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Abstract 38 

The development of powerful and robust landslide predictive models has become a major focus 39 

among landslide researchers. This paper proposes two novel hybrid predictive models that 40 

combine the self-organizing deep-learning group method of data handling (GMDH) and two 41 

swarm intelligence optimization algorithms, i.e., cuckoo search algorithm (CSA) and whale 42 
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optimization algorithm (WOA) for of the prediction landslide susceptibility in a spatially 43 

explicit manner. Eleven causative factors and 334 historic landslides from a 31,340 km2 44 

landslide-prone area in Iran were used to produce the training and validation datasets required 45 

for the building and validation of the models. The GMDH model was utilized to develop a 46 

basic predictive model that was then restructured and optimized using the CSA and WOA 47 

algorithms, yielding two novel hybrid GMDH-CSA and GMDH-WOA models. The hybrid 48 

models that profited from an intelligent approach to overcome the computational shortcomings 49 

of the base GMDH model demonstrated a statistically significant improvement in 50 

generalization and predictive abilities by up to 9.5 and 13%, respectively. Further, the hybrid 51 

models demonstrated higher robustness in comparison with the single GMDH model, as they 52 

consistently depicted excellent performance when the training and validation datasets altered. 53 

Overall, our study indicates that swarm intelligence optimized models can identify optimal 54 

trade-offs between objectives, accuracy, and robustness, which would otherwise not have been 55 

possible using single simple models. 56 

Keywords: Landslide susceptibility, GMDH, Whale optimization algorithm, Cuckoo search 57 

algorithm, GIS,  Iran. 58 

 59 

1. Introduction  60 

Landslides are among the deadliest and costliest natural disasters that cause significant losses 61 

of lives (Guzzetti et al., 1999; Wood et al., 2020) and global economic damages of over billion 62 

dollars (Haque et al., 2019; Highland and Bobrowsky, 2008). The large proportion of personal 63 

property and infrastructure that reside in areas susceptible to landslides is a subject of particular 64 

concern (Dao et al., 2020; Jaafari et al., 2019a) that have placed strong demands on authorities 65 

and engineers to delimit the landscapes in terms of susceptibility to landslide occurrences 66 

(Fallah-Zazuli et al., 2019). Identifying areas with high landslide susceptibility must be 67 
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undertaken to ensure the continued sustainable growth of human infrastructure. Landslide 68 

susceptibility mapping provides authorities and managers with reliable information for making 69 

more informed land use and development decisions for the landslide-prone areas (Jaafari et al., 70 

2015b; Nefeslioglu and Gorum, 2020). 71 

The first extensive works on landslide susceptibility mapping and modeling date back to Brabb 72 

et al. (1972) in the USA and Carrara and Merenda (1976) in Italy (Jaafari et al., 2019a; Van 73 

Westen et al., 2008). To date, landslide susceptibility has been modeled based on a variety of 74 

statistical, knowledge based, and machine learning methods. The choice of each method is 75 

usually related to the balance of the availability of dada, accuracy requirement, modelers’ 76 

ability, and computational resources (Bragagnolo et al., 2020a; Dao et al., 2020; Jaafari et al., 77 

2019a; Jessee et al., 2020; Moayedi et al., 2019a; Moayedi et al., 2019c; Pourghasemi and 78 

Rahmati, 2018; Shafizadeh-Moghadam et al., 2019).  79 

While the statistical- and knowledge-based methods offer the easiest and most commonly 80 

employed approaches for landslide susceptibility mapping (Jaafari et al., 2014; Thanh et al., 81 

2020), their application is limited by some prior assumptions such as the normal distribution 82 

of data and input variables must be conditionally independent of one another (Jaafari et al., 83 

2017). In contrast, machine learning methods make no initial assumptions about the data and 84 

allow for direct information extraction from the phenomenon being modeled (Dao et al., 2020; 85 

Pham et al., 2019). 86 

However, the performance of machine learning methods can further be improved through using 87 

hybrid ensemble modeling approaches (Jaafari et al., 2019b; Jaafari et al., 2019c; Moayedi et 88 

al., 2019e; Nhu et al., 2020; Rahmati et al., 2019b). In the domain of landslide prediction, 89 

efforts have been made to develop hybrid ensemble models through three main methodological 90 

approaches: (1) feeding a method by the output of another method (e.g., weight of evidence 91 

and analytic hierarchy process (Jaafari, 2018)), (2) employing ensemble learning techniques 92 
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for manipulating the input dataset for a base method (e.g., bagging, boosting, and stacking with 93 

