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Abstract: Lithological mapping is a critical aspect of geological mapping that can be useful in
studying the mineralization potential of a region and has implications for mineral prospectivity
mapping. This is a challenging task if performed manually, particularly in highly remote areas that
require a large number of participants and resources. The combination of machine learning (ML)
methods and remote sensing data can provide a quick, low-cost, and accurate approach for mapping
lithological units. This study used deep learning via convolutional neural networks and conventional
ML methods involving support vector machines and multilayer perceptron to map lithological units
of a mineral-rich area in the southeast of Iran. Moreover, we used and compared the efficiency of three
different types of multispectral remote-sensing data, including Landsat 8 operational land imager
(OLI), advanced spaceborne thermal emission and reflection radiometer (ASTER), and Sentinel-2. The
results show that CNNs and conventional ML methods effectively use the respective remote-sensing
data in generating an accurate lithological map of the study area. However, the combination of CNNs
and ASTER data provides the best performance and the highest accuracy and adaptability with field
observations and laboratory analysis results so that almost all the test data are predicted correctly.
The framework proposed in this study can be helpful for exploration geologists to create accurate
lithological maps in other regions by using various remote-sensing data at a low cost.

Keywords: lithological mapping; remote sensing; machine learning; convolutional neural networks;
support vector machines; multilayer perceptron
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1. Introduction

Geological maps offer fundamental knowledge that can be used in a number of
fields, such as landslide and earthquake hazard assessment, infrastructure planning, and
the discovery of groundwater and deep Earth resources [1–4]. In the past few decades,
in addition to ground-based field observations, remote-sensing data have been used in
geological mapping and mineral prospective mapping [5–7]. Lithological mapping as a
subset of geological mapping is critical but arduous when carried out manually in difficult-
to-reach areas requiring a large number of participants and costly resources [8–10]. Remote-
sensing multispectral imagery has been compelling in visually examining lithological units
and geological formations [11]. Due to recent advancements in multi- and hyperspectral
remote-sensing sensors, there is an urgent need to further develop the use of satellite
imagery for mapping geological features [12]. Earth and environmental sciences, geography,
and archeology all benefit from geological remote-sensing technologies [13]. Different multi-
and hyperspectral remote-sensing data have been extensively and effectively used for the
discovery of ore deposits, particularly for identifying a variety of alteration zones associated
with metallic mineralizations, but rarely for discriminating lithological units [14–16].

Over the past few decades, a vast range of image-processing methods have been
developed to enhance, delineate, and classify geological features, such as alteration zones
and tectonic lineaments, and a few studies have been carried out on classifying lithological
units [16–18]. A combination of machine learning (ML) methods, particularly supervised
classification methods and remote-sensing data, can be considered as a quick, low-cost,
and accurate solution for mapping lithological units [19]. ML methods are data-driven
approaches that have the ability to recognize trends in high-dimensional data. As a result,
there is significant potential for applying these types of approaches to the ever-growing
databases of remotely sensed data for geological mapping applications [20]. ML algorithms
can also be used for predicting categories of spatially distributed training data. They
are particularly useful when the dataset under examination is noisy, sparse, and large,
with high-dimensional features [21]. Dimensionality reduction techniques, naive Bayes,
k-nearest neighbors, random forests, support vector machines (SVMs), and multilayer
perceptron (MLP) are some of the examples of ML methods used in processing remotely
sensed data for geological purposes [15,20,22–25].

The SVM is a prominent ML method that has been successful in a number of ap-
plications [1]. In a study [26], this method was used to provide an automated litholog-
ical categorization of a region in northern India utilizing advanced spaceborne thermal
emission and reflection radiometer (ASTER) images, an ASTER-derived digital elevation
model (DEM), and aeromagnetic data. In the context of a supervised lithology classifica-
tion task using widely available and spatially constrained remotely sensed geophysical
data, researchers [20] conducted a rigorous comparison of selected ML methods. In an-
other study [27], four different methods, namely neural networks, decision trees, random
forests, and SVMs, were used to categorize geological features utilizing multivariate log
parameter data from International Ocean Discovery Program offshore wells. In addition,
researchers [28] used SVMs for lithological mapping in the Souk Arbaa Sahel area of the Sidi
Ifni inlier in southern Morocco (Western Anti-Atlas). They evaluated the effectiveness of
the SVM in mapping lithological units by combining the spectral characteristics of Landsat
8, DEM, and geomorphometric properties of advanced land-observing satellite/phased
array type l-band synthetic aperture radar (ALOS/PALSAR) data.

