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Abstract
Testing isomorphism of infinite groups is a classical topic, but from the complexity theory viewpoint,
few results are known. Sénizergues and the fifth author (ICALP2018) proved that the isomorphism
problem for virtually free groups is decidable in PSPACE when the input is given in terms of so-called
virtually free presentations. Here we consider the isomorphism problem for the class of plain groups,
that is, groups that are isomorphic to a free product of finitely many finite groups and finitely many
copies of the infinite cyclic group. Every plain group is naturally and efficiently presented via an
inverse-closed finite convergent length-reducing rewriting system. We prove that the isomorphism
problem for plain groups given in this form lies in the polynomial time hierarchy, more precisely, in
ΣP

3 . This result is achieved by combining new geometric and algebraic characterisations of groups
presented by inverse-closed finite convergent length-reducing rewriting systems developed in recent
work of the second and third authors (2021) with classical finite group isomorphism results of Babai
and Szemerédi (1984).
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1 Introduction

The classical core of combinatorial group theory centres on Dehn’s three algorithmic problems
concerning finitely presented groups [7]: given a finite presentation for a group, describe
an algorithm that decides whether or not an arbitrary word in the generators and their
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inverses spells the identity element (the word problem); given a finite presentation for a group,
describe an algorithm that decides whether or not two arbitrary words in the generators and
their inverses spell conjugate elements (the conjugacy problem); describe an algorithm that,
given two finite presentations, decides whether or not the groups presented are isomorphic
(the isomorphism problem). For arbitrary finite presentations, these problems are undecidable
and so upper bounds on complexity are impossible. Obtaining bounds on complexity requires
working with presentations that come with a promise that they determine groups in a
particular class, or presentations that provide (intrinsic or extrinsic) additional structure.
From Dehn’s work, finite length-reducing rewriting systems that satisfy various convergence
properties emerged as finite group presentations that simultaneously specify interesting
infinite groups and provide natural solutions to the corresponding word problems.

A research program, active since the 1980s, seeks to classify the groups that may be
presented by finite length-reducing rewriting systems satisfying various convergence properties.
The hyperbolic groups [15], the virtually-free groups [14] (groups with a free subgroup of
finite index – by Muller and Schupp’s theorem [23] they are also known as context-free
groups), and the plain groups [10] are important classes of groups, each a proper subclass of
the class before, that arise within this program. A group is plain if it is isomorphic to a free
product of finitely many finite groups and a free group of finite rank. The plain groups may
be characterised as the fundamental groups of finite graphs of finite groups with trivial edge
groups [18], and as the groups admitting a finite group presentation with a simple reduced
word problem [16]. Moreover, the plain groups are conjectured to be exactly the groups that
may be presented by finite convergent length-reducing rewriting systems [21].

The isomorphism problem is, of course, the most difficult of Dehn’s problems and
complexity results concerning this problem are rare. However, progress has been made on the
isomorphism problem for the very classes of groups that arise in the study of length-reducing
rewriting systems. Krstić solved the isomorphism problem for virtually-free groups described
by arbitrary finite group presentations [19]. Building on the pioneering work of Rips and
Sela [26], Sela [27], and Dahmani and Groves [5], Dahmani and Guirardel [6] provided an
explicit algorithm that solves the isomorphism problem in all hyperbolic groups when the
groups are given by finite presentations. In light of this result, attention can now shift to
complexity bounds for the isomorphism problem. Notice that, in order to obtain complexity
bounds, we cannot allow arbitrary presentations as inputs (otherwise we could decide within
that complexity bound whether a given presentation is for the trivial group – a problem
which is undecidable). In [28, 29], Sénizergues showed that the isomorphism problem for
virtually-free groups is primitive recursive when the input is given in the form of two virtually-
free presentations, or as two context free grammars. A virtually-free presentation of a group
G specifies a free subgroup F plus a set of representatives S for the cosets F \G together
with relations describing pairwise multiplications of elements from F and S; a context-free
grammar can specify a virtually-free group by generating the language of words that spell
the identity element. Then in 2018, Sénizergues and the fifth author [30] showed that the
isomorphism problem for virtually-free groups can be solved in doubly-exponential space
when the groups are specified by context-free grammars, and in PSPACE when the groups
are given by virtually-free presentations.

In the present article, we prove that the complexity bounds for the isomorphism problem
in virtually-free groups can be improved significantly when one restricts attention to the
class of plain groups.

▶ Theorem 1 (Isomorphism of plain groups). The isomorphism problem for plain groups
presented by inverse-closed finite convergent length-reducing rewriting systems is in ΣP

3 .
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We recall that the complexity class ΣP
3 lies in the polynomial hierarchy, see for example

[1, Chapter 5]:

NP = ΣP
1 ⊆ ΣP

2 ⊆ ΣP
3 · · · ⊆ PSPACE.

Here we use the following specific definition.

▶ Definition 2 ([32]). Let S be a finite set and L ⊆ S∗. Then L ∈ ΣP
3 if and only if there is

a polynomial p and a predicate P that can be evaluated in PTIME such that

∀w ∈ S∗
(
w ∈ L ⇐⇒ ∃x ∈ {0, 1}p(|w|) ∀y ∈ {0, 1}p(|w|) ∃z ∈ {0, 1}p(|w|)P (w, x, y, z) = 1

)
.

