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Abstract 31 

Soil erosion hazard is one of the prominent climate hazards that negatively impact countries’ 32 

economies and livelihood. According to the global climate index, Sri Lanka is ranked among 33 

the first ten countries most threatened by climate change during the last three years (2018- 34 

2020). However, limited studies were conducted to simulate the impact of the soil erosion 35 

vulnerability based on climate scenarios. This study aims to assess and predict soil erosion 36 

susceptibility using climate change projected scenarios: Representative Concentration 37 

Pathways (RCP) in the Central Highlands of Sri Lanka. The potential of soil erosion 38 

susceptibility was predicted to 2040, depending on climate change scenarios, RCP 2.6 and RCP 39 

8.5. Five models: revised universal soil loss (RUSLE), frequency ratio (FR), artificial neural 40 

networks (ANN), support vector machine (SVM) and adaptive network-based fuzzy inference 41 

system (ANFIS) were selected as widely applied for hazards assessments. Eight geo-42 

environmental factors were selected as inputs to model the soil erosion susceptibility. Results 43 

of the five models demonstrate that soil erosion vulnerability (soil erosion rates) will increase 44 

4% - 22% compared to the current soil erosion rate (2020). The predictions indicate average 45 

soil erosion will increase to 10.50 t/ha/yr and 12.4 t/ha/yr under the RCP 2.6 and RCP 8.5 46 

climate scenario in 2040, respectively. The ANFIS and SVM model predictions showed the 47 

highest accuracy (89%) on soil erosion susceptibility for this study area. The soil erosion 48 

susceptibility maps provide a good understanding of future soil erosion vulnerability (spatial 49 

distribution) and can be utilized to develop climate resilience. 50 

Keywords: Soil erosion susceptibility; GIS; Adaptive Neuro-Fuzzy Interface; Climate change 51 

scenarios; Sri Lanka  52 

 53 

1. Introduction 54 

Every year, a considerable number of natural disasters take place all over the world. Many 55 

countries have suffered from extreme weather events due to the impacts of climate change 56 

(Aryal et al., 2020). The global climate risk index indicates to what extent countries and regions 57 

have been affected by extreme climate events (floods, cyclones, heat waves etc.). The global 58 

climate index shows that Sri Lanka was ranked third, second, and sixth from 2018 to 2020, 59 

consecutively (Eckstein et al., 2019). Heavy rainfall, floods, droughts, and many landslide 60 

incidents were common in Sri Lanka (Alahacoon et al., 2018: Senanayake et al., 2020). 61 

Increasing rainfall and changes in rainfall patterns have been apparent during the past few 62 

https://www.carbonbrief.org/analysis-four-years-left-one-point-five-carbon-budget
https://www.carbonbrief.org/analysis-four-years-left-one-point-five-carbon-budget
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decades (Nisansala et al., 2020). Due to these climate impacts, the country lost a substantial 63 

part of its productive land and millions of dollars in revenues.   64 

The Intergovernmental Panel on Climate Change (IPCC) has reported, the global mean 65 

precipitation and the surface temperature have changed significantly during the past few 66 

decades and will continue to the next century (IPCC, 2015). The warming climates increase 67 

the frequency and extent of climate hazards such as droughts and floods. The IPCC’s fifth 68 

assessment report (AR5) has focused on four future warming scenarios (RCP2.6, RCP4.6, 69 

RCP6 and RCP8.5), known as the Representative Concentration Pathway (RCP) scenarios. 70 

These scenarios predict how the climate might change from the present to 2100 and beyond. 71 

Based on the RCP climate projection, researchers are predicting environmental hazards to take 72 

mitigation actions to minimize future emissions (Chen et al., 2020; Magnan et al., 2021).   73 

Many researchers have discussed the impacts of climate variation on water erosion (Nearing et 74 

al., 2005; Borrelli et al., 2020). However, early researchers mostly neglected climate scenario-75 

based predictions on soil erosion (Mullan et al., 2012). Soil erosion hazard is one of the adverse 76 

events due to present climate variation that negatively impacts the environment, agricultural 77 

productivity, global food insecurity and livelihoods (Pandey et al. 2016; Lal 2014). Hence, 78 

investigating the impacts of climate variation on soil erosion hazards and predicting soil erosion 79 

vulnerability is important to introduce mitigating measures to protect precious natural 80 

resources. Identification of vulnerable hotspots is also a necessity to implement conservation 81 

strategies as well as to direct policy advice. Thereby, modelling the future potential rate of soil 82 

erosion is crucial to minimize the adverse impacts from climate variation. 83 

Soil erosion prediction models have been employed to quantify and predict the risk of soil 84 

erosion (Karydas et al., 2014; Teng et al., 2018). Most of the traditional soil erosion risk 85 

assessment methods, such as the physical-based models, have used an exorbitant amount of 86 

data as well as the enormous computational cost involved (Teng et al., 2018; Gholami et al., 87 

