Data: Normalized input pixel intensities I with zero mean and unit standard deviation,

number of simulation timesteps T

for t ← 1 to T do

Generate a uniform random number N ∼ U(0, 1)

if N < I then

O(t)← 1

else

O(t)← 0

return Output spike train O(t)

The input spike rate is proportional to the input pixel intensity I. At every simulation timestep,

a uniform random number N ∼ U(0, 1) is generated, which is then compared against I. A spike is

produced if the random number is less than the input pixel intensity.

3.2. Analysis of memory storage and energy from memory access for SNNs

In this section, we justify the motivation to develop new training procedures for hardware

friendly SNNs in term of memory storage and energy consumption.

3.2.1. Fully connected spiking neural networks

A typical connections between two consecutive layers in SNN with fully connected topologies

is shown in Figure 2.
9

Ni neurons
No neurons

Figure 2: A typical connection between two layers in SNNs with fully connected topology.

The input layer and output layer has Ni and No neurons, respectively. The amount of connection

weights between two layers is represented by Nw = Ni × No. Assume the weights are represented

with W bits, the memory storage requirement to store the weights in local buffer is

Nmemory = Nw ×W = Ni × No ×W(bits) (3)

To calculate the energy access, we assume that for each timestep we have to reload the weights

into the local buffer. With an input rate of ρ, if we only load the weights that corresponding to an

input spike, the memory access energy across T timesteps is

Ememory = Nmemory × ρ × T × Eb (4)

where Eb is the normalized energy to access 1 bit of memory.

3.2.2. Convolutional spiking neural networks

A typical connection between two consecutive layers in Convolutional SNN is shown in Figure

3.

The input layer consists of Ni f × Nix × Niy neurons. The kernel maps between the input and

output layers has the size of No f ×Ni f ×Nkx ×Nky. Assuming a stride size of S and a zero padding

size of P, the output layer has the size of No f × Nox × Noy, of which Nox and Noy are governed by:

Nox =
Nix − Nkx + 2 × P

S
+ 1 (5)

10

Input Feature Maps

Kernel Weights

Nif

Nix

Niy

Nif Nky
Nkx

Nif Nky
Nkx

Nif Nky
Nkx

Output Feature Maps

Nof

Nox

Noy

Nof kernels

Nif x Nix x Niy
input neurons

Nof x Nox x Noy
output neurons

Figure 3: A typical connection between two layers in SNNs with convolutional topology.

Noy =
Niy − Nky + 2 × P

S
+ 1 (6)

The convolution operations in Convolutional SNN are described in Algorithm 2. In each time step,

Algorithm 2: Convolution operation in SNNs
Data: Number of time steps T , current time step t, Input size Ni f × Nix × Niy, Kernel Size

No f × Nkx × Nky, Stride size S , Membrane potential from previous time step Vt−1,

Input Spike from previous layer IL−1, Weight values from previous layer WL−1,

Convolution layer index L

for t ← 1 to T do

for no ← 1 to No do

for x, y← 1 to Nox,Noy do

for ni ← 1 to Ni f do

for kx, ky← 1 to Nkx,Nky do

if IL−1(ni; S × x + kx, S × y + ky) = 1 then
VL(t; no; x, y) += WL−1,L(ni, no; kx, ky)

return Membrane potentials of neurons in layer L at timestep t VL(t)

each neuron in the output layers will integrate the incoming spikes into the membrane potentials
11

through the convolution with the kernel maps. The memory storage requirement for weights de-

pends on the data reuse scheme on a specific hardware implementation. Assuming the weights are

represented with W bits and all kernel maps are pre-loaded in local buffer before computation, the

memory storage to store the weights in local buffer is

NWS CNN = Ni f × Nkx × Nky ×W(bits) (7)

The energy access from weights again depends on the specific data reuse strategy of a specific

implementation. Assuming for each time steps, the weights need to be reloaded and an input rate

of ρ, the energy access across T time steps is

EWS CNN = NWS CNN × ρ × T × Eb (8)

where Eb is the normalized energy to access 1 bit of memory.

3.3. Training of SNN with ternary weight

Our proposed training methodology for TW-SNN is shown in Algorithm 3 and Figure 4.

+0.56 +0.52 +0.96

+0.12 +0.07 +0.10

-0.42 -0.76 -0.15

One- time weight
Initialization

(Kaiming Initialization)

+α +α +α

0 0 0

- α - α - α

Save weights.
Calculate weight

scaling factor α and
threshold Δth

Inference with mini
batch to calculate

loss L

Floating-point weight Ternary values weight

+0.56 +0.52 +0.96

+0.12 +0.07 +0.10

-0.42 -0.76 -0.15

Restore original
weight values

+0.60 +0.25 +0.67

+0.52 +0.03 +0.2

-0.22 +0.67 -0.5

Updated weights with
backpropagation

Statistical weight ternarization and weight updates
with backpropagation over N iterations

Figure 4: The training process of TW-SNN

In this work, all TW-SNN models are trained from scratch. We first initialize the full-precision

weights with Kaiming Initialization [45]. Then we start the ternarization-aware training procedure
12

Algorithm 3: Training Procedure of TW-SNN.
Data: Number of training epochs N, Ternarization threshold factor β

Weight Initialization

for i← 1 to N do
1. Statistical Weight Ternarization

• Save the full-precision weights

• Calculate weight scaling factor α

• Calculate the threshold ∆th

• Calculate the ternarized weight wtern
L

2. Inference with ternarized weights

• Inference with the activation function in Eq. 2

• Calculate the loss w.r.t to targets

3. Update weights with back-propagation

• Restore the full-precision weights

• Calculate the gradients

• Update the full-precison weights with back-propagation

return Trained network parameters

in three iterative steps. Firstly, the current full-precision weight is ternarized and scaled according

to the current layer’s weights statistics. Next, the ternarized weights are used for inference to

calculate the loss. Lastly, the current full-precision weights will be updated with back-propagation

based on the calculated loss. In the first step, the current full-precision weights are first saved and

then ternarized as follows:

wtern
L =

α × S ign(w f p

L) if |w f p
L | ≥ ∆th

0 if |w f p
L | < ∆th

(9)

where w f p
L and wtern

L denotes the full-precision weights and ternarized weights of layer L, respec-
13

tively. The scaling factor α is calculated for each layer as:

α = E(|w f p
L |), ∀{|w f p

L | ≥ ∆th} (10)

which is the mean of absolute value for all the full-precision weights that are greater than the

threshold ∆th. We set the threshold ∆th as a fraction of the largest value of weights, as the works in

[40]:

∆th = β × max(|w f p
L |) (11)

instead of 0.7 × E(w f p
L) as in [39]. The reason is that after each weight updates, there is a large

variation of E(w f p
L), thus leading to unstable ∆th. We set the value of β = 0.01 in all our experi-

ments.

