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Abstract—The fast Fourier transform (FFT) via the least-square active
element pattern expansion (LSAEPE) is generalized to speed up the
computation of array patterns including mutual coupling and platform
effect for time-modulated antenna arrays (TMAAs) at the central and
sideband frequencies. By integrating the LSAEPE-FFT with differential
evolution algorithm (DEA), the resulting DEA-LSAEPE-FFT method
can realize efficient shaped pattern synthesis with accurate control of
mainlobe shape, sidelobe level (SLL) and sideband level (SBL). Two
examples of synthesizing different shaped patterns for different TMAAs
mounted on a nonuniform platform or with metal scatters are conducted
to validate the effectiveness and robustness of the proposed method.
Synthesis results show that the proposed method has much better
accuracy performance than the conventional DEA-FFT while costing
much less CPU time than that of using DEA combined with direct
summation.

Index Terms—Time modulated antenna array (TMAA), least-square
active element pattern expansion (LSAEPE), fast Fourier transform
(FFT), differential evolution algorithm (DEA), mutual coupling.

I. INTRODUCTION

SHAPED beam antenna arrays have been widely used in many
applications such as satellite communication, sensing and radar

systems. In the past several decades, many advanced shaped pat-
tern synthesis methods have been presented, such as the analytical
techniques [1], [2], alternating projection methods [3], mathematical
optimization techniques [4], [5], and stochastic optimization algo-
rithms [6], [7]. However, in order to achieve the desired shaped
radiation patterns, most of these methods aim at optimizing both
the static excitation amplitudes and phases. This requires a relatively
complicated radio-frequency (RF) feeding network for implementing
simultaneous amplitude and phase weighting. In particular, multiple
unequal power dividers need be carefully designed.

It is known that using time modulation through controlling the
high-speed RF switches can realize an equivalent amplitude weight-
ing for antenna arrays [8]. This idea has been widely applied to
obtain low-sidelobe focused beam patterns [9]–[14] as well as shaped
power patterns [15]–[18], by using either uniform static excitation
amplitudes or a relatively low dynamic range ratio (DRR) of static
amplitudes. By periodically controlling the ‘switch-on’ time durations
of the RF switches, various equivalent amplitude distributions can
be generated, and in particular some complicated asymmetrical
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excitation distributions can be easily obtained. Thus time-modulated
antenna arrays (TMAAs) are suitable for producing shaped patterns
with electrically adjustable pattern shapes and sidelobe distributions.
However, most of shaped pattern synthesis techniques for time-
modulated antenna arrays deal with only the array factor, and the
mutual coupling and platform effect for a practical TMAA is usually
ignored in the pattern synthesis. This causes the synthesized TMAA
pattern deviating from the real one where mutual coupling cannot
be simply ignored for most antenna array structures. To solve the
problem, one can introduce simulated or measured active element
patterns into the TMAA pattern synthesis so that the mutual coupling
is included [19]. In [20], an iterative convex optimization method is
presented in which mutual coupling and port matching have been
effectively incorporated into the TMAA synthesis by considering
the AEP and active reflection coefficient (ARC). A detailed analysis
of mutual coupling effect on the TMAA pattern in both time and
frequency-domain can be found in [21].

For a typical TMAA using single-pole single-throw (STST) switch-
es, synthesizing a shaped pattern usually requires to optimize the time
modulation parameters such as ‘switch-on’ time durations, starting
instants and possible excitation phases for the elements. This is
usually done by calling some stochastic optimization algorithms such
as the differential evolution algorithm (DEA) [22]–[25]. In these
algorithms, a large number of repeated computations of array patterns
at central frequency and sidebands are required which cost the most
part of the whole time cost for this optimization problem. As is
known, the Fourier transform (FT) relationship exists between the
excitation distribution and array factor of a uniformly spaced array.
This relationship has been widely utilized in efficient pattern synthesis
for conventional frequency-domain arrays [26]–[28]. In the TMAA
application, relatively less discussion has been given to the problem
of efficient array pattern computation. Nevertheless, few techniques
in [29]–[31] have been presented to apply the FT relationship to
speed up the TMAA pattern computation. However, these efficient
techniques process only the array factor without considering mutual
coupling since the regular FFT used cannot deal with the variation
of element patterns among different elements of a practical TMAA.
To the best of our knowledge, how to apply the FFT to efficiently
synthesize a shaped pattern with accurate control of mainlobe shape,
sidelobe distribution and sideband level for the TMAA including
mutual coupling remains a very challenging problem.