support vector machine (SVM) (Dou et al., 2019)), and (3) employing meta-heuristic 94 

optimization algorithms for tuning the hyper-parameters of a method (e.g., biogeography-based 95 

optimization and artificial neural network (ANN) (Moayedi et al., 2019d)). All these three 96 

approaches have been proven to be effective for providing more accurate and reliable estimates 97 

of landslide susceptibilities than the standalone simple methods. Among them, the third 98 

approach has become an active research area in recent years. Starting with the pioneering works 99 

of Bui et al. (2017), Chen et al. (2017), Bui et al. (2018), and Jaafari et al. (2019a), the 100 

application of meta-heuristic optimization algorithms has recently emerged as a prominent 101 

approach for the development of meta-optimized landslide predictive models. Various hybrid 102 

predictive models in the form of combinations of the SVM, ANN, adaptive neuro-fuzzy 103 

inference system extreme (ANFIS), and learning machines (ELM) with the different meta-104 

heuristic optimization algorithms (e.g., genetic algorithm (GA), particle swarm optimization 105 

(PSO), differential evolution (DE), dragonfly algorithm (DA), biogeography-based 106 

optimization (BBO), grey wolf optimizer (GWO), ant colony optimization (ACO), artificial 107 

bee colony (ABC), and Harris hawks optimization (HHO)) have been suggested to improve the 108 

prediction of landslides (Bui et al., 2019; Chen et al., 2019a; Chen et al., 2019b; Jaafari et al., 109 

2019a; Moayedi et al., 2019a; Nguyen et al., 2019a; Nguyen et al., 2019b; Tien Bui et al., 2019; 110 

Xi et al., 2019).  111 

In spite of the widespread application of machine learning methods for the prediction of 112 

landslides, many other methods that have not yet been investigated for their capability to 113 

predict landslide susceptibility. Group method of data handling (GMDH) is a self-organizing 114 

algorithm from the deep learning ANNs family that has been designed for solving the problem 115 

of modeling multi-input to standalone-output data. This method is a self-organizing modeling 116 

approach because the number of layers and their neurons and the characteristics of the produced 117 
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neurons are automatically adjusted during a self-organization process. GMDH has a history of 118 

successful applications for energy and environment, engineering, industrial processes, 119 

telecommunications, biomedicine, and education (Gascón-Moreno et al., 2013). However, 120 

GMDH has not yet been used for landslide susceptibility modeling and mapping. Therefore, 121 

this study was conducted (1) to develop spatially-explicit predictive models based on the 122 

GMDH method, (2) to determine whether the hybrid models based on the GMDH method and 123 

meta-heuristic optimization algorithms achieve greater accuracy for the prediction of landslide 124 

susceptibilities compared to the standalone GMDH model, and (3) to evaluate which 125 

optimization algorithms (i.e., cuckoo search algorithm (CSA) and whale optimization 126 

algorithm (WOA)) can most improve GMDH for landslide prediction.  127 

We used the information of historical landslides collected from a landslide-prone region in the 128 

northwest of Iran and corresponding data related to topography, climate, and human activity 129 

that has been previously suggested for developing landslide prediction models. By developing 130 

a new hybrid predictive model and its application in a yet unstudied landslide-prone area, this 131 

study contributes to increasing the general knowledge on the capability of different machine 132 

learning methods for the prediction of landslides which in turn enables authorities and manager 133 

to adopt cost-effective resilience-based management strategies. 134 

 135 

2. Study area 136 

For this study, a landslide-prone area from the northwest of Iran was selected (Fig. 1). This 137 

area consists of the whole territory of the Ardabil Province and some parts of the Azarbaijan 138 

Sharghi, Guilan, and Zanjan provinces of Iran. This region covers a total area of 31,340 km2 139 

and is located between 36° 32′ to 39° 42′ N latitude and 47° 00′ to 49° 36′ E longitude (Fig. 1). 140 

The area has a diverse and rugged topography, including hills, valleys, and coastal areas. The 141 

hilly and mountainous terrains (elevation = -107─4783 m; slope degree = 0─88) cover the 142 
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central and western portions of the area, accounting for 76% of the land area. The range of hills 143 

and mountains gradually decreases towards the coastal areas of the Caspian Sea with an 144 

average slope of 6 degree and elevation of 180 m. Range lands, forests, farmlands, orchards, 145 

and residential areas are the primary land uses in the research area. The meteorological data 146 

from the period of 1988─2017 shows that the mean annual rainfall varies between 222 mm in 147 

the north part and 1900 mm in the southeastern part of the area, with an average of 480 mm. 148 