2021). Soil erosion assessment in large-scale field measurements may cause some 88 

disadvantages as cost wise, expensive, time-consuming, and nearly impossible due to limited 89 

resources (Batista et al., 2019; Gholami et al., 2021). In addition, soil erosion assessment is 90 

highly complex due to the various parameters are involved, and their interactions are highly 91 

non-linear (Pandey et al., 2016). Geo-informatics is useful for studying events bearing multi-92 

dimensional behaviours, such as soil erosion, when considering modelling spatial and temporal 93 

aspects on the ground (Senanayake et al., 2020).  94 

https://link.springer.com/article/10.1007/s10584-011-0152-3
https://link.springer.com/article/10.1007/s10584-011-0149-y
https://www.carbonbrief.org/analysis-four-years-left-one-point-five-carbon-budget
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In the recent past, soft computing techniques have been widely applied in many fields, such as 95 

floods, drought and gully erosion (Janizadeh et al., 2021). Machine learning (ML) algorithms 96 

have been used to model complex non-linear datasets for accurate prediction. These models 97 

can identify complex changes or unpredictable situations. ML algorithms learn skills and 98 

continue to develop accuracy and performance(Luo et al., 2021). ML algorithms can analyze 99 

vast quantities of data, well suited for resolving multi-dimensional and multi-variety 100 

information. Most importantly, these models have performed well in a data scarcity 101 

environment. Chu et al. (2010) revealed that ML has better efficiency than other models when 102 

examining the impact of runoff due to climate change. Soil erosion hazards such as gully 103 

erosions were assessed using ML and deep learning models, such as an artificial neuron 104 

network (ANN), Support Vector Machine (SVM) and convolution neural network (CNN) (S. 105 

Saha et al., 2021), Boosted Tree (BT), Extreme Gradient Boosting (XGB), and Deep Boost 106 

(DB) (Chen et al., 2021)in recent years. 107 

ML models have been frequently used by combining traditional-based models (Olden et al., 108 

2008). ML modelling methods, such as ANN, SVM, and field data, have been used for soil 109 

erosion assessments (Gholami et al., 2021). Gholami et al. (2021) employed erosion pins and 110 

ANN to evaluate the spatial distribution of annual soil erosion rates. Combining soil erosion 111 

pins with an ANN-based model and obtaining GIS-based outputs was reliable (RMSE:0.1; 112 

R2:0.9), low-cost, and easy-to-use approach for estimating the annual soil erosion. Zhang et al. 113 

(2009) performed soil erosion assessment using the Soil and Water Assessment Tool (SWAT), 114 

a physical-based soil erosion model with ANN and SVM models for soil erosion prediction. 115 

They found SVM model predicts better with approximating the SWAT model. A fuzzy 116 

interface system (FIS) has been widely used for time series prediction in uncertain 117 

situations. ANFIS is a hybrid method of ANN and FIS, which can execute the advantages of 118 

both these methods. 119 

Modelling soil erosion for current and future climate scenarios is crucial for reducing potential 120 

environmental hazards and maintaining sustainable land resources (Panagos et al., 2021). 121 

Continuous observation and predictions are essential to detect vulnerability for soil erosion in 122 

climate variation (Li and Fang, 2016; Mullan et al., 2012). A proper understanding of the 123 

locations and magnitude of erosion for present and future situations is required to achieve the 124 

UN Sustainable Development Goals (SDGs) (Lal et al., 2021). However, limited knowledge is 125 

on soil erosion predictions over the climate scenarios. Hence, this study aims to develop a 126 
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spatiotemporal process to predict soil erosion vulnerability using climate scenarios. This 127 

research employed five different models: empirical soil erosion model (RUSLE), statistical 128 

(FR), machine learning (ANN, SVM) and hybrid methods (ANFIS) to explore an accurate 129 

predicting model to find the vulnerability for soil erosion under two different climate scenarios. 130 

This research provides a novel approach by employing five different models and climate 131 

change scenarios using geoinformation tools. In addition, this research investigated the 132 

variation of satellite data and compared it with actual ground data. As per the authors’ best of 133 

knowledge, no one has predicted the soil erosion susceptibility for the Sri Lankan context using 134 

climate scenarios. Therefore, the originality of this research is to predict soil erosion hazards 135 

vulnerability using RCP scenarios for the Central Highlands to minimize the impacts of climate 136 

change. 137 

 138 

2. Materials and Method 139 

2.1 Study area and data sets 140 

The Central Highlands of Sri Lanka is located within 6° 12′ to 7° 42′ N latitudes and 80° 10′ to 141 