The MLP as a single type of neural networks has been widely used to address different
problems in various fields of science, as well as geological mapping. Ground-truth data
can train an MLP model to classify multispectral satellite images and sometimes have
been found to provide very high accuracy [29]. Equally important, comparisons with
some recent results show that the MLP application leads to a more accurate and faster
classification of multispectral images [30]. Researchers [31] introduced the application of
three neural networks, including MLP, self-organizing feature map, and hybrid-learning
vector quantization in the classification of Landsat multispectral images, using principal
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components as inputs [15]. In another study, the lithological map of Cameroon’s center,
south, and east regions was updated by using the MLP applied to Landsat images under
the ENVI (environment for visualizing images) platform [29].

On the other hand, deep learning, also known as deep neural networks, has caught the
interest of Earth science researchers in recent years. Novel deep-learning-based ML meth-
ods can address some of the shortcomings of previous geological remote-sensing attempts.
Deep learning is one of the fastest-growing trends in big-data analysis [10,32], and a wide
variety of deep-learning approaches, such as deep belief networks [33], autoencoders [34],
and convolutional neural networks (CNNs) [35], have been developed in the past decade,
particularly for processing multimedia and high-dimensional datasets [36]. CNNs have a wide
range of applications, such as image classification, voice recognition, traffic-sign recognition,
and medical-image analysis [34,37]. CNNs have gained more attention and been used in
image-processing tasks and demonstrated their superiority over other methods in a number of
applications [32,38,39]. CNNs are so powerful and useful because they can generate excellent
predictions with minimal image preprocessing, since neural networks do most of the heavy
lifting in processing an image and extracting features. Moreover, the CNNs are immune to
spatial variance and, hence, are able to detect features anywhere in input images. Recently,
there has been an increase in the application of CNNs for processing remote-sensing data [40],
although they have been less considered for mapping potential mineralization zones [41].
CNNs have been used to classify multi- and hyperspectral remote-sensing data at high and
medium spatial resolutions [42,43]. In a study [10], CNNs were used to assist in mapping
geological features by offering an objective initial layer of surface materials that experts can
change to accelerate the production of maps and increase the accuracy of mapped areas.
Moreover, researchers [34] introduced a new method for high-resolution geological mapping
that uses unmanned aerial vehicles (UAVs) and CNN algorithms.

In this study, we aimed to provide the lithological map of a region in the southeast
of Iran, which is a potential region of different metallic mineralizations, using various
combinations of remote-sensing data and ML methods. We used three different types of
multispectral remote-sensing data: Landsat 8 operational land imager (OLI), advanced
spaceborne thermal emission and reflection radiometer (ASTER), and Sentinel-2. We ap-
plied conventional ML methods, namely SVM and MLP, and a deep learning method,
i.e., CNN, to the given satellite data, a novel method in spatial data analysis. Finally, we
compared the efficiency of the respective data types and methods for discriminating be-
tween lithological units and generating a reliable lithological map. In addition to proposing
a framework, we provided an open-source Jupyter notebook based on the Python program-
ming language and packages to make exploration geologists able to reproduce the results
and evaluate the efficiency of the framework in other regions.

2. Geological Setting

The study area is located in the southeast of Iran and close to Mirjaveh, Sistan, and
Baluchestan province, covering an area of about 66 square kilometers (Figure 1). Based on
field observations and the study of thin sections, rock units mainly involve Quaternary
and Oligocene igneous rocks and Eocene sedimentary rocks. Igneous rocks include dacite,
andesite, and quartz monzonite, and Eocene sedimentary units include shale and sand-
stone [44]. The flysch units that date back to the Eocene cover most of the study area and
mainly consist of shale and sandstone, and, in some areas, can be seen in a metamorphic
form, such as slate and phyllite [44]. The sandstones are feldspar type and show a clastic
(granular) texture. They are mostly affected by a poor degree of metamorphism, and slate
somewhat expands with the growth of sericite crystals in relatively parallel directions. The
major components of the sandstones are quartz and feldspar grains and a matrix consisting
of clay minerals (kaolin) and calcite cement. Sericite minerals have also been added to this
complex during the transformation. Dacite units in the study area are thick and consist
of plagioclase, amphibole, biotite, and quartz, showing a porphyry texture. These units
are coarse-grained and light in color. The dominant types of alteration in these rocks are
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argillic and sericitization. The Oligocene quartz monzonite units consist of plagioclase,
alkali feldspar, and quartz minerals, showing a porphyry texture and light color. These
units are scattered throughout the study area, particularly in the southeast region.
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Figure 1. Simplified tectonic map of Iran on the left and a true-color image of the study area obtained
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collected from the study area. Thin section studies were carried out on samples A–C, and samples D
and E were geochemically analyzed.