In the next step, we perform the inference of the input mini-batch with the ternarized model

from Step 1 and calculate the loss w.r.t to targets. Since the inputs are binary input spikes, and the

weights are ternary values, the integration of the membrane potential in layer L can be expressed

as a dot-product of vectorized input xT
L and the ternarized weights wtern

L , which then can be easily

realized through simple addition/subtraction and multiplexer circuits, without the need for expen-

sive fixed or floating-point multiplier. We used the square-hinged loss function [46] to calculate

the loss in all our TW-SNN models.

In the last step, the full-precision weights are restored and updated with back-propagation.

However, the activation function in Eq. 2 and the ternarization function in Eq. 9 are not differen-

tiable, hence blocking the back-propagation of the error signals. To enable the back-propagation

based training of the network, we apply a “straight-through estimator” [47] to estimate gradient of

the activation function as follows:

∂g
∂w

=

0.5 × Vthreshold if vL

k (t) > Vthreshold

0 otherwise
(12)

and the gradient of the ternarization function as follows:

∂g
∂w

=

1 if |w| ≤ 1

0 otherwise
(13)

14

For spiking convolution network, we replace the binary activation function with a normal ReLU

function, and calculate the gradients with Eq. 13.

4. Proposed Hardware Architecture

4.1. Neural Processing Module

At the core of out proposed hardware architecture is the neural processing module, includ-

ing the processing elements (PEs), the Address-Event-Representation (AER) decoder and SRAM

memory for weight storage. The neural computation is processed parallely at each PE. AERs

represent the indexes of the input spikes and are used as the SRAM addresses to load the correct

weights from the weight memory banks. Those weights will be integrated into the parallel PEs.

After all input AERs are processed, the PEs will generate output spike vectors to the AER decoder

blocks. The AER decoder blocks generate the output AERs to the next layer.

a

0

-a

b

0

-b

Potential

Register

(18 bits)

Output Spike

Register

(1 bit)

i_weight

i_state

2

2

8

8

i_bias

i_state

>=

V_threshold

V_RESET

v_reg

v_reg

v_reg

18 18

Figure 5: Microarchitecture of a processing element.

In our TW-SNN algorithm, each neuron i is connected via synapse weight wi, j to the neuron j

in the previous layer. In each timestep, after integrating all the incoming spikes from the previous

layer, the neuron i will add a bias term bi. Both wi, j and bi are represented with 2 bits of precision

and can take values as wi, j ∈ {−a, 0, a} and bi ∈ {−b, 0, b}. a and b are learnable parameters for

each layer.

15

To take advantage of the fact that a and b are constant for each layer, we propose the PEs

microarchitecture, as shown in Fig. 5. a and b are represented as 8-bits constants, and the 2-

bits weight from the on-chip memory systems is used to select the correct weight constant. Each

PE is controlled with the i state signal from the flow controller. This will guarantee the correct

operation in each stage of the SNN operations. Each PEs has an 18-bit potential register to store

the membrane potential values. After integrating all the incoming spikes and the bias term, the

PEs will check the fire condition, and output a spike if the membrane potential crosses a threshold

value. The output spike is stored in a 1 bit D Flip-flop.

4.2. Fixed 3-layers architecture

4/28/2020

CONTROLLER

WEIGHT
MEMORY 1

INPUT
DMA

CPU

D
R

A
M

LAYER 1
256 PEs

AER
DECODER

1

LAYER 2
256 PEs

AER
DECODER

2

LAYER 3
10 PEs

AER
DECODER

3

WEIGHT
MEMORY 2

WEIGHT
MEMORY 3

WEIGHT
DMA

INPUT

AER ACTIVE

WEIGHTS 1
ACTIVE

WEIGHTS 2
LAYER 1

AER

LAYER 2

AER
ACTIVE

WEIGHTS 3

OUTPUT

AER

LEARNED WEIGHTS 1 LEARNED WEIGHTS 2 LEARNED WEIGHTS 3

LAYER MODULE 1 LAYER MODULE 2 LAYER MODULE 3

Figure 6: Overall block diagram of the TW-SNN hardware systems.

In order to compare the energy efficiency of our training approach with other low power, em-

bedded SNN, we implemented a specific neuromorphic hardware with a fixed, 3 layers architecture

(FC256-256-10 configuration) for the MNIST task in TSMC 65nm technology.The overall block

diagram is shown in Fig. 6. The architecture comprises of three specialized layer modules, which

act as the basic building blocks of the TW-SNN networks. Each module has 256, 256 and 10

parallel processing elements (PEs), respectively.

In our design, all the ternary weight values are stored on-chip in SRAM banks. Figure 7 shows

the memory storage scheme in our design.

16

Total On-Chip Memory Size 81 kB

PE 00

PE 63

PE 64

PE 127

PE 128

PE 191

PE 192

PE 255

Input i

Wi,0

Wi,63

Wi,64

Wi,127

Wi,128

Wi,191

Wi,192

Wi,255

W00,00 W00,01 … W00,63

… … … …

Wi,00 Wi,01 … Wi,63

… … … …

W1023,00 W1023,01 … W1023,63

128 bits

1024 words

(a) (b)

SRAM Banks

Layer 1

64 kB

128b x 1024

4 banks

SRAM Banks

Layer 2

128b x 256

4 banks

16 kB

SRAM Banks

Layer 3

32b x 256

1 bank

01 kB

Figure 7: The memory storage scheme: (a) Example of weights between input i and 256 PEs in layer 1. (b) The 256

weights between input i and 256 PEs are stored in four separate SRAM banks.

The weights between input i and 256 PEs in layer 1 are stored in four separate SRAM banks.

Each bank has 1024 words, with a word size of 128 bits. Each word stores 64 different ternary

value weights and could support up to 1024 inputs. This is enough for MNIST dataset, as each

image in the MNIST dataset has the size of 28 × 28 pixels. During inference, the 4 SRAM banks

are read in parallel, fetching 64 weights per reading. Thanks to the small size of weights, we

could store all the weights on-chip hence reduce the energy for off-chip DRAM access during

inference. Additionally, with parallel reads, we could also reduce the number of SRAM reads for

each simulation timestep, further reducing the energy cost for SRAM access. The size of memory

storage for layer 1 is 64 kB. The size of memory storage for layer 2 and 3 is 16kB and 1kB as both

layers support 256 inputs, and there are 256 PEs and 10 PEs in layer 2 and layer 3, respectively.