81° 15′ E longitudes (Figure 1), the maximum and minimum elevations of 300m and 2565 m 142 

a.s.l., with an area of about 10,500 km2. The natural landscape of the highlands mainly receives 143 

rainfall from two monsoons and two inter-monsoons. The average rainfall is above 2500 mm 144 

for the western side, and the eastern side receives above 1500mm throughout the year.  145 

 146 

Figure 1. Location of the Study area: the Central Highlands of Sri Lanka. 147 
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Table 1. Summary of the data sources. 148 

Data Resolution Source 
Soil data  30m Natural Resources Management Center 

(NRMC), Sri Lanka  
Precipitation data  
from 1990 to 2019 

30m NRMC, Sri Lanka 
https://www.doa.gov.lk/NRMC/index.php/en/ 

Topographic data  30m Survey Department of Sri Lanka 
Past landslides incidences 
 
 

 UNISDR (United Nations International 
Strategy for Disaster Reduction) 
http://www.desinventar.lk:8081/DesInventar/i
ndex.jsp 

Landsat images 
 
Climate System Model 
(CCSM) projections 
National Center for 
Atmospheric Research 
(NCAR) 

30m  USGS earth explore https: 
earthexplorer.usgs.gov 
https://gisclimatechange. ucar.edu/ inspector 
https://gisclimate change.ucar.edu 
http://www. worldclim.org/ 

 149 

This study developed a spatiotemporal process to project the soil erosion vulnerability with 150 

future climate scenarios. This research employed a combined methodology by using: empirical 151 

soil erosion models, statistical, machine learning, and hybrid methods and techniques for 152 

modelling and projecting soil erosion under two different RCP climate scenarios. The study 153 

deployed a novel approach using five different models together for the projection of the soil 154 

erosion hazards using geoinformatics techniques and evaluating the best model performance 155 

for the projection. The overall methodology is illustrated in Figure 2.  156 

https://www/
http://www/
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 157 

Figure 2. The overall workflow of the study. 158 

2.2 Soil erosion susceptibility mapping using RUSLE 159 

The soil erosion vulnerability over the Central Highlands was derived from using the RUSLE. 160 

The RUSLE model (Renard et al., 1997) has been commonly employed to estimate long-term 161 

soil erosion rates in agricultural watersheds, regional or country-level, in large-scale studies 162 

(Panagos and Katsoyiannis 2019; Panagos et al. 2015). Many researchers employed the RUSLE 163 

model to predict soil erosion (Teng et al., 2018; Panagos et al., 2021). Accordingly, the RUSLE 164 

model was employed in this study to assess and predict the average annual soil loss of the 165 

Central Highlands for 2020 and 2040 using the following equation (1): 166 

 167 

A =  R ×  K ×  L ×  S ×  C ×  P                        (1) 168 

The average annual rate of soil erosion (A) is provided in tons per hectare per year. The past 169 

30 years of gauge rainfall data (1990-2019) and 20 years of satellite rainfall data from NCAR 170 

were collected to estimate the rainfall erosivity (R) factor (MJ mm ha-1 h-1 yr-1). The RCP 171 
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scenarios were developed based on statistically downscaled 1-degree precipitation data for 172 

2040. The soil erodibility (K) factor (t ha-1 MJ-1mm-1), slope length and steepness (LS) factor 173 

(unitless), crop factor (C) (unitless) and management practices (P) factor (unitless) were 174 

executed from the data gathered from(Senanayake et al., 2020). Detail explanation of the 175 

analysis is given in (Senanayake et al., 2020). 176 

Soil erosion in the Central Highlands was mainly driven by precipitation. The predicted rainfall 177 

raster layers for 2040 (R factors) with other erosion factors (K, LS, C, and P) were used to 178 

generate the vulnerability maps. The LS, R, K, C, and P-factor layers were generated in the 179 

GIS environment. These layers were multiplied using the raster calculator. The generated soil 180 

erosion vulnerability maps were classified into five classes according to the previous 181 

classifications of Senanayake et al. (2020).  182 

2.3 Soil erosion susceptibility using frequency ratio  183 

The frequency ratio (FR) model is a statistical-based bivariate approach, which can be 184 

employed to detect the spatial relationship among independent and dependent variables. This 185 

FR method has been employed to analyze the possibility of an event occurrence using 186 

probability mapping by Bonham-Carte (1994). FR can be computed using equation 2. 187 

FR =
N(LS𝑖𝑖)/N(A𝑖𝑖)

∑N(LS𝑖𝑖)/∑N(A𝑖𝑖)
                                 (2) 188 

 189 

where, N(LSi) is the number of hazard events in class (i), N(A𝑖𝑖 ) is the total number of pixels in 190 

class (i). When the FR value is 1, an average possibility for occurrence, a value higher than 1, 191 

means a higher probability of occurrence, and a value lower than one means a low probability 192 

of hazard events (Senanayake et al., 2020).  193 

2.3.1 Soil erosion hotspots 194 

Landslides are one of the major natural disasters happening every year in the Central 195 