This area is subjected to frequent landslides such that the global view of landslide susceptibility 149 

(EOS, 2017) shows a moderate-to-severe landslide potential for this area. Incidence and 150 

magnify the severity of landslides in this area have been amplified due to extensive and 151 

unplanned human activities in the recent years. 152 

 153 

3. Modeling steps 154 

The steps to complete modeling of landslide susceptibility using the hybrid intelligence models 155 

based on the GMDH method include: (1) detecting historical landslides and non-landslide 156 

locations across the study area, (2) mapping potential landslide causative factors, (3) exploring 157 

spatial relationships between historical landslides and causative factors, (4) developing hybrid 158 

intelligence predictive models, (5) robustness analysis via five-fold cross-validation, (6) 159 

producing surface maps of landslide susceptibilities, and (7) quantitative evaluation of the 160 

predictive models and susceptibility maps (Fig. 2). 161 

 162 
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 163 
Fig. 1. Location map of the study area with the landslide inventories. 164 

 165 
 166 

 167 
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 168 

Fig. 2. Flowchart of model development for landslide susceptibility mapping. 169 
 170 

 171 

3.1. Construction of the geospatial database 172 

3.1.1. Landslide inventory 173 

Information on the past landslides that have happened in the study region was collected to 174 

generate an inventory map. Information on the landslides occurred before the year 2015 was 175 

obtained from the Forests, Range and Watershed Management Organization of Iran. For 176 

landslides that have occurred in the period between 2015 and 2018, the information was 177 
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obtained from local authorities. Lastly, for recent landslides, the information was obtained from 178 

the field surveys and observations. This information includes the type and spatial location of 179 

each landslide that revealed that rock fall events, soil slides, and debris flows were the dominant 180 

types of landslides in this portion of the country. The ultimate inventory map encompassed 334 181 

landslide locations. Along with the landslide locations, we sampled 334 locations as non-182 

landslide locations from the areas without any evidence of landslide occurrences. Landslide 183 

and non-landslide locations were merged and randomly divided into independent sets. The first 184 

set encompassed 70% of data (234 landslides and 234 non-landslides), which was selected as 185 

the training dataset, and the second set involved the remaining data (100 landslides and 100 186 

non-landslides), which was used as the validation dataset (Fig. 1).  187 

 188 

3.1.2. Landslide causative factors 189 

Various topographical, geomorphological, and environmental factors influence the probability 190 

of landslide occurrences. In spatially-explicit landslide modeling, these factors are 191 

independent/explanatory variables that are typically selected based on the availability of data 192 

objective and scale of the analysis. In this study, we selected eleven factors: elevation (m), 193 

slope (degree), aspect, curvature, rainfall (mm), land use, normalized difference vegetation 194 

index (NDVI), geology, and distance to roads, rivers, and faults.    195 

Given the strong correlation between topography features and landslides (Bragagnolo et al., 196 

2020a; Chen et al., 2019a; Dao et al., 2020; Jaafari, 2018; Moayedi et al., 2019e; Tien Bui et 197 

al., 2019), four main topographic features that have been recurrently used for landslide 198 

modeling (slope, aspect, altitude, and curvature) were also used in this study. We employed an 199 

ASTER Digital Elevation Model (DEM) with 30 m resolution 200 

(https://vertex.daac.asf.alaska.edu) to generate the maps of topographic features for the study 201 

area (Fig. 3a-d). To generate an annual rainfall map for the study area, 30-year data (1988-202 

https://vertex.daac.asf.alaska.edu/
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2017) from 32 metrological stations over the area were interpolated using the simple kriging 203 

technique (Fig. 3e). Land-use type is frequently used as a proxy for explaining landscape 204 

modification and changing the land cover, drainage system, and runoff hydrograph due to 205 

human activities that often lead to landslide occurrences (Glade, 2003; Reichenbach et al., 206 

2014; Shu et al., 2019). Here, we produced the land-use map of the research area using the 207 

Landsat 8 OLI satellite images via the maximum likelihood classification technique that 208 

exhibited a variety of land-use types across the landscape (Fig. 3f). NDVI quantifies land cover 209 

by distinguishing between near-infrared and red wavelengths. We used this index as a landslide 210 

causative factor because many previous studies demonstrated a relationship between land 211 

covers and landslides, with lower vegetation density indicating higher probability of landside 212 

occurrences (Glade, 2003; Jaafari et al., 2014; Jaafari et al., 2015a; Jaafari et al., 2015b; 213 

Machado et al., 2019).  Here, we produced the NDVI map of the study area (Fig. 3g) using the 214 

