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Abstract
1.	 Size	 is	a	biological	 characteristic	 that	drives	ecological	processes	 from	micro-
scopic	 to	geographic	spatial	 scales,	 influencing	cellular	energetics,	 species	 fit-
ness,	population	dynamics,	and	ecological	interactions.	Methods	to	measure	size	
from	 images	 (e.g.,	proxies	of	body	size,	 leaf	area,	and	cell	 area)	occur	along	a	
gradient	from	manual	approaches	to	fully	automated	technologies	(e.g.,	machine	
learning).	These	methods	differ	in	terms	of	time	investment,	expertise	required,	
and	data	or	resource	availability.	While	manual	methods	can	improve	accuracy	
through	human	recognition,	they	can	be	labor	intensive,	highlighting	the	need	
for	 semi-	automated,	 and	user-	friendly	 software	or	workflows	 to	 increase	 the	
efficiency	of	manual	techniques.

2.	 Here,	we	present	SizeExtractR,	 an	open-	source	workflow	 that	 enables	 faster	
extraction	of	size	metrics	from	scaled	images	(e.g.,	each	image	includes	a	ruler)	
using	semi-	automated	protocols.	It	comprises	a	set	of	ImageJ	macros	to	speed	
up	size	extraction	and	annotation,	and	an	R-	package	for	the	quality	control	of	
annotations,	data	collation,	calibration,	and	visualization.

3.	 SizeExtractR	extracts	seven	common	size	dimensions,	including	planar	area,	min/
max	diameter,	and	perimeter.	Users	can	record	additional	categorical	variables	
relating	to	their	own	study,	for	example	species	ID,	by	simply	adding	alphanu-
meric	annotations	to	individual	objects	when	prompted.	Using	a	population	size	
structure	case	study	for	hard	corals	as	an	example,	we	show	how	SizeExtractR	
was	used	 to	quantify	 the	 impact	of	mass	 coral	 bleaching	on	 coral	 population	
dynamics.	Lastly,	the	time	saving	benefit	of	using	SizeExtractR	was	quantified	
during	a	series	of	timed	image	analyses,	revealing	up	to	a	49%	reduction	in	image	
analysis	time	compared	to	a	fully	manual	approach.

4.	 SizeExtractR	automatically	archives	results,	allowing	re-	analysis	of	size	extrac-
tion	and	promoting	quality	control	and	reproducibility.	It	has	already	been	em-
ployed	 in	marine	 and	 terrestrial	 sciences	 to	 assess	 population	 dynamics	 and	
demography,	energy	investment	in	eggs,	and	growth	of	nursery	reared	corals,	
with	potential	to	be	applied	to	a	wide	range	of	other	research	fields.
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1  |  INTRODUC TION

As	a	biological	feature,	size	has	a	fundamental	influence	on	the	ecol-
ogy	and	evolution	of	all	organisms	(Tan	et	al.,	2021),	yet	our	ability	to	
quantify	size	rapidly,	consistently,	and	accurately	from	images	across	
disciplines	 remains	 limited	 (Edmunds	 &	 Riegl,	 2020;	 Weinstein,	
2018).	The	importance	of	size	extends	to	all	scales	of	biological	and	
ecological	 organization:	 cell	 size	 can	 indicate	 resource	 availability	
(Paxton	et	al.,	2016);	organ/body-	part	size	can	be	used	as	a	proxy	
for	somatic	and	reproductive	investment	(Stevens	et	al.,	2000);	and	
body	size	can	influence	fitness	and	competitive	success	(Dickerson	
et	al.,	2002;	White	et	al.,	2018).	Quantification	of	size	can	elucidate	
vital	 rates,	 such	 as	 recruitment,	 growth,	 reproduction,	 and	 senes-
cence	(Cant	et	al.,	2020)	and	can	reveal	the	size	structure	of	species	
populations	(Lachs	et	al.,	2021),	which	ultimately	define	population	
proliferation	or	demise.	As	such,	size	is	the	focus	of	a	vast	literature	
on	ecological	 theory,	 such	as	 the	 Island	Rule	 (increasing	body	size	
with	island	size),	and	is	a	central	component	of	contemporary	eco-
logical	and	demographic	research	(Edmunds	&	Riegl,	2020).	We	con-
sider	‘size’	as	an	umbrella	term	for	numerous	ecologically	meaningful	
measurements	(e.g.,	proxies	of	body	size,	leaf	area,	fish/shell	length,	
cell	area,	or	maximum	and	minimum	diameters).	There	is	a	growing	
reliance	on	measuring	size	from	scaled	imagery	(i.e.,	images	contain-
ing	objects	of	known	length)	(Beaudouin	et	al.,	2015;	Benton	et	al.,	
2008;	Precoda	et	al.,	2018).	This	has	improved	sampling	efficiency	
greatly	(Lachs	et	al.,	2021;	Sommer	et	al.,	2014),	and	highlights	the	
growing	demand	for	reliable,	user-	friendly	software	or	workflows	to	
rapidly	quantify	size	from	scaled	images.

