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ABSTRACT: Several artificial intelligence techniques have been applied to developing an array 17 
of environmental prediction models for various environmental challenges. However, there is no 18 
such prediction models exist for sustainable arsenic mitigation technologies. This study evaluates 19 

the state-of-the-art artificial intelligence models such as linear, nonlinear, ensemble, tree-based, 20 
Naïve Bayes, and neural network machine learning classifiers in predicting the preference of the 21 

most sustainable arsenic mitigation technology and provides following insights: (a) which machine 22 
learning algorithm has the highest prediction accuracy and robustness, and (b) which machine 23 
learning models are best to fit socioeconomic-environmental data for developing prediction 24 

models of sustainable arsenic mitigation technology? We evaluated 19 machine learning models 25 
for their predictive accuracy and the robustness by comparing their overall prediction accuracy, 26 
precision, recall, and the Area Under the Curve (AUC) of the Receiver Operating Characteristic 27 

(ROC) curve. A Gaussian distribution-based Naïve Bayes classifier outperformed the rest of the 28 
algorithms with the highest AUC of 0.825 on test data. The second two best models were Nu 29 
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Support Vector Classification (NuSVC) (AUC=0.800) (a radial basis function kernel-based 30 
support vector machine algorithm) and K-Neighbors (AUC=0.790). All the ensemble classifiers 31 

scored higher than 70% AUC, Random Forest being the top performer (AUC=0.769). We used 32 
only one tree-based classifier Decision Tree, and it produced promising results (AUC=0.769) after 33 
the three top classifiers. The neural network-based multilayer perceptron model, although ranked 34 

9th position, also had a considerably good performance (AUC=0.748). Most linear classifiers did 35 
not perform well with the Ridge classifier at the top (AUC=0.727) and perceptron at the bottom 36 

(AUC=0.567). A Naïve Bayes-based classifier with Bernoulli distribution was the worst model 37 
(AUC=0.500). Socioeconomic, demographic, and psychological data may not be linearly 38 
associated with each other or with the outcomes. Therefore, nonlinear or ensemble classifiers could 39 

better understand these complex relationships and help develop the most accurate and robust 40 
prediction models. Gaussian NB is the best option for developing such prediction models on 41 
socioeconomic and psychological data with small sample size. The proposed methodological 42 

framework and the outcomes of the 19 machine learning models will help develop informed and 43 
intelligent research methods as well as in targeting the population who are ready to adopt 44 
sustainable arsenic mitigation technology. 45 

Keywords: Arsenic; Arsenic mitigation technologies; Machine learning; Linear classifier; 46 
Nonlinear classifier; Ensemble  47 
 48 
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1. INTRODUCTION 52 

Socioeconomic, demographic, psychological, and cultural aspects of the communities exposed to 53 
environmental contaminants, arsenic in this case, play a significant role in adopting and sustainably 54 

practicing mitigation technologies [1-4]. Groundwater arsenic contamination is a global 55 
environmental as well as a social threat to nearly 296 million individuals’ lives in more than 100 56 
countries, India and Bangladesh being the foremost victims [5, 6]. Arsenic is a human carcinogen, 57 

can adversely impact dermal, cardiovascular, respiratory, neurological, and genetic systems, and 58 
could lead to incurable varieties of cancers, if consumed for a prolonged period [5]. It is a well-59 
known fact that arsenic concentration in those contaminated countries has increased multiple times 60 

of the standard norm of 10 µg/L stipulated by the World Health Organization (WHO) and the 61 
United Nations Food and Agricultural Organization’s (FAO) standard of 100 µg/L for irrigation 62 
water [7].  Arsenic has also entered to the human, animal, and aquatic food chain evidenced from 63 

high concentrations of arsenic in rice, beans, pulses, vegetable, cereals, fruits, poultry, egg, fresh 64 
milk, milk powder, mother’s milk, fish, shellfish, and algae [7-10]. There are studies that report a 65 
significant concentration of arsenic in the human urine, blood, hair, and nail samples, evidence of 66 

the arsenic exposure and accumulation in the human body [5, 11]. 67 

Low cost and simple arsenic mitigation techniques, such as arsenic treatment (filtration) units, 68 

deep tube wells, piped water supply system, and rainwater harvesting system have been the 69 
primary ways of providing arsenic-free water in the arsenic-contaminated areas globally [4, 12, 70 
13]. However, because of the technical [4, 14-18], social, economic, and cultural challenges [1, 71 

12-15, 19-22], these interventions could not be achieved sustainability. There are a fair number of 72 
studies that highlight the technical challenges of arsenic mitigation technologies, however, 73 

research on the socioeconomic, psychological, and cultural aspects of arsenic mitigation is still in 74 
the rudimentary stages [3, 19, 23-25]. Based on these handfuls of studies, the authors found that 75 
there is a lack of arsenic awareness and ownership of the implemented arsenic mitigation 76 

technologies; low willingness to pay for arsenic mitigation technologies; complicated operation 77 
and maintenance of arsenic mitigation technologies manuals; expensive technologies; long 78 
distance between the households and the arsenic-free water sources; and social resistance by a 79 

group of people to not let access the arsenic-free sources [1, 12-15, 19-22] have negatively 80 

impacted the sustainable adoption of arsenic mitigation technologies.  81 



4 
 

In some recent studies [19, 22], it was discovered that communities’ trust in the local agencies and 82 
institutions as well as their social capital played a crucial role in their decision-making to adopt 83 

arsenic mitigation technologies. In other studies [19, 26, 27], the authors highlighted that people’s 84 
perceived risk of health, income, and social discrimination due to arsenic contamination 85 
significantly impact their decision-making process to adopt arsenic mitigation technologies. The 86 

cost-effectiveness of a proposed arsenic mitigation technology also ensures their sustainable use 87 

by the beneficiaries [21].  88 

Accurately capturing the socioeconomic, demographic, psychological, and cultural information of 89 
arsenic-affected communities is a challenging work for researchers, developing prediction models 90 
on these data is even more daunting [1]. The reasons are lack of empirical data, a complex 91 

relationship between the variables, socioeconomic, psychological, and cultural data are prone to 92 
multicollinearity, and lack of successful case studies [1]. These all may affect the selection of the 93 
most important predictors as in statistical analysis the model will only select the significant 94 

variables unless we enforce expert opinion and include the variables known to be important but 95 
not statistically significant [28].  In recent studies, the authors captured information on the 96 

socioeconomic, demographic, social trust and capital aspects from an arsenic-exposed community 97 
located in the middle-Ganga Plain of Bihar, India [19, 22]. While developing a logistic regression 98 
prediction model of the adoption of arsenic treatment units, the authors started with 19 statistically 99 

significant variables but end-up having eight variables in the final model with both significant and 100 
nonsignificant variables. The model accomplished an overall prediction accuracy of 80.2%, which 101 
looks promising [22]. However, since this model was not compared with other state-of-the art 102 

modeling techniques such as machine learning models, we cannot say this is the best 103 
socioeconomic model of predicting sustainable arsenic mitigation technologies. Also, considering 104 
the lack of such data, how a robust machine learning model can be developed that could help 105 

predict sustainable arsenic mitigation technologies in arsenic contaminated areas. 106 