Rather than specifying the variables as polynomial length binary strings, we will describe
data for x, y, z which has polynomial size over a finite alphabet.
▶ Remark 3. We will abbreviate inverse-closed finite convergent length-reducing rewriting
system to icfclrrs for the rest of this article, and refer to a group admitting a presentation by
an icfclrrs as an icfclrrs group.
▶ Remark 4. In [11] it is shown that the problem of deciding if an icfclrrs presents a plain
group is in NP. Note that if the conjecture that inverse-closed finite convergent rewriting
systems can only present plain groups is proved, the word “plain” may be omitted from the
statement of Theorem 1.

Note that given an icfclrrs for a group, one can compute a context-free grammar for
the word problem in polynomial time using the method from [8]. Hence, the results from
[30] imply a doubly-exponential-space algorithm for our situation. Therefore, Theorem 1
represents a significant improvement for this special case. In [11] the second and third
authors gave a bound of PSPACE for isomorphism of plain groups given as icfclrrss. This
PSPACE algorithm builds upon new geometric and algebraic characterisations of icfclrrs
groups developed in the same paper. Theorem 1 is again a significant improvement on
this, lowering the complexity to the third level of the polynomial hierarchy. The proof of
Theorem 1 combines the new characterisations of icfclrrs groups from [11], which enable us
to understand maximal finite subgroup structure and conjugacy of finite order elements in
these groups, with work of Babai and Szemerédi [3] to test isomorphism of finite groups
efficiently using straight-line programs.

Let us briefly give a high-level intuition of the proof of Theorem 1. Verifying the ranks of
the free factors of each group are the same is straightforward, so for this brief description let
us assume the two plain groups are simply free products of n finite groups. We existentially
guess generating sets A1, . . . ,An and B1, . . . ,Bn for the finite factors in each group such
that |Ai| = |Bi| and mapping each Ai to Bi defines an isomorphism (in other words, we
guess an isomorphism defined on generating sets), then, using straight-line programs (and
methods from [3]), we universally verify that our guess indeed defines an isomorphism (that
ϕ(g)ϕ(h) = ϕ(gh) for all g, h). Technically this is an infinite universal branching – still, the
results of [11] ensure that considering polynomial-length straight-line programs suffice to
verify that we guessed an isomorphism correctly.

However, be aware that we also need to verify that the sets we guessed, indeed, generate
each group – and this is actually the more difficult part. In order to do so, we check that
every element of finite order (universal branching) is conjugate to an element in the subgroup
generated by some Ai (existential branching). Again by results in [11] we can restrict to
polynomial-length straight-line programs in both the universal and existential branching.
Moreover, testing whether an element has finite order can be done in polynomial time. This
leads to a ΣP

3 algorithm.

STACS 2022
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Outline. The article is organised as follows. In Section 2, we provide background information
on rewriting systems, and state the key algebraic results from [11] we need for the present
work. In Section 3, we review the necessary background on straight-line programs for groups.
In Section 4, we formulate a result which allows us to verify when two finite subgroups of
two (potentially infinite) groups are related by an isomorphism, based on a result of Babai
and Szemerédi [3]. Section 5 is devoted to a proof of our main result, Theorem 1.

Notation. Throughout this article we write log to mean log2. For n ∈ N+ we write [1, n] for
the interval {1, . . . , n} ⊆ N. If S is an alphabet (a non-empty finite set), we write S∗ for the
set of finite-length words over S, and |u| for the length of the word u ∈ S∗; the empty word,
λ, is the unique word of length 0. For a group G, we write eG for the identity element of G.

2 Finite convergent length-reducing rewriting systems

2.1 Rewriting systems and groups

Let S be a generating set for a group G. If v, w ∈ (S ∪ S−1)∗ and g, h ∈ G, then we write
v =G g if the product of letters in v equals g; we write v = w if v and w are identical as
words, and g = h if g and h represent the same element of G. If v =G g we say that v spells
g. For example, the identity element eG is spelled by the empty word λ, by aa−1 for any
a ∈ S, and so on. For an integer r ⩾ 0, we define the ball of radius r in G with respect to
the generating set S, denoted as BeG

(r), to be the set of all elements g ∈ G for which there
exists a word in (S ∪ S−1)∗ of length at most r that spells g. For example, if G is the free
abelian group ⟨a, b | ab = ba⟩ generated by S = {a, b, a−1, b−1} then the ball of radius 2 is
the set of thirteen elements

{eG, a, b, a
−1, b−1, a2, ab, b2, a−1b, a−2, a−1b−1, b−2, ab−1}.

We briefly recall some basic facts concerning finite convergent length-reducing rewriting
systems necessary for our discussion. We refer the reader to [4] for a broader introduction.
A length-reducing rewriting system is a pair (S, T ), where S is a non-empty alphabet, and
T is a subset of S∗ × S∗, called a set of rewriting rules, such that for all (ℓ, r) ∈ T we have
that |ℓ| > |r|. We write rT = max(ℓ,r)∈T {|r|}.