Highlands. A large amount of soil is delivered to streams due to landslides (Gunatilaka, 2007). 196 

The amount of sediments delivered to the reservoirs and tributaries is remarkably increased in 197 

recent years. Researchers highlighted it might be much larger than the flows of sediments 198 

supplied by other erosion processes.  199 
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Researchers have obtained more reliable soil erosion susceptibility results by introducing 200 

landslides incidents. The soil erosion conditioning factors have been used in landslide 201 

susceptibility prediction (Huang et al., 2020). Researchers found a correlation between soil 202 

erosion and landslide occurrences in several locations (Rozos et al., 2013). Although rainfall 203 

plays a leading role in landslide susceptibility in Sri Lanka, researchers found soil erosion may 204 

also contribute as one of the reasons for these incidences (Senanayake et al., 2020). Therefore, 205 

past landslides incidences were used as training and testing datasets. The locations of 279 soil 206 

erosion hot spots were selected, of which 70% and 30% were randomly divided for training 207 

and validation purposes. A total of 279 landslides locations (initiated during 2000 - 2019) were 208 

recorded from UNISDR (2021).  209 

2.3.2 Soil erosion conditioning factors 210 

The selection of suitable soil erosion conditioning factors is one of the prerequisites for soil 211 

erosion assessment and mapping. In the present study, the selection of the most suitable 212 

conditioning factors was drawn based on extensive literature reviews and expert advice. Soil 213 

erosion susceptibility was analyzed using eight conditioning factors, including rainfall 214 

erosivity under two climate scenarios RCP 2.6 for best and RCP 8.5 for the worst situation. 215 

Following soil erosion conditioning factors were used: soil erodibility, slope length and 216 

steepness, rainfall erosivity, land cover, aspect, distance to stream and steam power Index. The 217 

condition factors are explained in detail in the supplementary note S2 sections.  218 

2.3.3 The variable importance 219 

The variable importance (VI) was calculated to evaluate the importance of the soil erosion 220 

conditioning factors. The VI was calculated by using SPSS 27 package, according to the study 221 

of Termeh et al. (2018). The variable importance value is bounded by 0 and 1. The relative 222 

importance of each factor was obtained.  223 

2.4 Artificial neural network methods 224 

ANN has been applied for non-linear complex environmental applications. ANN is ML model 225 

that constructs soil erosion causative factors as inputs, and soil erosion can observe using 226 

output. The most popularized ANN model for prediction is multilayered perceptron (MLP). 227 

MLP with a three-layered interconnected neural network was performed using soil erosion 228 

causative factors as input notes. The weightage computations of the input data were used for 229 
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hidden layer activation, and identity function was used for output layer activation. The weight 230 

component act as a coefficient to the inputs. The hidden layer computed the output through a 231 

non-linear activation function. The trial-and-error method was performed to determine the 232 

number of neurons for the hidden layer. The poor or excessive number of neurons in the hidden 233 

layers most likely cause the problems of bad generalization and overfitting (Orhan et al., 2011). 234 

A detailed explanation of the ANN model simulation was given in supplementary note S4. 235 

2.5 The adaptive neuro-fuzzy inference system 236 

The adaptive neuro-fuzzy inference system (ANFIS) is employed as a hybrid method by a 237 

combination of the fuzzy inference system and the ANN method. This method was developed 238 

by Jang (1993) using the Takagi–Sugeno rule format. This hybrid-learning algorithm is a 239 

combination of gradient descent and the least square method. ANFIS is a process of fuzzy logic 240 

and artificial neural network methods used to drive the fuzzy If-then rules into the artificial 241 

neural network with high computational power. Fuzzy rules are implemented along with 242 

suitable membership functions of training paired and further lead to an interface. The best 243 

possible combination of input parameters provides the best results with the highest accuracy 244 

(Islam et al., 2018). The main purpose of employing ANFIS prediction model is due to its rapid 245 

learning ability, automatic adaptation capability and capturing nonlinearity of a complex 246 

process such as soil erosion (Islam et al., 2018). Figure S2  shows the ANFIS architecture 247 

developed by this study. 248 

2.6 Support vector machine algorithm 249 

Support vector machine (SVM) is one of the most popular ML algorithms and is considered a 250 

high-performing technique. The SVM algorithm is a non-parametric supervised classification 251 

technique introduced by Vapnik proposed in 1995 (Cortes and Vapnik, 1995). Researchers 252 

revealed SVM is on statistical learning theory based on the principles of structural risk 253 

minimization. A detailed explanation of the SVM model simulation was given in 254 

supplementary note S3. 255 

The ANN, ANFIS and SVM models were constructed using soil erosion conditioning factors 256 

as input. The resulting FR values were used as observed output or dependent variables using 257 

