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Abstract 7 

The aquaculture expansion has made significant contributions to global food security, 8 
socio-economic development and, if implemented sustainably, can help preserve 9 
stable coastal environments. This study explicitly details the rapid expansion of large-10 
scale aquaculture growth across the Kolleru and Upputeru regions of South India. We 11 
developed a novel classification method for automated extraction of aquaculture 12 
ponds in the Kolleru zone using the Canny Edge-Otsu algorithm to segment and 13 
extract the ponds applied to SAR-VV images in Google Earth Engine. This approach 14 
enables the area estimation of dense aquaculture ponds are essential for monitoring 15 
and management purposes. The results indicated that this method could effectively 16 
map the aquaculture ponds and the overall accuracy achieved in 2020 for the Kolleru 17 
and Upputeru areas by 90.6% and 95.7%, respectively. The aquaculture maps of this 18 
study can help government organizations, resource managers, stakeholders, and 19 
decision-makers understand the dynamics and plan sustainable measures in this area.    20 
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1. Introduction  25 

Aquaculture farming is one of the important sources of food production, reinforced by 26 
global food security that almost raised five times between 1990 and 2015 (Ottinger et 27 
al., 2018). The projection of the human population by 2050 could reach up to 9.9 billion 28 
(PRB, 2020), resulting in a further increase in the demand for food, which might not 29 
be covered by agriculture and terrestrial livestock production alone. However, 30 
aquaculture has been one of the most promising sources of high-quality foods, 31 
covering increasing shares of the global food market over the last three decades 32 
(Porporato et al., 2020). Aquaculture has grown rapidly in coastal regions that are the 33 
most suitable conditions and occupy a significant number of coastal wetlands, 34 
introducing many impairments to the offshore environment (Xia et al., 2020). On the 35 
other side, it is causing detrimental effects such as pollution, ecological degradation, 36 
water eutrophication, and natural habitat destruction, mainly in coastal environments 37 
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(Kolli et al., 2020a; Sun et al., 2020; Nguyen et al., 2019; Peng et al., 2013). 38 
Nevertheless, the spatial planning of aquaculture management is essential for the 39 
sustainable growth of food to incorporate accurate mapping and monitoring of 40 
aquaculture (Gentry et al., 2016). However, spatial knowledge in the area of 41 
aquaculture distributions, patterns, and extent of aquaculture in coastal ecosystems is 42 
limited; therefore, it is essential to monitor those areas for food security and long-term 43 
environmental stability for sustainable management of the coastal regions. Satellite 44 
remote sensing takes advantage of both spatial and temporal data over decades is 45 
useful for the regional, continental, and global spatial scales providing tremendous 46 
economic benefits when used to observe changes on the ground (Pettorelli et al., 47 
2014). Remote sensing data is useful for large-scale aquaculture mapping, monitoring, 48 
and quantitatively evaluating potential aquaculture distribution and dynamics with 49 
greater accuracy. Furthermore, satellite images provide reference maps for optimal 50 
planning and management of sustainable aquaculture in coastal environments (FAO, 51 
2016).  52 

Several studies have used satellite data to extract aquaculture ponds from small-scale 53 
to larger-scale regions (Sun et al., 2020; Stiller et al., 2019; Zhang et al., 2013; 54 
Alexandridis et al., 2008). The data sets used for aquaculture mapping range from 55 
high-resolution sensors with spatial resolutions of 5 m or finer (Prasad et al., 2019; 56 
Ottinger et al., 2017; Loberternos et al., 2016; Szuster et al., 2008) to coarser 57 
resolution, such as Landsat's optical sensors (Duan et al., 2020b; Wu et al., 2018; 58 
Pardo et al., 2012). The main disadvantage with optical datasets is that they cannot 59 
penetrate through the clouds, which have a negative impact on data quality, 60 
particularly in coastal regions where aquaculture ponds are prevalent. In comparison 61 
with optical sensors, the signal of radar imageries is polarized and operates longer 62 
wavelengths that can penetrate through clouds, vegetation, and soil, thus performing 63 
better for mapping aquaculture distribution (Fan et al., 2015).  64 