Major alteration types in the study area include argillic, sericitization, chloritiza-
tion, silicic, propylitic, and iron oxide. The alteration zones are scattered throughout
the study area and associated with igneous rocks. The predominant trends of faults are
northwest–southeast (NW–SE) and northeast–southwest (NE–SW). The alteration zones
mostly emerged due to the placement and formation of igneous units within the Eocene
sedimentary units. Lead, zinc, manganese mineralization, and the association of pyrite with
manganese-impregnated siliceous veins are observed in the margins of igneous units, and
geochemical analyses confirm the gold anomaly. This type of mineralization corresponds
to epithermal deposits based on field observations and sample analyses. In epithermal sys-
tems, metal precipitation from hot aqueous hydrothermal fluids can occur along lithological
contacts. Planar discontinuities, such as sedimentary bedding, metamorphic foliations,
planar igneous bodies, and unconformity surfaces, provide conduits for fluid flow and gold
deposition [45]. In the study area, gold and other metals, such as manganese, lead, and zinc
mineralizations, are found along the contacts of quartz monzonite and sedimentary units.
It is noteworthy that younger alluvial units have covered quartz monzonite units in parts of
the study area, and undercover exploration is required to identify potential mineralization.
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3. Materials and Methods
3.1. Remote-Sensing Data and Ground Truth

This study uses three different types of multispectral satellite images, including Land-
sat 8 OLI, ASTER, and Sentinel-2, for mapping lithological units. The technical performance
and attributes of these data types are summarized in Table A1. Landsat 8 satellite was
launched in 2013, carrying two sensors of OLI and thermal infrared sensor (TIRS) [46].
It provides images in 11 spectral bands with a spatial resolution ranging from 15 m (m)
for a panchromatic band to 30 m in the visible and near-infrared (VNIR) and short-wave
infrared (SWIR) ranges. The last two thermal bands, i.e., bands 10 and 11, have a resolution
of 100 m [46]. ASTER sensor was launched on the Terra platform in 1999 [47], which
significantly improved the capability of geological remote sensing for mapping purposes.
ASTER has three VNIR bands with a spatial resolution of 15 m, six SWIR bands with a
30 m resolution, and five thermal infrared bands with a 90 m resolution [47]. The Sentinel-2
is a group of twin satellites in the same sun-synchronous orbit, phased at 180 degrees
apart: Sentinel-2A and Sentinel-2B. The multispectral instrument onboard collects data in
13 spectral bands, ranging from VNIR to SWIR. The spatial resolution of this satellite is
varied from 10 to 60 m [48]. In this study, we used those spectral bands that are of interest
in geological remote sensing because they show characteristic behaviors, such as high
absorption or reflectance in target lithological units. Accordingly, six bands of OLI (2, 3, 4,
5, 6, and 7), nine bands of ASTER (1, 2, 3, 4, 5, 6, 7, 8, and 9), and ten bands of Sentinel-2 (2,
3, 4, 5, 6, 7, 8, 8a, 11, and 12) are selected as the input data for mapping lithological units [7].

A cloud-free Landsat 8 scene covering the study area was acquired from the US
geological survey Earth resources observation and science (EROS) center (earthexplorer.
usgs.gov accessed on 20 November 2021). This level-1T (terrain corrected) image was
captured on 4 June 2017. The ASTER scene used in this study was captured on 12 September
2003. It is a cloud-free level-1-precision terrain-corrected registered at-sensor radiance
product (ASTER_L1T) obtained from the USGS EROS center. A cloud-free Sentinel-2A
scene covering the study area was also acquired from the European space agency via
the Copernicus open-access hub (scihub.copernicus.eu accessed on 20 November 2021)
captured on 6 July 2017. The Sentinel-2 image used in this study is a level-1C top-of-
atmosphere reflectance product, including radiometric and geometric corrections and
orthorectification [48].

Ground truth refers to the information gathered on-site and represents mapped fea-
tures and materials on the ground [49]. The ground-truth dataset consists of a set of images
and labels, as well as an object-recognition model that involves the count, location, and
relationships of key features. Depending on the location of the study area, labels are
either specified by hand or automatically by image processing. Those features detected
as ground-truth data are fed into a classifier at run-time to calculate the correspondence
between identified and modeled features [50]. We used ground-truth data to train and test
our models and create classified maps. Figure 2 represents a map showing the ground-truth
dataset used in this study and consisting of nine rock types obtained by fieldwork.