In this work, we introduce a least-square active element pattern
expansion (LSAEPE) method to deal with the pattern synthesis of
linear TMAAs including mutual coupling and platform effect. The
LSAEPE was integrated into the iterative FFT procedure for efficient
pattern synthesis of conventional frequency-domain antenna arrays
including mutual coupling [32], [33]. In this method, active element
patterns (AEPs) are adopted to include mutual coupling in the array
pattern [34], and each AEP is approximated as the radiation from
several nearby virtual elements that are free of mutual coupling
so that the AEP can be approximated by a weighted summation
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of several phase-shifted element patterns. The optimal weighting
coefficients can be obtained by minimizing the LS approximation
error. In this work, the FFT via LSAEPE is further generalized to
deal with the efficient pattern computation for linear TMAAs. The
approximated array pattern expressions by using the LSAEPE at both
central and sideband frequencies are derived so that the FFT can be
applied to speed up the computation of array pattern including mutual
coupling of a TMAA at all harmonic frequencies. This LSAEPE-FFT
is integrated into the DEA optimization so that appropriate ’switch-
on’ time durations, starting instants and static excitation phases can
be efficiently found for producing a desired pattern with accurate
control of mainlobe shape, sidelobe level (SLL) and sideband level
(SBL). Two examples of synthesizing cosecant-squared and flat-top
patterns for different linear TMAAs mounted on different platforms
are conducted to validate the effectiveness and advantages of the
proposed technique.

II. METHODOLOGY AND ALGORITHMS

A. Time-modulated antenna array with mutual coupling

Consider a time-modulated antenna array (TMAA) consisting of
N antenna elements with spacing of d aligned at x-axis. As shown
in Fig. 1, each element in the array is connected to a phase shifter
followed by a high speed RF switch. Here assume that uniform
static excitation amplitude is used for each element. The array pattern
including mutual coupling can be written as

F (u, t) = ej2πf0t
N−1∑
n=0

Un(t)ejφngn(u)ejβndu (1)

where u = sin θ, β = 2πf0/c is the wavenumber at the central
frequency f0, φn is the excitation phase for the nth element, Un(t)
is the periodic time-modulation function used to model the status
of the RF switch for nth element, and gn(u) is the active element
pattern (AEP) of the nth element which can be used to include mutual
coupling and platform effect on the array pattern performance [34].

Assume that the time modulation function is modeled as a periodic
pulse function that can be given by [11]

Un(t) =

{
1, ton

n ≤ t ≤ ton
n + tpin

n

0, otherwise
(2)

where ton
n is the switch-on instant of the n-th element, and tpin

n is
the ‘switch-on’ duration time over one period of TP . In general, we
have 0 ≤ ton

n ≤ TP and 0 ≤ tpin
n ≤ TP . Such a time modulation is

called the pulse shifting (PS) mode for the TMAA [11]. When all ton
n s

are equal to zeros, it reduce to the variable aperture size (VAS) mode
[25]. By expanding the periodic function Un(t) as the sum of Fourier
series, we obtain the array patterns at the central frequency f0 and
mth sideband frequency fm = f0+mfP (m = 0,±1,±2, · · · ,±∞)

Fm(u) =

N−1∑
n=0

sin(mπτ pin
n )

mπ
e
−jmπ(τpin

n +
2ton

n
Tp

)
ejφngn(u)ejβndu (3)

where τ pin
n = tpin

n /TP is the normalized ‘switch-on’ duration time,
and fP = 1/TP is the time modulation frequency. Usually, we have
Tp � 1/f0 and thus fP � f0. In this situation, the AEP gn(u)
remains almost unchanged over the sideband frequencies nearby the
central frequency (e.g., |m| ≤ 2).