Landsat 8 OLI satellite images (Mafi-Gholami et al., 2020; Mafi-Gholami et al., 2019). 215 

Proximity variables (distance to roads, rivers, and faults) are important landslide causative 216 

factors because the landslide activities generally change within different distances from roads, 217 

rivers, and faults (Gorum and Carranza, 2015; Larsen and Montgomery, 2012; Schlögl and 218 

Matulla, 2018). The proximity maps were generated using the Euclidian distance tool in 219 

ArcGIS 10.3 (Fig. 3h-j). The geology that characterizes soil and underlying rock types and 220 

affects the erosion process, infiltration, and runoff (Gorum et al., 2008; Van Westen et al., 221 

2003; Vanmaercke et al., 2017) was another landslide causative factor used in this study. This 222 

map was collected from the National Cartographic Centre and Geological Survey of Iran (Fig. 223 

3k). 224 

 225 

 226 
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227 
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 228 

Fig. 3. Landslide causative factors used in this study. 229 
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3.2. Methods used 230 

3.2.1. Step-wise weight assessment ratio analysis (SWARA) 231 

To explore the spatial association between historical landslides and different causative factors 232 

with the aim of measuring the significance of each factor class on landslide occurrence, we 233 

used the step-wise weight assessment ratio analysis (SWARA) procedure. SWARA, developed 234 

by Keršuliene et al. (2010), is one of the most widely used methods for measuring factor weight 235 

in different fields of science (Zolfani and Chatterjee, 2019). Compared to other multi-criteria 236 

decision-making techniques (e.g., analytic hierarchy process (AHP) and analytic network 237 

process (ANP)) SWARA uses a simpler computational process for ranking the factors (Jaafari 238 

et al., 2015a; Jaafari et al., 2019a). To estimate the importance of each category of the landslide 239 

causative factors using the SWARA method, we prioritized the classes of a given factor based 240 

on their significance on landslide occurrences and the local condition of the study area. Then, 241 

the classes were assigned a weight such that the highest weight was given to the most important 242 

class and the lowest weight was given to the least effective class. Finally, the average ranks 243 

given by the experts was used to rank the causative factors (Jaafari et al., 2019c). Using this 244 

procedure, each class of each landslide causative factor was assigned a weight that indicates 245 

the extent of the spatial association between each class and the likelihood of landslide 246 

occurrences.  247 

 248 

3.2.2. Group method of data handling (GMDH) 249 

The combination of a multi‐layered network in which a set of nodes and layers is produced via 250 

a number of selected input from the set of designed data being modeled is known as the GMDH 251 

algorithm. This idea of this artificial intelligence method was first articulated by Ivakhnenko 252 

(1968) for identifying nonlinear input-output relationships in the real-world problems. This 253 

method builds a generalized polynomial-based function model in a feed-forward network. 254 
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Then, the original network grows in an adaptive way to reach an optimized degree of 255 

complexity such that at the end of the process the model is neither too complex (to avoid over-256 

fitting) nor too simple (it must be generalizable) (Fig. 4).  257 

The significant difference between GMDH and other networks is that the GMDH network 258 

changes continuously during the training course to find the optimum structure. GMDH has 259 

been successfully applied to handle uncertainty and to deal with linear or nonlinearity systems 260 

in different fields of science (Harandizadeh et al., 2019). 261 

 262 

Fig. 4. GMDH network construction. 263 

 264 

The application of GMDH for the prediction of landslide susceptibility can formally be given 265 

as follows: let X = {x1, x2, . . . , xn} be the set of input factors (i.e., landslide causative factors) 266 

and y be the actual outputs (i.e., susceptibility indices the range between 0 to 1) such that xj, y 267 

∈ Rm, where j = 1, . . . , n. The main idea is to an approximation ( ˆf ) of the actual function f 268 

such that the difference between the predicted susceptibility indices and the actual 269 

susceptibility indices to be as small as possible. To archive this, the ith output can be given in 270 

terms of the inputs as follows: 271 

1 2( , ,..., )i i i iny f x x x                                                                                                            (1)            272 



 

15 

 

where i = 1, 2, . . . , m and xij represent the ith component of xj .  273 

The ith predicted output ˆ
iy  is expressed by: 274 

  
1 2

ˆˆ ( , ,..., )i i i iny f x x x                                                                                                          (2)       275 