MATLAB software. The optimum value for each model was obtained from the trial-and-error 258 
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method. Conditioning factor raster map layers (30m) were developed (Figure S1) using natural 259 

breaks. The soil erosion susceptibility maps were developed in GIS software.  260 

 261 
2.7 The model validation using a statistical method  262 

The models’ performances were evaluated using mean-absolute-error (MAE) and root-mean-263 

square-error (RMSE). Validation of soil erosion risk maps was done using ROC/AUC analysis. 264 

The ROC curve was obtained using SPSS software for the validation of soil erosion 265 

susceptibility maps. The AUC value is equal to 1 indicates the perfect model prediction. The 266 

ROC curves were established based on the false positive rate (1-specificity) and the true 267 

positive rate (sensitivity) with the various cutoff thresholds. 268 

RMSE =  �
∑ [𝑋𝑋� − 𝑋𝑋]2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
       (8) 269 

MAE = 1
𝑁𝑁
∑ [𝑋𝑋� − 𝑋𝑋]𝑁𝑁
𝑖𝑖=1         (9) 270 

where N is the sample size, 𝑋𝑋� indicates predicted values, and X is observed values. Means 271 

absolute error is the sum of the deviation between predicted values of a variable and the real 272 

observed values. RMSE optimal value is zero (0), which indicates a higher model performance 273 

and prediction rate. However, the optimal value is close to zero is relative. Hence, previous 274 

studies revealed that RMSE with standard deviation (SD) of the observation values is 275 

appropriate for evaluating the acceptable model performance (Singh et al., 2005; Moriasi et al., 276 

2007; Kastridis et al., 2020). 277 

 278 

3. Results  279 

3.1 Soil erosion susceptibility mapping and model performance  280 

Predictions show average soil erosion rates will increase to 10.5 t/ha/yr under the RCP 2.6 and 281 

12.4 t/ha/yr under the RCP 8.5 climate scenario in 2040. The results of RUSLE indicate the 282 

soil erosion rate in 2020 is 10.18 t/ha/yr with the satellite rainfall data. However, the ground-283 

based gauge rainfall data indicate soil erosion rate is much higher than the results of satellite 284 

rainfall data (11.8 t/ha/yr). The average annual rainfall variation over the past 20 years derived 285 

from gauge and satellite data are illustrated in Figure 3.  286 

https://www.sciencedirect.com/topics/computer-science/mean-absolute-error
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/root-mean-square-error
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/root-mean-square-error
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 287 

Figure 3: Average annual rainfall in Rathnapura area 288 

The areas covered by soil erosion hazards high and very-high categories are increasing in 2040, 289 

with a projected RCP 8.5 scenario. The risk of soil erosion vulnerability in RCP 8.5 is greater 290 

than RCP 2.5. The respective soil erosion susceptibility maps and the area covered by each soil 291 

erosion category are illustrated in Figure S6 and Table 2. 292 

Table 2. Area covered by the soil erosion category from the RUSLE model. 293 

   Soil 
erosion 
rate 

2020 2040 

Class Gauge 
rainfall 

Satellite 
rainfall      RCP2.6        RCP 8.5 

Very Low <5 5147.04 5228.71 5176.9 4845.05 
Low 5-'10 1594.27 1630.48 1604.85 1396.54 
Moderate 10 -' 20 1913.96 1927.82 1928.87 1961.01 
High 20-50 1463.26 1383.80 1436.95 1765.93 
Very High 50< 381.47 329.19 352.42 531.46 
 Area (km2)   10500.00 10500.00 10500.00 10500.00 

 294 

3.2 Frequency ratio method 295 

Soil erosion susceptibility was analyzed with eight conditioning factors using the FR method 296 

(Figure S1). The results of the FR analysis and weight for each factor were given in Table S1. 297 

The soil erodibility, stream power index and slope length and steepness are obtained highest 298 

weights. The susceptibility maps of the frequency ratio method indicate the western side of the 299 

Central Highlands is more vulnerable to the projected RCP 8.5 scenario.  300 

3.3 Artificial neural networks method 301 
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Figure 4 shows the results of the best validation performance curve. The results show that the 302 

best validation performance was achieved from seven epochs, the MSE = 1.31 and R values 303 

for training= 0.95, testing 0.84, validation = 0.85 and overall = 0.91. The best validation 304 

performance curve of the ANN model is given in Figure S5. The resulted weights are given in 305 

Table S3. 306 

 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

Figure 4.  The performance curve of the ANN method. 324 

 325 

3.4 Support vector machine learning method 326 

This research employed SVM with eight predictors using Gaussian kernel function with 327 

optimization. The performance of SVM is RMSE = 2.29, SD = 4.2 and R2= 0.70. The AUC 328 

indicates soil erosion susceptibility map from the SVM method was performed better than the 329 