4.3. Scalable design approach for TW-SNN

To support a scalable design for TW-SNN, which is a requirement since modern Deep SNNs

with convolutional topologies may have millions of neurons [48], we adopt the 3D-IC approach

which was introduced in our previous work [49]. The overall architecture of the scalable design

approach is shown in Figure 8.
17

Da
ta

R/
W

Neural
Processing

Module

Neural
Processing

Module

Neural
Processing

Module

Neural
Processing

Module

RR R

RR R

Neural
Processing

Module

Neural
Processing

Module

Neural
Processing

Module

Neural
Processing

Module

RR R

RR R

Neural
Processing

Module

Neural
Processing

Module

Neural
Processing

Module

Neural
Processing

Module

RR R

RR R

DRAM

CPU

Input Port

Input Port

Input Port

Input Port

Data in (local)

Data in (west)

Data in (north)

Data in (down) Crossbar

Switch Allocator

Weight SRAM

Network Interface

Processing Element
Processing Element

Processing ElementProcessing Element
Array

Controller

R

Weights Output
Spike

Input Spike

Flit Extractor AER Decoder

AER Encoder

Controller

Remap LUT Packet Generator

Register/Memory
AccessAd

dr
es

s

En
ab

le

Network
Data out

Address
Data

Enable
R/W

Spike
Vector

Network
Data in

Output
Spikes

Stop

Spike in

Memory Access

ba

c d

Figure 8: Scalable design architecture (a) Overall architecture (b) Network Interface (c) 3D-Router (d) Neural Pro-

cessing Module

The neural processing module are grouped into different nodes. To facilitate the communica-

tion between neurons of different nodes, a packet-switched mesh-based 3D-Network-on-Chip is

used. The 3D-Router handles the transmission of data flits to/from the Network Interface (NI) of

the neural processing module. There are two types of flits in the design: (1) Spike flits and (2)

Memory access flits (read/write to weights memory in single/burst mode). Figure 9 shows the two

types of flits in our system.

18

0 10-12 (3-bit)1-9 (9-bit) 13-21 (9-bit) 22-29 (8-bit) 30-31

Type Dest. Node
Address

Extra 2 bit for AER

Unused AER-IN (PE) AER-IN (Neuron)Spike /
Memory

0 10-12 (3-bit)1-9 (9-bit) 13-15 22-29 (8-bit)

Type Dest. Node
Address

Access
Type + R/W CMD Data (To/From

Memory)

Figure 9: Flits formats

The first bit indicates whether the flit is a (1) Spike flit or a (2) Memory access flit. The spike

flits is used to send the output spikes from a module to other neurons in the networks. The memory

access flits is used to read and write from/to each module weight memory.

For the spike flit, bit 1-9 (9-bit) is the destination node address (support up to 512 nodes). Bits

13-21 (9-bit) show the AER of the source node while bits 22-29 (8-bit) show the neuron index

hence each node support up to 28 = 256 neurons. When a neuron in a particular node receives

a spike flit, the NI will decode the AER to obtain the equivalent address in the weight memory

banks. After finishing computation, the output spikes will be encoded to AER format and sent to

the 3D-NoC by the NI. Our system supports up to 8 × 8 × 8 nodes and 256 neurons/node. For the

memory access flits, four types of different access types are supported (1) single read, (2) burst

read, (3) single write and (4) burst write. The 2-bit command field informs the slave node to

understand whether the transaction is done, kept, corrupted or canceled.

5. Experimental Results

5.1. Software Evaluation Results

The code to train our TW-SNN can be found at 3.

3https://github.com/stanleynguyen7590/TW-SNN

19

Table 1: Summary of network models.

Network name Network type Network configuration Weight Precision

FC256 Fully Connected 784-256-10 32b

FC256 TW Fully Connected 784-256-10 2b

FC256 256 Fully Connected 784-256-256-10 32b

FC256 256 TW Fully Connected 784-256-256-10 2b

FC1024 Fully Connected 784-1024-10 32b

FC1024 TW Fully Connected 784-1024-10 2b

FC1024 1024 Fully Connected 784-1024-1024-10 32b

FC1024 1024 TW Fully Connected 784-1024-1024-10 2b

5.1.1. Fully Connected TW-SNN

We have trained our TW-SNNs with the PyTorch framework [50]. We have evaluated four dif-

ferent configurations of fully connected layers, with one or two hidden layers, and with each layer

having 256 or 1024 neurons. The last layer has 10 neurons, which act as the classification layer.

Dropout layer [51] is employed between the hidden layer with a dropout ratio of 0.2. We trained

the networks for 200 epochs with the learning rate starts at 1e-3 and exponentially decay to 1e-5.

The Adam optimizer [52] is used to train the network with a batch size of 100. We have evalu-

ated our trained TW-SNN on three different datasets, namely the MNIST dataset [53] the Fashion

MNIST (FMNIST) dataset [54] and the EMNIST (letters) dataset [55]. Table 1 summarizes the

network models used in our Pytorch simulation.

We first demonstrate the classification accuracy of TW-SNN with three different datasets.

Figure 10 shows the classification accuracies of our trained TW-SNN over 35 timesteps. The

predicted label is based on the cumulative number of output spikes from the last layer (the neu-

ron in the last layer with the most output spikes is selected as the classification output). For a

baseline comparison, we have trained an SNN similar to the work in [32], without the ternary

quantization process. It could be seen that, over the three datasets, the classification accuracies

are increasing with the number of hidden layer and the number of neurons in each layer. TW-

SNN also could reach accuracies of 70%-95% with a fewer number of timesteps (1-3 timesteps).

In comparison with the floating-point accuracies, the quantization process only incurs a loss of

20

0 5 10 15 20 25 30 35

Timestep

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

C
la

ss
ifi

ca
ti

on
A

cc
u

ra
cy

(%
)

(a) MNIST dataset

0 5 10 15 20 25 30 35

Timestep

78

80

82

84

86

88

90

C
la

ss
ifi

ca
ti

on
A

cc
u

ra
cy

(%
)

(b) FMNIST dataset

FC256

FC256 TW

FC256 256

FC256 256 TW

FC1024

FC1024 TW

FC1024 1024

FC1024 1024 TW

0 5 10 15 20 25 30 35

Timestep

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

C
la

ss
ifi

ca
ti

on
A

cc
u

ra
cy

(%
)

(c) EMNIST(letters) dataset

Figure 10: Classification accuracy for different number of timesteps.