Accordingly, GMDH is used to solve the following optimization problem: 276 

  
22 2

1 2 2ˆ ˆ
1 1

ˆ ˆ ˆmin ( ( , ,..., ) ) min ( ) min
 

     
m m

i i in i i i i
y y

i i

f x x x y y y y y                                (3)            277 

 where 
1 2

ˆ ˆ ˆ ˆ( ,... )  T

my y y y , 
1 2( ,... )  T

my y y y , and 
2

2
ˆ iy y is 2-norm of the vector 278 

ˆ .y y In GMDH, the general input-output relationship is built upon the Kolmogorov-Gabor 279 

polynomial function (Ivakhnenko, 1971): 280 

  
0

1 1 1 1 1 1

...
     

     
n n n n n n

p p pq p q pqk p q k

p p q p q k

y w w x w x x w x x x                                           (4)        281 

Detailed information about the GMDH method can be found in Ivakhnenko (1971), Witczak 282 

et al. (2006), and Saberi-Movahed et al. (2020). 283 

 284 

3.2.3. Cuckoo search algorithm (CSA) 285 

CSA, developed by Yang and Deb (2009), is swarm-based meta-heuristic optimization 286 

algorithm that mimics the brood parasitism of some birds (e.g., Tapera naevia) from the cuckoo 287 

family (i.e., Cuculidae) which are unable to raise their offspring. Instead, they attempt to imitate 288 

colors and pattern of other birds’ eggs (Fig. 5a, b) (Yang, 2013). The cuckoo birds drop their 289 

eggs into the host birds’ nest so that the hosts raise the young cuckoos after the egg hatching. 290 

The young cuckoos quickly push the host bird’s eggs to capture more food from for increasing 291 

the survival possibility (Fig. 5c). However, the host birds sometimes identify and destroy the 292 

strange eggs, otherwise abandon the nest to construct a completely new nest elsewhere (Fig. 293 

5d). Thus, the cuckoo birds use an intelligent random strategy to select the host nest to place 294 

their eggs. This strategy is based on the by Lévy flight, which is typically used to explain many 295 
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natural and artificial facts (e.g., the movement behavior of animals, fluid dynamics, earthquake 296 

analysis, cooling behavior, noise, and Ladar Scanning) (Haklı and Uğuz, 2014). In CSA,  the 297 

Lévy flight is used to represent both local and global search process (Yang and Deb, 2009), 298 

which enables the algorithm to simultaneously find all possible optimum solutions in a design 299 

space. Incorporating this breeding behavior into a meta-heuristic algorithm, the CSA 300 

optimization algorithm was suggested and used for various optimization problems. In CSA, 301 

each egg is a solution to the problem (i.e., for our case is a GMDH parameter). The best sets of 302 

solution (i.e., nests with the highest quality of eggs) are passed to the next generations. With a 303 

probability of P = [0,1], the discovering operator removes the worst nest from further 304 

calculations (Sanajaoba and Fernandez, 2016). Further information of this optimization 305 

algorithm can be found in the literature (Meneses et al., 2020; Yang, 2014; Yang and Deb, 306 

2009). 307 

 308 

 309 

Fig. 5. Cuckoo’s egg between host’s eggs (a and b); cuckoo chick removes host’s eggs (c); 310 

odd egg in the nest (d). 311 
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3.2.4. Whale optimization algorithm (WOA) 312 

WOA is another swarm-based meta-heuristic optimization algorithm, first proposed by 313 

Mirjalili and Lewis (2016). WOA simulates the social intelligence of humpback whales 314 

(Megaptera novaeangliae) and their exceptional hunting behavior, which is called bubble-net 315 

feeding method. In this hunting behavior that is unique to humpback whales, a group of whales 316 

dive beneath the school of krill or small fishes by creating high pitch calls. Then, the prey run 317 

away to the surface, where the whales release the distinctive bubbles along a circle of the 9-318 

shaped trail (Fig. 6) in an upward shrinking spiral around the prey as an obstacle that makes 319 

the prey unable to swim. Finally, the whales spirally swim-up with their mouths open to get 320 

the prey (Chen et al., 2019a). The mathematical modeling of WOA based on the bubble net 321 

attack consist of three main phase: 1) Exploration: this phase corresponds to whale attempts 322 

for find the prey. In this phase, position update agents are applied to find global optima. Each 323 

agent can change its location with respect to other agent, which is called shrinking encircling 324 

mechanism (Petrović et al., 2019). 2) Exploitation: when the agents find a position near global 325 

optima, the exploration phase is terminated and the exploitation phase begins. In this phase, 326 

the agents update their position in respect to the leader based on the shrinking encircling 327 

mechanism. 3) Spiral bubble-net feeding maneuver: this mode is a mixed search method, where 328 

both exploitation or exploration may happen. Full description of the WOA algorithm and its 329 

source codes are available at http://www.alimirjalili.com/WOA.html.  330 

 331 

http://www.alimirjalili.com/WOA.html
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 332 