While	manual	approaches	to	extract	size	from	images	are	com-
monly	used	in	science	(Weinstein,	2018),	automated	image	analysis	
technologies	 are	 undergoing	 rapid	 advancements	 (Hagendorff	 &	
Wezel,	 2020).	 For	 example,	 in	 ecology,	machine	 learning	 technol-
ogies	 can	automatically	measure	object	 sizes	 (size	of	 any	 irregular	
2D	 region	 in	 an	 image)	 from	 vast	 image	 datasets,	 given	 enough	
training	 data	 and	 appropriate	 standardization	 of	 images	 (Alonso	
et	al.,	2019;	Kloster	et	al.,	2014;	Monkman	et	al.,	2019;	Wäldchen	
&	 Mäder,	 2018;	 Weinstein,	 2018).	 However,	 for	 some	 research	
projects,	such	techniques	are	not	applicable	and	better	returns-	on-	
investment	 can	 be	 achieved	 from	using	manual	methods	 (e.g.,	 for	
small	image	datasets,	or	low	quality	or	high	complexity	images).	At	
the	center	of	the	manual–	automatic	gradient,	generic	particle	ana-
lyzers,	such	as	the	BioVoxxel	Toolbox	(Brocher,	2014),	can	be	used	
to	batch	process	particle	size	extraction.	However,	such	approaches	
are	 often	 designed	 for	 standardized	 microscopy	 images,	 and	 are	

not	appropriate	for	complex	ecological	 imagery	with	chaotic	back-
grounds	 (e.g.,	 forest	 floor).	 The	 advantage	 of	 fully	 manual	 image	
analysis	methods	is	rooted	in	the	accuracy	of	human	recognition	in	
tasks	like	species	identification,	boundary	delineation,	and	the	abil-
ity	to	record	ad	hoc	observations	(e.g.,	health	status)	without	having	
to	hard-	code	them	into	identification	algorithms.	Human	recognition	
and	manual	extraction	of	 size	measures	have	proven	 fundamental	
to	 building	 size	 datasets	 for	 ecology	 research.	 For	 example,	man-
ual	extraction	of	size	metrics	has	recently	been	used	in	assessments	
of	population	dynamics	for	marine	and	terrestrial	fauna	(Beaudouin	
et	al.,	2015;	Benton	et	al.,	2008;	Bogdan	et	al.,	2021),	estimation	of	
size-	dependent	disease	susceptibility	(Bruno	et	al.,	2011),	measure-
ment	of	growth	to	run	integral	projection	models	(Cant	et	al.,	2020;	
Precoda	et	al.,	2018),	and	testing	the	 inter-	generational	effects	on	
reproductive	effort	(Plaistow	et	al.,	2006).

Manual	image	analysis	methods	(e.g.,	size	extraction,	or	measure-
ment	of	RGB	color	as	red,	green,	and	blue),	such	as	those	conducted	
using	ImageJ	(Schneider	et	al.,	2012),	typically	require	protocols	that	
can	be	slow,	labor-	intensive,	and	prone	to	human	error	in	data	han-
dling.	 Thus,	 there	 is	 an	 urgent	 need	 for	 robust	 software	 or	work-
flows	that	focus	researchers’	efforts	on	complex	tasks	that	require	
human	 recognition,	 while	 automating	 monotonous	 tasks	 that	 are	
easily	 programmed	 (e.g.,	 exporting	 results	 to	 spreadsheets).	 Such	
semi-	automated	 image	 annotation	 options	 would	 improve	 scien-
tific	reproducibility	and	support	ecologists	and	biologists	when	ma-
chine	 learning	methods	are	unsuitable.	To	address	these	problems	
and	gaps,	we	present	a	semi-	automated,	free-	to-	use	image	analysis	
workflow	called	SizeExtractR,	built	using	ImageJ	and	R.