Several artificial intelligence techniques have been used in developing various prediction models 107 

on environmental data including landslide susceptibility [29-33], groundwater potential [34, 35], 108 
groundwater vulnerability [36], and groundwater contaminations [37, 38]. Pertaining to arsenic 109 
research, various machine learning algorithms have been used in predicting arsenic contamination 110 

in groundwater using the physical, chemical, hydrogeological, and topographical data [39-43]. 111 
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However, to the best of our knowledge, these state-of-the-art technologies have never been applied 112 
to develop a socioeconomic model of arsenic mitigation. In a recent study by Singh et al. (2018), 113 

the authors have used various machine learning models including logistic regression (LR), support 114 
vector machine (SVM), decision trees (DT), k-nearest neighbor (k-NN), naïve Bayes (NB), and 115 
random forests (RF) to predict arsenic awareness as a function of various socioeconomic, 116 

sanitation, socio-behavioral, and social trust factors captured through an empirical study. In this 117 
study, the authors discovered that arsenic awareness is a nonlinear classification problem and the 118 

SVM and RF appeared to be the most appropriate machine learning algorithms in correctly 119 
classifying arsenic awareness [1]. The authors further suggested that survey-based complex 120 
environmental data may require advanced computational techniques opposed to traditional 121 

statistical approach for developing accurate and robust prediction models. 122 

Therefore, this study is a founding step in filling the above research gaps through answering 123 
following questions: (a)  which machine learning algorithm can achieve the highest prediction 124 

accuracy and robustness in predicting the preference of sustainable arsenic mitigation technology 125 
and (b) whether prediction of the preference of arsenic mitigation technology is a linear or a non-126 

linear classification challenge?  127 

2. METHODS 128 

2.1. Study Area 129 

The state Bihar, the study area, is the second worst arsenic affected states of India after West 130 
Bengal, which shares its geographical boundaries with other arsenic impacted regions including 131 
Uttar Pradesh state of India, Bangladesh, Nepal, and Tibet [7]. The groundwater used for drinking 132 

purposes is contaminated with elevated levels of arsenic in over 50% of the districts of Bihar. 133 
Groundwater used for irrigation is also found to be contaminated with arsenic in some areas along 134 

with a considerable amount of arsenic in agricultural soils and food materials [44-47]. Elevated 135 
levels of arsenic in urine, blood, hair, and nail samples are also detected and several arsenicosis 136 
victims are also diagnosed in the state [48-51]. Socioeconomic, health, and psychological aspects 137 

of arsenic in the study area are also investigated, but still confined in a few geographical regions 138 

of the state [19, 24, 25, 44, 48, 50, 51]. 139 
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 140 

Figure 1. A map showing the arsenic affected districts of Bihar and the three villages selected 141 

for this study with their elevations.  142 

In this study, we developed a five steps methodological framework to achieve our goals including: 143 
(1) data collection and storage, (2) data pre-processing, (3) data visualization, (4) model 144 

development and validation, and (5) prediction and recommendation. 145 
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 146 

Figure 2. Methodological framework adopted for this study. 147 

2.2. Data  148 

The data was captured by interviewing 340 households, randomly selected and stratified by their 149 
caste, through a structured questionnaire in three villages Suarmarwa, Rampur Diara, and Bhawani 150 
Tola: all located in the severely arsenic contaminated block Maner of Patna district of Bihar, India. 151 

Survey methodological details are explained in Singh (2015). The socioeconomic and 152 
demographic information were captured through asking questions on gender, age, marital status, 153 
caste, education, household size, occupation, income, agricultural landholdings, and housing 154 

status. Water and sanitation behaviors were captured through asking questions on a number of 155 
households involved in water collection, distance travelled and time spent to collect water, place 156 
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for defecation, and materials used for hand washing after defecation. Social capital and trust were 157 
captured through asking questions on communities’ opinion on the presence and functionality of 158 

Anganwadi, Mahila Samakhya, Self-Help Group; trust in others, government agencies, NGOs, 159 
Panchayat Raj Institutions, private agencies, academicians and scientists; participation in PRI’s 160 
activities, and whether people seek advice and value their views. Arsenic awareness was captured 161 

through 10 questions converted to arsenic awareness index (low awareness vs. high awareness). A 162 
detailed analysis on arsenic awareness is explained in [1]. Willingness to pay for arsenic mitigation 163 

technology was also captured through a structured question. Communities’ preference for 164 
sustainable arsenic mitigation technologies was recorded through a structured questionnaire with 165 
options of arsenic treatment unit (ATU), piped water supply systems, deep tube wells, dug 166 

wells/open wells, and rainwater harvesting system. An in-depth analysis on these technological 167 
preferences is available in [22].  168 

This study provides a comprehensive analysis of the most preferred sustainable arsenic mitigation 169 

technology (ATU) and investigates how the state-of-the-art machine learning technologies can 170 
efficiently predict communities’ preference of sustainable mitigation technology. The survey data 171 
was transferred to a .excel file for frequency graphs generation and to a .csv file for data pre-172 

processing, statistical analysis, and machine learning model development using Jupyter Notebook 173 

version 6.0.1 web application and Python 3 [52]. 174 

2.3. Data pre-processing 175 

A majority of the variables were categorical and captured at the Likert-scale of five. Because of 176 

their imbalanced frequency distribution across the responses (strongly disagree to strongly agree), 177 
we reconstructed and recoded them for further analysis and model development. The 178 
transformation of the original categories of the variables to new categories is explained in SI-1. 179 

After screening the data, we found that one household did not answer the question on preference 180 
of sustainable arsenic mitigation technology; therefore, we had a total 339 samples. Using Pandas 181 

Python library, we imported the data to Jupyter Notebook and put it into a data frame for further 182 
analysis [53]. Scikit-learn, an open access machine learning library in Python programming 183 
language, was used for further analysis [54]. We also found 17 missing data that was imputed 184 

using the mode of each feature. A contingency analysis was performed between all the independent 185 
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variables and ATU preference. Scipy library was used for all statistical analysis including 186 