A number of classification methods have been implemented to map aquaculture, 65 
although visual interpretation is the most appropriate method of mapping aquaculture 66 
ponds (Xu et al., 2014; Wen et al., 2011). The automated extraction of aquaculture 67 
ponds from remote sensing images is categorized into four types: (1) the classification 68 
approaches are used to determine the aquaculture from the separation of land and 69 
water features; for example, several studies have used supervised or unsupervised 70 
classification methods to distinguish aquaculture areas from other landuse classes 71 
(Fruhe et al., 2021; Proisy et al., 2018; Perez et al., 2003); (2) the edge detection 72 
method, is attributed to extract the boundaries of aquaculture ponds; (3) the band 73 
thresholding methods, which is one of the most significant approaches to extract 74 
aquaculture ponds, and based on spectral and textural attributes of an image. Many 75 
studies have developed automatic extraction models depending on the data source 76 
and classification methods to improve the mapping efficiency (Zhang et al., 2010). For 77 
example, Xia et al. (2020) proposed a multi-threshold segment method to extract 78 
aquaculture ponds based on the Random Forest classification model. Further, their 79 
results indicated that this approach could significantly improve the efficiency of 80 
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extracting aquaculture ponds over larger areas. Li et al. (2017) proposed an adaptive 81 
threshold method for detecting uneaten fish food in underwater images, while Ottinger 82 
et al. (2017) developed a connected component segmentation algorithm to extract 83 
aquaculture ponds automatically; (4) the Object-Based detection analysis approach, 84 
which so far has mainly been used for delineating coastal aquaculture ponds 85 
accurately (Virdis, 2014; Du et al., 2013). Fu et al. (2019) proposed a method for 86 
extracting ponds by combining multi-scale segmentation and object-based neighbor 87 
features, demonstrating that this method performed better than other conventional 88 
methods.  89 

Google Earth Engine (GEE) currently offers one of the most comprehensive and 90 
powerful platforms for this purpose, with access to more data and analysis. GEE was 91 
one of the first web-based platforms that enabled users to access the large volume of 92 
Earth Observation Analysis-Ready-Data (ARD) for rapid large-scale analytics 93 
(Gorelick et al., 2017). Many studies have taken advantage of GEE to map ground 94 
features ranging from small-scale to large-scale areas, particularly for visualizing, 95 
mapping, and modeling purposes (Duan et al., 2020a; Mutanga & Kumar, 2019). The 96 
aquaculture extraction studies based on GEE mostly used the spatial and spectral 97 
indices using a trial-and-error procedure or manual threshold detection followed by 98 
textural or morphological properties. This study developed a method for the automated 99 
extraction of aquaculture ponds using the Otsu threshold detection model and applied 100 
a Canny edge filter to extract the full extent of aquaculture in the Kolleru zone, an 101 
important prerequisite for aquaculture management in this area.  102 

The previous studies conducted remote sensing and GIS techniques to analyze land 103 
use conditions and identify the fishponds extent areas in the Kolleru Lake (Pattanaik 104 
et al., 2010; Jayanthi et al., 2006; Rao et al., 2004). Further, few studies described the 105 
tremendous changes in Kolleru Lake because of the aquaculture encroachment by 106 
humans, followed by the government restoration activities that severely affected the 107 
lake ecosystem to an extent (Kolli et al., 2020a; Azeez et al., 2011). These studies 108 
analyzed the fishponds areas based on the land use classification maps using remote 109 
sensing methods up to a 3’ft contour interval. More than its lake area, the aquaculture 110 
development in the whole extent of Kolleru and its tributary Upputeru regions have 111 
explicitly shown tremendous aquaculture growth over the past three decades, drawing 112 
attention to the international literature due to scalability, massive distribution, and 113 
large-scale aquaculture production. This is the first study to map the intensive 114 
distribution of aquaculture ponds in this area, building on previous studies which 115 
analyzed the landuse conditions but limited to soil erosion, sediment pollution, 116 
shrinkage, and landuse changes. The methodological focus of this paper is utilizing 117 
the GEE platform to model the Kolleru zone abundance aquaculture to extract 118 
geometrical, topographical, and textural properties of aquaculture ponds from the 119 
Sentinel-1 SAR data using the Canny Edge-Otsu method to map their spatial 120 
distribution and variability. The results of this study are useful for understanding the 121 
Kolleru zone aquaculture for better planning and management for sustainable 122 
aquaculture growth in this region.  123 