2  |  SizeE x trac tR GET TING STARTED

SizeExtractR	 is	 an	 open	 source	 workflow	 that	 enables	 fast	 ex-
traction	of	object	 sizes	 from	scaled	 images	 (i.e.,	 images	contain-
ing	 a	 size	 reference	 scale),	 combining	 the	 accuracy	 of	 human	
recognition	 with	 the	 speed	 of	 semi-	automated	 protocols.	 The	
SizeExtractR	 workflow	 is	 completed	 using	 both	 ImageJ	 and	 R,	
but	 no	 prior	 knowledge	 of	 either	 software	 is	 a	 prerequisite	 for	
usage.	 A	 full	 methodology	 including	 installation	 instructions,	 a	
step-	by-	step	 guide,	 and	 a	 worked	 example	 are	 provided	 in	 the	
Supplementary	User	Guide.	First,	 images	should	be	manually	or-
ganized	by	the	user	either	within	a	single	folder,	or	in	a	directory	
tree	where	 folders	 relate	 to	 some	 consistent	 categorical	 hierar-
chy	(e.g.,	site-	folders	within	year-	folders).	Second,	a	set	of	custom	
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coral	reefs,	image	analysis,	object	dimensions,	population	dynamics,	reproducibility,	size	
frequency	distributions,	size	metrics,	time	saving
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ImageJ	macros	(referred	to	as	SizeExtractR-	macros,	programs	that	
automate	 processes)	 are	 used	 to	 facilitate	manual	 outlining	 and	
annotation	of	objects	and	saving	of	size	data	and	reference	data	
files	 (Figure	1).	These	semi-	automated	macros	are	 initiated	using	
keyboard	shortcuts	and	prompt	the	user	for	input	where	necessary	
(i.e.,	outlining	and	annotating).	By	removing	the	need	for	users	to	
search	through	drop-	down	menus	to	set	tools	in	ImageJ	and	navi-
gate	pop-	up	boxes	to	save	output	files,	this	workflow	saves	con-
siderable	 time.	Users	manually	 outline	 regions	of	 interest	 (ROIs)	

with	 the	 freehand	 tool	 using	 a	 mouse	 or	 touchpad	 hardware.	
Importantly,	 each	 image	 must	 include	 a	 scale	 of	 known	 length	
(e.g.,	ruler)	for	calibration	later.	Finally,	an	R-	package	(referred	to	
as	 the	 SizeExtractR-	package,	 see	 supplementary	 user	 guide	 for	
install	 instructions)	 is	used	to	check	for	human	errors	made	dur-
ing	image	annotation,	perform	size	calibrations,	collate	all	data	to	
build	 a	 single	 size	 dataset,	 and	 plot	 size	 frequency	 distributions	
(Figure	1).	Together,	the	SizeExtractR	ImageJ	macros	and	R	pack-
age	considerably	improves	transparency	and	traceability	(in	terms	

F I G U R E  1 Conceptual	diagram	of	the	SizeExtractR	workflow,	highlighting	the	automated	(A),	interactive	(I,	green),	and	manual	(M)	steps.	
(1)	Preparation:	Images	from	field	or	laboratory	work	that	each	include	a	scale	of	known	length	(e.g.,	10cm	banded	stick),	are	either	put	in	
a	single	folder	(not	shown)	or	organized	among	multiple	folders	with	a	nested	directory	structure	that	will	later	define	optional	categorical	
database	variables	(e.g.,	Year	subfolders	[categories:	1,	2],	within	Site	subfolders	[categories:	1,	2,	3],	within	a	root	folder).	(2)	ImageJ macros: 
The	images	are	annotated	using	SizeExtractR-	macros	and	default	ImageJ	tools	(e.g.,	freehand	tool)	to	outline	all	regions	of	Interest	(ROIs)	and	
label	them	according	to	a	user-	defined	labeling	system	(e.g.,	to	record	user-	defined	categorical	variables,	see	Figure	2).	Three	output	files	are	
produced	per	image:	a	text	file	containing	uncalibrated	ROI	size	measurements	and	alphanumeric	ROI	annotations;	a	zip	folder	containing	
ROI	files;	and	a	reference	image	showing	all	ROI	outlines	and	annotations.	(3)	R-	package:	SizeExtractR-	package	is	then	used	to	(a)	conduct	
quality	control	and	check	ROI	annotations;	(b)	calibrate	size	measurements,	extract	user-	defined	categorical	variables	from	folder	names	and	
ROI	annotation	labels	and	collate	all	data;	and	(c)	plot	size	frequency	distributions	among	categorical	grouping	variables
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of	fully	documenting	work),	and	image	analysis	time,	whilst	reduc-
ing	the	chance	of	human	error	(specifically	in	allocating	the	correct	
user-	defined	categorical	variables	and	naming	of	data	files).