0.2%-1.05% for the MNIST dataset, 1.68%%-1.84% for the FMNIST dataset, 1.56%-3.8% for the

EMNIST(letters) dataset.

FC256 FC256 256 FC1024 FC1024 1024
93

94

95

96

97

98

99

100

C
la

ss
ifi

ca
ti

on
A

cc
u

ra
cy

(%
)

(a) MNIST dataset

FC256 FC256 256 FC1024 FC1024 1024
70

75

80

85

90

95

C
la

ss
ifi

ca
ti

on
A

cc
u

ra
cy

(%
)

(b) FMNIST dataset

Floating Point SNN Ternary Weight SNN Floating Point ANN Ternary Weight ANN

FC256 FC256 256 FC1024 FC1024 1024
65

70

75

80

85

90

95

C
la

ss
ifi

ca
ti

on
A

cc
u

ra
cy

(%
)

(c) EMNIST (letters) dataset

Figure 11: Effect of Quantization on classification accuracy.

To compare the classification accuracy between our proposed TW-SNN and traditional DNNs

systems, we have trained a DNN with the same network configurations, in both floating-point

weights and ternary weights. The ternary-weight DNNs are trained with the quantization process

outlined in [39]. Figure 11 shows that, TW-SNN reach comparable accuracies with the corre-

sponding DNNs architecture. In comparison with the floating point DNNs architecture, TW-SNN
21

incurs a small loss of accuracy in the three datasets. The loss is decreased with the increasing

numbers of layers and neurons in each layer. When compared to the ternary weights DNNs, our

TW-SNN also incurs negligible loss, up to 0.2% for the MNIST dataset, 2.4% for the FMNIST

dataset, and even performs better by 0.3% at the EMNIST (letters) dataset with the FC1024 1024

configuration.

Figure 12a demonstrates the advantages of TW-SNN in terms of reducing the weight memory

storage and reducing the inference latency for MNIST dataset when compared to the works in

[32] and [31]. The works in [32] and [31] requires weight precision of 5 and 7 bits to reach an

MNIST accuracy of 97%, respectively. Our works only required 2 bits to represent the weights,

results in a reduction of 2.5-3.5× in terms of memory storage. Our works also reduce inference

latency, as shown in Figure 12b. The proposed TW-SNN reach very good accuracy with even only

one timestep (96.7%) and reach saturated accuracy after three timesteps. In comparison with [32],

TW-SNN has similar inference latency with only a slight loss of accuracy. The loss of accuracies is

due to the ternary weight quantization process. In comparison with [31], we reduced the inference

latency by 3.5× while having better accuracy. This is because the conversion process in [31] does

not take into account the temporal information of the spiking neurons, hence leading to longer

inference latency.

2 3 4 5 6 7

Weight precision (bits)

10

20

30

40

50

60

70

80

90

100

C
la

ss
ifi

ca
ti

on
A

cc
u

ra
cy

(%
)

(a) MNIST accuracies for different weight bitwidths

This work

Yin et al BioCAS 2017

Diehl et al., IJCNN 2015

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time steps

99.0

90.0

0.0

C
la

ss
ifi

ca
ti

on
A

cc
u

ra
cy

(%
)

(b) MNIST accuracies for different time steps

This work (2b precision)

Diehl et al., IJCNN 2015 (32b precision)

Yin et al BioCAS 2018 (7b precision)

Figure 12: MNIST accuracies for different weight bitwidths and different timesteps, in comparison with prior works.

22

5.1.2. Convolutional TW-SNN

To demonstrate the efficiency of our TW-SNN approach with convolutional SNNs, we have

trained and evaluated four different convolutional SNN configuration based on the VGG deep

neural network [48]. First we trained a normal DNN. We used the conversion method mentioned in

[23] to obtain the 32b floating point results of the SNN. Lastly, we trained the Convolutional SNN

with our TW-SNN approach to obtain the final result. Table 2 show the results and comparison

with other works for CIFAR-10 dataset.

Table 2: Classification results for CIFAR10 dataset. Column-1 shows the type of architecture. Column-2 shows the

accuracy of a trained ANN model. Column-3 shows the accuracy of an SNN when directly converted from ANN.

Column-4 shows the accuracy when trained with our TW-SNN approach.

Architecture DNN DNN-SNN (converted, 32b FP) TW-SNN (2b)

VGG5 88.61% 87.21% (T=250) 85.10% (T=250)

VGG9 90.26% 89.58% (T=250) 87.58% (T=250)

VGG13 91.38% 90.00% (T=250) 89.47% (T=250)

VGG16 91.63% 90.34% (T=250) 89.71% (T=250)

Table 3: Comparison of this work with other SNN models on CIFAR10 dataset.

Model Training method Architecture Accuracy Timesteps

Hunsberger et al. (2015)[56] DNN-SNN Conversion 2 Conv, 2 Linear 82.95% 6000

Cao et al. (2015)[28] DNN-SNN Conversion 3 Conv, 2 Linear 77.43% 400

Sengupta et al. (2019)[23] DNN-SNN Conversion VGG16 91.55% 2500

Lee et al. (2020)[57] Spiking Backpropagation VGG9 90.45% 100

Park et al. (2019)[58] DNN-SNN Conversion VGG16 91.41% 793

This work TW-SNN VGG16 89.71% 250

To further emphasize the effects of simulation time steps to the classification accuracy, Fig.

13 shows the accuracy for VGG16 when simulated over 250 timesteps. It can be seen that, the

accuracy starts to hit a saturation point around 200 timesteps, and has reached comparable accuracy

with other works at 250 timesteps.
23

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

C
la

ss
ifi

ca
ti

on
a
cc

u
ra

cy
(%

)

Classification accuracy of TW-SNN with VGG16 over 250 timesteps

Figure 13: Energy Efficiency versus Classification Accuracy for CIFAR10 dataset

5.2. Hardware Evaluation Results

5.2.1. Results for fixed, 3-layers TW-SNN implementation

The proposed hardware system for the fixed 3-layers architecture is modeled in VHDL and

implemented in TSMC 65nm technology. The weight memory systems are generated from a

memory compiler, and the design is synthesized and implemented with Synopsys tools. Figure 14

shows the chip layout and specifications. The total post-layout core area is 0.96 mm2, with 0.24

mm2 logic area and 0.72 mm2 memory. The system is tested with the MNIST dataset, with a fully

connected, two hidden layers, each with 256 neurons configuration. At a nominal supply voltage

of 1.2V, our design has a target frequency of 167 MHz and has a power consumption of 86 mW.