3.2. Preprocessing

The satellite data used in this study were pre-georeferenced to the universal transverse
Mercator (UTM) zone 40 North; hence, no geometric correction is needed. The Landsat
8 OLI and ASTER data are radiometrically corrected by the log-residual algorithm, available
within the ENVI software package (l3harrisgeospatial.com/Software-Technology/ENVI,
accessed on 20 November 2021), which reduces the noise from topography, instruments,
and sun illumination. This method works with the visible and near-infrared to short-wave
infrared (VNIR–SWIR) wavelength range and provides an atmospheric-corrected surface
reflectance image of the study area. It is a quick solution for converting radiance-calibrated
data to apparent reflectance. The SWIR bands of the ASTER data are resampled to the
spatial resolution of the visible and near-infrared (VNIR) bands, i.e., 15 m, using the nearest
neighbor technique, and a stacked data layer, using the VNIR plus the short-wave infrared

earthexplorer.usgs.gov
earthexplorer.usgs.gov
scihub.copernicus.eu
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(SWIR) bands, is created for further processing. The atmospheric correction is included by
the Sentinel-2 data type used in this study. The VNIR + SWIR bands of the Sentinel-2 data
are stacked by using the nearest neighbor technique, and a ten-band dataset with a spatial
resolution of 10 m is generated. Prior to processing the remote-sensing data, they are all
resized to a specific frame covering the target area.
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3.3. Machine Learning Methods

ML methods are able to discover complex relationships in high-dimensional data [51].
For instance, these methods can automatically learn the relationship between reflectance
spectra and target features in a study area, such as mineral occurrences. Machine-learning
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methods have been demonstrated to be robust against noise and uncertainties in spectral
and ground-truth observations [52]. SVMs are supervised ML methods for classification
and regression problems [53]. During training, SVM models create a hyperplane with
the greatest maximum distances between data points in various groups, i.e., the largest
margins [54]. Support vectors are the data points nearest to the hyperplane that specify
the hyperplane’s orientation. The dimensions of the hyperplane decision boundary are
determined by the number of input features that must be classified [55]. The SVM has
greatly found its application in remote sensing, particularly in geological remote sensing
for classifying geological features and targeting ore deposits [1,56–58]. Remote-sensing
data usually involve groups that are not linearly separable, which becomes a challenge for
conventional ML methods. In such instances, a nonlinear kernel function is used to transfer
the data from the input feature space to a higher-dimensional feature space, spreading
the data points so that they can be separated by a linear hyperplane [26]. A polynomial
(homogeneous or heterogeneous) function, a Gaussian radial basis function, and a sigmoid
(hyperbolic tangent) function, among others, are nonlinear kernels that are widely used
in SVMs [26].

Neural networks are motivated by the learning process of biological neural systems
and have been widely used to analyze remotely sensed data [7]. Over the past few decades,
there has been tremendous progress in the area of neural networks; hence, canonical
neural networks are known as simple neural networks, and larger and more complex
architectures are known as deep neural networks or deep-learning methods [32,40]. The
prominence of neural networks in remote-sensing data analysis is mainly due to their
capacity to learn complex patterns while accounting for any complex nonlinear relationship
in data [59]. Simple neural networks have demonstrated high efficiency in classifying
geological features and discovering mineralization zones [20,54,60]. This study applies
simple neural networks, also known as MLP, as a supervised learning algorithm to train our
model, considering its capability to learn nonlinear relationships. MLP can learn a nonlinear
function approximator for classification or regression, given a collection of features and
objectives. It differs from logistic regression models since it can include one or more
nonlinear layers, which are known as hidden layers between input and output layers [61].

CNNs are one of the different types of deep neural networks that feature the automatic
extraction of features from image-based datasets [62]. CNNs caused advancements in
image processing, target identification, and other disciplines [63]. CNNs have been widely
utilized in image processing and have matured into a potent and ubiquitous deep learning
model [64]. Recently, an improved CNN, with even fewer parameters, was introduced to
solve problems such as overfitting and gradient vanishing [65]. Another study introduced
a novel reconstruction technique based on CNNs with high speed and performance [66].
In terms of advancement in CNN approach, researchers [67] described the improvements
made to the CNN in various aspects, such as layer design, activation function, loss function,
regularization, optimization, and fast computation. CNNs use convolutional and pooling
layers that enable automated feature extraction to draw out spatial information from image
data. A typical CNN model consists of several pairs of convolutional and pooling layers,
followed by a simple neural network of fully connected layers. We did not use pooling
layers in our model architecture, since they aim to find objects. The convolution layer
is made up of several feature maps that are generated by the convolution of the input
image with a specific kernel. Each convolution kernel is a weight matrix, forming a two-
dimensional representation of a single channel [62]. CNNs consider neighboring pixels and
rely on the pattern and texture, not just one pixel at a time. In classifying a mid-resolution
satellite image similar to those used in this study, the objective is to classify each pixel based
on its digital number across different bands. We investigated the role of digital numbers of
neighboring pixels in determining the class of each pixel. Each set of neighboring pixels fed
into the CNN algorithm is called a chip, and they are created by setting two parameters,
namely the size of the moving window and stride, as illustrated in Figure 3.
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Landsat 8 with a 5 × 5 kernel and a 3 × 3 stride.