 124 
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2. Study area 125 

Kolleru Lake is one of the largest shallow freshwater lakes in India and is recognized 126 
to be of international importance under the Ramsar Convention. It is connected to the 127 
Bay of Bengal through a 60km long intricately meandering channel called "Upputeru 128 
River" (salt stream). It is located on the southeast coast of India, as shown in Figure 129 
1. This region is well known for paddy cultivation and aquaculture farming. 130 
Geographically, the area is situated between 16⁰ 19′ 10″ and 16⁰ 47′ 33″ Northern 131 
latitude and 80⁰ 56′ 22″ and 81⁰ 37′ 42″ Eastern longitude. It is one of the highly 132 
promising coastal economic zones in India, approximately expanding over 1,120 km2. 133 
Many rivers and irrigation canals flow through the lower part of the zone and, along 134 
with 68 minor irrigation channels, form large river deltas such as the Godavari River 135 
Delta and Krishna River Delta (which jointly form the Kolleru-Upputeru Catchment 136 
(Kolli et al., 2020a; Rao, 2003). The region’s peculiar hydrography offers suitable 137 
conditions for large-scale aquaculture growth. The coastal region is, therefore, one of 138 
the economically most developed parts of Andhra Pradesh (India). Whereas, on the 139 
one hand, the growing demand for aquacultural products has benefited the regional 140 
economy, local stakeholders are at the same time becoming increasingly concerned 141 
about the environmental tradeoffs. They affect both the Kolleru and Upputeru 142 
aquaculture farmings, which are two distinct ecosystems, i.e., the freshwater system 143 
of Kolleru and the increasingly saline Upputeru system (Azeez et al., 2011). During 144 
extreme flood events, all of the Kolleru Lake region's bed villages are submerged 145 
underwater. On the other hand, the Upputeru, as its only outlet river, extends 61 km 146 
in length, connecting Kolleru Lake and the Bay of Bengal. During summers, the lake 147 
area completely dries up, whereas saltwater intrusion occurs due to the reverse flow 148 
of water through the Upputeru (i.e., Upputeru = salt stream), which leads to pollution 149 
(Acharyulu et al., 2019).  150 

Aquaculture has been booming in Andhra Pradesh since the 1970s and has become 151 
one of the largest producers of farmed fish and shrimp in India (Belton et al., 152 
2017). According to the 2018 statistical reports, Andhra Pradesh accounted for the 153 
highest inland and freshwater fish production. National Aeronautics and Space 154 
Administration (NASA) has released a recent abundance of large-scale aquaculture 155 
blueprints, which showed a dense area of inland aquaculture ponds along the 156 
Upputeru River in Andhra Pradesh, where people once raised crops 157 
(https://earthobservatory.nasa.gov/images/148581/an-abundance-of-aquaculture-in-158 
andhra-pradesh). Aquaculture has replaced other land uses due to frequent flooding, 159 
as well as saltwater intrusion from the reverse flow of water into agricultural lands and 160 
the Bay of Bengal cyclones. Therefore, the state government made initial efforts to 161 
convert to aquaculture while also ensuring sustainable management of lake resources. 162 
Despite the fact that the successful growth of aquaculture in this region was a 163 
profitable choice for farmers, a critical expansion of aquaculture could be observed 164 
over the last three decades (Kolli et al., 2020a). As there is an increase in demand for 165 
fish production, farmers are encouraged to practice aquaculture, and the area is 166 

https://earthobservatory.nasa.gov/images/148581/an-abundance-of-aquaculture-in-andhra-pradesh
https://earthobservatory.nasa.gov/images/148581/an-abundance-of-aquaculture-in-andhra-pradesh
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developed with small-scale industries for supporting aquaculture production. In our 167 
previous studies, we addressed the various factors that influence the lake through 168 
continuous land-use change conditions (Kolli et al., 2020a, Kolli et al., 2020b). The 169 
lake area is completely degraded by three important factors: the first reason is that 170 
non-point source pollution from agriculture in the upper catchment area causes 171 
eutrophication in the lake. Secondly, large-scale encroachment of aquaculture in the 172 
lake region leads to pollution, biodiversity loss, and massive weed infests. Thirdly, 173 
domestic and industrial sludge materials are directly discharged into the lake without 174 
treating the effluent materials.  175 

3. Data sets and Methodology 176 

This study used Sentinel-1 data from a dual-polarization composed of C-band 177 
Synthetic Aperture Radar (SAR) data for visualization and analysis purposes. The 178 
advantage of the SAR is where the data acquisition is available day and night 179 
conditions and penetrates through clouds and vegetation. This study aims to analyze 180 
the SAR data for a potential map of aquaculture ponds across the Kolleru and 181 
Upputeru regions. The SAR data was processed in Google Earth Engine (GEE) and 182 
further performed radiometric slope correction (Vollrath et al., 2020), speckle noise 183 
removal (Choi & Jeong, 2019), Otsu threshold detection applied on the Canny edge 184 
operation (Setiawan et al., 2017), is depicted in Figure 2. In the proposed method, 185 
radiometric slope correction and speckle noise is filtered first, and then permanent 186 
water classes are masked out from an image.  187 