B. Efficient Computation of TMAA Array Patterns Including Mutual
Coupling using FFT via LSAEPE

Due to the mutual coupling effect in the antenna array environment,
the AEPs vary among different elements. Consequently, the array
pattern expression in (3) cannot be efficiently computed by using
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Fig. 1. Schematic diagram of a TMAA with RF switches and phase shifters.

the regular FFT and it is usually obtained by direct summation [11].
Here, we introduce a least-square active element pattern expansion
(LSAEPE) method which was presented in [32] to deal with the
efficient computation of the array pattern including mutual coupling
for conventional antenna arrays without time-modulation. The basic
idea of the LSAEPE is approximating the AEP of an antenna element
as a radiation pattern from a virtual subarray consisting of several
nearby elements round this element. This virtual subarray is assumed
to be free of mutual coupling, and thus each element has the same
element pattern that is approximately obtained by averaging all the
original AEPs. That is, finding the following approximation for n =
0, 1, · · · , N − 1

gn(u) ≈ gave(u)

Q/2∑
q=−Q/2

cn,qe
jβqdu (4)

where Q is the number of elements used to approximate the AEP, and
gave(u) =

∑N−1
n=0 gn(u)/N represents the averaged element pattern.

To deal with the edge elements, Q/2 virtual elements should be added
into each side of the concerned array. Thus, the virtual enlarged array
has a total of (N + Q) elements. The coefficient cnq denotes the
coupling contribution from the (n+q)th element to the nth element,
and it can be obtained by solving the following LS minimization
problem

min
cn
‖gn − Zcn‖22 (5)

where
cn =

[
c
n,−Q

2
, c
n,−Q

2
+1
, · · · , c

n,Q
2

]T
(6)

gn = [gn(u1), gn(u2), · · · , gn(uM )]T (7)

Z =


gave(u1)ejβdu1(−Q

2
) · · · gave(u1)ejβdu1(

Q
2
)

...
. . .

...
gave(uM )ejβduM (−Q

2
) · · · gave(uM )ejβduM (Q

2
)


(8)

The solution to the above problem is given by cn = (ZHZ)−1ZHgn.
By incorporating the approximate expansion of (4) into (3), the

array pattern at mth harmonic frequency can be rewritten as:

Fm (u) = gave (u) e−jβdu
Q
2

L−1∑
l=0

a
(m)
l ejβldu (9)

where L = N +Q, and

a
(m)
l =

∑
l=n+q+Q/2
−Q/2≤q≤Q/2

cn,qw
(m)
n (10)

w(m)
n =

{
τ pin
n ejφn , m = 0

sin(mπτpin
n )

mπ
e
jφn−jmπ(τpin

n +
2ton

n
Tp

)
, m 6= 0

(11)

It is observed that with the help of the LSAEPE, the array pattern at
either the central frequency or each harmonic frequency fm (m =
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0,±1, · · · ,±∞) can be approximated as the discrete spatial Fourier
transform of the excitation distribution {a(m)

l } for the virtual enlarged
array. By uniformly sampling the variable u with uk = k∆u where
∆u = 2π/(Kβd) and k = −K/2, · · · ,K/2 (K ≥ L), we have

Fm(k∆u) = gave(k∆u)e−jπQk/K
L−1∑
l=0

a
(m)
l ej2πlk/K (12)

Clearly, the above summation can be efficiently computed by using
the regular FFT. If the radix-2 FFT is used, computing K-point
pattern results at each fm will require about K/2 log2K+(Q+1)L+
K + N complex multiplications while it requires about NK + N
complex multiplications for the case of using direct summation.