Spearman’s correlation [55]. 187 

2.4. Data visualization 188 

The results of contingency analysis were graphically presented in Figure 2-4 in the result section 189 
using Excel Spreadsheet [56]. The graphs contain four important information including the number 190 
of data points, categories of each feature wherever applicable, percentage of different categories 191 

of features, and p-value to determine whether the responses across the categories were significantly 192 

different from each other. 193 

2.5. Machine learning algorithm selection 194 

Applying machine learning to efficiently predict communities’ preference of sustainable arsenic 195 

mitigation technology is inspired by two recent researches where the first study [22] models the 196 
preferences using a traditional statistical technique logistic regression, but did not provide a 197 
comparison of how other statistical or machine learning techniques may fit the data to the various 198 

models. The second study [1] provides a great deal of insights that developing prediction models 199 
in the context of arsenic using complex socioeconomic, demographic, and other social factors may 200 
need very specific type of algorithms or a hybrid model. Applying all the algorithms together and 201 

comparing them in one study is not feasible therefore, we decided to select the state-of-the-art 202 
linear, nonlinear, ensemble, Naïve Bayes, and tree-based classifiers to develop the models and 203 
compare them for their prediction accuracy and robustness. A brief description of each algorithm 204 

applied in this study is described below. 205 

2.5.1. Generalized Linear Models 206 

Logistic Regression (LR) 207 

The LR is a multivariate regression that provides the probability of the presence of an event at 208 

each response according to the predictors [57, 58]. It has some advantages that environmental 209 
researchers have encouraged to apply it, including; (1) the LR does not need to set normality for 210 

independent feature, (2) predictors can either be continuous or discrete or any combination of these 211 
types of data, (3) it is easy to implement in most statistical packages such as SPSS, SAS, STATA, 212 
R and so on [59-61]. The dependent variable in the LR should be binary (present/occurrence and 213 

absent/non-occurrence of an event) to achieve the probability values. In this study, we aim to 214 
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predict the probability of adoption of arsenic treatment units (ATU) using LR model and some 215 
predictors. The LR can be formulated in its simplest form as follows: 216 

𝑃𝑃𝐿𝐿𝐿𝐿 = 𝑒𝑒𝑧𝑧

1+𝑒𝑒𝑧𝑧
                                                                                                                                (1 ) 217 

where, PLR is the probability of present/occurrence of an event that varies from 0 to 1as s-shaped 218 

curve, Z is a linear combination that varies from −∞ to +∞ and can be computed as bellow: 219 
𝑍𝑍 = 𝑐𝑐0 + 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛                                                                                        (2) 220 

where, 𝑐𝑐0 is the constant coefficient/intercept of the LR model, n is the number of predictors, 221 

𝑎𝑎𝑖𝑖 (𝑖𝑖 = 1, 2, 3, … ,𝑛𝑛) is the independent variables as input to the model, 𝑥𝑥𝑖𝑖 (𝑖𝑖 = 1, 2, 3, … , 𝑛𝑛) is 222 

the coefficients of each predictors as input to the model [62]. 223 

Passive Aggressive (PA) 224 

The passive-aggressive algorithm is similar to Perceptron as there is no learning rate required. 225 

However, it contain a regularization parameter “C” [54, 63]. Scikit learn machine learning library 226 
in python offers a passive aggressive classifier for binary classification such as in this case for 227 

classifying preference of ATU as a most sustainable arsenic mitigation technology. This technique 228 

is less explored though. 229 

Ridge 230 

The Ridge classifier is another linear classifier and is also known as least squares support vector 231 

machines where in Scikit learn this classifier first converts binary targets ATU-No and ATU-Yes 232 
to, respectively -1 and 1. The algorithm then regress the dependent variable against the independent 233 

variables, and the predicted class resembles to the sign of the regressor’s prediction [54]. 234 

Stochastic Gradient Descent (SGD) 235 

The SGD is another linear classifier and commonly used with large sample size. The SGD can fit 236 
both logistic regression model and support vector machine by selecting appropriate loss functions, 237 

respectively “log” and “hinge” [54]. It requires a learning rate, and the loss is estimated for each 238 
data point at a time. For a normally distributed data, the SGD provides a better result. Although 239 
SGD classifier is known for its efficiency on large datasets, it is known to be highly sensitive to 240 

feature scaling [54]. 241 
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Perceptron 242 

The Perceptron is another linear classifier that doesn’t require learning rate, that’s why it is a 243 
favorable classifier for large scale learning. Additionally, it doesn’t penalize the learning and 244 

updates the model only on mistakes [54]. 245 

2.5.2. Trees Models 246 

Decision Trees (DT) 247 

The DT is a tree-base non-parametric classifier that learns decision rules from the data features. 248 
This is a very popular classifier for developing binary classification models as it is simple to 249 
understand and to interpret. Although it doesn’t work well with missing data, it is a good classifier 250 

that efficiently handles both numerical and categorical data, and requires less assumptions [54].  251 

2.5.3. Ensemble Models 252 

Ada Boost 253 

The AdaBoost is an ensemble classifier, first introduced in 1995 by Freund and Schapire. It fits a 254 
sequence of weak learners on modified versions of the data and produces a combined predicted 255 
class. In this entire process, the classifier makes sure that none of the data point is left in the training 256 

phase [54, 64]. 257 

Bagging 258 

Bagging is another ensemble classifier that consolidates a final prediction based on the previous 259 

predictions on randomly selected subsets of the original training dataset. It works well with strong 260 

and complex models [54, 65]. 261 

Extra Trees (ET) 262 

The ET is another ensemble model, well known to control over-fitting but less explored. In scikit-263 
learn, this classifier fits several randomized decision trees i.e. “extra-trees” on several sub-samples 264 

of the dataset [54]. 265 
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Gradient Boosting (GB) 266 

The GB is another ensemble classifier offered by Scikit-learn library and is very popular among 267 
scientific computation community [54]. It builds an additive model in a forward stage-wise fashion 268 

and allows for the optimization of arbitrary differentiable loss functions.  269 

Random Forest (RF) 270 

The RF is another popular ensemble classifier available through Scikit-learn that fits several 271 
decision tree classifiers on many sub-samples of the dataset. The RF averages the probabilistic 272 
prediction value of each decision-tree and uses to improve the classification accuracy. It is also 273 

known to be prone to over-fitting [54, 66]. 274 

2.5.4. Support Vector Machines Models 275 

Support vector machines (SVM) is known for efficiently classifying linearly separable data as well 276 

as non-linearly separable data by using a kernel function, such as sigmoid, radial, or polynomial. 277 

It is advantageous if the data is clearly separable and the ratio between the number of dimensions 278 

and the number of samples is greater. It is also memory efficient. However, the SVM takes more 279 

time in training the model therefore; it is not feasible for large data set.  Likewise, with noisy data, 280 

the performance is poor.  281 

SVC 282 

The SVC is known as C-Support Vector Classification, a non-linear SVM classifier [54]. 283 