3.1. Speckle noise 188 

Speckle noise is the most common phenomenon in SAR images, and it is caused by 189 
the reflection of the out-of-phase waves from a target. With the presence of speckle 190 
noise, it is difficult to interpret the image features, and further, it degrades the data 191 
quality for analysis (Huang et al., 2009). Therefore, in this study, the speckle filter 192 
analysis was performed on the Sentinel-1 images in GEE before the data was 193 
integrated for further analysis for mapping. In this process, all the similar pixels on an 194 
image are formed into a group of clusters. The nonlinear anisotropic diffusion method 195 
was applied to Sentinel-1 images in GEE to remove the speckle feature distractions 196 
(Perona & Malik, 1990) and enhance the quality of images.  197 

3.2. Radiometric Slope Correction  198 

Before the data is available onto the GEE platform, SAR ARD images are 199 
geometrically terrain-corrected, which includes noise reduction, radiometric correction, 200 
and geocoding. On the other hand, angular-based radiometric slope correction and 201 
transmission of invalid data masks over areas affected by shadow and layover are 202 
essential prior to perform analyses in GEE (Vollrath et al., 2020). Therefore, based on 203 
a simplified angular relationship between the SAR image and terrain geometry, this 204 
study performed Sentinel-1 based radiometric slope correction in GEE. The definitions 205 
and theoretical derivations are taken from the work by Hoekman & Reiche (2015).  206 
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The radar look direction is based on two angles: the incident (nominal) 𝜃𝜃𝑖𝑖 and the 207 
range (or look) direction 𝜙𝜙𝑖𝑖. The incidence angle is derived as the angle formed by the 208 
normal and backscatter directions of the flat earth surface. In contrast, the range 209 
direction (𝜙𝜙𝑖𝑖 =  90   ̶  𝜃𝜃) is defined as the angle in the horizontal plane to the true north 210 
and significantly varies with latitude. Similar way terrain geometry is derived from the 211 
slope steepness 𝜙𝜙𝑠𝑠 and slope aspect angle 𝛼𝛼𝑠𝑠 relative to true north, respectively. It 212 
can be modeled from a DEM with the same or better resolution than the image. In 213 
GEE, the slope steepness and aspect angle are directly calculated from the given 214 
DEM with the ee.Terrain class, respectively. We used a DEM derived from the SRTM 215 
and the Advanced Land Observing Satellite (ALOS), World 3D-DEM (AW3D) (Tadono 216 
et al., 2015) for analysis. The slope steepness in the range 𝛼𝛼𝑟𝑟 and the slope aspect in 217 
azimuth 𝛼𝛼𝑎𝑎𝑎𝑎  is inferred from the simplified relation between image and terrain 218 
geometry. The four angles are reduced to three by deducting the slope aspect angle 219 
of the terrain from the SAR range direction as follows:  220 

    𝜙𝜙𝑟𝑟 =  𝜙𝜙𝒊𝒊    ̶  𝜙𝜙𝑠𝑠        (1) 221 

The slope steepness angle as in range direction: 𝛼𝛼𝑟𝑟 as determined by 222 

    𝑡𝑡𝑡𝑡𝑡𝑡(𝛼𝛼𝑟𝑟) = 𝑡𝑡𝑡𝑡𝑡𝑡(𝛼𝛼𝑠𝑠)𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝑟𝑟) or   (2) 223 
    𝛼𝛼𝑟𝑟 =  𝑡𝑡𝑎𝑎𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡�𝑡𝑡𝑡𝑡𝑡𝑡(𝛼𝛼𝑠𝑠)𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝑟𝑟)�     224 

The slope aspect angle in azimuth direction: 𝛼𝛼𝑎𝑎𝑎𝑎 which follows from  225 

    𝑡𝑡𝑡𝑡𝑡𝑡(𝛼𝛼𝑎𝑎𝑎𝑎) = 𝑡𝑡𝑡𝑡𝑡𝑡(𝛼𝛼𝑠𝑠) 𝑐𝑐𝑠𝑠𝑡𝑡(𝜙𝜙𝑟𝑟) or   (3) 226 
    𝛼𝛼𝑎𝑎𝑎𝑎 = 𝑡𝑡𝑎𝑎𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡�𝑡𝑡𝑡𝑡𝑡𝑡(𝛼𝛼𝑠𝑠)𝑐𝑐𝑠𝑠𝑡𝑡(𝜙𝜙𝑟𝑟)�        227 

The 𝜃𝜃△ is the local incident angle, which is derived from the angle between backscatter 228 
direction to a normal surface direction is follows: 229 

    𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃△) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝑎𝑎𝑎𝑎) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑖𝑖 − 𝛼𝛼𝑟𝑟)   (4)  230 