C. Shaped Pattern Optimization for TMAA Using DEA-FFT-LSAEPE

The problem concerned is obtaining a desired shaped mainlobe
at a central frequency while suppressing the sidelobe level (SLL)
and sideband level (SBL) by optimizing the normalized ‘switch-on’
time τ pin

n , starting instant ton
n and static excitation phase φn for n =

0, 1, · · · , N − 1 in the TMAA. By setting the optimization vector
v = {(τ pin

0 , ton
0 , φ0), · · · , (τ pin

N−1, t
on
N−1, φN−1)}, this problem can be

formulated as minimizing the following fitness function

f (v) =
W1

NS

∑
us∈US

∣∣|F0(us;v)|2 − Pd(us)
∣∣

+W2|SLLmax (v)− SLLd|2H (SLLmax (v)− SLLd)
+W3|SBLmax (v)− SBLd|2H (SBLmax (v)− SBLd)
+W4|ηsw (v)− ηd|2H (ηsw (v)− ηd)

(13)

where the parameters W1, W2, W3 and W4 are weighting factors
which are used to penalize the terms with appropriate weights in the
cost function. us ∈ US denotes the shaped mainlobe region in u-
space, NS is the number of pattern sampling points in this region ,
Pd(us) denotes the desired mainlobe power distribution, and H(·)
denotes a heaviside function. SLLmax(v) = max

u/∈US

|F0(u;v)|2 de-

notes the maximum SLL at the central frequency, and SBLmax(v) =
max{max

u
|F±1(u;v)|2, · · · ,max

u
|F±M (u;v)|2} denotes the maxi-

mum SBL among M harmonic components. For typical VAS and PS
modes, we consider only the first harmonic component (i.e., M = 1)
since the SBL is decaying with the index of harmonic frequency. ηsw

is the switch efficiency defined by ηsw =
∑N
n=1 τ

pin
n /N in [35].

The optimization of the ‘switch-on’ time τ pin
n , starting instant

ton
n and static excitation phase φn is a highly non-linear problem.

Thus, generally some stochastic optimization algorithms will be
adequate. Here we choose to utilize the differential evolution al-
gorithm (DEA) since it is a simple but powerful stochastic glob-
al optimizer. The DEA has been proved to be a very effective
algorithm for solving many antenna array synthesis problems in-
cluding the TMAA optimization [22]–[25]. Like the genetic algo-
rithm, the DEA is also a population-based algorithm which finds
the optimal solution through a number of population updating. In
the DEA-based optimization, Np individuals consisting of different
v = {(τ pin

0 , ton
0 , φ0), · · · , (τ pin

N−1, t
on
N−1, φN−1)} will be randomly

generated in the beginning, and their fitness values will be evaluated
by using the fitness function (13). Then, in each generation, the
optimal individual will be mutated to produce trail vectors which
are then used to carry out the crossover operation with other non-
optimal individuals to generate new individuals. The new generated
individuals will compete with the non-optimal who generate them in
the crossover for a position to the next generation. The evolution will
continue unless the optimal individual remain unchanged for many
times or the allowed maximum generation Mg is reached. Clearly, a

huge number of repeated calculations of (13) are required in the DEA
to evaluate the performance of every individual of the population in
iteration. Fortunately, we can adopt the FFT via LSAEPE to speed
up the computation of the array patterns at the central frequency and
sideband as shown in (12). Note that in the LSAEPE method, for
different individuals with varying (τ pin

n , φn) for n = 0, · · · , N − 1,
all the coupling coefficients cn,q need to be computed only once for
a given antenna array geometry. The resulting synthesis procedure
is called the DEA-LSAEPE-FFT method which can save much CPU
time compared with the way of using the DEA combined with direct
summation in (3). Note that this method can be directly applied to the
pattern synthesis for the TMAA with VAS mode by simply presetting
all ton

n s to be zeros.

III. NUMERICAL RESULTS

In this section, two examples for synthesizing a cosecant-squared
pattern for a TMAA with microstrip antenna elements and a flat-
top pattern for a TMAA with many nearby scatters are provided to
validate the effectiveness and robustness of the proposed strategy. The
comparison with other methods is also given in the examples. All the
synthesis examples except for the part of full-wave simulation were
run in the same personal computer with Intel Core i3-4160@3.6GHz
and 4 GB RAM.