2.1  |  ImageJ- macros

The	 SizeExtractR-	macros	 are	 designed	 to	 improve	 the	 reproduc-
ibility	 and	 speed	 of	 manually	 outlining	 and	 annotating	 objects	 to	
measure	their	size	and	other	categorical	features	 (e.g.,	species	 ID).	
SizeExtractR-	macros	measure	seven	common	size	metrics	that	de-
scribe	the	dimensions	of	irregular-	shaped	objects	(saved	in	ImageJ	as	
ROIs):	area,	circular	equivalent	diameter,	extruded	spherical	volume,	
max/min	Feret's	diameter,	geometric	mean	diameter,	and	perimeter	
length	(Figure	2).	Scale	length	is	also	recorded	(e.g.,	of	a	ruler),	and	
is	used	later	in	R	to	calibrate	the	size	measurements	from	pixels	to	
case-	specific	units	(e.g.,	cm	and	cm2).

SizeExtractR	 is	 also	 used	 to	 facilitate	 the	 recording	 of	 user-	
defined	categorical	variables	that	relate	to	individual	ROIs	(e.g.,	spe-
cies	identity	or	health	status	category),	referred	to	as	‘ROI	Variables’.	
After	outlining	a	ROI,	an	automated	prompt	requests	users	to	manu-
ally	enter	an	alphanumeric	annotation,	or	‘ROI	name	label’.	This	label	
is	composed	of	three	sections	(Figure	2):	Section	1—	the	alphabetical	
ROI	Type,	which	either	classifies	objects	of	interest	(e.g.,	the	study	
species)	or	measurement	scales	in	each	image	(e.g.,	a	ruler);	Section	
2—	the	numerical	ROI	Replicate,	which	is	a	unique	number	given	to	
each	ROI	within	a	specific	image	(see	M1-	M4	in	Figure	2),	facilitating	
post-	hoc	quality	control	and	ROI	re-	analysis;	Section	3—	the	alpha-
betical	ROI	Label	Code,	which	is	optional	and	can	be	used	to	record	
any	additional	notes	relating	to	specific	ROIs	(e.g.,	a	damaged	sam-
ple,	or	different	morphology).

In	 contrast	 to	 categorical	 ROI	 Variables	 which	 differ	 per	
ROI,	 users	 can	 also	 choose	 to	 incorporate	 categorical	 ‘Directory	
Variables’	 which	 are	 instead	 held	 constant	 across	 groups	 of	 ROIs	
(e.g.,	a	group	of	images	from	a	single	site	or	timepoint).	The	catego-
ries	of	Directory	Variables	are	derived	 from	folder	names	and	 the	
directory	structure	in	which	the	images	are	stored	(Figure	2,	where	
Directory	Variable	1	and	2	could	be	site	and	year,	respectively,	with	
consistently	named	folders).

To	permit	SizeExtractR	to	work	properly,	it	is	fundamental	to	set	
up	a	consistent	system	for	labeling	ROIs,	naming	folders,	and	struc-
turing	the	folder	directory	(Figure	1).	This	can	be	achieved	by	follow-
ing	three	simple	steps	in	preparation	for	a	study	using	SizeExtractR.	
(1)	If	you	wish	to	include	Directory	Variables,	then	organize	the	im-
ages	in	a	nested	folder	directory,	and	name	folders	consistently	(e.g.,	
Figure	1).	(2)	Decide	on	the	alphabetical	characters	you	will	use	to	
label	 the	different	ROI	Types	 for	your	 study	 (e.g.,	 taxon	abbrevia-
tions,	Figure	2).	(3)	If	you	wish	to	include	additional	categorical	vari-
ables,	then	decide	on	the	alphabetical	ROI	Label	Codes	to	be	used	
during	annotation.	This	preparation	should	only	take	a	few	minutes.