The final output of geocoded Sentinel-1 backscatter bands requires to be reconverted 231 
from the DB scale to its original format. Therefore, all the DB scale parameters are 232 

corrected to the normalized radar cross-section 𝜎𝜎⁰ as well as the incident angle also 233 
affects the radar backscatter values 𝜃𝜃𝑖𝑖 which is derived from the following equation: 234 

    𝛾𝛾⁰ =  𝜎𝜎⁰/𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑖𝑖)     (5) 235 

Further, the relief modulation factor is defined as the ratio of backscatter coefficient on 236 

inclined terrain 𝛾𝛾⁰to the backscatter on flatter terrain 𝛾𝛾𝑓𝑓⁰.     237 

    𝛾𝛾𝑓𝑓⁰ =  𝛾𝛾⁰  𝑡𝑡𝑎𝑎𝑡𝑡(90− 𝜃𝜃𝑖𝑖)
tan(90− 𝜃𝜃𝑖𝑖+𝛼𝛼𝑟𝑟 )

    (6)  238 
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Finally, the backscatter data is converted into a DB scale, and the corrected 239 
radiometric slope correction images were used for further analysis.  240 

3.3. Canny Edge Otsu method  241 

3.3.1 Canny Edge detection 242 

The Canny operator is one of the most widely used edge detection algorithms to detect 243 
edges in images due to its superior performance (Rong et al., 2014). This study 244 
proposed the Canny edge detection method combined with Otsu thresholding to 245 
extract ponds. The Otsu algorithm optimizes Canny's dual-threshold and improves the 246 
edge detection performance (Cao et al., 2018). The initial threshold was chosen -18 247 
based on our study's trial and error method after a number of average training samples 248 
evaluations in GEE. The initial threshold was used only to separate between water 249 
and non-water areas, whereas to get preliminary water samples.  Further, the Canny 250 
edge detection operation was performed with the ee.Algorithms.CannyEdgeDetector 251 
in GEE, respectively (Fig. 3). Fig. 3a & 3b depicts an example of a result for each 252 
process in the Canny Edge detection method.   253 

3.3.2 Otsu Thresholding 254 

In image analysis, automatic and data-driven approaches with multispectral bands are 255 
always challenging to distinguish between two different types of relatively 256 
homogeneous features. However, a two-class segmentation can be performed for 257 
single-band images due to their bimodal pixel distribution to identify a threshold 258 
separating the two classes. The manual method of threshold selection using a trial-259 
and-error procedure is complex and time-consuming; however, it would not be optimal. 260 
Nobuyuki Otsu (1979) developed an unsupervised nonparametric technique of 261 
automatic threshold selection based on observed distribution pixels (Eqn 7). The Otsu 262 
method can compute the optimum threshold value based on the maximization of the 263 
between-class variance in the foreground and background pixels in the image. The 264 
partition of the data maximizes inter-class variance is defined as follows: 265 

𝐵𝐵𝐵𝐵𝐵𝐵 =  ∑ (𝐷𝐷𝐷𝐷����𝑘𝑘 − 𝐷𝐷𝐷𝐷����)2𝑝𝑝
𝑘𝑘=1     (7)  266 

where, 𝐵𝐵𝐵𝐵𝐵𝐵 is between-sum-of-square, and p is the number of defined classes (i.e., 267 
two classes defined in this study (0 = not-water, 1 = water), therefore p = 2). The Otsu 268 
function returns the mean value corresponding to the maximum 𝐵𝐵𝐵𝐵𝐵𝐵. 𝐷𝐷𝐷𝐷 is the digital 269 
number of the preferred band and 𝐷𝐷𝐷𝐷����𝑘𝑘 indicates mean digital number in class k, and 270 
𝐷𝐷𝐷𝐷���� is the mean digital number of the entire dataset. The bins present the different 271 
selection of thresholds in a histogram generated in this study, as shown in Fig 3c. The 272 
automatic threshold was detected from the Canny Otsu method is -15.4, where this 273 
threshold is used to segment aquaculture ponds within the edge buffer zone. Figure 4 274 
depicts as an example code for the integration of canny edge results with thresholding.  275 

 276 
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3.4. Training and validation datasets 277 