3.4. Framework and Experimental Setup

In Figure 4, we propose a framework in which SVMs, MLP, and CNNs are applied on
three different types of multispectral remote-sensing data to investigate their efficiency in
discriminating between lithological units. The initial steps involved loading and prepro-
cessing remote-sensing and ground-truth datasets as inputs to our modeling process. We
scaled the input datasets in the next step to ensure that all the features were treated equally.
For instance, neural networks are sensitive to the input data distribution because they
naturally tend to give more importance to features with higher values [68]. The data can
either be scaled in the range of zero to one (normalized) or minus one to one (standardized).
In this study, we used standardized data to train the SVM and MLP models and normalized
data for the CNN model, although this cannot have a tangible effect on the modeling
accuracy. We used the statistical properties of each of the input spectral bands for scaling
them. The input data were split into two halves, i.e., training and test, to evaluate the
performance of the model at a later stage. We define a function for this purpose and the
train-test proportion considered is 75–25 percent.

The number of pixels along the x-axis and y-axis of the OLI, ASTER, and Sentinel-2
images is 257 × 289, 513 × 577, and 770 × 866, respectively. As mentioned earlier, each
pixel in these images represents a square cell covering an area of 900, 225, and 100 square
meters on the ground surface. Implementing each ML method and creating models requires
setting a number of hyperparameters. This study experimented with different values to
create each model and selected those providing the most accurate result. In the case of
SVM, we used a radial basis function (RBF) kernel and a tolerance value of 0.001 with no
limit for the number of iterations. In MLP, we used 15 hidden neurons and a maximum of
400 iterations (epochs), using Adam as a solver. Moreover, we used the rectified linear unit
function (ReLU) as an activation function for the hidden layer and the Softmax activation
for the output layer.
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mapping lithological units.

As shown in Figure 5, our CNN model uses two convolution layers with a kernel
size of 7 × 7, stride of 7, and fully linked layers. These layers are a network of serially
connected dense layers used for classification. In a fully connected network, every neuron
from the first layer is connected to every neuron in the second layer. We examined other
kernel sizes and strides, and the best accuracy was achieved by the mentioned values.
Model architectures are sensitive, and the same model architecture cannot be expected to
provide similar accuracy using different kernel sizes. Therefore, a few minor modifications
in the architecture are expected. We used the ReLU activation function for the input layers
and the Softmax activation function in the final layer for classification in the CNN model
architecture. Furthermore, we used a root-mean-squared propagation optimizer with a
maximum of 20 training epochs.
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We used the majority analysis with a three-by-three kernel as a post-classification tool
available within the ENVI software package in order to change spurious pixels within a
large single class to that class. The center pixel in the kernel was replaced with the class
value that a majority of the pixels in the kernel have [69]. The majority analysis required a
given center pixel weight to generalize each classified map, and a neighborhood was built
around each pixel identified by the user-defined distance. The number of pixels belonging
to various groups within this neighborhood are counted, and the center pixel is assigned to
the class that corresponds to the rest of the pixels in the neighborhood [69].

Along with this study, a Jupyter notebook based on the Python programming language
was released that helps exploration geologists quickly implement the proposed framework.
The link to this notebook is available in the supplementary materials section. It enables
the user to rapidly map lithological units by using different types of remote-sensing data.
A variety of packages have been used in this notebook, among which scikit-learn and
TensorFlow packages are the most important. The scikit-learn package was used to create
conventional models, i.e., SVM and MLP, and the TensorFlow package was applied to
implement CNNs.

3.5. Receiver Operating Characteristics

The evaluation of model accuracy is a critical stage in every classification. In this
study, receiver operating characteristics (ROCs) [70] were used to evaluate the classification
accuracy of each output map. The ROC curves have a y-axis representing the true-positive
(sensitivity) rate and an x-axis for false-positive rate (specificity), as shown in Figure A1.
This means that the ideal point is in the top left corner of the chart, with a false-positive
rate of zero and a true positive rate of one. This is far from true, but it does imply that a
greater area under the curve (AUC) [70] is generally preferable. The ROC curve for random
chance is the 45◦ diagonal line linking (0,0) and (1,1). The gold-standard ROC curve is the
line joining (0, 0) to (0, 1) and (0, 1) to (1, 1). In general, ROC curves fall between these two
extremes. The area under the ROC curve is a summary metric that averages diagnostic
precision over a range of test values (Figure A1) [67].