Fig. 6. Bubble-net feeding behavior of humpback whales (Mirjalili and Lewis, 2016). 333 

 334 

3.3. Hybrid intelligence models  335 

GMDH has several parameters (e.g., a number of nodes in each layer) that need to be properly 336 

adjusted for the best model performance. Modelers mostly tend to adjust the parameters 337 

through a trial-and-error procedure that may affect the model performance and computation 338 

time. Another drawback to the use of original GMDH is that this method is highly prone to 339 

over-fitting. This problem typically stems from improper use of the GMDH stopping criteria 340 

that cause to a model with a too complex structure. Lastly, GMDH suffers from the multi-341 

collinearity problem that can considerably increase the average error of the GMDH method. 342 

The Multi-collinearity problem happens when the coefficients of the nodes are significantly 343 

correlated with the coefficients of different layers. Here, we elected to use the CSA and WOA 344 

to optimize the parameters of the GMDH method and to overcome the inherent drawbacks to 345 

the classical GMDH method. This approach leads to the development of two hybrid 346 

intelligence models, namely GMDH-CSA and GMDH-WOA, for the prediction of landslide 347 

susceptibility. The fitness function (i.e., stopping criteria) for these two hybrid models was the 348 

root-mean-square error (RMSE) (Eq. 5) that computes the extent of the error between the 349 
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landslide/non-landslide pixels and the probability indices of future landslides, with lower 350 

RMSEs demonstrating higher predictive performance (Bennett et al., 2013; Chen et al., 2019a; 351 

Jaafari et al., 2019b; Jaafari et al., 2019c). The training process of the models consists of three 352 

main steps: adding layers to the GMDH structure, calculating the fitness function, and 353 

eliminating the neurons that decrease the quality of the results. In this procedure, the outputs 354 

of a current layer are used as the inputs for the next layer. The training course is terminated 355 

when the new layer fails to increase the overall performance of the model.  356 

2

1

1
( )

n

i i

i

RMSE Tg Op
n 

                                                                                                                  (5) 357 

where n donates the number of samples, Tgi presents target values in the training dataset or the 358 

validation dataset, and Opi is the output values of the predictive models. 359 

The modeling process was coded in the MATLAB programming language on a personal laptop 360 

with an Intel(R) Core(TM) i5-4200u CPU @ 3.30 GHz, 4 GB of installed memory (RAM), a 361 

x64-based processor, and the Microsoft Windows 8.1 operating system. 362 

 363 

3.3.1. Robustness analysis 364 

To check for the model robustness, we used a five-fold cross-validation method by which the 365 

initial dataset was randomly divided into five sets. Out of these five sets, one set was used as 366 

the validation set and the rest were used as the training set. Then, we trained the models using 367 

the training sets and validated using the validation set. We repeated the modeling process until 368 

each one of the five sets were used as the validation set (Fig. 7). 369 
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 370 

Fig. 7. Five-fold cross-validation method used in this study (in each fold, green and yellow 371 

boxes are training and validation datasets, respectively.) 372 

 373 

3.3.2. Characterizing performance of the models 374 

Establishment an appropriate level of confidence in performance and output is essential for 375 

reliable application of landslide predictive models. In this study, the performance of the models 376 

was validated in terms of the generalizability (i.e., goodness-of-fit with training dataset) and 377 

predictive capability. For these two levels of model performance, we first calculated the RMSE 378 

(Eq. 1) that measured the magnitude of the training and validation errors (Bennett et al., 2013). 379 

We next calculated the receiver operating characteristic curve (ROC) that measured the overall 380 

performance of the predictive models (Althuwaynee et al., 2012; Bragagnolo et al., 2020b; Du 381 

et al., 2020). The ROC method calculates the success and prediction rates to provide a trade-382 

off between the sensitivity (i.e., false negatives; the proportion of correctly categorized 383 

landslide pixels) and 100-specificity (i.e., false positives; the proportion of correctly 384 

categorized non-landslide pixels) (Tosteson and Begg, 1988). This calculation results in the 385 

area under the curve (AUC) that ranges between 0 and 1. A value close to 1 indicates that the 386 

model performed well in separating the landslide and non-landslide pixels, whereas a 387 

value ≤ 0.5 indicates the low ability for class separation (Hanley and McNeil, 1982). 388 
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To determine if there is statistical significance between the AUC values of the success rates 389 

and between the AUC values of the prediction rates, the nonparametric Wilcoxon signed-rank 390 

test with a 95% confidence level (p-value < 0.05) was used (Hong et al., 2019).  391 