We created two independent datasets and grouped all aquaculture ponds into one 278 
class and non-aquaculture ponds into another. A total of 172 test samples were 279 
collected from high-resolution Google Earth images, including 102 aquaculture 280 
polygons and 70 non-aquaculture polygons, respectively. The accuracy of the 281 
resulting aquaculture maps was assessed in comparison to a validation dataset. 282 
Aquaculture ponds are found near rivers, streams, and lakes, and they have a regular 283 
shape, darker colors, and are distributed in areas with a lot of water. Therefore, the 284 
aquaculture ponds are easy to distinguish from other water bodies when selecting the 285 
training polygons. The validation data set was generated using a stratified random 286 
sampling approach based on high-resolution images from Google Earth for the 287 
accuracy assessment. Further, the post-processing analysis was performed to extract 288 
the small streams and water bodies. During the classification, a small water body 289 
appears to be an aquaculture pond. Therefore, we used a water mask layer obtained 290 
from the Indian GeoPlatform portal to remove the permanent water bodies and small 291 
streams to enhance the classification results. 292 

4. Results 293 
 294 
4.1 Spatial dynamics of aquaculture ponds 295 

This study developed the Canny Edge Otsu algorithm method based on GEE to 296 
automatically extract the aquaculture ponds in the Kolleru and Upputeru regions of 297 
Andhra Pradesh using Sentinel-1 images. The results provide a comprehensive 298 
overview of the spatial distribution of aquaculture ponds in the Kolleru flood basin zone 299 
(Fig. 5 & Fig. 6). In 2020, the total area of aquaculture ponds accounted for 1,176 km2. 300 
The aquaculture area in the Kolleru wetland region was largest at 706.2 km2, and the 301 
Upputeru River region was the smallest at 470 km2, respectively.  302 

Fig. 6 shows that aquacultures are densely occupied on both sides of the Upputeru 303 
river and distinguish a unique ecosystem and ecological balance in this region. This 304 
area is the fastest-growing aquaculture in India, and a series of embankments are 305 
identified in the Sentinel-1 image delineated by the Canny edge algorithm. The 306 
classification results showed that the aquaculture ponds that are widely distributed in 307 
the Kolleru area face pollution and ecological degradation problems. In contrast, the 308 
Upputeru catchment faces sea-level rise, saltwater intrusion, and reverse flow of water 309 
during flooding shifted the focus towards building aquaculture ponds for a stable 310 
environment.  311 

Aquafarms are one of the most important land-use forms in this zone. We extracted 312 
the aquaculture ponds area of both Kolleru and Upputeru from 2015 to 2020 (see Fig. 313 
7). The aquaculture ponds occupied in the Kolleru wetland area are larger than that of 314 
the Upputeru region. The results show that the extraction of aquaculture area in 315 
Kolleru in 2015 was 630.7 km2, which increased to 642.5 km2 by 2016. Further, a 316 
reduction of  12.4 km2 of the area was observed in 2017 due to the area used for non-317 
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traditional aquaculture methods, including paddy cultivation, vegetation, and weed 318 
infests. In 2018, the aquaculture area occupied was 690.8 km2 and increased to 706.2 319 
km2 in 2020, respectively. In contrast, in Upputeru, the aquaculture area is increased 320 
from 415 km2  to 470 km2, indicating that the region is continuously expanding the 321 
aquaculture to meet the state government's demands of food security goals.   322 

4.2 Accuracy assessments of the classification map 323 

To assess the accuracy based on validation data sets, a standard accuracy test was 324 
performed in the Kolleru and Upputeru regions. However, 80% of the data was used 325 
to train the model, whereas 20% of the data was used to validate based on a confusion 326 
matrix. The statistics of accuracy, including producer's accuracy, user's accuracy, 327 
overall accuracy, and Kappa coefficient, were obtained from 2020 classification results 328 
are summarized in Table 1. The results indicated that the extraction of aquaculture 329 
ponds had a high accuracy of 92.6% for the Kolleru area, with a Kappa coefficient of 330 
0.91. For the Upputeru area, a very high accuracy of 95.7% was achieved, and the 331 
Kappa coefficient was 0.94, respectively. The classification error was occurred for the 332 
Kolleru area because of the similarity of the pixel values between aquaculture and 333 
lake. It is difficult to interpret the area with water characteristics and similar way with 334 
small aquaculture ponds.  335 

To further evaluate the accuracy of our method, we performed a comparative study 336 
analysis for visually interpreting the aquaculture ponds using very high-resolution 337 
images were acquired from Google Earth to visualize the results. Fig 8 depicts our 338 
classification results for 2020 from the automated extraction of fishponds based on the 339 
Otsu threshold method is identical to that same visual interpretation results. The 340 
proportion of the aquaculture area of the Google Earth image and Sentinel-1 area 341 
overlaps with the Canny edge boundary for better visualization. The classification 342 
results show that the Edge Otsu threshold method can accurately extract the 343 
aquaculture ponds from the Sentinel-1 images. However, the proportions of the 344 
aquaculture area from automatic extraction and landuse classification method of the 345 
overlapping areas in the Kolleru area are 95% and 92%, whereas in the Upputeru area 346 
are 94% and 90%, respectively (Table 2).    347 