ANN model (Figure 7). The RMSE value is 2.29, almost half of SD (4.2), indicating an 330 

acceptable model performance. 331 

 332 



14 
 

 3.5 Adaptive neuro-fuzzy inference system method 333 

The ANFIS model was applied in a trial-and-error method to obtain the best outputs in the 334 

training process. The best validation performance of the ANFIS model was obtained in RMSE  335 

= 0.001 from 2 epochs and R2 = 0.73. The AUC results show ANFIS model performs better 336 

than the ANN model (Figure 7). Figure S8 illustrates a comparison of the ANFIS outcome 337 

and RUSLE outcome. The respective soil erosion susceptibility maps and the area covered by 338 

each soil erosion category are shown in Figure 5 and Table 3. 339 

Table 3. Area covered by the soil erosion category from the ANFIS model. 340 

Soil erosion 
Class 

2020 2040 

Gauge RF   Satellite RF 
RCP 2.6  
 RCP-8.5  

Very low  282.76 44.65 527.06 45.8 
Low 1572.75 1835.24 1671.09 1658.6 
Moderate 2719.98 1724.49 1605.08 1560.0 
High 4116.70 3870.92 3772.82 3744.5 
Very high 1807.81 3024.70 2923.95 3491.1 
 Area (km2) 10500.00 10500.00 10500.00 10500.00 

 341 
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342 

 343 

Figure 5. Soil erosion susceptibility map for (a) 2020 from gauged data, (b) 2020 from 344 

satellite data, (c) RCP 2.6, and (d) RCP 8.5 in 2040. 345 

 346 

 347 

 348 

(a) (b) 

(c) (d) 
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3.6 Relative importance of the soil erosion conditioning factors  349 

The variable importance calculation method results indicate that rainfall, soil erodibility, slope 350 

length, and steepness are the most responsible factors for soil erosion susceptibility in this study 351 

area. Figure 6 illustrates the relative importance of soil erosion conditioning factors.  352 

 353 
Figure 6. The relative importance of soil erosion conditioning factors. 354 

3.7 Validation of susceptibility maps 355 

Figure 7 and Table 4 indicate the model efficiency obtained from ROC and AUC analysis. 356 

Findings of the analyses revealed all five models employed in this study met the requirement 357 

of a threshold value of the ROC curve. The highest AUC values were obtained for ANFIS and 358 

SVM models. The ANN and FR methods received the lowest accuracy levels. A summary of 359 

the models AUC values shows in Table 4. 360 

Table 4. The model performance using AUC 361 

Test Result 
Variable(s) 

Area 
under 

the 
curve 

Std. 
Errora 

Asymptotic 
Sig.b 

Asymptotic 95% 
Confidence Interval 
Lower 
Bound 

Upper 
Bound 

ANFIS_2020 .891 .089 .194 .716 1.000 
ANFIS_RCP2.6 .957 .049 .129 .860 1.000 
ANFIS_RCP8.5 .891 .102 .219 .670 1.000 
SVM-SE2020 .891 .089 .194 .716 1.000 
SVM-RCP2.6 .891 .089 .194 .716 1.000 
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SVM-RCP8.5 .891 .089 .194 .716 1.000 
ANN_2020 .826 .126 .279 .579 1.000 
ANN_RCP2.6 .870 .102 .219 .670 1.000 
ANN_RCP8.5 .891 .089 .194 .716 1.000 
FR_2020 .870 .089 .194 .716 1.000 
FR_RCP2.6 .783 .150 .348 .489 1.000 
FR_RCP8.5 .783 .150 .348 .489 1.000 
a. Under the non-parametric assumption 

b. Null hypothesis: true area = 0.5 
 362 

 363 

Figure 7. Model validation from ROC curve. 364 

 365 

4.0 Discussion 366 

The present study contributes by addressing a knowledge gap on a methodological approach 367 

for the spatiotemporal process to predict soil erosion susceptibility in the Central Highlands of 368 