 392 

4. Results and analysis 393 

4.1. Application of the SWARA method 394 

Applying the SWARA method, we were enabled to quantify the class importance for all the 395 

causative factors and rank their influences on landslide occurrences within the study area 396 

(Table 1). The results exhibited that the most susceptible portions of the study area to landslides 397 

have a plan curvature ≥ -0.01 (SWARAweight = 0.24 and 0.38), NDVI of 0.33-0.44 398 

(SWARAweight = 0.28), distance to roads < 200 m (SWARAweight = 022), rainfall of 100-120 399 

mm (SWARAweight = 0.21), elevation 1700-2000 m (SWARAweight = 0.21), and slope degree of 400 

10-15 (SWARAweight = 0.20). In contrast, several other classes with SWARAweight of zero or 401 

close to zero (e.g., elevation ≥ 2900 and slope ≥ 40°) were identified as the least important 402 

factor classes on the probability of landslide occurrence.  403 

 404 

Table 1. SWARAweight for each class of the landslide causative factors 405 

Factor Class 

No. of 
pixels 

in 
domain 

Percentage 

of pixels 

No. of 
landslides 

Percentage 
of 

landslides 

SWARAweight  

Elevation 

(m) 
-107 - 200 551004 12.66 8 3.43 0.04 

 200-500 398896 9.16 15 6.44 0.09 

 500-800 373004 8.57 10 4.29 0.07 

 800-1100 411285 9.45 13 5.58 0.08 

 1100-1400 719670 16.53 34 14.59 0.11 

 1400-1700 713360 16.38 67 28.76 0.18 

 1700-2000 545479 12.53 64 27.47 0.21 

 2000-2300 337965 7.76 18 7.73 0.12 

 2300-2600 173103 3.98 3 1.29 0.05 

 2600-2900 77472 1.78 1 0.43 0.04 

 2900-3200 23875 0.55 0 0.00 0.00 

 3200< 28834 0.66 0 0.00 0.00 
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Slope degree 0-5 1747842 40.14 38 16.31 0.07 

 5-10 803218 18.45 56 24.03 0.14 

 10-15 585559 13.45 59 25.32 0.20 

 15-20 442394 10.16 39 16.74 0.18 

 20-25 344850 7.92 22 9.44 0.13 

 25-30 251574 5.78 16 6.87 0.13 

 30-35 137269 3.15 2 0.86 0.05 

 35-40 35302 0.81 1 0.43 0.09 

 40-45 4905 0.11 0 0.00 0.00 

 45< 1034 0.02 0 0.00 0.00 

       

Aspect Flat (-1) 6281 0.14 0 0.00 0.01 

 North 609873 14.01 29 12.45 0.11 

 Northeast 618019 14.19 34 14.59 0.13 

 East 613277 14.09 31 13.30 0.12 

 Southeast 559783 12.86 32 13.73 0.13 

 South 456782 10.49 25 10.73 0.13 

 Southwest 439525 10.09 39 16.74 0.18 

 West 479967 11.02 20 8.58 0.10 

 Northwest 570440 13.10 23 9.87 0.10 

       

Plan 

Curvature 
<-0.01 2016906 46.32 112 48.07 0.39 

 -0.01 – 0.01 187012 4.30 4 1.72 0.24 

 0.01< 2150029 49.38 117 50.21 0.38 

       

NDVI 0 - 0.33 289331 49.46 102 43.78 0.20 

 0.33 - 0.44 150485 25.73 88 37.77 0.28 

 0.44 - 0.60 47236 8.08 15 6.44 0.18 

 0.60 - 0.76 36311 6.21 11 4.72 0.17 

 0.76 - 0.99 61594 10.53 17 7.30 0.16 

       

Rainfall 

(mm) 
0-20 187619 4.31 2 0.86 0.04 

 20-40 212359 4.88 5 2.15 0.06 

 40-60 2084206 47.87 107 45.92 0.12 

 60-80 281411 6.46 26 11.16 0.17 

 80-100 327639 7.53 29 12.45 0.17 

 100-120 312874 7.19 37 15.88 0.21 

 120-140 312771 7.18 9 3.86 0.08 

 140-160 271861 6.24 9 3.86 0.09 

 160-190 363040 8.34 9 3.86 0.07 

       