5. Discussion 348 

Many studies have been conducted to extract aquaculture ponds using remote 349 
sensing satellite images (Ottinger et al., 2017; Fan et al., 2015). The most significant 350 
approach using Sentinel-1 images is fully automated, has a high spatial resolution and 351 
longer wavelength that can distinguish the properties under the vegetation. However, 352 
SAR-VV polarization is ideal for the study of aquaculture ponds due to the signal’s 353 
penetration through the canopy and its ability to sense if there is standing water under 354 
the vegetation and better identify the spectral and textural characteristics of an image. 355 
Our study performed the automatic extraction method on SAR images for aquaculture 356 
mapping in the Kolleru zone. The Otsu method of determining the optimal threshold 357 
for detecting the aquaculture pixels based on the Canny edge operator achieved high 358 
accuracy. This method can be adopted for dense inland aquaculture mapping in large 359 
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areas. Several studies focused on extracting massive distribution of aquaculture 360 
ponds from adjacent rivers, lakes, and wetlands (Ottinger et al., 2017; Ma et al., 2010). 361 
The separation of individual aquaculture ponds is difficult while excluding the dikes 362 
between them. Duan et al. (2020a) considered the aquaculture region to be relatively 363 
consistent with aquaculture land use parameters and developed a method to extract 364 
ponds by integrating spectral, spatial, and morphological features. At the same time, 365 
if it is related to the missing out or aggregated small ponds, the effectiveness of these 366 
studies is limited. The application of relevant indices includes water index, texture, and 367 
geometric metrics derived from radar backscatter to segment or extract aquaculture 368 
ponds, significantly improving the classification results (Sun et al., 2020). On the other 369 
hand, Wang et al. (2020) proposed a pixel-and phenology-based algorithm to map 370 
coastal wetlands at large scales. The results demonstrated that the study achieved a 371 
very high accuracy of 98% using the pixel-based method.  372 

The image segmentation method is another approach to map inundated areas and 373 
uses object-based features (OBF) to distinguish between aquaculture and non-374 
aquaculture ponds (Yu et al., 2020). The aquaculture pond area is a stagnated water 375 
body is divided by the roads and dikes. It is difficult to distinguish the background of 376 
the ponds with the presence of other spectral features by threshold and water index. 377 
However, recent studies have developed an automatic extraction of aquaculture ponds 378 
using threshold selection, machine learning models, and object-based methodologies 379 
to improve pond mapping accuracy (Duan et al., 2020b; Wu et al., 2018). The 380 
threshold selection is a group of pixels with a similar value that adjusts to extract 381 
ponds. For example, Xia et al. (2020) demonstrated that automatic extraction of 382 
aquaculture ponds could be achieved through the multi-threshold connected 383 
component segmentation and random forest classification model. This method is 384 
highly recommended for the non-intensive aquaculture ponds, and they achieved an 385 
overall accuracy of 91.8%. Our study focused on the edge detection operator for 386 
automatically extracting aquaculture ponds using the Canny Edge Otsu threshold 387 
method. The main objective was not only to extract the massive aquaculture ponds 388 
but also to delineate the small size ponds accurately.   389 

Google was among the first to enable the shift towards using EO big data cloud 390 
platforms when it introduced the Google Earth Engine (GEE) in 2010 to enhance the 391 
use of satellite imagery for large-scale and time series applications. All data source 392 
available on GEE has its own time series of EO/ARD data organized into a stack called 393 
Image Collection. The integration of earth observation data into GEE platforms for 394 
potential use in land monitoring, detecting changes in global forests, precision 395 
agriculture analysis for economic development policies (Hansen et al., 2013). This 396 
framework is applicable for aquaculture monitoring using GEE to extract the 397 
information.  398 

5.1. Limitations 399 

This study attempts to comprehensively analyze SAR data pre-processed in Google 400 
Earth Engine for the aquaculture mapping. The analysis of the data is somewhat 401 
limited due to its geographic location and temporal variability. However, the 402 
aquaculture in the study area is largely distributed in a particular zone and clustered 403 
around the lake, and uniformly distributed along the Upputeru river, where the results 404 
might change for other areas of the world in difficult terrains and mountain regions. In 405 
flooded forested areas, where the C-band SAR signal cannot penetrate the canopy 406 
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structure to view the underlying water, aquaculture mapping methods may have higher 407 
errors, and L-band SAR data is preferred. The SAR data is available from recent years, 408 
and it is difficult to compare with time-series analysis. There is a prominent trade-off 409 
between the spatial and temporal resolution of a single sensor as well as high 410 
resolution, and high revisiting frequency cannot be achieved by the same sensor. The 411 
possible solutions for obtaining the different spatial and temporal resolutions to 412 
generate aquaculture maps are based on the data fusion and data assimilation models 413 
from optical data sets such as Sentinel-2 and Landsat series. Therefore, merging the 414 
high spatial resolution and high temporal resolution of different sensors is an effective 415 
solution to generate aquaculture maps, but it is also involved in comprehensive data 416 
pre-processing analysis.  417 