Sri Lanka under different climate scenarios. In addition, this study introduces a methodological 369 

improvement by combining projected rainfall erosivity under RCP scenarios as conditioning 370 

factors for empirical equation, statistical, machine learning and hybrid machine learning 371 

techniques to predict soil erosion. This study suggests that SVM and ANFIS models accurately 372 

predict soil erosion vulnerability at two different climate scenarios.  373 
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This study identified that soil erosion rates will increase from 4% to 22% in 2040, compared 374 

to 2020, under the predicted climate scenarios. The results revealed the current soil erosion rate 375 

is 11.8 t/ha/yr (2020) in the Central Highlands. The satellite-based rainfall erosivity shows a 376 

relatively low value than gauged rainfall erosivity. That is primarily due to the low spatial 377 

resolution of the satellite images. However, satellite and gauge rainfall data have a better 378 

correlation (r=0.62, KEG’s =0.41). Researchers have identified that tolerable soil erosion loss 379 

is around 1-2 t/ha/yr in the Central Highlands of Sri Lanka (Somasiri et al., 2021). According 380 

to the projected RCP8.5 scenario, all models employed in this study indicate soil erosion 381 

susceptibility and vulnerability are increasing. In other words, the risk of soil erosion will be 382 

high, specifically in western parts of the Central Highlands, by 2040. Although the areas 383 

covered by different soil erosion susceptibility classes are varied, one thing is prominent. The 384 

areas covered by very high and high susceptibility classes under projected RCP 8.5 are 385 

increasing in 2040 with all the models (Figure S7).  386 

The above findings are in line with the study of Zheng et al. (2018). This estimated future 387 

climate and runoff projections across South Asia, including Sri Lanka, using a consistent 388 

method by 42 General circulation models (GCMs) in CMIP5. The modelling results indicate 389 

that projected runoff will increase throughout the region. The change of runoff is occurred due 390 

to the changes in precipitation. The median projection indicates the mean annual runoff 391 

increases by 20–30% in the Indian sub-continent by 2046–2075 relative to 1976–2005.   392 

Researchers found that increasing rainfalls influence the soil erosion runoff in the western 393 

slopes of the Central Highlands. They have observed rainfall variation in terms of increasing 394 

rainfall intensity and average rainfall. Burt and Weerasinghe (2014) had investigated the main 395 

drivers of changes in daily precipitation in Sri Lanka. They found sea surface temperature of 396 

the Pacific and Indian ocean drives the atmospheric changes of regional climate change. 397 

Researchers observed that increasing one degree of Celsius in the global mean temperature 398 

increases water holding capacity in the atmosphere by 7%, resulting in intense rainfall and a 399 

vigorous hydrological cycle (Mullan et al., 2012). This study also identified rainfall and soil 400 

erodibility are the most important factors for soil erosion hazards in this study area. Hence, the 401 

areas with steep slopes and higher altitudes are more vulnerable to climate variability. 402 

Specifically western part of the Central Highlands will be more susceptible to soil erosion.  403 

It is important to understand the risk of soil erosion in terms of physical, transitional, and human 404 

risk and their possible consequences for better preparedness. A recent study found that high 405 
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intensive rainfall caused sudden and long-travelling landslides in the Central Highlands of Sri 406 

Lanka (Dang et al., 2019). Within three consecutive days, the above area received 446.5 mm 407 

heavy rainfall from May 14 to 17, 2017. Soil mass movement caused more significant damage 408 

in the Aranayake area by killing 127 people and demolishing 75 houses. In addition, almost all 409 

the houses in this area are still at risk of future landslides. Perera et al. (2018) have observed 410 

that 52% of household incomes were generated from agricultural activities, home-garden and 411 

plantation agriculture. The landslide has badly affected the social and economic aspects of the 412 

household, as well as the country’s economy. This implies the possible risk of soil erosion 413 

hazards, which will enhance landslide incidences and damage to agricultural activities and 414 

livelihoods. It will also be threatening the lives of peoples and may possibility of peoples’ 415 

migration to other areas. Hence, the potential risk of future environmental problems is 416 

important to reduce the negative consequences. 417 

Hewawasam and Illangasinghe (2015) have identified the rate of soil erosion in the Central 418 

Highlands that significantly reduce the reservoirs’ capacity. They have identified the major 419 

rivers and their tributaries transport a heavy load of sediments during the rainy seasons, which 420 

is a severe threat to the storage capacity of reservoirs that supply water for hydropower 421 

generation and agricultural production in the country. However, Diyabalanage et al. (2017) 422 

have researched to identify the impact of soil and water conservation measures on soil erosion 423 

rate and sediment yield. They have identified with this mitigation measures a five-fold 424 

reduction in the sediment load of the streams in the critical areas that successfully contributed 425 

to soil erosion reduction. Therefore, considerable attention should be paid to strengthening soil 426 

conservation measures over the highlands. The potential risk of soil erosion and changing 427 

rainfall patterns should be further studied. 428 

Soil erodibility mainly depends on the chemical and physical structure of the soil (De Rouw 429 

and Rajot, 2004). The Central Highlands is covered by 73% of Red-Yellow Podzolic soils 430 

which have relatively high soil erodibility value. Increasingly, lands are exposed to poor 431 

agricultural practices, resulting in poor soil organic matter content. That implies a loss of soil 432 

structure (chemical and physical) and subsequently less stable aggregates (De Rouw and Rajot, 433 