The set of rewriting rules determines a relation → on the set S∗ as follows: a → b if
a = uℓv, b = urv, and (ℓ, r) ∈ T . The reflexive and transitive closure of → is denoted ∗→. A
word u ∈ S∗ is irreducible if no factor is the left-hand side of any rewriting rule, and hence
u

∗→ v implies that u = v.
The reflexive, transitive and symmetric closure of → is an equivalence denoted ∗↔. The

operation of concatenation of representatives is well defined on the set of ∗↔-classes, and
hence makes a monoid M = M(S, T ). We say that M is the monoid presented by (S, T ).
When the equivalence class of every letter (and hence also the equivalence class of every
word) has an inverse, the monoid M is a group and we say it is the group presented by (S, T ).
We note that if a rewriting system (S, T ) presents a group G, then ⟨S | ℓ = r for (ℓ, r) ∈ T ⟩
is a group presentation for G. We say that (S, T ) (or just S) is inverse-closed if for every
a ∈ S, there exists b ∈ S such that ab ∗→ λ. Clearly, M is a group when S is inverse-closed.

A rewriting system (S, T ) is finite if S and T are finite sets, and terminating (or
noetherian) if there are no infinite sequences of allowable factor replacements. It is clear
that length-reducing rewriting systems are terminating. A rewriting system is confluent if
whenever w ∗→ x and w

∗→ y, there exists z ∈ S∗ such that x and y both reduce to z. A
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rewriting system is called convergent if it is terminating and confluent. In some literature,
finite convergent length-reducing rewriting systems are called finite Church-Rosser Thue
systems.

We define the size of a rewriting system (S, T ) to be nT = |S| +
∑

(ℓ,r)∈T |ℓr|, and we
note that rT ⩽ nT .

2.2 Plain groups represented as rewriting systems

If G1, . . . , Gn are groups with each Gi presented by ⟨Si | Ri⟩ for pairwise disjoint S1, . . . ,Sn,
the free product G1 ∗ · · · ∗ Gn is the group presented by ⟨S1 ∪ · · · ∪ Sn | R1 ∪ · · · ∪ Rn⟩. A
group is plain if it is isomorphic to the free product

A1 ∗A2 ∗ · · · ∗Ap ∗ Fr

where p, r are non-negative integers, each Ai is a finite group and Fr is the free group of
rank r.

We first observe that every plain group admits a presentation by an icfclrrs (see for
example [12, Corollary 2]).

▶ Lemma 5. If G is a plain group, then G admits a presentation by a finite convergent
length-reducing rewriting system (S, T ) such that S = S−1 and the left-hand side of every
rule has length 2.

The following fact follows easily from the normal form theory of free products (see for
example [20]).

▶ Lemma 6. Two plain groups given as

A1 ∗A2 ∗ · · · ∗Ap ∗ Fr and B1 ∗B2 ∗ · · · ∗Bq ∗ Fs

are isomorphic if and only if p = q, r = s and there is a permutation σ such that Ai
∼= Bσ(i)

for every i ∈ [1, p].

The following proposition collects key results about icfclrrs groups proved in [11]. Recall
the definitions of rT ,nT above.

▶ Proposition 7 ([11, Proposition 15, Lemmas 12, 8, 18]). If G is a plain group presented by
an icfclrrs (S, T ), then
1. every finite subgroup H of G is conjugate to a subgroup in BeG

(rT + 2);
2. the number of conjugacy classes of maximal finite subgroups in G is bounded above by n2

T ;
3. if g, h ∈ BeG

(rT + 2) \ {eG} are conjugate elements of finite order and t ∈ G is such that
tgt−1 = h, then t ∈ BeG(5rT + 4);

4. log(|BeG
(rT + 2)|) ⩽ n2

T .

We also make use of the following facts about finite subgroup membership.

▶ Lemma 8 ([11, Lemma 11]). Let G be a plain group. For g, h ∈ G define g ∼ h if gh has
finite order. Then
1. the relation ∼ is transitive on the set of non-trivial finite-order elements in G;
2. a set A = {a1, . . . , am} ⊆ G \ {eG} generates a finite subgroup if and only if for all

i ∈ [1,m] both ai and a1ai have finite order;
3. if A is a finite subgroup of G and g, h ∈ G with g ∈ A \ {eG}, then h ∈ A if and only if h

and gh have finite order.

STACS 2022
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2.3 Algorithms for groups in rewriting systems

Next we observe that deciding if elements have finite order can be done in polynomial time.

▶ Lemma 9 (Narendran and Otto [24, Theorem 4.8]). There is a deterministic polynomial-time
algorithm for the following problem: given an icfclrrs (S, T ) presenting a group G and a
word u ∈ S∗, decide whether or not u spells an element of finite order in G. The running
time is polynomial in |T | + |u| +

∑
(r,ℓ)∈T |ℓ|, so polynomial in |u| + nT .

By computing the Smith normal form of a matrix associated to (S, T ), we have an efficient
way to compute the number of infinite cyclic factors of a plain group given by an icfclrrs.

▶ Lemma 10. There is a deterministic polynomial-time algorithm for the following problem:
given an icfclrrs (S, T ) presenting a group G, compute the torsion-free rank of the abelian
group G/[G,G]. The running time is polynomial in nT , and the torsion-free rank is bounded
above by nT .