6. Conclusions 418 
 419 
In this study, we proposed a new framework for automatically extracting the 420 
aquaculture ponds in the Kolleru and Upputeru areas based on the GEE platform. The 421 
radiometric correction and speckle noise filter were applied to the Sentinel-1 images 422 
for better visualization purposes. Through this method, we mapped the intense 423 
distribution, areas, and shape of Kolleru and Upputeru aquaculture ponds in 2020. We 424 
present the first assessment of the spatiotemporal dynamics of aquaculture pond 425 
areas based on earth remote sensing data for both the Kolleru and Upputeru areas. 426 
Overall, the results indicated that the proposed method achieved very high accuracy 427 
and further verified the classification results based on high-resolution from Google 428 
Earth images. This method has great potential to apply intense distribution of 429 
aquaculture ponds, wetland regions and manage coastal ecosystems. GEE set a 430 
benchmark in enabling universal access to its high-power cloud computing resources 431 
for fast retrieving and processing time series ARD from diverse sensors. The efficient 432 
use of GEE for mapping aquaculture from small-scale to large regions for visualization, 433 
mapping, analyzing, and modeling purposes. The use of these integrated tools allows 434 
up-to-date aquaculture monitoring. 435 
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 606 

Table 1. Accuracy assessment test for aquaculture and non-aquaculture classes. Producers 607 
accuracy, users accuracy, overall accuracy, and Kappa coefficient.  608 

 Region Aquaculture Non-
Aquaculture 

Producer 
accuracy 

(%) 

Users 
accuracy 

(%) 

Overall 
accuracy 

(%) 
Kappa 

Aquaculture 
Kolleru 

647 62 94.1 87.9 
90.6% 0.91 Non-

Aquaculture 78 621 91.3 93.6 

Aquaculture 
Upputeru 

756 73 97.2 90.4 
95.7% 0.94 Non-

Aquaculture 91 694 89.6 93.1 

 609 

 610 

 611 

Table 2. A comparison of the results between visual interpretation and automated extraction 612 
in Kolleru and Upputeru areas. 613 

 
Visual 

interpretation 
(km2) 

Automated extraction Lulc aquaculture proportion 
(km2) 

area (km2) proportion 
of the area area (km2) proportion of 

the area 
Kolleru 

Lake 741.79 706.2 0.95 687.2 0.92 

Upputeru 
Region 495.7 470 0.94 448.5 0.90 

 614 

 615 

  616 
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 618 

 619 

 620 

Figure 1. The location and overview of the study area: (a) Kolleru & Upputeru aquaculture 621 
regions (b) Aquaculture practicing (c) Freshwater ponds in Kolleru region (d) aquaculture 622 
harvesting (e) Salt fields in Upputeru region, and f) coverage of aquatic weeds [image b, d, 623 
and f: (Photo by, Monika Mandal, Sep 20, 2021)] 624 

 625 
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 626 

Figure 2. Methodology flowchart adopted in this study. 627 

 628 
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 629 

Figure 3. Detection of aquaculture ponds using Edge Otsu Algorithm in Upputeru region: a) 630 
Middle-Upputeru River, b) a recent encroachment of aquaculture, and c) Otsu threshold 631 
histogram 632 

 633 

 634 

Figure 4. Example code for integration of canny edge results with thresholding. 635 
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 636 
Figure 5. Spatial distribution of aquaculture ponds in the Kolleru Lake region in 2020 637 

 638 

 639 

 640 
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 641 

Figure 6. Spatial distribution of aquaculture ponds within the Upputeru River region in 2020 642 
a) and b) shows the example of classification results of aquaculture ponds 643 
 644 
 645 

 646 

Figure 7. Areawise comparison of aquaculture ponds in Upputeru and Kolleru regions from 647 
2015 to 2020. 648 

 649 

0

100

200

300

400

500

600

700

800

2015 2016 2017 2018 2019 2020

Ar
ea

 (k
m

2 )

Year

Upputeru Kolleru



22 
 

 650 

 651 
Figure 8. Extraction results of aquaculture ponds in 2020. 652 
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