Nu-Support Vector Classification (Nu-SVC) 284 

The Nu-SVC is another non-linear SVM classifier that uses a parameter to control the number of 285 

support vectors [54]. 286 

Linear Support Vector Classification (LinearSVC) 287 

The LinearSVC uses ‘linear’ kernel and Scikit-learn library offers suppleness in choosing loss 288 

functions and penalties [54].   289 
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2.5.5. Nearest Neighbors Models 290 

K-nearest neighbors 291 

k-Nearest Neighbors (k-NN) is a nonparametric non-linear classifier that categorizes the intended 292 

event by a majority vote of its k nearest neighbors, which is a positive integer and can be derived 293 
through elbow-test [54, 67]. k-NN is advantageous in several ways, as it does not require 294 

assumptions, easily interpretable, good for nonlinear data, and can produce comparatively better 295 
accuracy [54, 67]. However, k-NN is very sensitive to irrelevant features, the scale of the variables, 296 
the dimensions of the dataset, and class imbalance. In addition, it can be highly computation 297 

intensive as it stores all the training data. 298 

Nearest Centroid (NC) 299 

In Scikit-learn, the NC classifier belongs to the nearest neighbor algorithms where each class is 300 

characterized by the centroid of its members [54]. 301 

2.5.6. Neural Network Model 302 

Multi-Layer Perceptron 303 

The ANN is organized and structured based on the skills of human brain cells to extract knowledge 304 

from the input dataset [32, 68]. It has some advantages that it has been a strong and promising 305 
technique to prediction environmental problems including, (i) it can efficiently detect a different 306 
subset of data within a whole dataset, (ii) it do not need to any experience and pre-knowledge 307 

process, and (iii) It do not need to a given statistical model in the training dataset [69]. The 308 
multilayer perceptron (MLP) and radial base function (RBF) are two popular and well-known as 309 
functions of ANN. Although the capability of these two function are different from one case study 310 

to another, in general the MLP is more popular and general than the RBF kernel function [70]. The 311 
MLP is more successfully and flexibility in modeling, especially on non-linear, imprecise and 312 
imperfect data so that it can extract the reliable results [71]. Therefore, in this study, we used of 313 

MLP function to construct a network for determining the relationship between the ATU and 314 
predictors. The MLP has a structure with three layers including a n input, an output and one or 315 
more hidden layers between them [72, 73]. In this study, ATU predictors are taking into 316 

consideration as inputs (neurons) and the weights for each predictor is output. In a simplest form, 317 

let ix  and iw  are input predictors and they obtained weights during the modeling process. In hidden 318 
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layer, they are multiplied and then summed up to extract the final output or the final weights ( iy ) 319 

by a non-linear activation function as follows: 320 
n

i i
i 0

net w x
=

= ∑                                                                                                                  (3) 321 

iy f (net)=                                                                                                                      (4) 322 

2.5.7. Naïve Bayes Models 323 

Naïve Bayes (NB) is another state-of-the-art nonlinear classifier that works on the Bayes theorem, 324 

has a strong assumption that all the predictors are independent and not correlated to each other, 325 

and can be mathematically presented as below: 326 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃[𝑌𝑌 = 𝑃𝑃(𝑐𝑐|𝑥𝑥)] =327 

�𝐿𝐿𝑖𝑖𝐿𝐿𝑒𝑒𝐿𝐿𝑖𝑖ℎ𝑜𝑜𝑜𝑜𝑜𝑜: 𝑃𝑃�𝑥𝑥1�𝑐𝑐�×𝑃𝑃�𝑥𝑥2�𝑐𝑐�×…𝑃𝑃�𝑥𝑥𝑛𝑛�𝑐𝑐��×[𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑖𝑖𝑜𝑜𝑃𝑃 𝑃𝑃𝑃𝑃𝑜𝑜𝑃𝑃𝐶𝐶𝑃𝑃𝑖𝑖𝐿𝐿𝑖𝑖𝑃𝑃𝑃𝑃: 𝑃𝑃(𝑐𝑐)]
𝑃𝑃𝑃𝑃𝑒𝑒𝑜𝑜𝑖𝑖𝑐𝑐𝑃𝑃𝑜𝑜𝑃𝑃 𝑃𝑃𝑃𝑃𝑖𝑖𝑜𝑜𝑃𝑃 𝑃𝑃𝑃𝑃𝑜𝑜𝑃𝑃𝐶𝐶𝑃𝑃𝑖𝑖𝐿𝐿𝑖𝑖𝑃𝑃𝑃𝑃: 𝑃𝑃(𝑥𝑥)

  (5) 328 

NB is known to be outperforming other state-of-the-art classifiers, such as logistic regression [54]. 329 
It requires less training dataset and can quickly predict on test dataset. It is also known to be a good 330 

classifier for categorical variables [54]. However, the strong assumption of independence could be 331 

a challenge while applying NB on the dataset with multicollinearity. 332 

Bernoulli Naïve Bayes 333 

This is one of the NB classifiers that assumes the data has multivariate Bernoulli distributions. 334 

Therefore, this class requires samples to be represented as binary-valued feature vectors; if handed 335 
any other kind of data, a BernoulliNB instance may binarize its input (depending on 336 

the binarize parameter) [54]. 337 

The decision rule for Bernoulli naive Bayes is based on 338 

𝑃𝑃(𝑥𝑥𝑖𝑖 ∣∣ 𝑃𝑃 ) = 𝑃𝑃( 𝑖𝑖 ∣∣ 𝑃𝑃 )𝑥𝑥𝑖𝑖 + �1 − 𝑃𝑃( 𝑖𝑖 ∣∣ 𝑃𝑃 )�(1 − 𝑥𝑥𝑖𝑖)  (6) 339 

which differs from multinomial NB’s rule in that it explicitly penalizes the non-occurrence of a 340 
feature i that is an indicator for class y, where the multinomial variant would simply ignore a non-341 

occurring feature [54]. 342 
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Gaussian Naïve Bayes 343 

This is another NB classifier that assumes that the data has a Gaussian distribution, and the 344 

Gaussian distribution can be presented in Eq. 7.  345 

𝑃𝑃(𝑥𝑥𝑖𝑖 ∣ 𝑃𝑃) = 1

�2𝜋𝜋𝜎𝜎𝑦𝑦2
exp (− (𝑥𝑥𝑖𝑖−𝜇𝜇𝑦𝑦)2

2𝜎𝜎𝑦𝑦2
) (7) 346 

The parameters σy and μy are estimated using maximum likelihood [54]. 347 

2.5.8. Nearest Shrunken Centroids (NSC) 348 

The NSC [74, 75] in classification issues calculates a standardized centroid for each class using 349 
the average value of each feature of each class divided by its class standard deviation of that 350 

feature. In the next step, the feature vector of a new conditioning factor as input is compared to the 351 
centroids of each of these classes. Consequently, the class with the closest centroid (in squared 352 
distance) is the predicted class for that new conditioning factor as input data [76]. In this model, 353 

using a threshold, each of the class centroids of the features shrinks toward the overall centroid. 354 
Mathematically, first a threshold value is assigned to the class centroids of the features, and if it is 355 
small for all classes, it is set to zero. Consequently, when shrinking the centroids for all classes is 356 

completed the new sample of the feature is classified by the usual nearest centroid rule [76]. 357 