Finally,	 the	workflow	 in	 ImageJ	 automatically	 saves	 three	 out-
put	 files	 per	 image:	 a	 data	 file	with	 uncalibrated	 size	metrics	 and	
ROI	 name	 labels,	 a	ROI	 zip	 folder	 to	 allow	 later	 reanalyses,	 and	 a	

reference	image	showing	the	annotations	to	view	ROIs	quickly	and	
easily	(Figure	1).

2.2  |  R- package

The	SizeExtractR-	package	contains	a	series	of	interactive	tools	that	
are	used	to	(1)	conduct	quality	control	of	image	annotations	and	ROI	
labeling;	(2)	add	categorical	variables	(Figure	2)	to	the	size	dataset	by	
reading	and	converting	folder	names	and	ROI	name	labels;	(3)	cali-
brate	and	calculate	size	metrics;	and	(4)	create	a	single	size	dataset	
for	the	entire	image	set,	to	be	saved	for	further	analyses.	The	func-
tions	 required	 to	build	 the	size	database	must	be	 run	 in	a	specific	
sequence.	Therefore,	to	avoid	any	coding	mistakes	by	the	user,	an	
additional	 R	 function,	 Full_SizeExtractR_Workflow(),	 is	 in-
cluded	that	runs	through	this	entire	sequence	automatically	and	re-
quests	interactive	user	input	where	necessary.	The	plotting	function	
Plot_Size_Frequency()	aids	data	exploration	and	presentation.	
This	plotting	function	can	be	used	to	compare	size	frequency	distri-
butions	 arising	 directly	 from	 the	 data	 among	different	 categorical	
grouping	variables	(up	to	three	categorical	variables	implemented).	
Further	size	analysis	of	ROI	files	can	be	achieved	using	the	new	R-	
package:	RImageJROI	(Sterratt	&	Vihtakari,	2021).

3  |  C A SE STUDIES AND WORKED 
E X AMPLE

SizeExtractR	has	been	developed	and	used	in	several	research	and	
teaching	projects	across	marine	and	terrestrial	ecology	since	2018.	
These	 include	 published	 studies	 such	 as	 the	 examination	 of	 coral	
population	 size	 structure,	 heat	 stress	 and	 mass	 coral	 bleaching	
(Lachs	 et	 al.,	 2021),	 and	 the	determination	of	 size	 spectra	 and	 in-
ferred	growth	of	nursery-	reared	and	field-	planted	corals	(Humanes	
et	al.,	2021).	Several	ongoing	projects	are	utilizing	SizeExtractR	to	
assess	reproductive	effort	by	measuring	egg	size	from	microscopy	
images,	 quantifying	 population	 size	 structure	 of	 coral	 and	 sea	 ur-
chins	across	large-	scale	latitudinal	gradients	and	estimating	growth	
in	Drosophila	 flies	 to	assess	evolutionary	potential	under	tempera-
ture	stress.	Here	we	explain	the	value	of	SizeExtractR	and	describe	
a	worked	 example	 of	 the	method	 for	 the	 Lachs	 et	 al.	 (2021)	 case	
study.	A	 full	 step-	by-	step	 example	 is	 provided	with	R-	code	 in	 the	
User	Guide	 (covering	 both	 ImageJ	 and	R-	package	 usage)	 and	 as	 a	
vignette	 to	 the	 R-	package	 (covering	 only	 the	 R-	package	 usage)	
(Supplementary	Materials).