A. Cosecant-squared pattern synthesis for a TMAA with 48 mi-
crostrip antenna elements backed on a trapezoidal metal ground

In the first example, we consider synthesizing a cosecant-squared
pattern for a 48-element TMAA backed on a trapezoidal metal ground
with VAS mode. The geometry of this array is shown in Fig. 2. The
microstrip antennas elements work at the central frequency of 2.45
GHz, and the element spacing is 48.95 mm that is about 0.4λ at
2.45 GHz. Assume that the desired pattern has a cosecant-squared
mainlobe shape at the central frequency and the pattern levels at the
sidelobe region and the first sideband is less than a −22 dB bound
(i.e., SLLd = SBLd = −22 dB), as shown in Fig. 3. Now, we
consider to apply the time modulation technique to produce such a
shaped pattern. Assume that the VAS mode with a time modulation
frequency of fP = 1 MHz is adopted in this example. First, we apply
the DEA-FFT method to optimize the normalized ‘switch-on’ time
τ pin
n and static excitation phase φn for n = 0, 1, · · · , N − 1. In this

method, the array pattern is synthesized without considering mutual
coupling and element characteristics. For the DEA optimization, the
number of individuals in the population is set as Np = 288 that
is three times of the number of optimization variables, and the
allowable maximum umber of iterations is set as Mg = 3000. The
number of pattern sampling points is set as K = 1024, and the
weighting factors in the fitness function are chosen as W1 = 0.5 and
W2 = W3 = W4 = 1. The obtained array patterns at the central
frequency and the first sideband are shown in Fig. 3(a). As can be
seen, the synthesized mainlobe at the central frequency approximates
the desired cosecant-squared shape very well, and the SLL as well
as the SBL also reach their boundary requirements. However, when
considering the real antenna array structure, the real array patterns
at the central and sideband frequencies by using full-wave simulated
AEPs with the equivalent excitations calculated by the same ’switch-
on’ durations and excitation phases at the corresponding frequencies
deviates much from the synthesized ones. As shown in Fig. 3(a),
the synthesized real pattern mainlobe is considerably higher than the
desired shape in the region of θ ∈ [−25◦,−5◦] and the maximum
mainlobe deviation from the desired one is 0.71 dB. The SLL and
SBL for the real patterns are−18.32 dB and−19.91 dB, respectively.
The real SLL is 3.68 dB higher than the desired upper bound.
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Fig. 2. The geometry of a TMAA with 48 microstrip patch antenna elements
backed on a trapezoidal metal ground.
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Fig. 3. The synthesized patterns as well as the corresponding real array
patterns including mutual coupling and platform effect obtained by using
simulated AEPs with the equivalent excitations calculated by the same
‘switch-on’ durations and excitation phases. The results are obtained by (a)
the DEA-FFT and (b) the proposed DEA-LSAEPE-FFT, respectively.

Fig. 4. Approximation error ε versus different (Q+ 1) in Example 1.

Now, we apply the proposed DEA-LSAEPE-FFT method to syn-
thesize the same desired pattern for this TMAA. All the simulated
AEPs are used, and each AEP is approximated by (Q + 1) virtual
elements. The expansion approximation error can be given by

ε =

∑N−1
n=0 ‖gn −Zcn‖22∑N−1

n=0 ‖gn‖22
(14)

Fig. 4 shows the error ε versus different (Q + 1) for this TMAA.
As can be seen, as the expansion size of (Q + 1) increases, the
approximation error ε decreases stably. In this example, we choose
Q = 2 for ε ≤ 1% to achieve a good balance between efficiency and
accuracy performances. The parameters setting for the DEA is the
same as that of the DEA-FFT. The obtained synthesized and real array
patterns (with approximated and real AEPs, respectively) at central
frequency and first sideband are given in Fig. 3(b). As can be seen,
the synthesized array patterns agree well with the real ones at both
central frequency and sideband. The maximum mainlobe deviation
from the desired shape is only 0.15 dB that is much smaller than the
0.71 dB deviation by the DEA-FFT. The SLL and SBL are −21.61
dB and −21.88 dB, respectively, and they are much lower than the
corresponding results by the DEA-FFT. The maximum gains of the
cosecant-squared mainlobe are 11.72 dB and 12.03 dB for the DEA-
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Fig. 5. The synthesized normalized switch-on time durations for the cosecant-
squared pattern of the 48-element TMAA with VAS mode by (a) the DEA-FFT
and (b) the DEA-LSAEPE-FFT.
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Fig. 6. The synthesized static excitation phases for the cosecant-squared
pattern by the DEA-FFT and the proposed DEA-LSAEPE-FFT.