The steepness of ROC curves is also significant, as it is optimal to maximize true-
positive rate while also minimizing false-positive rates. In binary classification, ROC curves
are commonly used to investigate the performance of a classifier. The performance must
be binarized to apply the ROC curve and ROC area to multi-label classification. One ROC
curve can be drawn for each class, but a ROC curve can also be drawn by treating each
member of the label indicator matrix as a binary predictor (micro-averaging). Another
assessment criterion for multi-label classification is macro-averaging, which assigns equal
weight to each label’s classification [71].
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4. Results
4.1. Classified Lithological Maps

The proposed framework was applied to the spectral subsets of three different types
of remote-sensing data that were selected based on the spectral characteristics of target
geological features in the study area, i.e., lithological units. Three lithological maps for
each data type were created by applying different ML methods (SVM, MLP, and CNNs),
as shown in Figure 6. Each class represents a specific lithological unit, and there are nine
classes on each map (Figure 2). The spatial resolution of maps is different, and it is based
on the spatial resolution of the input data and varies from 10 to 30 m.
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Figure 6. Classified maps obtained by applying support vector machines, multilayer perceptron, and
convolutional neural networks on Landsat 8 OLI, ASTER, and Sentinel-2 satellite images.

According to the classified maps, most of the study area consists of Quaternary,
Oligocene igneous, and Eocene sedimentary rocks. The flysch units that date back to
Eocene cover most of the area and mainly consist of shale and sandstone (class 5), and they
can be seen as a light red to gray sandstone (class 9) in some areas. Igneous rocks include
dacite (class 2), andesite (class 4), and quartz monzonite (class 1), which are scattered
throughout the study area, mainly striking northwest–southeast. Quaternary deposits
cover the rock units in some places and include colluvium scree and talus (class 3), younger
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composite alluvial fans and terraces (class 6), older composite alluvial fans and terraces
(class 8), and riverbed and recent alluvium (class 7).

4.2. Accuracy Assessment and Validation

Table 1 depicts the accuracy of each class, and Figure 7 demonstrates the micro and
macro average ROC curve for all nine classified maps. According to the ROC curves shown
in Figure 7, the lithological units were classified more accurately by using the combination
of CNN and ASTER data. However, the result is almost the same as Sentinel-2 data. The
AUC of micro and macro averages is close to one in these plots. Considering the AUCs, the
MLP outperforms the SVM, and it is ranked second in terms of accuracy. On the other hand,
after the ASTER data, the Sentinel-2 data yielded the most accurate results for lithological
mapping in the study area, and the OLI is ranked last, which could be anticipated. The
combination of SVM and OLI shows the lowest accuracy, where the micro average is 0.76,
and the macro average is 0.84.

Table 1. Accuracy (AUC) of each class (lithological unit) obtained by applying SVM, MLP, and CNN
on Landsat 8 OLI, ASTER, and Sentinel-2 remote sensing data.

Landsat 8 OLI ASTER Sentinel-2

Lithology Type Class
Number SVM MLP CNN SVM MLP CNN SVM MLP CNN

Quartz monzonite 1 0.98 0.98 1 0.97 0.99 1 0.88 0.98 0.99
Dacite 2 0.99 0.99 0.99 0.88 0.99 1 0.89 0.99 0.99

Colluvium scree
and talus 3 0.97 0.97 0.99 1.00 0.99 0.99 0.99 0.99 0.99

Andesite 4 0.91 0.91 0.99 0.90 0.95 0.99 0.80 0.91 0.97
Sandstone and

shale 5 0.97 0.97 0.99 0.89 0.97 1 0.94 0.96 0.98

Younger
composite alluvial
fans and terraces

6 0.92 0.92 0.99 0.94 0.94 0.99 0.95 0.94 0.99

River bed and
recent alluvium 7 0.95 0.95 0.99 0.96 0.99 1 0.92 0.92 0.99

Older composite
alluvial fans and

terraces
8 0.90 0.90 1 0.95 0.90 0.99 0.95 0.91 0.99

Light red to gray
sandstone 9 0.95 0.95 0.99 0.97 0.98 1 0.96 0.94 0.99

In addition to the ROC curves, several rock samples were collected from the study area
to validate the lithological maps, particularly in places with little ground-truth data. These
samples were mostly collected from the places where rock types are classified as quartz
monzonite, andesite, dacite, and sandstone, and three of them, along with their polished
thin sections, are shown in Figure 8. The sampling locations are shown in Figure 1 and
labeled as A–C. The results obtained by investigating the polished thin sections indicate that
the classifiers have been successful in the sampling regions. Moreover, we analyzed three
samples from the study area, as shown in Figure 1, labeled as D–F, using the inductively
coupled plasma–mass spectrometry (ICP–MS) for determining the concentration values of
gold, manganese, lead, and zinc. Based on the laboratory analysis, the margins of igneous
units in the study area are of great importance in terms of economic mineralization, and
the geochemical analyses confirm this observation (Table 2).
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Figure 8. (a) Sample A was taken from the sandstone unit and the microscopic thin section shows
angled quartz grains in a matrix involving clay minerals. (b) Sample B was taken from the dacite
unit. The upper microscopic section shows biotite-shaped phenocrysts with anhydrite and iron
oxide substitution and feldspar in the matrix. The lower section shows the partial replacement of
plagioclase by calcite and sericite. (c) Sample C was taken from the quartz monzonite unit. In the
upper microscopic section, plagioclase, hornblende, and epidote phenocrysts are obvious, and in
the lower section, quartz phenocrysts, accompanied by the radial secondary growth of quartz, can
be seen.
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Table 2. Results of the geochemical analysis of three samples taken from the study area (Figure 2).