Lachs	 et	 al.	 (2021)	 used	 SizeExtractR	 to	 link	 population	 size	
structure,	 heat	 stress,	 and	 coral	 bleaching	 in	 a	 regional	 endemic	
coral	(Pocillopora aliciae)	in	the	Solitary	Islands	Marine	Park,	eastern	
Australia.	 The	 image	 dataset	 comprised	 of	 scaled	 seafloor	 images	
(Figure	2—	note	the	calibration	stick	with	multiple	10cm	bands)	along	
replicate	 transects	 from	2010	 until	 2019	 that	 encompassed	 an	 in-
tense	marine	heatwave	 in	2016	with	associated	mass	coral	bleach-
ing	and	mortality	(Figure	3a).	In	planning	the	image	analysis	and	ROI	
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labeling	 system	 for	 this	 study,	 it	 was	 important	 to	 consider	which	
variables	were	to	be	recorded.	The	size	metric	of	interest	was	planar	
area	(cm2),	easily	captured	using	SizeExtractR-	macros.	The	categor-
ical	Directory	Variables	of	interest	were	year	(6	years),	site	(4	sites/
year),	 and	 transect	 (3	 transects/site/year).	 Thus,	 the	 folders	 were	
named	consistently	and	placed	in	a	nested	structure	(images	within	
transect	folders,	within	site	folders,	within	year	folders,	within	a	sin-
gle	root	directory).	Finally,	the	categorical	ROI	Variables	of	 interest	
were	 bleaching	 status	 (healthy,	moderately	 bleached,	 and	 severely	
bleached),	and	partial	mortality,	given	that	partial	mortality	of	colonial	
organisms	can	occlude	size-	age	relationships	(Figure	3a).	Accordingly,	
the	ROI	labelling	system	used	for	annotations	reflected	these	user-	
defined	 categorical	 variables	 with	 simple	 codes	 (Figure	 3b).	 Note,	
these	labelling	codes	would	be	different	for	every	study.

In	this	example,	the	SizeExtractR	plotting	function,	Plot_Size_
Frequency(),	 was	 used	 to	 compare	 size	 frequency	 distributions	
through	time	quantitatively	(Figure	3c).	A	spike	in	the	abundance	of	
small	P. aliciae	colonies	occurred	in	2010,	which	increased	through	
the	size	classes	until	2016	representing	cohort	growth,	without	ad-
ditional	recruitment	in	other	years	(Lachs	et	al.,	2021).	The	statisti-
cal	significance	of	these	trends	was	then	tested	further	 in	R	using	
generalized	linear	mixed	effects	models.	Such	size	datasets	can	be	
used	for	numerous	other	analyses	 including	timeseries	analysis,	or	
growth	estimation	(multiple	size	surveys	of	individuals	through	time)	
and	population	projections	(e.g.,	integral	projection	modelling).

4  |  TIME SAVING WITH SizeE x trac tR

To	quantify	the	time	saving	benefits	of	using	SizeExtractR-	macros,	
we	 conducted	 an	 image	 analysis	 time	 trial	 on	 a	 subset	 of	 benthic	
images	(N =	40)	from	Lachs	et	al.	(2021),	compared	to	a	fully	manual	
method	using	default	 ImageJ	tools.	Briefly,	 the	manual	method	 in-
volves	opening	an	image	in	ImageJ,	selecting	the	outline	tool,	outlin-
ing	a	coral,	adding	the	outline	to	the	ROI	manager,	renaming	the	ROI,	
and	repeating	for	each	coral	in	the	image,	switching	between	ImageJ	
tools	each	time	by	navigating	through	dropdown	menus.	Once	each	
ROI	 is	 named	 correctly,	 the	 size	metrics	 are	 chosen	 from	 a	 drop-	
down	menu,	results	are	exported	to	a	text	file,	ROIs	saved	to	a	zip	
file,	and	a	reference	image	is	formatted	and	saved,	with	all	output	file	
names	typed	in	manually.	Each	image	was	analyzed	using	both	meth-
ods,	all	corals	per	image	were	annotated,	and	the	image	analysis	time	
per	image	was	recorded	(see	data	in	Supplementary	Materials).	Data	
were	analyzed	using	general	linear	models	(see	full	methodology	in	
the	Supplementary	Materials).