FFT and the proposed DEA-LSAEPE-FFT method, respectively.
Fig. 5 and 6 show the normalized ‘switch-on’ duration times

and static excitation phases obtained by the DEA-FFT and the
proposed DEA-LSAEPE-FFT, respectively. Due to the inclusion of
the mutual coupling and platform effect, the synthesized results by
the proposed method considerably vary from those by the DEA-
FFT. In this example, the DEA-FFT takes 1.78 minutes, and the
proposed method takes about 1.98 minutes. It should be noted that
if the direct summation in (3) is used to include the mutual coupling
and platform effect, the whole DEA-based optimization costs 9.83
minutes to obtain synthesis results that are comparable to those by the
proposed DEA-LSAEPE-FFT. The summary of the synthesis results
obtained by the three methods are provided in Table I. We can see
that the proposed method has much better accuracy performance than
the conventional DEA-FFT while costs much less CPU time than the
method using the DEA combined with direct summation.

B. Flat-top pattern of a TMAA with bowtie antenna elements sur-
rounded by some nearby scatters

In the second example, we consider synthesizing a shaped pattern
for a TMAA in a more complicated environment. As shown in Fig. 7,
the TMAA has 20 printed bowtie antenna elements working at the
central frequency of 9.82 GHz. The element spacing is 15.25 mm that
is about 0.5λ at 9.82 GHz. This array is surrounded with some metal
scatters that model mechanical parts such as fixtures or supporting
structures in a practical environment. In this example, assume that
the PS mode with a time modulation frequency of fP = 1 MHz
is adopted. The desired pattern at the central frequency is assumed
to have a flat-top mainlobe in the region θ ∈ [−15◦, 15◦], and
the desired SLL is set as −22 dB in the region of |θ| ≥ 21.5◦.
The SBL bound is also set as −22 dB. For comparison, we also
apply the conventional DEA-FFT, the DEA combined with direct
summation and the proposed DEA-LSAEPE-FFT to synthesize this
example. The number of optimization variables is 60 by using the
PS time modulation. We set Np = 180 for the population size,
and other parameters including the maximum iterations, the number
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TABLE I
THE PERFORMANCE SUMMARY OF SYNTHESIZING COSECANT-SQUARED AND FLAT-TOP PATTERNS BY THE THREE METHODS

Synthesis Method

Cosecant-squared pattern case (N = 48, VAS time modulation)
The synthesized array pattern The real pattern using AEPs

Ripple SLLmax SBLmax Ripple SLLmax SBLmax ηsw Time
(dB) (dB) (dB) (dB) (dB) (dB) (min)

DEA-FFT ±0.11 −21.83 −21.94 ±0.71 −18.32 −19.91 67.2% 1.78
DEA-LSAEPE-FFT ±0.12 −21.86 −21.92 ±0.15 −21.61 −21.88 69.3% 1.98

DEA+direct sum – – – – – – ±0.20 −21.72 −21.81 67.8% 9.83

Flat-top patten case (N = 20, PS time modulation)
DEA-FFT ±0.41 −21.98 −22.05 ±1.82 −17.82 −20.76 55.7% 1.33

DEA-LSAEPE-FFT ±0.26 −21.96 −22.10 ±0.40 −21.07 −22.16 54.6% 1.47
DEA+direct sum – – – – – – ±0.32 −21.58 −22.02 53.9% 4.95

Fig. 7. The geometry of a TMAA with 20 bowtie antenna elements
surrounded with some metal scatters.

Fig. 8. Approximation error ε versus different (Q+ 1) in Example 2.

of pattern sampling points and the weighting factors are used as the
same as those in Example 1. In this example, the approximation error
ε versus different (Q + 1) is shown in Fig. 8. Due to the presence
of nearby scatterers, the approximation error is considerably higher
than that of the first example. In this case, Q = 12 is required for
the approximation error ε ≤ 1%.