Proof. Let Gab denote G/[G,G], the abelianization of G. Let r denote the torsion-free
rank of Gab, which is the number of factors Z in the free product decomposition of G. We
may compute the torsion-free rank of the abelianization Gab from (S, T ) in time that is
polynomial in nT as follows. Let S′ ⊆ S be a subset comprising exactly one generator from
each pair of inverses. The information in (S, T ) may be recorded in the form of a group
presentation ⟨S′ | R⟩, where R interprets each rewriting rule in T as a relation over the
alphabet S′ ∪ (S′)−1. The information in the presentation ⟨S′ | R ∪ {[a, b] | a, b ∈ S′}⟩ for
Gab may be encoded in an |R|×|S′| matrix of integers M . These integers record the exponent
sums of generators in each relation. The Smith normal form matrix S corresponding to M
may be computed in time that is polynomial in the size of the |R| × |S′| matrix and its
entries (see, for example, [17, 33]), so polynomial in nT . The torsion-free rank of Gab is the
number of zero entries along the diagonal of S (see, for example, [25, pp. 376-377]). Note
that this means r ⩽ nT . ◀

3 Straight-line programs

We use straight-line programs (or more precisely straight-line sequences) to represent the
elements of a group A with finite generating set A = {a1, . . . , am}, see [31, Section 1.2.3] or
[3, Section 3] for more details; we briefly recall this concept here. Let X = {x1, . . . , xm} be a
set of abstract symbols of size m. A straight-line program Y of rank m and length d on X is a
sequence Y = (s1, . . . , sd) where for each i ∈ [1, d] either si ∈ X ∪ {λ}, or si = sjsk for some
j, k < i, or si = s−1

j for some j < i. One says the straight-line program Y yields the word
w = sd ∈ (X ∪X−1)∗, which we also denote by Y (x1, . . . , xm) = w(x1, . . . , xm). We write
Y (a1, . . . , am) ∈ (A ∪ A−1)∗ for the word that is constructed by replacing every occurrence
of x±1

i in Y (x1, . . . , xm) by a±1
i . We call the element g ∈ A such that Y (a1, . . . , am) =G g

the evaluation of Y in A (with respect to A).
An efficient way to store the straight-line program is to write instead the operations that

define the elements s1, . . . , sm of the sequence (cf. [31, p. 10]): for example, a generator
si = x is stored as the pair (x,+), si = λ is stored as (λ,+), an inverse si = s−1

j is stored
as (j,−), and a product si = sjsk is stored as (j, k). We call this sequence of operations
a straight-line sequence. The word Y (a1, . . . , am) can then be computed by following the
construction described in this straight-line sequence and replacing every generator xj by aj .
To store this sequence we simply store the address (an integer in [1, d] in binary) and the
instruction (an integer in [1,m] or at most two integers in [1, d] in binary); thus a straight-line
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sequence of rank m and length d requires O (d(log(d) + log(m))) bits. In what follows, a
straight-line program will always be represented by a straight-line sequence, and we write Y
both for a straight-line program and the straight-line sequence representing it.

▶ Example 11. Consider the infinite cyclic group G generated by A = {a}. The straight-line
sequence Y = (y0 = (x,+), y1 = (0, 0), y2 = (1, 1), y3 = (2, 2), y4 = (3, 3), y5 = (4, 2), y6 =
(5, 0), y7 = (6,−)) yields the word Y (x) = x−21 in (X ∪ X−1)∗ with X = {x}, and Y (a)
yields the element a−21 of G. The straight-line sequence Y = ((λ,+)) yields Y (x) = λ, so
Y (a) =G eG.

Every element of a finitely generated group with finite generating set A can be described by
a straight-line sequence: one could first list A∪A−1 using y2i−1 = (xi,+) and y2i = (2i−1,−)
for i ∈ [1, |A|], then choose a word that spells the desired element, and finally construct it
letter-by-letter using yk = (k − 1, j) (where j = 2i− 1 if the next letter is xi, and j = 2i if
the next letter is x−1

i ). However, Example 11 demonstrates that we can sometimes be more
efficient than that. In fact, the following result shows that elements of a finite group always
have short straight-line sequences, with respect to any given generating set.

▶ Lemma 12 (Babai and Szemerédi [3, Lemma 7], Babai [2]). Let A be a finite group with
generating set A = {a1, . . . , am}. For each g ∈ A, there exists a straight-line sequence Y of
rank m and of length at most (log |A| + 1)2 such that Y (a1, . . . , am) =G g.

If P = (p1, . . . , pc), Q = (q1, . . . , qd) are two straight-line sequences of rank m and length
c, d respectively, then we use the notation [PQ] to denote the straight-line sequence of rank
m and length c+ d+ 1 defined as

[PQ] = (p1, . . . , pc, q1 . . . , qd, (c, c+ d)).

We call this the product of P and Q, since by construction if P (x1, . . . , xm) = u and
Q(x1, . . . , xm) = v then [PQ](x1, . . . , xm) = uv. We denote by [PQR] the straight-line
sequence [[PQ]R] of rank m and length c+ d+ e+ 2 where R has rank m and length e.

3.1 Compressed word problem

We note that in the setting of groups presented by icfclrrss, we can efficiently solve the word
problem when the input is a straight-line sequence representing a group element.