2.6. Model Development and Validation 358 

After imputing the missing values, except the response variable ATU, the data was scaled and 359 
centered, and 75% of the data was used for model development and 25% for testing. The data was 360 

split using model selection function of Scikit-learn [54].   361 

2.6.1. Feature selection 362 

Feature selection is an important step in developing any machine-learning model, and there are 363 
various ways of selecting the most appropriate predictors. Some machine learning models can 364 

handle feature selection, but not most of them. Therefore, we decided to apply Spearman’s 365 
correlation to select all the predictors with a significant correlation with ATU [54].  366 
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2.6.2. Training machine learning models 367 

Using train_test_split function of Scikit-learn the data was split into 75% for training the model 368 
and 25% of the data for model validation [54]. To train all 19 models together, we created a 369 

function by listing ensemble methods including     ensemble. AdaBoostClassifier, 370 
ensemble.BaggingClassifier, ensemble.ExtraTreesClassifier,     371 
ensemble.GradientBoostingClassifier, ensemble.RandomForestClassifier; generalized linear 372 

models including linear_model.LogisticRegressionCV,     373 
linear_model.PassiveAggressiveClassifier, linear_model. RidgeClassifierCV,     374 
linear_model.SGDClassifier, linear_model.Perceptron; Navies Bayes methods including     375 

naive_bayes.BernoulliNB, naive_bayes.GaussianNB; Nearest Neighbor methods including     376 
neighbors.KNeighborsClassifier and neighbors.NearestCentroid; SVM techniques including     377 
svm.SVC, svm.NuSVC, svm.LinearSVC; Trees-based methods including     378 

tree.DecisionTreeClassifier, tree.ExtraTreeClassifier(), and Neural Network methods including    379 

neural_network.MLPClassifier [54]. 380 

2.6.3. Validation of machine learning models 381 

All models were validated on 25% of the data using accuracy, precision, recall, and AUC score. 382 

Predicted number of people preferred ATU (TP); Predicted number of people not preferred ATU 383 
(TN); incorrectly predicted number of people preferred ATU (FP); incorrectly predicted number 384 

of people not preferred ATU (FN) 385 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑃𝑃𝑎𝑎𝑐𝑐𝑃𝑃 = 𝑇𝑇𝑃𝑃+𝑇𝑇𝑇𝑇
𝑇𝑇𝑃𝑃+𝑇𝑇𝑇𝑇+𝐹𝐹𝑃𝑃+𝐹𝐹𝑇𝑇 

 (8) 386 

𝑆𝑆𝑃𝑃𝑛𝑛𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑆𝑆𝑖𝑖𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑇𝑇

 (9) 387 

𝑆𝑆𝑃𝑃𝑛𝑛𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑆𝑆𝑖𝑖𝑃𝑃𝑃𝑃 = 𝑝𝑝𝑃𝑃𝑒𝑒𝑜𝑜𝑖𝑖𝑐𝑐𝑃𝑃𝑒𝑒𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑃𝑃𝑒𝑒𝑃𝑃 𝑜𝑜𝑜𝑜 𝑝𝑝𝑒𝑒𝑜𝑜𝑝𝑝𝐿𝐿𝑒𝑒 𝑝𝑝𝑃𝑃𝑒𝑒𝑜𝑜𝑒𝑒𝑃𝑃𝑒𝑒𝑜𝑜 𝐴𝐴𝑇𝑇𝐴𝐴
𝑃𝑃𝑜𝑜𝑃𝑃𝐶𝐶𝐿𝐿 𝑛𝑛𝑛𝑛𝑛𝑛𝑃𝑃𝑒𝑒𝑃𝑃 𝑜𝑜𝑜𝑜 𝑝𝑝𝑒𝑒𝑜𝑜𝑝𝑝𝐿𝐿𝑒𝑒  𝑝𝑝𝑃𝑃𝑒𝑒𝑜𝑜𝑒𝑒𝑃𝑃𝑒𝑒𝑜𝑜 𝐴𝐴𝑇𝑇𝐴𝐴 𝑖𝑖𝑛𝑛 𝑃𝑃ℎ𝑒𝑒 𝑝𝑝𝑜𝑜𝑝𝑝𝑛𝑛𝐿𝐿𝐶𝐶𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛

 (10) 388 

Sensitivity is also known as recall, hit rate, and true positive rate. 389 

𝑆𝑆𝑆𝑆𝑃𝑃𝑐𝑐𝑖𝑖𝑆𝑆𝑖𝑖𝑐𝑐𝑖𝑖𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑃𝑃

 (11) 390 

𝑆𝑆𝑆𝑆𝑃𝑃𝑐𝑐𝑖𝑖𝑆𝑆𝑖𝑖𝑐𝑐𝑖𝑖𝑃𝑃𝑃𝑃 = 𝑝𝑝𝑃𝑃𝑒𝑒𝑜𝑜𝑖𝑖𝑐𝑐𝑃𝑃𝑒𝑒𝑜𝑜  𝑛𝑛𝑛𝑛𝑛𝑛𝑃𝑃𝑒𝑒𝑃𝑃 𝑜𝑜𝑜𝑜 𝑝𝑝𝑒𝑒𝑜𝑜𝑝𝑝𝐿𝐿𝑒𝑒  𝑛𝑛𝑜𝑜𝑃𝑃 𝑝𝑝𝑃𝑃𝑒𝑒𝑜𝑜𝑒𝑒𝑃𝑃𝑒𝑒𝑜𝑜 𝐴𝐴𝑇𝑇𝐴𝐴
𝑃𝑃𝑜𝑜𝑃𝑃𝐶𝐶𝐿𝐿 𝑛𝑛𝑛𝑛𝑛𝑛𝑃𝑃𝑒𝑒𝑃𝑃 𝑜𝑜𝑜𝑜 𝑝𝑝𝑒𝑒𝑜𝑜𝑝𝑝𝐿𝐿𝑒𝑒  𝑛𝑛𝑜𝑜𝑃𝑃 𝑝𝑝𝑃𝑃𝑒𝑒𝑜𝑜𝑒𝑒𝑃𝑃𝑒𝑒𝑜𝑜 𝐴𝐴𝑇𝑇𝐴𝐴 𝑖𝑖𝑛𝑛 𝑃𝑃ℎ𝑒𝑒 𝑝𝑝𝑜𝑜𝑝𝑝𝑛𝑛𝐿𝐿𝐶𝐶𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛

 (12) 391 

Specificity is also known as true negative rate and selectivity. 392 
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3. RESULTS 393 

3.1. Socioeconomic, demographic and other social factors 394 

With 39% of the population, ATU was the most preferred sustainable arsenic mitigation 395 
technology and significantly different from the other options including piped water supply system, 396 
deep tube wells, dug wells/open wells, and rainwater harvesting system [22]. Although there was 397 

a less participation of females in the survey than males, we did not find any significant difference 398 
(p=0.7519) among them preferring ATU as the most sustainable arsenic mitigation technology 399 
(Figure 3-a). People of age group of 40-50 (Figure 3-b) were more interested in adopting ATU as 400 

the sustainable arsenic mitigation technology than the other age groups, but not significantly 401 
different from each other (p=0.1760).   402 

   403 

   404 

   405 
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   406 

   407 

   408 
 409 
Figure 3. (a) gender and ATU preference; (b) age and ATU preference; (c) marital status and ATU 410 
preference; (d) caste and ATU preference; (e) education and ATU preference; (f) household size and ATU 411 
preference; (g) occupation and ATU preference; (h) income and ATU preference; (i) agricultural 412 
landholdings and ATU preference; (j) housing status and ATU preference; (k) arsenic awareness and ATU 413 
preference; (l) willingness to pay for arsenic mitigation and ATU preference.  414 
 415 
A similar trend was observed with marital status (Figure 3-c) of the respondents, where there was 416 
no difference in the response of preferring ATU (p=0.9038) among single and married people. 417 

This could be also because of the low participation of unmarried people (5%) in the survey. Caste 418 
was appeared to be one of the most important features of the respondents that distinguish the 419 

preference of ATU among various castes. A majority of SC (65%) preferred ATU (Figure 3-d) 420 
followed by BC (44%) and FC (18%) and their preferences were significantly different (p<0.0001) 421 
from each other. A similar trend was observed across various education levels of the respondents 422 

(Figure 3-e) where people with no education found to be more likely (54%) to adopt ATU than 423 
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people with various levels of education and was significantly different from each other (0.0072). 424 
There was no association between household size and preference of ATU (p=0.5822) (Figure 3-f). 425 

A similar trend was observed with the occupation (p=0.3275) (Figure 2-g), income (p=0.5297) 426 
(Figure 3-h), and agricultural landholdings (p=0.4152) (Figure 3-i) of the respondents where their 427 
preference of ATU as the sustainable arsenic mitigation technology was not different. People live 428 

in straw-made roofed houses were more likely (56%) (Figure 3-j) to prefer ATU than the people 429 
live in better housing structures and the responses were significantly different (p=0.0013) from 430 

each other. The respondents less aware of arsenic (55%) were more likely to prefer ATU than the 431 
respondents with arsenic awareness (Figure 3-k) and their responses were significantly different 432 
(p<0.001). This further interprets that the people perceive technology/filters as a better solution to 433 

purify any water contaminants. The respondents with a WTP >Rs. 25 were more likely (56%) to 434 
prefer ATU and their responses were different (p<0.001) across various WTP levels (Figure 3-l). 435 

3.2. Water and sanitation factors 436 

When it comes to respondents’ water and sanitation behaviors, the number of households involved 437 
in water collection was significantly (p<0.0001) associated with ATU preference (Figure 4-a). The 438 

households with more than five members involved in water collection were more likely to prefer 439 
ATU, which may indicate their concern about dependency on many people for water collection 440 
and collective time loss. The distance travelled (Figure 4-b) and the time spent to collect water 441 

(Figure 4-c) were not significantly associated with ATU preference. However, people’s sanitation 442 
habits were significantly associated with ATU preference. The respondents who defecate in the 443 
open field were more likely (43%) to prefer than who uses their own toilets (23%). The similar 444 

trend was observed for the materials used for hand washing after the defecation (Figure 4-c). 445 

   446 
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   447 

 448 
 449 
Figure 4. (a) number of households involved in water collection and ATU preference; (b) distance travelled 450 
to collect water and ATU preference; (c) time spent to collect water and ATU preference; (d) materials used 451 
for hand washing after defecation and ATU preference. 452 

3.3. Social capital 453 

Social capital found to be a major player in guiding the decision making to adopt arsenic mitigation 454 
technology. The respondents, who agreed on the presence and functionality of Anganwadi, were 455 

more likely to prefer ATU with a significant difference (p=0.0011) from who disagreed (Figure 5-456 
a). A contrasting pattern was found with the respondents’ response on the presence and 457 

functionality of Mahila Samakhya (Figure 5-b) and Self-Help Groups (Figure 5-c) with the 458 
respondents who disagree were more likely to prefer ATU than who agreed on this question.  459 

   460 
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   462 

    463 

    464 

 465 
 466 
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Figure 5. (a) opinion of the presence and functionality of Anganwadi and ATU preference; (b) opinion of 467 
the presence and functionality of Mahila Samakhya and ATU preference; (c) opinion of the presence and 468 
functionality of Self Help Group and ATU preference; (d) trust in others and ATU preference; (e) trust in 469 
government agencies and ATU; (f) trust in NGOs and ATU; (g) trust in PRIs and ATU preference; (h) trust 470 
in private agencies and ATU preference; (i) trust in academicians and scientists and ATU preference; (j) 471 
participation in panchayat activities and ATU preference; (k) people seek advice and value their views and 472 
ATU preference. 473 
 474 
The respondents who trust between 1 and 5 people were more likely (Figure 5-d) to prefer ATU 475 
and significantly different (p<0.001) than other trust categories. The people who trust in 476 

government agencies (Figure 5-e) and academicians (Figure 4-i) were more likely to prefer ATU 477 
and their responses were significantly different (p=0.0081 and p=0.0101 respectively). In contrast, 478 
the respondents who do not trust NGO (Figure 5-f, p<0.0001), PRIs (Figure 5-g, p=0.0056), and 479 

private agencies (Figure 5-h, p<0.0001) were more likely to prefer ATU. People’s participation in 480 
panchayat activities had no significant association (p=0.7496) with ATU preference (Figure 5-j). 481 
On the other hand, people who reported that other people in the society do not seek advice and 482 

value their views were more likely (59%, p<0.0001) to prefer ATU than who agreed on this 483 
question. 484 

3.4. Comparing machine learning models 485 

We developed 19 different models and all of them were trained on the 75% of the data set (Figure 486 
6). Among these 19 models, Decision Tree (accuracy=0.988), Extra Trees (accuracy=0.988), 487 
Bagging (accuracy=0.967), Random Forests (accuracy=0.972), and Gradient Boosting 488 

(accuracy=0.953) achieved the highest accuracy, all above 95%, Decision Tree being the top 489 
performer (Figure 6).  490 
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 491 
Figure 6. Model comparison for accuracy: the graph is in descending order based on the accuracy on test 492 
data. 493 