The energy efficiency result is obtained from Synopsys PrimeTime with data switching activity

information acquired from the post-layout simulation.

24

1
.2

 m
m

• Technology TSMC 65nm

• Vdd = 1.2 V

• Power consumption: 86mW

• Frequency: 167 MHz

• Core Area: 0.96 mm2

• Energy Efficiency: 74 nJ/prediction

• Maximum throughput: 1.207M predictions/second

21%

4%

75%

Logic Area Breakdown

Neuron Complexs

Flow Controller

SRAM

1.2 mm

W-MEM

BANK 0

16KB

W-MEM

BANK 1

16KB

W-MEM

BANK 2

16KB

W-MEM

BANK 3

16KB

W
-M

E
M

 B
A

N
K

 0

4
K

B

W
-M

E
M

 B
A

N
K

 2

4
K

B

W
-M

E
M

 B
A

N
K

 1

4
K

B
W

-M
E

M
 B

A
N

K
 3

4
K

B

W
-M

E
M

1
K

B

L
A

Y
E

R
 1

 N
E

U
R

O
N

C
O

M
P

L
E

X
S

L
A

Y
E

R
 2

 N
E

U
R

O
N

C
O

M
P

L
E

X
S

L
A

Y
E

R
 3

 N
E

U
R

O
N

C
O

M
P

L
E

X
S

FLOW

CONTROLLER

Figure 14: Chip layout and specifications.

Table 4 shows a comparison to the state-of-the-art SNN hardware designs. We have scaled

the area and energy consumption rate of other works to the 65nm technology node at VDD =

1.2V according to the equations in [59]. In terms of MNIST classification accuracies, the work

by Whatmough et al. in [60] achieved the highest accuracies of 98.3%; however, the reported

results are only based on a downsampled version of MNIST dataset. The work by Tan et al.

achieved the second-highest accuracy of 98.01%; however, the author used convolutional network

topology, leading to more complex hardware designs. If we only considered the fully connected

feed-forward network topology, our work reaches a comparable accuracy to the works by Yin et

al. [32] and Park et al. [61], with only a slight loss of 0.83%-0.9%. It is notable that the work

in [61] used an online, supervised training method. In terms of the weight memory storage, the

works in [62] and [63] used the least amount of on-chip memory for weight storage. However, the

weights in [62] are not fully-stored on-chip, while the works in [63] does not use parallel neurons

for computations, hence could load a small number of weights serially on each clock cycle. The

works in [64, 60, 32] used similar network topology as ours, with parallel neurons for computation.

We achieved the smallest amount of weight memory storage of 81 kB thanks to the reduction in

weight precision.

Figure 15 shows the comparison of accuracy vs. energy and system’s throughput among this

work and the state-of-the-art works. The ability to reduce the inference latency helps our design

25

Table 4: Hardware Implementation Results compared with the state-of-the-art SNN hardware design.
Author Zheng[64] Whatmough[60] Frenkel[63] Yin[32] Park[61] Chuang[62] Nguyen

Publication ISCAS (2018) ISSCC (2017) TBioCAS (2019) BioCAS (2018) ISSCC (2019) DAC (2020) This work (2020)

Implementation Digital Digital Digital Digital Digital Digital Digital

Technology 65 nm 28 nm 28 nm 28 nm 65 nm 90 nm 65 nm

Core Area(mm2) 1.1 5.76 0.086 1.65 10.08 2.073 0.96

Scaled Core Area (mm2) 1.1 18.58 0.277 5.32 10.08 1.09 0.96

Estimated Gate Count (Logic Only) NA NA NA 2213K NA 225K 206K

Weight Bitwidth 16b 8b/16b 4b 7b 8b 1b 2b

On-chip Memory 358.3 KB 1024 KB 36 KB 289 KB N.A 12.75 KB 81 KB

Learning Algorithm Online Offline Online Offline Online Offline Offline

MNIST Accuracy 91%
98.3%

(downsampled)

85%

(downsampled)
97.9% 97.83% 98.01% 97%

Frequency 167 MHz 667 MHz 75-100 MHz 163 MHz 20 MHz 100 MHz 167 MHz

Scaled Energy / Prediction 112 nJ 225 nJ 95 nJ 187 nJ 622 nJ 4991 nJ 74 nJ

Throughput (Predictions/second) 0.076M N.A N.A 1.526M - 0.09125M 0.1M 0.01M-0.0019M 1.207M-0.075M

to improve the energy efficiency to 74nJ/prediction at a maximum throughput of 1.207M predic-

tions/second. Our work achieves the lowest energy per prediction with a reduction of 2.7× energy

per prediction at iso-accuracy of 97%-98% compared to the best results reported in literature [32].

Also, while we keep the lowest energy per prediction, if we consider the system’ss throughput,

we achieve the second-highest throughput, second to only the work in [32]. Note that our energy

results and the energy results in [64, 32, 62] are based on post-layout simulation, while others are

based on chip measurement results.

5.2.2. Results for one node in our scalable implementation

We have also synthesized a node in our scalable design approach. Table 5 shows the synthe-

sized results.

5.2.3. Estimation of energy efficiency for TW-SNN with VGG16 on CIFAR10 dataset

We would like to give an estimation to the energy efficiency of our TW-SNN to show the

potential energy savings that we can gain during inference if we train SNN with our proposed

training procedure. Assuming a hardware architecture with a single core consists of N physical

spiking neurons, the energy required to process one single input spike is given by:

Espike = Elogic + Ememory access (14)

26

0.01 0.10 1.00 10.00

Energy/Prediction(µJ)

80

85

90

95

96

97

98

99

M
N

IS
T

A
cc

u
ra

cy
(%

)

(a) Energy efficiency for MNIST dataset

This work

Whatmough et al., ISSCC 2017

Yin et al., BioCAS 2017

Tan et al., ArXiv 2020

Frenkel et al., TBioCAS 2018

Zheng et al., ISCAS 2018

Park et al., ISSCC 2019

0.01 0.10 1.00 10.00

Energy/Prediction(µJ)

10−1

100

101

102

103

104

105

106

T
h

ro
u

g
h

p
u

t
(P

re
d

ic
ti

on
s/

S
ec

on
d

)

(b) Energy Efficiency vs Throughput

This work

Yin et al., BioCAS 2017

Tan et al., ArXiv 2020

Zheng et al., ISCAS 2018

Park et al., ISSCC 2019

2.7x

Figure 15: Energy efficiency comparison with prior works.

Table 5: Hardware complexity of one node in our scalable design approach.