2004). Researchers found the agricultural land areas are increasing from 2000 to 2019 in the 434 

Central Highlands with increasing soil erosion rates (Senanayake et al., 2020). This indicates 435 

more attention should be paid to improving the soil condition by taking appropriate measures, 436 

such as increasing the organic matter content, especially in highly vulnerable areas for soil 437 
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erosion. In addition, this research proposes to conduct research on soil erodibility assessment 438 

under different land uses. The results will indicate the critical soil organic matter content values 439 

in different land uses.  440 

The findings of this study contribute to resilience development for future agricultural planning 441 

and management. Soil erosion susceptibility maps with the vulnerability assessment can be 442 

useful for land managers and policymakers with respect to agricultural strategic planning and 443 

environmental protection. Quantifying the impacts of climate variability and its effects on soil 444 

erosion over the study area is important to assist the land managers in adopting new techniques 445 

and conservation strategies to protect and minimize further damages or prevent the occurrence 446 

of disasters such as landslides. This research proposes further education and awareness 447 

programs on soil erosion and conservation strategies (Lal et al., 2021), integrated agro-448 

meteorological advisory services, adaptation measures for climate resilience agriculture, social 449 

networking and community-based adaptation as long term - strategies for resilience 450 

development on soil conservation (Aryal et al., 2020). The projected increasing rainfall and 451 

runoff subsequently influence increasing runoff and gully erosion. Hence, improving the 452 

drainage system to remove excess water from the land may need to protect the soil from runoff. 453 

In addition, the construction of rain-shelters such as protected agriculture technology/ 454 

polytunnel may need to protect crops from intense or erratic rainfall. 455 

The limitation of this study is socio-economic factors were not incorporated into this analysis. 456 

However, these factors may influence soil erosion over the next century. These projections 457 

could be achieved when the mitigation targets of RCPs are combined with the Shared 458 

Socioeconomic Pathways (SSPs) in the Coupled in Model Intercomparison Project Phase 6 459 

(CMIP6). The SSP scenarios look at five different ways the world might evolve in the absence 460 

of climate policy or how different levels of climate change need mitigation. These projections 461 

include socio-economic factors such as population, economic growth, education, urbanization 462 

and the rate of technological development. Almazroui et al. (2020) researched the latest CMIP6 463 

dataset to examine the projected changes in temperature and precipitation over six South Asian 464 

countries. The average annual precipitation is projected to increase by 25.1% in Sri Lanka 465 

under the SSP5-8.5 scenario by the end of the twenty-first century. The projected temperature 466 

increases by 1.2 °C, 2.1 °C, and 4.3 °C under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, 467 

respectively, over South Asia.  468 

https://www.sciencedirect.com/science/article/pii/S0959378016300681
https://www.sciencedirect.com/science/article/pii/S0959378016300681
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Lal et al. (2021) emphasized that sustainable soil management is key to achieving the SDGs. 469 

They have highlighted achieving SDGs: 2-zero hunger, 3-good health and well-being, 6- clean 470 

water and sanitation, 13- climate action, 15 - life on land and 17- partnership have a direct 471 

connection with the soil activities. This research contributes to addressing some of the decision-472 

making challenges to achieve the SDGs in the 2030 UN agenda, such as identifying appropriate 473 

methods for risk assessment, understanding the location and magnitude of erosion, forecasting 474 

changes in soil erosion driven by water, land use, and climate change. Healthy soils maintain 475 

the eco-service activities in the farming systems and improve food security in a country.   476 

5. Conclusion 477 

The study focuses on five models: RUSLE, FR, ANN, SVM, and ANFIS, to predict and 478 

quantify soil erosion vulnerability in the Central Highlands of Sri Lanka. Soil erosion 479 

susceptibility was analyzed using eight conditioning factors to observe the soil erosion 480 

vulnerability for the present situation and 2040 under projected RCP 2.6 and RCP 8.5 climate 481 

scenarios. The results suggest the soil erosion rate in 2040 will increase to 10.5 t/ha/yr and 12.4 482 

t/ha/y under RCP 2.6 and RCP 8.5, respectively, which increase the recommended threshold 483 

value in the country and tolerable soil loss value globally (10 t/ha/y). The frequency ratio 484 

method is the least accurate model for predicting soil erosion vulnerability. The probability 485 

maps of the ANFIS and SVM methods provide the highest accurate model predictions 486 

(accuracy 89%). The rainfall and soil erodibility are the most influential factors for hazards 487 

vulnerability. The results of these models’ outputs indicate farming systems in the western 488 

slopes of the Central Highlands will be more vulnerable to soil erosion hazards under climate 489 

scenario RCP 8.5 in 2040. Findings suggest implementing soil conservation activities with 490 

short-and long-term strategies help to achieve the SGDs in the UN agenda 2030. 491 
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