▶ Lemma 13 (Compressed word problem). There is a deterministic algorithm for the following
problem: given an icfclrrs (S, T ) presenting a group G, a set A = {a1, . . . , am} ⊆ S∗

generating a subgroup A ⩽ G such that A ⊆ BeG
(K) for some K ∈ N, a word u ∈ S∗ such

that u =G g ∈ G, and a straight-line sequence Y of rank m and length d, decide whether or
not Y (a1, . . . , am) =A g.

The running time is polynomial in K + nT + |u| + d+m+ maxi |ai|. In particular, if K
is bounded by a polynomial in the input size, the algorithm runs in polynomial time.

Proof. For each v ∈ S∗, let v−1 denote the formal inverse of v obtained by reversing and
replacing each letter x ∈ S by x−1 ∈ S.

Assume Y = (y1, . . . , yd) where each yi = (xj ,+), (j,−) or (j, k). For i ∈ [1, d] we
compute and store a word si ∈ S∗ of length at most K as follows:

if yi = (xj ,+), set si = aj ;
if yi = (j,−) with j < i, set si = s−1

j ;
if yi = (j, k) for j, k < i, set si to be the reduced word obtained from sjsk by applying
rewriting rules.

STACS 2022



26:8 The Isomorphism Problem for Plain Groups Is in ΣP
3

Finally, return true if sdu
−1 reduces to λ, and false otherwise.

Notice that that no si becomes longer than K. Therefore, each si can be computed in
time polynomial in K plus the size of the rewriting system and the other data. ◀

4 Isomorphism testing for finite subgroups

In this section we describe an argument based on Babai and Szemerédi’s work [3] which
we require for proving Theorem 1. For now our setting is that we are given two groups
(later these will be presented by rewriting systems) which come with efficient (polynomial
time) algorithms to solve the word problem. Each group will contain some specified finite
subgroup, say A in the first group and B in the second. We aim to verify in polynomial time
the existence of an isomorphism from A to B. We start with the following well-known facts.

▶ Lemma 14. Every finite group A has a generating set of size at most log |A|.

Proof. If {g1, . . . , gm} is a minimal generating set and An is the group generated by
{g1, . . . , gn} for n ∈ [1,m], then |A1| ⩾ 2 and |An+1| ⩾ 2|An| for n ∈ [1,m − 1], so
|A| ⩾ 2m by induction. ◀

▶ Lemma 15. Let A and B be groups. A map f : A → B is a group homomorphism if and
only if f(eA) = eB and f(g)f(h)f((gh)−1) = eB for all g, h ∈ A

Proof. If f is a homomorphism, then these conditions hold. Conversely, the second condition
with g = eA yields f(h)f(h−1) = eB, so f(h−1) = f(h)−1 and eB = f(g)f(h)f((gh)−1) =
f(g)f(h)f(gh)−1. Thus, f(g)f(h) = f(gh) for all g, h ∈ G. ◀

We now state the key technical result, which is the essence of [3, Proposition 4.8] where the
isomorphism problem for finite groups in the so-called black-box model is shown to be in ΣP

3 .

▶ Proposition 16 (Isomorphism between finite subgroups). Let A,B be finite groups and
K ∈ N+. Let A = {a1, . . . , am},B = {b1, . . . , bm} be generating sets for A,B respectively,
with m ⩽ K.

Assume that for each g ∈ A there is a straight-line program Yg of rank m and length
at most K such that Yg(a1, . . . , am) =A g, and likewise for g ∈ B there is a straight-line
program Zg of rank m and length at most K such that Zg(b1, . . . , bm) =B g.

Then the map ψ : A → B with ai 7→ bi induces an isomorphism A → B if and only if

Y (a1, . . . , am) =A eA ⇐⇒ Y (b1, . . . , bm) =B eB (1)

for every straight-line program Y of rank m and length at most 3K + 2.

Proof. If ψ induces an isomorphism, clearly (1) holds for all straight-line programs.
For the converse, assume that (1) holds on all rank-m straight-line programs up to length

3K + 2.
Without loss of generality, assume YeA

= ZeB
= ((λ,+)) and

Yai
(x1, . . . , xm) = Zbi

(x1, . . . , xm) = ((xi,+))

for each i ∈ [1,m]. So YeA
(a1, . . . , am) =A eA, ZeB

(b1, . . . , bm) =B eB , Yai
(a1, . . . , am) =A ai

and Zbi
(b1, . . . , bm) =B bi for i ∈ [1,m].

Define a map ϕ : A → B as follows: for g ∈ A, evaluate Yg(b1, . . . , bm) to get an element
h ∈ B, then set ϕ(g) = h. Thus, ϕ maps each ai to bi.
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First, by way of contradiction suppose ϕ is not a homomorphism. Since ϕ(eA) = eB by
definition, Lemma 15 shows that there must exist g, h ∈ A such that ϕ(g)ϕ(h)ϕ((gh)−1) ̸= eB .
This means that in A we have

Yg(a1, . . . , am)Yh(a1, . . . , am)Y(gh)−1(a1, . . . , am) =A gh(gh)−1 =A eA,

whereas in B we have

Yg(b1, . . . , bn)Yh(b1, . . . , bn)Y(gh)−1(b1, . . . , bn) =B ϕ(g)ϕ(h)ϕ((gh)−1) ̸=B eB .