Module Area (µm2) Max Freq. (MHz)

Network Interface

AER LUT 16,747 -

Address LUT 20,768 -

Total 72,032 699.30

Neuron Cluster 205,608 751.87

3D-NoC router (Dang et al 2020) 41,739 537.63

Vertical TSVs (up and down) 2,901.1136 -

where Elogic is the total energy consumption by the logic in the neuron’s hardware and Ememory access

is the required energy to load the corresponding weights from SRAM. Elogic depends on the number

of neurons per core as:

Elogic = N × Eleakage + Eswitching (15)

where Eleakage is the leakage energy for one neuron and Eswitching is the energy from the switching

activity when processing each input spike. The energy from the memory access can be defined as:

Ememory access = W × Ebit (16)

27

where W is the bitwidth of weights and Ebit is the energy required to read one bit of weight from

SRAM. The total energy required to process one layer in SNNs is given by (without any data reuse

scheme):

Elogic = N × Eleakage + Eswitching × Ninput spikes + W × Ebit × Ninput spikes (17)

where Ninputspikes is the number of input spikes for the layer. To offer a comparison with SNNs

trained with full precision and other bitwidths weights, we have used the conversion method in

[23] to train a VGG16 network for CIFAR-10 and the post-training quantization (PTQ) method

described in [42] to quantize the weights to 8-bit and 16-bit. We run the simulations for all the

networks, with floating point weights and quantized weights for 250 time steps, 10,000 test images

and recorded the number of input spikes for each layer. The digital LIF neuron model to process

fixed point weight is taken from our previous work [65]. To process ternary weights, we used the

neural processing elements proposed in section 4.1. We run the post-synthesis simulation and find

Eleakage and Eswitching from Synopsys PrimeTime. We estimated the energy to read 1-b of SRAM

from the CACTI RAM’s model [66]. Assuming a fixed size of N = 256 neurons for the neural

processing core, the energy efficiency results are given detailed in the following figures:

co
nv

1

co
nv

2

co
nv

3

co
nv

4

co
nv

5

co
nv

6

co
nv

7

co
nv

8

co
nv

9

co
nv

10

co
nv

11

co
nv

12

co
nv

13 fc
1

fc
2

to
ta

l

Layer of VGG16

10−6

10−5

10−4

10−3

A
ve

ra
ge

E
n

er
gy

C
on

su
m

p
ti

on
fo

r
on

e
im

ag
e

(J
)

Ternary Weight 8-bit Weight 16-bit Weight 32-bit Weight

Figure 16: Energy consumption breakdown for VGG16 network. The network is quantized with different bitwidth,

and was simulated for 250 timesteps

28

0.01 0.10 1.00 10.00

Energy/Prediction(mJ)

80

85

90

92

C
IF

A
R

10
A

cc
u

ra
cy

(%
)

Energy efficiency for CIFAR10 dataset

Ternary Weight

8-b Weight

16-b Weight

32-b Weight

4.12x

Figure 17: Energy Efficiency versus Classification Accuracy for CIFAR10 dataset

From the results, it could be seen that the energy consumption for a large convolutional SNN

scale with the size of the convolutional layer. The average energy cost to process one inference

with CIFAR10 is estimated to be 6.03e-02 mJ/prediction. Also, from the total energy consumption

chart, we could see a gain of 4.12×-16.35× in terms of energy efficiency when we are utilizing

our TW-SNN procedure, in comparison with other 8-b or 32-b baseline SNN network. When

compared with the energy cost/inference with the MNIST dataset, we saw a similar gain of energy

efficiency when compared with other works with the same bitwidth for weight. The energy cost

for CIFAR10 is much larger than for MNIST, but this is understandable since the network size is

much larger (VGG166 versus 3-layer MLP) and more time steps are required (250 timesteps).

6. Discussion

In this section, we discuss the existing problems and the potential solutions.

First, the used training method still incurs an accuracy loss over other SNN training methods,

and over other DNN of the same network models. This is to be expected as our main goal is

to develop a hardware-friendly training approach which could reduce the memory and energy

footprint when implemented on embedded platform. However, methods to further increase the

29

classification accuracy are still needed. The reduction of inference latency on more complicated

network topologies remain an open research problem.

Second, the optimization of the neural processing module for other topologies, such as con-

volution or residual networks is still need to be investigated. Currently, one node in our scalable

design still utilize simple parallel processing for the neurons. This could be further optimized as a

specialized spiking neuron cluster for convolution, as the convolution operations leave rooms for

data-reuse opportunity.

Thirdly, one of the limitations of the current work lies in the fact that the implemented hardware

architecture only targets employing a small sized, fully connected SNNs for supervised ternary

weight training for edge computing. The implementation of the scalable design with NoC is left

as future work to offer measurement results.

Lastly, even though our work has proposed method to reduce the memory footprints of SNNs,

however with the ever increasing size of modern network architecture, and the needs to access

memory for every time steps, energy from memory access still dominates the energy consumption.

Utilizing new technologies such as In- or Near-Memory-Computing is a promising solution [67,

68].

7. Conclusion and Future Works

In this paper, we propose TW-SNN, a hardware friendly training approach for SNNs, with

network parameters constrained to ternary value format. Extensive software simulations show

that TW-SNN could achieve an accuracy of 97% with the MNIST dataset and 89.71% for the

CIFAR10 dataset. To demonstrate the energy efficiency advantages of our approach, we proposed

a neural processing module to implement our trained SNNs. When implemented as fixed, 3-layers

neuromorphic hardware architecture for the MNIST dataset, we achieved a 97.0% accuracy at 74

nJ per prediction. To support a scalable design for more complex network topologies, we have

considered integrating our neural processing module with a 3D Network-on-Chip.

For future works, as the inference of convolutional SNN may not be optimized on the current

neural processing module, we would like to investigate on the design of neural processing modules

that are optimized for the convolution operations. The impact on the energy efficiency for the
30

training phase with TW-SNN is also an interesting problem for future research. Future works

will also entail the fabrication of an IC with suitable architecture for a full assessment of energy

efficiency.

Acknowledgement

This work is partly supported by Vietnam National University, Hanoi (VNU) through research

project ”Investigate and develop a secure IoT platform” (Secu-IoT).

References

[1] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks,

in: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1,

NIPS’12, 2012, pp. 1097–1105.

[2] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: Interna-

tional Conference on Learning Representations, 2015.

[3] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 770–778.

[4] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in:

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A. C. Berg, Ssd: Single shot multibox detector,

in: European conference on computer vision, Springer, 2016, pp. 21–37.