Nine models, including K-neighbors (accuracy=0.862), NuSVC (accuracy=0.858), MLP 494 
(accuracy=0.850), SVC (accuracy=0.823), AdaBoost (accuracy=0.819), PassiveAggressive 495 
(accuracy=0.815), LinearSVC (accuracy=0.811), LogisticRegression (0.807), and RidgeClassifier 496 

(accuracy=0.807) had the accuracy above 80%. Gaussian NB and Nearest Centroid also had the 497 
satisfactory accuracy of 0.795 and 0.704, respectively (Figure 6). However, SGD 498 
(accuracy=0.638), Bernauli NB (accuracy=0.622), and Perceptron (accuracy=0.539) had the 499 

poorest performance (Figure 6).  500 
When the accuracy of 19 models on test data was compared it was apparent that a majority of the 501 
models had high variance in the accuracy on training and test datasets (Figure 6). Considering the 502 

accuracy as a model performance criterion, Gaussian NB model was found to have less variance 503 
in the accuracy where the overall accuracy on test data was 0.824, 0.028 greater than the accuracy 504 

on the training data. The second most stable model was NuSVC (accuracy=0.812) with a 505 
difference between training and testing dataset of 0.047. Other models with good performance on 506 
test data after Gaussian NB and NuSVC were, respectively, K-neighbors (accuracy=0.788), 507 

Random Forests (accuracy=0.788), Decision Trees (accuracy=0.777), Extra Trees 508 
(accuracy=0.777), SVC (accuracy=0.777), MLP (accuracy=0.765), AdaBoost (accuracy=0.753), 509 
Bagging (accuracy=0.753), Gradient Boosting (accuracy=0.741), LinearSVC (accuracy=0.741), 510 
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the Nearest Centroid (accuracy=0.741), Passive Aggressive (accuracy=0.741), Ridge 511 
(accuracy=0.741), and Logistic Regression (accuracy=0.729). Bernouli NB (accuracy=0.577), 512 

SGD (accuracy=0.541), and Perceptron (accuracy=0.506) models were the poorest performers. 513 
After comparing the accuracy of all the models of training and test data, Gaussian NB was found 514 
to be the clear winner and Perceptron was as good as an intuition, a random model. 515 

As mentioned in the methodology section, Precision measures the type-I error i.e., false positive. 516 
It is also known as how sensitive the model is correctly predicting the positive events. While 517 

comparing the precision score on the training data, we found that Extra Trees, Random Forests, 518 
and Decision Trees have the perfect precision of “1.” Bagging (precision=0.979) and Gradient 519 
Boosting (precision=0.957) almost equally precise after Extra Trees, Random Forests and 520 

Decision Trees. MLP (precision=0.854), NuSVC (precision=0.849), Passive Aggressive 521 
(precision=0.836), SVC (precision=0.831), and K-neighbors (precision=0.828) achieved good 522 
precision scores all above 80%. Ridge (precision=0.776), Logistic regression (precision=0.776), 523 

Ada Boost (precision=0.772), Linear SVC (precision=0.767) and Gaussian NB (precision=0.683) 524 
also had good precision score ranging between 70% and 80%. The Nearest Centroid 525 
(precision=0.581), SGD (precision=0.511), and Perceptron (precision=0.451) scored less 526 

precision. Bernoulli NB (precision=0) couldn’t produce any precision score. It is clear that 527 
Bernoulli failed to precisely predict the positive outcome, i.e. the preference of ATU as a 528 
sustainable arsenic mitigation technology (Figure 7). 529 

 530 
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Figure 7. Model comparison for precision: the graph is in descending order based on the precision on test 531 
data. 532 

The precision on test data for Extra Trees got reduced from 1 to 0.840, still the highest among rest 533 
of the models. Random Forest model had 0.821 precision value on test data, followed by SVC 534 

(precision=0.815), NuSVC (precision=0.813), Passive Aggressive (precision=0.769), 535 
GaussianNB (precision=0.769), MLP (precision=0.767), Decision Tree (precision=0.743), Ada 536 
Boost (precision=0.727), K-neighbors (precision=0.725), Ridge (precision=0.719), Linear SVC 537 

(precision=0.719), and Bagging (precision=0.703), all above 70%. Logistic regression 538 
(precision=0.697), Gradient Boosting (precision=0.684), and Nearest Centroid (precision=0.675) 539 
scored precision between 60% and 70%. SGD (precision=0.479), Perceptron (precision=0.461), 540 

and Bernoulli NB (precision=0.000) had the lower precision scores, Bernoulli NB being the lowest 541 
similar to its precision score on training data. That further states that when Bernoulli NB predicts 542 
ATU as a sustainable arsenic mitigation technology, it is correct 0% of the time (Figure 7). 543 

As opposed to Precision, Recall measures the type-II error i.e., false negative. It is also known as 544 
how specific the model correctly predicts the negative events. While comparing the precision score 545 

on the test data, we found that Perceptron had the perfect Recall of 1, followed by SGD 546 
(recall=0.990), Decision Tree (recall=0.969), Extra Trees (recall=0.969), Bagging (recall=0.958), 547 
Random Forest (recall=0.938), and Gradient Boosting (recall=0.917), all above 90%. Gaussian 548 

NB (recall=0.854), K-neighbors (recall=0.802), NuSVC (recall=0.760), the Nearest Centroid 549 
(recall=0.750), Ada Boost (recall=0.740), MLP (recall=0.729), and Linear SVC (recall=0.719) had 550 
recall score above 70% but below 90%. Logistic Regression (recall=0.688), Ridge (recall=0.688), 551 

SVC (recall=0.667), and Passive Aggressive (recall=0.635) had comparatively lower recall value 552 
among all 19 models, and Bernoulli NB (recall=0.000) being at the bottom of this sequence. 553 
(Figure 8).  554 
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 555 
Figure 8. Model comparison for recall: the graph is in descending order based on the recall on test data. 556 

The recall on test data for Perceptron got reduced from 1 to 0.972, still the highest among rest of 557 
the models. SGD achieved 0.972 recall score on the test data, followed by Gaussian NB 558 

(recall=0.833), K-neighbors (recall=0.806), the Nearest Centroid (recall=0.750), Decision Tree 559 
(recall=0.722), Bagging (recall=0.722), Gradient Boosting (0.722), Nu SVC (recall=0722), Ada 560 

Boost (recall=0.667), Random Forest (recall=0.639), MLP (recall=0.639), Linear SVC 561 
(recall=0.639), Logistic regression (recall=0.639), Ridge (recall=0.639), SVC (recall=0.611), 562 
Extra Trees (recall=0.583), Passive Aggressive (recall=0.556), and Bernoulli NB (recall=0.000) 563 