Let Y = [YgYhY(gh)−1 ] be the straight-line program of rank m and length at most 3K + 2.
Then Y contradicts our assumption that (1) holds on all rank-m straight-line programs up
to length 3K + 2. Thus ϕ is a homomorphism.

Next we show that ϕ is injective. If g ∈ kerϕ, then Yg(b1, . . . , bm) evaluates to eB; by
assumption, (1) holds on input Yg, so g =A Yg(a1, . . . , am) =A eA and ϕ is injective. So we
have shown that ϕ is a monomorphism which satisfies ϕ : ai 7→ bi.

Repeating the preceding argument for ϕ′ : B → A defined as: for g ∈ B, evaluate
Zg(a1, . . . , am) to get an element h ∈ A, then set ϕ′(g) = h; we obtain a monomorphism ϕ′

with ϕ′ : bi 7→ ai. Since A,B are finite this implies that |A| = |B| hence the monomorphism
ϕ is an isomorphism, and since ϕ(ai) = bi for i ∈ [1,m] we have that ϕ is the (unique)
isomorphism induced by ψ. ◀

▶ Remark 17. Using Lemma 13, we can check condition (1) in Proposition 16 in polynomial
time in groups presented by icfclrrss.

5 Proof of the main theorem

The algorithm for the proof of our main theorem checks the conditions of the following
proposition. We remark that verifying that some collection of finite subgroups are maximal
and that every finite order element is conjugate to an element in one of these maximal finite
subgroups turns out to be the main bottleneck for the complexity of our algorithm. These
are items (2) and (3) in the following proposition.

▶ Proposition 18. Let G,H be plain groups presented by icfclrrs (S, T ), (S′, T ′) respectively.
Then G ∼= H if and only if there are subgroups Ai ⩽ G,Bi ⩽ H for i ∈ [1, p] such that the
following conditions (1)–(5) are satisfied:
(1) for each i ∈ [1, p] we have Ai ⊆ BeG

(rT + 2) and Bi ⊆ BeH
(r′

T + 2) (in particular, they
are finite subgroups).

(2) each Ai (resp. Bi) is a maximal finite subgroup of G (resp. H).
(3) every g ∈ G \ {eG} (resp. h ∈ H \ {eH}) of finite order can be conjugated into exactly

one Ai (resp Bi).
(4) for each i ∈ [1, p] we have Ai

∼= Bi.
(5) the torsion-free rank of G/[G,G] is equal to the torsion-free rank of H/[H,H].

Moreover, we may choose minimal generating sets Ai ⊆ BeG
(rT + 2), Bi ⊆ BeH

(r′
T + 2) for

Ai, Bi respectively, i ∈ [1, p] so that for all i ∈ [1, p]:
(6) |Ai| = |Bi| = mi ⩽ log |Ai|.
(7) if Ai = {ai,j | j ∈ [1,mi]}, Bi = {bi,j | j ∈ [1,mi]}, the map ai,j 7→ bi,j for j ∈ [1,mi]

induces an isomorphism Ai → Bi.
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Finally, we may replace conditions (1)–(3) by:
(8) for every g ∈ BeG

(rT + 2) \ {eG} (resp. h ∈ BeH
(r′

T + 2) \ {eH}) and every i ∈ [1, p], if
g (resp. h) and gai,1 (resp. hbi,1) have finite order, then g ∈ Ai (resp. h ∈ Bi).

(9) every g ∈ BeG
(rT + 2) \ {eG} (resp. h ∈ BeH

(r′
T + 2) \ {eH}) of finite order can be

conjugated into exactly one Ai (resp Bi); moreover, g can be conjugated into that Ai

(resp Bi) by a conjugating element of length at most 5rT + 4 (resp. 5r′
T + 4).

(10) for every g ∈ BeG
(rT +2)\{eG} (resp. h ∈ BeH

(r′
T +2)\{eH}), if g (resp. h) and gai,1

(resp. hbi,1) have finite order, then gaϵ
i,j ∈ BeG

(rT + 2) (resp. hbϵ
i,j ∈ BeH

(r′
T + 2)) for

every j ∈ [1,mi] and ϵ ∈ {±1}.

Proof. First, assume that G ∼= H. We will show that conditions (1)–(7) are satisfied. By
Lemma 6 there exists an isomorphism ψ : G → H and free product decompositions

G ∼= A1 ∗A2 ∗ · · · ∗Ap ∗ Fr and H ∼= B1 ∗B2 ∗ · · · ∗Bp ∗ Fr

such that Ai
∼= Bi = ψ(Ai) for each i ∈ [1, p]. Moreover, by Proposition 7 (item 1) we may

assume Ai, Bi each lie within the balls of radius rT + 2,r′
T + 2 in the Cayley graphs of

(G,S), (H,S′) respectively. By Lemma 14 there exist minimal generating sets Ai and Bi for
Ai, Bi for i ∈ [1, p] with |Ai| = |Bi| ⩽ log |Ai| (we may assume without loss of generality that
we choose minimal generating sets to be of the same size). Since ψ(Ai) = Bi we may without
loss of generality choose generators so that condition (7) holds. The normal form theory for
free products ([20]) gives that: for any i ̸= j, Ai ∩ Aj = {eG} (resp. Bi ∩ Bj = {eH}); if
p = 0 then G and H are free groups, and if p ≠ 0, there are exactly p conjugacy classes of
non-trivial maximal finite subgroups in G (resp. H) and they are represented by A1, . . . , Ap

(resp. B1, . . . , Bp). Condition (3) follows immediately. Condition (5) follows immediately
from the fact that G/[G,G] ∼= H/[H,H].