Time	spent	per	 image	was	found	to	 increase	 linearly	with	the	
number	of	corals	per	 image	for	both	analysis	methods	 (Figure	4).	
Importantly,	the	SizeExtractR	method	was	up	to	49%	faster	than	
the	manual	method,	whereby	the	amount	of	time	saved	increased	
with	the	number	of	objects	per	image	(i.e.,	significant	 interaction	
term,	Table	A1).	The	additional	time	saving	for	densely	packed	im-
ages	 (i.e.,	many	objects	of	 interest)	when	using	SizeExtractR	was	

F I G U R E  2 Illustration	showing	the	
variables	that	can	be	measured	and	
recorded	using	SizeExtractR.	(a)	Seven	size	
metrics	are	automatically	measured	with	
SizeExtractR-	macros,	once	ROIs	are	fully	
annotated.	(b)	An	example	annotation	
shows	how	categorical	ROI	Variables	
are	recorded	based	a	simple	labeling	
system.	(c)	Optional	categorical	Directory	
Variables	can	also	be	included	in	analyses	
to	record	additional	notes	on	each	ROI	
and	are	derived	from	folder	names
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most	 likely	 due	 to	 additional	 observer	 fatigue	 for	manual	meth-
ods.	 Specifically,	 the	 manual	 method	 requires	 users	 to	 search	
through	 drop-	down	 menus	 to	 set	 tools	 in	 ImageJ	 and	 navigate	
pop-	up	 boxes	 to	 save	 output	 files;	 steps	 that	 are	 automated	 in	
SizeExtractR-	macros.	Together,	our	results	show	the	SizeExtractR	
method	 took	 approximately	 half	 the	 time	of	 the	manual	method	

with	default	ImageJ	tools,	for	a	given	number	of	corals	per	image.	
Moreover,	human	errors	in	annotating	ROIs	and	saving	output	files	
(e.g.,	 spelling	 mistakes	 or	 overwriting	 data	 files)	 were	 common	
using	the	manual	method	 (~15	min	of	careful	quality	control	was	
needed	after	~2	h	of	annotation),	but	near	non-	existent	when	using	
Size	Extract	R.

F I G U R E  3 Using	SizeExtractR	to	assess	population	size	structure	for	hard	coral	from	scaled	seafloor	photographs	of	the	benthos	(Lachs	
et	al.,	2021;	Sommer	et	al.,	2014).	(a)	The	process	of	coral	bleaching	from	a	healthy	state	until	mortality	is	shown	for	Pocillopora aliciae. The 
user-	defined	ROI	Label	Code	for	recording	moderately	and	severely	bleached	colonies	was	b	and	bb,	respectively,	for	colonies	with	partial	
mortality	was	pm,	no	ROI	Label	Code	denoted	a	healthy	colony,	and	dead	colonies	were	not	analyzed.	(b)	Example	ROI	name	labels	from	
this	case	study	are	shown	with	descriptions,	including	the	automatically	produced	codes	for	calibration	lengths	(M)	and	calibration	points	
(Cali_Pts).	(c)	Temporal	change	in	population	size	frequency	distributions	for	P. aliciae	are	shown	as	the	direct	output	of	the	SizeExtractR	
plotting	function,	Plot_Size_Frequency().	Notably,	all	surveys	occurred	in	Austral	winter,	except	for	the	2016	bleaching	survey	in	
Austral	summer
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5  |  SUMMARY

In	 ecology,	 there	 is	 a	 growing	 need	 for	 tools	 and	workflows	 that	
allow	for	reproducible	extraction	of	object	sizes	from	scaled	images	
(Weinstein,	2018).	Despite	advancements	in	flexibility	and	accessi-
bility	in	recent	years,	machine	learning	image	analysis	techniques	are	
often	unsuitable	for	specific	 image	datasets,	either	due	to	difficul-
ties	in	adapting	models	to	new	purposes,	budget,	timeframe,	or	level	
of	expertise	 required.	Here,	we	present	SizeExtractR	as	an	adapt-
able	workflow	solution	to	these	problems.	SizeExtractR	comprises	
a	user-	friendly	 ImageJ-	macro	and	an	R-	package	 for	measuring	 the	
dimensions	of	irregular	shaped	objects	in	scaled	images	using	seven	
common	 size	metrics.	 Combining	 the	 accuracy	 of	 human	 recogni-
tion	with	the	speed	of	semi-	automated	protocols,	SizeExtractR	sits	
between	fully	manual	 image	analysis	methods	(e.g.,	 ImageJ	default	
tools,	Schneider	et	al.,	2012)	and	automated	machine	learning	image	
analysis	methods	 (e.g.,	CoralSeg,	Alonso	et	al.,	2019).	SizeExtractR	
offers	high	levels	of	transparency	and	traceability	(in	terms	of	fully	
documented	outputs	including	ROI	outline	images)	and	quality	con-
trol	 to	researchers.	By	providing	automated	saving	of	output	files,	
SizeExtractR	 can	 facilitate	 the	 scientific	 peer	 review	 process	 and	
allows	researchers	to	re-	check	or	add	to	their	earlier	 image	analy-
sis	work.	 Future	directions	 include	 the	 inclusion	of	 additional	 size	
metrics	and	improving	the	user	interface	for	the	R-	based	portion	of	