(Figure 8). Perceptron and SGD had the highest recall on both training and testing data. On the 564 
other hand, Bernoulli NB achieved “0” recall score (Figure 8). 565 
AUC is considered as the most preferable machine learning model performance metrics to evaluate 566 

the accuracy and the robustness of any machine learning models. We found that Decision Tree 567 
(AUC=0.984) and Extra Trees (AUC=0.984) achieved the highest AUC score on training data. 568 
Bagging (AUC=0.973) secured the third place, followed by Random Forest (AUC=0.966), 569 

Gradient Boosting (AUC=0.946), K-neighbors (AUC=0.850), NuSVC (AUC=0.839), MLP 570 
(AUC=0.827), Gaussian NB (AUC=0.807), Ada Boost (AUC=0.803), Linear SVC (AUC=0.793), 571 
SVC (AUC=0.792), Ridge (AUC=0.784), Logistic Regression (AUC=0.784), Passive Aggressive 572 
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(AUC=0.780), Nearest Centroid (AUC=0.710), SGD (AUC=0.707), Perceptron (AUC=0.630), 573 
and Bernoulli NB (AUC=0.500) (Figure 9).  574 

 575 
Figure 9. Model comparison for AUC: the graph is in descending order based on the AUC on test data. 576 

Gaussian NB had the best AUC of 0.825 on test data, followed by NuSVC (AUC=0.800), K-577 
neighbors (AUC=0.791), Decision Trees (AUC=0.769), Random Forest (AUC=0.768), SVC 578 

(AUC=0.755), Extra Trees (AUC=0.751), Bagging (AUC=0.749), MLP (AUC=0.748), Nearest 579 
Centroid (AUC=0.742), Ada Boost (AUC=0.741), Gradient Boosting (AUC=0.739), Linear SVC 580 
(AUC=0.728), Ridge (AUC=0.728),  Logistic Regression (AUC=0.717), Passive Aggressive 581 

(AUC=0.717), SGD (AUC=0.589), Perceptron (AUC=0.568), and Bernoulli NB (AUC=0.500) 582 
(Figure 10). 583 
 584 
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 585 

Figure 10. The AUC of all models on test data. 586 

With the highest AUC of 0.825 on test data, GaussianNB can be declared as the best model in 587 

predicting ATU as a sustainable arsenic mitigation technology (Figure10).  588 

4. DISCUSSION 589 
The DT (21.4%), ExtraTrees (21.4%), Bagging (22.9%), Gradient Boosting (22.2%), and Random 590 
Forest (18.9%) models found to be over fitted on the training data while comparing on the test data 591 

(Figure 6). There were other ten models that overfitted above 5% on the training data. It appeared 592 
that these models learned the noise in the training data as a natural trend in the data that 593 

unfortunately could not be applied to test data. Therefore, the accuracy on test data went down by 594 
as high as 22.9%. That further indicates that these models cannot be generalized to unseen dataset. 595 
On the other hand, only two models including GaussianNB (-3.5%) and NearestCentroid (-5.8%) 596 

seem to be under-fitted on the training data, being very conservative in learning only the 597 
meaningful trend in the data and predicted with slightly less accuracy on test data. Each algorithm 598 
has its own advantages and disadvantages and have been developed to address specific scenario. 599 

Tree-based and ensemble algorithms are known to be prone to over-fitting if the sample size is not 600 
appropriate, assumptions are not met, or features are varied in nature [77, 78]. Among all, 601 
GaussianNB was found to be the most robust model. The reason could be that NB is a fast, highly 602 

scalable algorithm and is a good choice for binary classification problems [79, 80]. It can easily 603 
be updated on new data. In this study, we only had 339 samples, which is not a large sample size 604 
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and NB is known to be easily get trained on a small dataset that reflected from its highest AUC 605 
score (Figure 10). Since it is highly scalable, this technique can easily be applied to other similar 606 

arsenic contaminated areas [79, 80]. In a recent study, the authors found that the GaussianNB 607 
outperformed the SVM as it is statistically robust, neutrally reasonable, and could reproduce across 608 
unseen datasets [79]. Socioeconomic and psychological data comprises both continuous data (age 609 

and income) and discrete data (gender, education level, marital status, etc.) and Gaussian NB works 610 
pretty well with multidimensional data. In reality, survey-based data also suffers from missingness, 611 

GaussianNB is also prone to missing data and over-fitting, and it also ignores irrelevant features 612 
in the model. A majority of machine learning outcomes are difficult to interpret. Gaussian NB 613 

provides predictive ability to users as it can make probabilistic predictions [80, 81].  614 

5. CONCLUSION 615 

Application of various techniques of artificial intelligence in environmental data modeling and 616 
prediction is a recent phenomenon. Its application on building prediction models on socioeconomic 617 
and psychological data collected from communities living in environmental contaminated regions 618 

has just began. This study is a founding step in providing insights on how various state-of-the-art 619 
artificial intelligence can be used for developing accurate prediction models of sustainable arsenic 620 
mitigation technologies. Selecting an appropriate method is key in developing meaningful 621 

prediction models as the machine (computational instruments) only understands the data as 622 
numbers. In this study, we have evaluated several cutting edges linear, nonlinear, ensemble, tree-623 
based, and Naïve Bayes-based machine learning algorithms for predicting sustainable arsenic 624 

mitigation technology. Gaussian NB found to be the best model to fit to such multidimensional 625 
data. Achieving greater than 70% of AUC on test data by other 15 models is also promising. The 626 

top three models Gaussian NB, NuSVC, and K-neighbors are nonlinear classifiers that considers 627 
a nonlinear association between independent and dependent variables. The bottom performers 628 
including logistic regression, passive aggressive, SGD, and perceptron are all linear classifiers and 629 

could not do a better justice with this data. Bernoulli NB was clearly a bad choice of model as it 630 
assumes the features should be binary and that’s the reason it failed to develop a meaning 631 
prediction model.  Nonlinear and ensemble models are the better choice of models for 632 

multidimensional data where the association between the features are not linear, but complex. We 633 
also understand that if a few top linear and ensemble models can be further explored and fine-634 
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tuned, we could probably enhance the model performance. Where funding to generate such data 635 
in a large number is a challenge, Gaussian NB model is like a life-saving method that requires less 636 

data to learn, can handle missing data, prone to over-fitting, and easy to interpret. We evaluated a 637 
few less common algorithms that provided hope for exploring more for developing prediction 638 
models on socioeconomic-environmental data including NuSVC, Extra Tree, and Nearest 639 

Centroid. A larger sample size, careful feature selection, feature engineering may also help 640 
improve the performance of these models. Some models do require hyper parameter tuning, thus 641 

selecting the optimum hyper parameters for such models will also help improve the model 642 

performance.   643 
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