Conversely, suppose there are subgroups Ai ⩽ G,Bi ⩽ H for i ∈ [1, p] such that
conditions (1)–(5) are satisfied. Conditions (2) and (3) give that every maximal finite
subgroup in G (resp. H) is conjugate to exactly one of the subgroups A1, . . . , Ap (resp.
B1, . . . , Bp). Since G (resp. H) is a plain group, it follows that G ∼= A1 ∗ · · · ∗Ap ∗ Fr (resp.
H = B1 ∗ · · · ∗ Bp ∗ Fs) for some free group of rank r (resp. s). Condition (4) gives that
A1 ∼= B1, . . . , Ap

∼= Bp. Condition (5) gives that r = s and Fr
∼= Fs. Thus we have that

G ∼= H.
Now let us show that conditions (1)–(3) may be replaced by conditions (8)–(10). First

suppose that conditions (1)–(7) are satisfied. Lemma 8 (item 3) implies condition (8). Condi-
tion (3) and Proposition (7) (item 3) imply condition (9). Condition (1) and Lemma 8(item 3)
imply condition (10).

Now suppose that conditions (4)–(10) are satisfied. To establish that condition (10)
implies condition (1), suppose Ai contains an element p which lies outside BeG

(rT + 2).
Let u ∈ A∗ be a word spelling p. Then there exists a word u1, an element ai,j ∈ A and
ϵ ∈ {±1} so that u1a

ϵ
i,j is a prefix of u such that u1 spells an element that lies in BeG

(rT + 2)
and u1a

ϵ
i,j spells an element that lies outside BeG

(rT + 2). It follows that u1 ̸=G eG (since
|ai,j | ⩽ rT + 2). This contradicts condition (10). Conditions (1) and (8) together imply
condition (2). Condition (9) and Proposition 7 (item 1) together imply condition (3). ◀

We are now ready to prove the main result.

Proof of Theorem 1. We describe a ΣP
3 algorithm which on input a pair (S, T ), (S′, T ′) of

icfclrrss which are promised to present plain groups, accepts if and only if the groups are
isomorphic. Let N = max{nT ,n

′
T } be the input size, G the plain group presented by (S, T )

and H the plain group presented by (S′, T ′).
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The algorithm needs to demonstrate the existence of some p ∈ N and subgroups Ai ⩽ G

and Bi ⩽ H for i ∈ [1, p] which satisfy conditions (4)–(10) of Proposition 18. We first observe
the following. By Proposition 7 (item 2) there are at most n2

T (resp. (n′
T )2) conjugacy

classes of maximal finite subgroups in G (resp. H), so we have p ⩽ N2. By Lemma 14
and Proposition 7 (item 4), if A (resp. B) is a minimal generating set for a maximal finite
subgroup A of G (resp. B of H), then

|A| ⩽ log |A| ⩽ log(|BeG
(rT + 2)|) ⩽ n2

T ⩽ N2

(resp. |B| ⩽ (n′
T )2 ⩽ N2). By Lemma 12, for each g ∈ A (resp. g ∈ B), there exists a

straight-line sequence Y of length at most (log |A| + 1)2 ⩽ N4 (resp. (log |B| + 1)2 ⩽ N4)
such that Y yields g. Moreover, if A ∼= B, we may assume they have minimal generating
sets of the same size.

We now start with the following quantified statements:

∃ sets Ai = {ai,j ∈ S∗ | j ∈ [1,mi], |ai,j | ⩽ rT + 2},
Bi = {bi,j ∈ (S′)∗, | j ∈ [1,mi], |bi,j | ⩽ r′

T + 2}
for i ∈ [1, p] where p ⩽ N2,mi ⩽ N2,

∀ (u, v) ∈ S∗ × (S′)∗, |u| ⩽ rT + 2, |v| ⩽ r′
T + 2,

(s, s′) ∈ S∗ × (S′)∗, |s| ⩽ 5rT + 4, |s′| ⩽ 5r′
T + 4,

straight-line sequences Yi of rank mi and length at most 3N4 + 2 for each i ∈ [1, p],

∃ (t, t′) ∈ S∗ × (S′)∗, |t| ⩽ 5rT + 4, |t′| ⩽ 5r′
T + 4,

straight-line sequences Z1, Z2 of rank mi for some i ∈ [1, p] and length at most N4.

Then the following procedure (predicate) verifies conditions (4)–(10) in Proposition 18 using
this data.

First, apply Lemma 10 to compute the torsion-free rank of G/[G,G] and H/[H,H] and
verify that the rank is the same for both. This establishes condition (5) of Proposition 18.