Au (ppb) Mn (ppm) Pb (ppm) Zn (ppm)

Sample D 374 136 9810 267
Sample E 291 72,300 4505 5092
Sample F 5 2830 376 875

5. Discussion

Based on the prediction accuracy obtained by the ROC curves and the thin-section
analysis of the rock samples collected from the study area, the combination of CNN and
ASTER data provided the most accurate lithological map for our study area. Although
the Sentinel-2 data provide a better spatial resolution in the VNIR bands, i.e., 10 m, and
the number of bands in this range are more than the ASTER data, this data type was less
successful in terms of classifying lithological units compared to the ASTER data; however,
the contrast is insignificant. The ASTER data proved to be an efficient data type for
alteration mapping [12,24] and, based on the results of this study, for lithological mapping.
It is noteworthy that the results can probably be different in other regions depending on
the extent and geological characteristics of the target area, such as dominant rocks and
minerals and the spectral characteristics of the features to be mapped. The SWIR bands of
ASTER data have great advantages for lithological mapping [72], particularly in an area
with altered rock types, since they mostly show unique spectral behaviors in this range.
However, even our most accurate computer-generated lithological map displays some
inconsistencies compared to field observations. For example, sandstones are mapped inside
dacite and andesite units in some areas, or andesite units are seen within quartz monzonite
units. These issues might be addressed by collecting more training data or improving the
classified maps through checking suspicious areas.

The SVM and MLP methods performed well in mapping lithological units in the study
area and provided valuable information regarding the lithological units. However, CNNs
were more successful in providing an accurate lithological map. Apart from computation-
ally efficient characteristics of CNNs, we also had less noisy pixels in our classified maps
by CNNs because of considering neighboring pixels in modeling and relying on the pattern
and texture, not just one pixel at a time. The extremely high accuracy of the model we
achieved by combining the CNNs and ASTER data can be considered as a consequence
of the low number of mixed pixels in our testing set. A lower accuracy would likely be
achieved in regions with a more complicated geological setting and mixed pixels. The
model performed well in predicting test classes, because the classes were easily differen-
tiable in the multidimensional space. Therefore, the model learned well how to distinguish
between classes for pure pixels.

In MLP classifiers, the tested datasets require more hidden units, and the complexity
is managed by holding the number of these units small, while the SVM complexity is inde-
pendent of the dimension of the datasets. SVMs are based on structural risk minimization,
while MLP classifiers implement empirical risk minimization. Another difference is the
complexity of the network. MLP networks that implement global approximation strategies
typically use very few hidden neurons. On the other hand, SVMs are based on a local
approximation strategy and use a large number of hidden units [73]. However, the MLP
network was generally more accurate than SVM for lithological classification using remote-
sensing data in this research. CNNs also involve some disadvantages; for example, CNNs
do not encode the position and orientation of objects, they lack the ability to be spatially
invariant to the input data, and a large amount of training data is needed. However, CNNs
with the hyperparameters used in this study were the most successful method.

The map provided by the proposed framework can be considered as an initial litholog-
ical base map. This map can be improved by carrying out comprehensive fieldwork with
predefined profiles and a reasonable spacing, along with collecting a required number of
samples. The resultant map of this process can be worth interpreting and deciding whether



Remote Sens. 2022, 14, 819 15 of 20

to continue the exploration operation in a region. According to the laboratory analysis and
field observations, gold, manganese, lead, and zinc mineralizations and the interaction of
pyrite with manganese-impregnated siliceous veins have been found in the margins of
igneous units and mapped accurately in the lithological maps. In addition, the geochemical
analysis of the samples collected from potential locations supports the high probability of
economic gold mineralization in the study area.