Fig. 9(a) and (b) show the synthesized and real array patterns
obtained by the DEA-FFT and the proposed method, respectively.
It can be seen that although the synthesized array patterns at both
central frequency and sideband by the DEA-FFT are satisfactory,
the performance of the corresponding real array patterns deteriorates
significantly due to the mutual coupling and scattering effect. The
SBL is increased from −22.05 dB to −20.76 dB and the SLL is
increased from −21.98 dB to −17.82 dB. This is not the case for
the proposed method. Due to the usage of the AEPs by the LSAEPE-
FFT, the synthesized and real array patterns by the proposed method
match very well with each other at both the central frequency and
sideband, as shown in Fig. 9(b). The SLL and SBL for the real
patterns are −21.07 dB and −22.16 dB, respectively. The averaged
gain over the mainlobe region is 11.86 dB and 11.73 dB obtained
by the DEA-FFT and the proposed method, respectively. Fig. 10 and
Fig. 11 show the normalized ’switch-on’ time sequences and static
excitation phases obtained by the DEA-FFT and the proposed DEA-
LSAEPE-FFT, respectively.

The results obtained by the DEA combined direct summation are
similar as those by the proposed method. The pattern performances
by all the three methods for this array are also summarized in Table
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Fig. 9. The synthesized flat-top patterns as well as the corresponding real
array patterns for the 20-element TMAA with PS mode including mutual
coupling and platform effect. The results are obtained by (a) the DEA-FFT
and (b) the proposed DEA-LSAEPE-FFT, respectively.

0 5 10 15 20
Elem. Index

0

0.5

1

N
or

m
al

. t
im

e 
se

qu
en

ce

(a)

0 5 10 15 20
Elem. Index

0

0.5

1

N
or

m
al

. t
im

e 
se

qu
en

ce

(b)

Fig. 10. The synthesized normalized switch-on time durations for the
cosecant-squared pattern by (a) the DEA-FFT and (b) the DEA-LSAEPE-
FFT.
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Fig. 11. The synthesized static excitation phases for the flat-top pattern by
the DEA-FFT and the proposed DEA-LSAEPE-FFT.

I. The time costs are 1.33, 1.47 and 4.95 minutes for the DEA-FFT,
the proposed method and the DEA plus direct summation. Again,
the proposed method costs much less CPU time while obtaining as
good pattern performance as that of the DEA combined with direct
summation.
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IV. CONCLUSION

In this paper, a novel shaped pattern synthesis method called
the DEA-LSAEPE-FFT has been proposed to synthesize shaped
patterns by optimizing the ‘switch-on’ time durations, starting instants
and static excitation phases of TMAAs. By generalization of the
LSAEPE-FFT, the array patterns of a TMAA including mutual
coupling and platform effect at central frequency and sideband can
be efficiently computed. Two examples for synthesizing a cosecant-
squared pattern for a 64-element TMAA with VAS mode on a
trapezoidal metal ground and a flat-top pattern for a 32-element
TMAA with PS mode surrounded with some metal scatterers are
provided. Synthesis results show that the proposed method can obtain
much more accurate synthesis results with better control of mainlobe
shape, SLL and SBL than the conventional DEA-FFT while costing
much less CPU time than the DEA conbined with direct summation.
On the other hand, it is also mentioned that the current technique
is based on the typical TMAA structure using SPST switches, and
static phase shifters are required to radiate a shaped pattern at the
central frequency. These static phase shifters can be probably avoided
if adopting a non-uniform period modulation presented in [14] where
reconfiguring among several delay lines is used in each channel.

Finally, it should be noted that the proposed idea can be further
generalized to efficiently synthesize the pattern of a planar TMAA.
However, in that situation, one would deal with a vectorial array
pattern probem by considering both ~eθ- and ~eφ-polarized compo-
nents. In addition, all the AEPs obtained in (θ, φ)-space should be
interpolated onto the (u, v)-space such that the FFT via LSAEPE can
be performed to speed up the pattern computation for planar TMAAs.
Such an extension is very interesting and worthy of further study.
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