the	workflow	(e.g.,	an	 interactive	Shiny	App).	SizeExtractR	 is	open	
source,	offers	features	that	promote	openness,	and	replicability	 in	
science,	 and	 has	 numerous	 potential	 applications	 across	 ecology,	
evolution,	botany,	and	other	scientific	disciplines.
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APPENDIX 

TIME TRIAL ME THODS AND STATISTIC AL RE SULTS
We	conducted	an	image	analysis	time	trial	on	a	subset	of	benthic	images	(N =	40)	from	Lachs	et	al.	(2021)	to	quantify	the	timesaving	benefits	
of	using	SizeExtractR-	macros,	compared	to	a	fully	manual	method	using	default	ImageJ	tools.	Each	image	was	analyzed	using	both	methods,	
all	corals	per	image	were	annotated,	and	the	image	analysis	time	per	image	was	recorded.	Half	of	the	images	were	analyzed	with	SizeExtractR	
first,	while	the	other	half	were	analyzed	using	the	manual	method	first,	to	check	for	issues	relating	to	recognition	of	an	image	previously	ana-
lyzed.	After	collating	the	data	using	the	SizeExtractR,	the	total	number	of	coral	colonies	was	computed	per	image.	Notably,	the	image	analysis	
workload	was	shared	between	two	observers	(L.L.	and	F.C.).	The	degree	to	which	time	spent	on	analysis	(per	photo)	(continuous	response)	was	
affected	by	the	analysis	method	(categorical	predictor),	the	number	of	corals	per	photo	(numerical	predictor)	was	tested	using	a	general	linear	
model.	Observer	ID	(categorical	predictor)	and	Method	First	(categorical	predictor)	were	additional	potential	sources	of	variation	that	were	
included	in	the	full	model.	The	predictors	in	this	model	were	then	reduced	using	backward	selection	of	non-	significant	predictors	one	at	a	time.

TA B L E  A 1 Results	of	multiple	regression	relating	to	Figure	4	in	the	main	manuscript,	showing	the	relationship	between	time	spent	
per	image	(continuous	response)	and	various	covariates:	analysis	method	(categorical	predictor),	number	of	corals	per	image	(continuous	
predictor),	their	interaction,	and	other	sources	of	potential	error	observer	ID	(categorical	predictor),	and	Method	First	(categorical	predictor).	
The	reduced	and	then	final	models	were	formed	after	backward	selection	removal	of	non-	significant	predictors	starting	from	the	full	model

Model Predictor Estimate SE T value p Value

Full Intercept 2.29 0.39 5.86 <.001

Method-	SizeExtractR 0.23 0.02 13.15 <.001

No.	corals −1.13 0.45 −2.51 <.05

Observer.ID-		L.L. −0.24 0.19 −1.28 >.05

Method.	First-	SizeExtractR 0.29 0.17 1.76 >.05

No.	corals*Method-	SizeExtractR −0.09 0.02 −4.12 <.001

Reduced Intercept 2.88 0.31 9.17 <.001

Method-	SizeExtractR 0.20 0.01 14.53 <.001

No.	corals −1.48 0.38 −3.93 <.001

Observer.ID-	Lachs −0.26 0.16 −1.65 >.05

No.	corals*Method-	SizeExtractR −0.07 0.02 −3.64 <.001

Final Intercept 2.61 0.27 9.75 <.001

Method-	SizeExtractR 0.21 0.01 15.96 <.001

No.	corals −1.48 0.38 −3.91 <.001

No.	corals*Method-	SizeExtractR −0.07 0.02 −3.62 <.001

The p	Values	of	significant	predictors	for	on	alpha	level	of	.05	are	shown	in	bold.