ML methods have been widely used in remote-sensing-data analysis, but there are
still gaps in predictive uncertainty quantification. In general, it is difficult to assess the
uncertainty of remote-sensing model applications. Model validation is usually performed
by comparing it with ground truth or alternative information believed to represent ground
truth. Different approaches have been developed to address validation issues, and different
models are possible. Bayesian inference provides a principled approach for quantifying the
uncertainty of model parameters. Recently, there have been major advances in Bayesian
neural networks and Bayesian deep learning. However, these methods have not been
much used for remote sensing, and their application for geological exploration is absent.
In future studies, we are planning to use other deep learning methods to map geological
features [34], such as Bayesian neural networks, since it provides principled uncertainty
quantification via the posterior distribution [74]. These methods may provide a meaningful
interpretation of remote-sensing data in the face of challenges, such as data noise, sparse
datasets, and missing data. Uncertainty quantification using Bayesian inference can be
used to predict the uncertainty associated with model parameters and data. As a result,
applying these methods can play an essential role in the evolution of geological remote
sensing and improve its efficiency in mineral exploration.

6. Conclusions

Nowadays, geoscientists are equipped with the latest groundbreaking and efficient ML
methods to work with big data, such as remote-sensing data. In this study, three different ML
methods were used to process three types of remote-sensing data by mapping lithological units
of a region in the southeast of Iran. We classified the remote-sensing data and discriminated
lithological units, providing valuable information for mineral exploration. We showed the
efficiency of applying machine- and deep-learning techniques on remote-sensing data and
observed that the CNN and ASTER data combination provides the most accurate lithological
map of the study area based on the ROC curves, and the test data were successfully predicted.
Such maps can be considered base maps for further geological fieldworks and a reliable factor
aiding in deciding for mineral-exploration operations.

We addressed the challenges of mapping lithological units on the ground and proposed
a framework to overcome them. Our framework presented in a Jupyter notebook is an open-
source community tool for mapping lithological units by using multi- or hyperspectral
data. This notebook can significantly enhance the ability of exploration geologists to
map lithological units. It can be considered a fast, reliable, and low-cost approach for
generating a remote-sensing evidential layer and delineating favorable loci for precious
mineral deposits at any stage of an exploration program. The framework can be improved
by optimizing SVM, MLP, and CNN hyperparameters. Moreover, other ML methods, such
as random forest, naive Bayes, k-nearest neighbors, and minimum distance, can be added
to this framework to compare their efficiency with other methods.

Supplementary Materials: The Jupyter notebook and datasets used in this study are available at
https://github.com/sydney-machine-learning/deeplearning_lithology (accessed on 20 November 2021).
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Appendix A

Table A1. Technical performance and attributes of Landsat 8, Sentinel-2, and ASTER data [46–48].

Satellite/Sensor Subsystem Band Number Spectral Range
(Micrometers)

Ground
Resolution (m)

Swath Width
(Km)

Year of
Launch

Landsat 8

OLI

Band 1 Coastal Aerosol 0.43–0.45 30

185 2013

Band 2 Blue 0.45–0.51 30
Band 3 Green 0.53–0.59 30
Band 4 Red 0.64–0.67 30

Band 5 Near Infrared (NIR) 0.85–0.88 30
Band 6 SWIR 1 1.57–1.65 30
Band 7 SWIR 2 2.11–2.29 30

Band 8 Panchromatic 0.50–0.68 15
Band 9 Cirrus 1.36–1.38 30

TIR

Band 10 Thermal Infrared
(TIRS 1) 10.60–11.19 100

Band 11 Thermal Infrared
(TIRS 2) 11.50–12.51 100

ASTER

VNIR
Band 1 0.520–0.600 15

60 1999

Band 2 0.630–0.690 15
Band 3 0.780–0.860 15

SWIR

Band 4 1.600–1.700 30
Band 5 2.145–2.185 30
Band 6 2.185–2.225 30
Band 7 2.235–2.285 30
Band 8 2.295–2.365 30
Band 9 2.360–2.430 30

TIR

Band 10 8.125–8.475 90
Band 11 8.475–8.825 90
Band 12 8.925–9.275
Band 13 10.250–10.950
Band 14 10.950–11.650

Sentinel-2

Band 1 Coastal Aerosol 0.433–0.453 60

290 2015

Band 2 Blue 0.458–0.523 10
Band 3 Green 0.543–0.578 10
Band 4 Red 0.650–0.680 10

Band 5 Red Edge 1 0.698–0.713 20
Band 6 Red Edge 2 0.733–0.748 20
Band 7 Red Edge 3 0.773–0.793 20

Band 8 NIR 0.785–0.900 10
Band 8A Narrow NIR 0.855–0.875 20
Band 9 Water-Vapor 0.935–0.955 60

Band 10 SWIR/Cirrus 1.360–1.390 60
Band 11 SWIR 1 1.565–1.655 20
Band 12 SWIR 2 2.100–2.280 20
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Figure A1. Three imaginary ROC curves reflecting the gold standard’s diagnostic precision (lines A;
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and a diagonal line leading to random chance (line C; AUC = 0.5) are shown. The ROC curve shifts
toward A as the diagnostic-test precision increases and the AUC reaches 1 [75].
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