[6] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, C. Dyer, Neural architectures for named entity

recognition, arXiv preprint arXiv:1603.01360 (2016).

[7] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, P. Blunsom, Teaching machines

to read and comprehend, in: Advances in neural information processing systems, 2015, pp. 1693–1701.

[8] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, A. Oliva, Learning deep features for scene recognition using places

database, in: Advances in neural information processing systems, 2014, pp. 487–495.

[9] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers,

R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaem-

maghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz,

A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,

D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagara-

jan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,

31

A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thor-

son, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, D. H. Yoon, In-datacenter

performance analysis of a tensor processing unit, in: Proceedings of the 44th Annual International Symposium

on Computer Architecture, ISCA ’17, ACM, New York, NY, USA, 2017, pp. 1–12.

[10] Y. H. Chen, T. Krishna, J. S. Emer, V. Sze, Eyeriss: An energy-efficient reconfigurable accelerator

for deep convolutional neural networks, IEEE Journal of Solid-State Circuits 52 (1) (2017) 127–138.

doi:10.1109/JSSC.2016.2616357.

[11] T. Luo, S. Liu, L. Li, Y. Wang, S. Zhang, T. Chen, Z. Xu, O. Temam, Y. Chen, Dadiannao: A neural network

supercomputer, IEEE Transactions on Computers 66 (1) (2017) 73–88. doi:10.1109/TC.2016.2574353.

[12] Y. Ma, Y. Cao, S. Vrudhula, J. Seo, Optimizing the convolution operation to accelerate deep neural net-

works on fpga, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26 (7) (2018) 1354–1367.

doi:10.1109/TVLSI.2018.2815603.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mo-

bileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, arXiv e-prints (2017)

arXiv:1704.04861arXiv:1704.04861.

[14] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, W. J. Dally, Eie: Efficient inference engine on

compressed deep neural network, in: 2016 ACM/IEEE 43rd Annual International Symposium on Computer

Architecture (ISCA), 2016, pp. 243–254. doi:10.1109/ISCA.2016.30.

[15] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Quantized neural networks: Training neural

networks with low precision weights and activations, The Journal of Machine Learning Research 18 (1) (2017)

6869–6898.

[16] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: Imagenet classification using binary convolutional

neural networks, in: ECCV, 2016.

[17] D. Miyashita, E. H. Lee, B. Murmann, Convolutional Neural Networks using Logarithmic Data Representation,

arXiv e-prints (2016) arXiv:1603.01025arXiv:1603.01025.

[18] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian, Y. Bai, G. Yuan, X. Ma, Y. Zhang,

J. Tang, Q. Qiu, X. Lin, B. Yuan, CirCNN: Accelerating and Compressing Deep Neural Networks Using Block-

CirculantWeight Matrices, arXiv e-prints (2017) arXiv:1708.08917arXiv:1708.08917.

[19] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, W. J. Gross, Vlsi implementation of deep neural network

using integral stochastic computing, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25 (10)

(2017) 2688–2699. doi:10.1109/TVLSI.2017.2654298.

[20] W. Gerstner, W. Kistler, Spiking Neuron Models: An Introduction, Cambridge University Press, New York, NY,

USA, 2002.

[21] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta,

32

G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, D. S. Modha,

Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 34 (10) (2015) 1537–1557.

doi:10.1109/TCAD.2015.2474396.

[22] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao,

C. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. Weng, A. Wild,

Y. Yang, H. Wang, Loihi: A neuromorphic manycore processor with on-chip learning, IEEE Micro 38 (1) (2018)

82–99. doi:10.1109/MM.2018.112130359.

[23] A. Sengupta, Y. Ye, R. Wang, C. Liu, K. Roy, Going deeper in spiking neural networks: Vgg and residual

architectures, Frontiers in Neuroscience 13 (2019) 95. doi:10.3389/fnins.2019.00095.

[24] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, S.-C. Liu, Conversion of continuous-valued deep net-

works to efficient event-driven networks for image classification, Frontiers in Neuroscience 11 (2017) 682.

doi:10.3389/fnins.2017.00682.

[25] P. Diehl, M. Cook, Unsupervised learning of digit recognition using spike-timing-dependent plasticity, Frontiers

in Computational Neuroscience 9 (2015) 99. doi:10.3389/fncom.2015.00099.

[26] T. Masquelier, S. J. Thorpe, Unsupervised learning of visual features through spike timing dependent plasticity,

PLOS Computational Biology 3 (2) (2007) 1–11. doi:10.1371/journal.pcbi.0030031.

[27] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, S. J. Thorpe, T. Masquelier, Bio-inspired digit recognition

using reward-modulated spike-timing-dependent plasticity in deep convolutional networks, Pattern Recognition

94 (2019) 87–95.

[28] Y. Cao, Y. Chen, D. Khosla, Spiking deep convolutional neural networks for energy-efficient object recognition,

International Journal of Computer Vision 113 (1) (2015) 54–66. doi:10.1007/s11263-014-0788-3.

[29] Y. Hu, H. Tang, Y. Wang, G. Pan, Spiking deep residual network, arXiv preprint arXiv:1805.01352 (2018).

[30] J. H. Lee, T. Delbruck, M. Pfeiffer, Training deep spiking neural networks using backpropagation, Frontiers in

Neuroscience 10 (2016) 508. doi:10.3389/fnins.2016.00508.

[31] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, M. Pfeiffer, Fast-classifying, high-accuracy spiking deep net-

works through weight and threshold balancing, in: 2015 International Joint Conference on Neural Networks

(IJCNN), 2015, pp. 1–8. doi:10.1109/IJCNN.2015.7280696.

[32] S. Yin, S. K. Venkataramanaiah, G. K. Chen, R. Krishnamurthy, Y. Cao, C. Chakrabarti, J. Seo, Algorithm and

hardware design of discrete-time spiking neural networks based on back propagation with binary activations, in:

2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2017, pp. 1–5.

[33] Y. Wu, L. Deng, G. Li, J. Zhu, L. Shi, Spatio-temporal backpropagation for training high-performance spiking

neural networks, Frontiers in Neuroscience 12 (2018) 331. doi:10.3389/fnins.2018.00331.

[34] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, L. Shi, Direct training for spiking neural networks: Faster, larger, better,

33

in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 1311–1318.

[35] S. Park, S. Kim, B. Na, S. Yoon, T2fsnn: deep spiking neural networks with time-to-first-spike coding, in: 2020

57th ACM/IEEE Design Automation Conference (DAC), IEEE, 2020, pp. 1–6.