Next, run this subroutine:

for i ∈ [1, p]
for j ∈ [1,mi]

verify that ai,j and bi,j have finite order using Lemma 9;
for j ∈ [2,mi]

verify that (ai,1ai,j) and (bi,1bi,j) have finite order using Lemma 9.

This verifies that Ai,Bi generate finite subgroups by Lemma 8 (item 2). Let Ai, Bi be the
names of the subgroups generated by Ai,Bi respectively. We can assume that the algorithm
guesses the Ai,Bi to be minimal generating sets of the same size, so we can assume that
condition (6) is satisfied.

Next, we show that the finite subgroups Ai, Bi actually lie inside the ball of radius rT + 2
(resp. r′

T + 2) by verifying condition (10) of Proposition 18. Run the following subroutine.

if u has finite order (using Lemma 9) and u ̸=G eG (reduced word for u is not λ)
for i ∈ [1, p]

if (uai,1) has finite order (using Lemma 9; if so then u ∈ Ai by Lemma 8 (item 3))
for j ∈ [1,mi]

compute the reduced word u1 for uai,j and u2 for ua−1
i,j ,

verify that |u1|, |u2| ⩽ rT + 2.
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Repeat for the word v using the analogous procedure. This establishes condition (10).
Next, to verify condition (9) of Proposition 18, we first run this pre-step.

for i ∈ [1, p]
for k ∈ [1, p] \ {i}

verify that (ai,1sak,1s
−1) and (bi,1s

′bk,1(s′)−1) have infinite order using
Lemma 9.

This shows that no conjugate of ak,1 lies in Ai (resp. no conjugate of bk,1 lies in Bi) for i ≠ k

by Lemma 8 (item 3) (note that we are running over all s, s′ of length at most 5rT +4, 5r′
T +4,

so all elements in BeG
(5rT + 4), BeH

(5r′
T + 4)).

Now suppose that for some g ∈ G \ {eG} we have g =G α−1cα and g =G βdβ−1 for
some α, β, c, d ∈ S∗ with c =G gc ∈ Ai, d =G gd ∈ Ak and i ̸= k. Recall that as in
Lemma 8, g ∼ h means gh has finite order. Then c = (αβ)c(αβ)−1 so ai,1 ∼ (αβ)d(αβ)−1

and (αβ)d(αβ)−1 ∼ (αβ)ak,1(αβ)−1, so by Lemma 8 (item 1) ai,1 ∼ (αβ)ak,1(αβ)−1 which
contradicts the result of the pre-step. It follows that every g ∈ G \ {eG} lies in a conjugate
of at most one subgroup Ai. Thus to show condition (9) it suffices to show that every
u ∈ BeG

(rT + 2) \ {eG} lies in a conjugate of some Ai (and analogously for v).
We show this with the following subroutine.

if u has finite order (using Lemma 9) and u ̸=G eG (reduced word for u is not λ)
verify that (utai,1t

−1) has finite order for some i ∈ [1, p]
(using Lemma 9 with a loop over all i ∈ [1, p]).

Repeat all of the above for the word v using the analogous procedure (using the word t′).
This establishes condition (9) of Proposition 18.

Next, we verify condition (8) of Proposition 18. Run this subroutine.

if u has finite order (using Lemma 9) and u ̸=G eG (reduced word for u is not λ)
for i ∈ [1, p]

if (uai,1) has finite order (using Lemma 9)
verify that Z1(ai,1 . . . , ai,mi) =G u using Lemma 13.

This shows that if u ∼ ai,1 then g can be spelled by a word in (Ai∪A−1
i )∗, and so u =G g ∈ Ai.

Repeat for v using the analogous procedure (using the straight-line sequence Z2). This
establishes condition (8) of Proposition 18.

Lastly, to verify condition (7) and hence (4) of Proposition 18, we check that

Yi(ai,1, . . . , ai,mi
) = eG ⇐⇒ Yi(bi,1, . . . , bi,mi

) = eH

holds where the Yi are straight-line sequences of rank mi and length at most 3N4 + 2 for
i ∈ [1, p] which we run through in the universal statement. This can be done in polynomial
time using Lemma 13. Then by Proposition 16 (with K = N4), since we are running over
all straight-line sequences Yi of length 3N4 + 2 and rank mi for all i ∈ [1, p] we establish
condition (4). ◀

6 Conclusion

We have shown that the isomorphism problem for plain groups given as icfclrrss is decidable
in ΣP

3 . To the best of our knowledge this presents the smallest complexity bound for the
isomorphism problem apart from some very special cases like abelian and free groups (in
polynomial time using [17, 25, 33]) and finite groups given as Cayley tables (in quasipolynomial
time [13, 22] and also in NP, and nearly linear time for almost all orders [9]).
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There is one obvious open question: can the complexity actually be reduced to ΣP
2 or

even to some smaller class? Note that the obstacle to reach ΣP
2 is to verify condition (2) and

(3) of Proposition 18 via conditions (8) and (9).
Another topic for future research is to investigate the maximal size of a finite subgroup

presented by an icfclrrs. If one could show a polynomial bound on this size, rather than the
exponential bound used here, this could lead to a lower complexity. However, this question is
wide open – and, probably, related to the long-standing conjecture that all groups presented
by icfclrrss are plain.
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