[36] S. Kim, S. Park, B. Na, J. Kim, S. Yoon, Towards fast and accurate object detection in bio-inspired spiking

neural networks through bayesian optimization, IEEE Access 9 (2020) 2633–2643.

[37] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, H. Yoo, Unpu: An energy-efficient deep neural network accelerator

with fully variable weight bit precision, IEEE Journal of Solid-State Circuits 54 (1) (2019) 173–185.

[38] M. Courbariaux, Y. Bengio, J.-P. David, Binaryconnect: Training deep neural networks with binary weights

during propagations, in: Advances in neural information processing systems, 2015, pp. 3123–3131.

[39] F. Li, B. Zhang, B. Liu, Ternary weight networks, arXiv preprint arXiv:1605.04711 (2016).

[40] C. Zhu, S. Han, H. Mao, W. J. Dally, Trained ternary quantization, arXiv preprint arXiv:1612.01064 (2016).

[41] R. V. W. Putra, M. Shafique, Fspinn: An optimization framework for memory-efficient and energy-efficient

spiking neural networks, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

39 (11) (2020) 3601–3613.

[42] R. V. W. Putra, M. Shafique, Q-spinn: A framework for quantizing spiking neural networks, in: 2021 Interna-

tional Joint Conference on Neural Networks (IJCNN), IEEE, 2021, pp. 1–8.

[43] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M. Bussat, R. Alvarez-Icaza, J. V.

Arthur, P. A. Merolla, K. Boahen, Neurogrid: A mixed-analog-digital multichip system for large-scale neural

simulations, Proceedings of the IEEE 102 (5) (2014) 699–716.

[44] S. B. Furber, F. Galluppi, S. Temple, L. A. Plana, The spinnaker project, Proceedings of the IEEE 102 (5) (2014)

652–665.

[45] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet

classification, in: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV

’15, IEEE Computer Society, USA, 2015, p. 1026–1034. doi:10.1109/ICCV.2015.123.

[46] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized Neural Networks: Train-

ing Deep Neural Networks with Weights and Activations Constrained to +1 or -1, arXiv e-prints (2016)

arXiv:1602.02830arXiv:1602.02830.

[47] Y. Bengio, N. Léonard, A. Courville, Estimating or propagating gradients through stochastic neurons for condi-

tional computation, arXiv preprint arXiv:1308.3432 (2013).

[48] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going

deeper with convolutions, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2015, pp. 1–9. doi:10.1109/CVPR.2015.7298594.

[49] A. Ben Abdallah, K. N. Dang, Toward robust cognitive 3d brain-inspired cross-paradigm system, Frontiers in

Neuroscience 15 (2021) 795.

34

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,

S. Chintala, Pytorch: An imperative style, high-performance deep learning library, in: Advances in Neural

Information Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.

[51] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent

neural networks from overfitting, The journal of machine learning research 15 (1) (2014) 1929–1958.

[52] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: International Conference on Learning

Representations (ICLR), 2015.

[53] The MNIST database of handwritten digits.

URL http://yann.lecun.com/exdb/mnist/

[54] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for benchmarking machine learning algo-

rithms (2017). arXiv:cs.LG/1708.07747.

[55] G. Cohen, S. Afshar, J. Tapson, A. Van Schaik, Emnist: Extending mnist to handwritten letters, in: 2017

International Joint Conference on Neural Networks (IJCNN), IEEE, 2017, pp. 2921–2926.

[56] E. Hunsberger, C. Eliasmith, Spiking deep networks with lif neurons, arXiv preprint arXiv:1510.08829 (2015).

[57] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, K. Roy, Enabling spike-based backpropagation for training deep

neural network architectures, Frontiers in neuroscience 14 (2020) 119.

[58] S. Park, S. Kim, H. Choe, S. Yoon, Fast and efficient information transmission with burst spikes in deep spiking

neural networks. in 2019 56th acm/ieee design automation conference (dac) (2019).

[59] A. Stillmaker, B. Baas, Scaling equations for the accurate prediction of CMOS de-

vice performance from 180 nm to 7 nm, Integration, the VLSI Journal 58 (2017) 74–81,

http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSIintegration.TechScale/.

[60] P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, G. Y. Wei, 14.3 a 28nm soc with a

1.2ghz 568nj/prediction sparse deep-neural-network engine with ¿0.1 timing error rate tolerance for iot

applications, in: 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 242–243.

doi:10.1109/ISSCC.2017.7870351.

[61] J. Park, J. Lee, D. Jeon, A 65nm 236.5nj/classification neuromorphic processor with 7.5feedback, in: 2019 IEEE

International Solid- State Circuits Conference - (ISSCC), 2019, pp. 140–142.

[62] P.-Y. Chuang, P.-Y. Tan, C.-W. Wu, J.-M. Lu, A 90nm 103.14 tops/w binary-weight spiking neural network cmos

asic for real-time object classification, in: 2020 57th ACM/IEEE Design Automation Conference (DAC), IEEE,

2020, pp. 1–6.

[63] C. Frenkel, M. Lefebvre, J. Legat, D. Bol, A 0.086-mm2 12.7-pj/sop 64k-synapse 256-neuron online-learning

digital spiking neuromorphic processor in 28-nm cmos, IEEE Transactions on Biomedical Circuits and Systems

13 (1) (2019) 145–158.

35

[64] N. Zheng, P. Mazumder, A low-power hardware architecture for on-line supervised learning in multi-layer spik-

ing neural networks, in: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

doi:10.1109/ISCAS.2018.8351516.

[65] D.-A. Nguyen, D.-H. Bui, F. Iacopi, X.-T. Tran, An efficient event-driven neuromorphic architecture for deep

spiking neural networks, in: 2019 32nd IEEE International System-on-Chip Conference (SOCC), IEEE, 2019,

pp. 144–149.

[66] N. Muralimanohar, R. Balasubramonian, N. P. Jouppi, Cacti 6.0: A tool to model large caches, HP laboratories

27 (2009) 28.

[67] A. Agrawal, M. Ali, M. Koo, N. Rathi, A. Jaiswal, K. Roy, Impulse: A 65-nm digital compute-in-memory macro

with fused weights and membrane potential for spike-based sequential learning tasks, IEEE Solid-State Circuits

Letters 4 (2021) 137–140. doi:10.1109/LSSC.2021.3092727.

[68] A. Agrawal, A. Ankit, K. Roy, Spare: Spiking neural network acceleration using rom-embedded

rams as in-memory-computation primitives, IEEE Transactions on Computers 68 (8) (2019) 1190–1200.

doi:10.1109/TC.2018.2867048.

36