Land use Urban 42351 0.01 6 0.01 0.20 

 Orchard 56782 0.01 8 0.02 0.20 

 Farmland 407576 0.09 54 0.12 0.19 

 Mixed-use 2175793 0.50 267 0.57 0.17 

 Rangeland 1156751 0.27 109 0.23 0.14 

 Forest 492670 0.11 23 0.05 0.09 

 River 11506 0.00 0 0.00 0.01 

       

Dis. to faults 

(m) 
0 - 300 249831 5.06 10 4.29 0.06 

 300 - 600 242731 4.92 17 7.30 0.10 



 

23 

 

 600 - 900 226744 4.59 16 6.87 0.10 

 900 - 1200 211710 4.29 12 5.15 0.09 

 1200 - 1500 201954 4.09 15 6.44 0.11 

 1500 - 1800 192368 3.90 16 6.87 0.12 

 1800 - 2100 182038 3.69 13 5.58 0.11 

 2100 - 2400 170617 3.45 15 6.44 0.13 

 2400 - 2700 161706 3.27 8 3.43 0.08 

 2700 - 3000 153182 3.10 3 1.29 0.04 

 3000< 2945639 59.65 108 46.35 0.06 

       

Dis. to rivers 

(m) 
0 - 100 269594 5.46 15 6.44 0.09 

 100 - 200 265405 5.37 21 9.01 0.13 

 200 - 300 258436 5.23 22 9.44 0.14 

 300 - 400 251734 5.10 14 6.01 0.09 

 400 - 500 244733 4.96 17 7.30 0.11 

 500 - 600 236429 4.79 11 4.72 0.08 

 600 - 700 226709 4.59 9 3.86 0.07 

 700 - 800 215970 4.37 4 1.72 0.04 

 800 - 900 204340 4.14 13 5.58 0.10 

 900 - 1000 193103 3.91 8 3.43 0.07 

       

Dis. to roads 

(m) 
0 - 100 210575 4.26 108 46.35 0.22 

 100 - 200 198673 4.02 10 4.29 0.05 

 200 - 300 185879 3.76 25 10.73 0.13 

 300 - 400 174609 3.54 20 8.58 0.11 

 400 - 500 164545 3.33 15 6.44 0.09 

 500 - 600 155872 3.16 13 5.58 0.08 

 600 - 700 147947 3.00 16 6.87 0.11 

 700 - 800 141156 2.86 10 4.29 0.07 

 800 - 900 134666 2.73 8 3.43 0.06 

 900 - 1000 128744 2.61 4 1.72 0.04 

 1000 < 3295854 66.74 4 1.72 0.02 

       

Geology Eav 867007 17.66 58 24.89 0.03 

 Ebv 113622 2.31 2 0.86 0.01 

 Edv 51967 1.06 10 4.29 0.07 

 Ek 78150 1.59 2 0.86 0.01 

 Jl 12188 0.25 3 1.29 0.08 

 K1-2lm 4598 0.09 1 0.43 0.08 

 K2a.bv 239298 4.88 7 3.00 0.01 

 K2c 8853 0.18 1 0.43 0.05 

 Knl 43224 0.88 3 1.29 0.03 

 Ku 102422 2.09 1 0.43 0.01 

 L.E-Odi 16764 0.34 1 0.43 0.03 

 L.E-Ogr-di 71430 1.46 9 3.86 0.05 

 Md.av 170859 3.48 16 6.87 0.04 

 Mm,s,l 91379 1.86 9 3.86 0.04 

 Mms 9953 0.20 1 0.43 0.04 

 Mur 12746 0.26 1 0.43 0.03 

 Olm.s.c 30567 0.62 1 0.43 0.02 

 OMz1 111377 2.27 3 1.29 0.01 

 OMz2 66658 1.36 1 0.43 0.01 
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 OMz3 57368 1.17 1 0.43 0.01 

 other 842500 17.16 0 0.00 0.00 

 Plc 27199 0.55 2 0.86 0.03 

 Plms 186329 3.80 20 8.58 0.04 

 PlQc 56317 1.15 15 6.44 0.09 

 Pz1mt 148124 3.02 12 5.15 0.03 

 Pz2 22455 0.46 1 0.43 0.02 

 Qabv 113291 2.31 2 0.86 0.01 

 Qft1 384592 7.84 7 3.00 0.01 

 Qft2 406509 8.28 7 3.00 0.01 

 Qtr 318963 6.50 3 1.29 0.01 

 Qvc 127740 2.60 6 2.58 0.02 

 TRJs 113978 2.32 26 11.16 0.08 

 406 

4.2. Model performance 407 

The application of the predictive models determined the relationship between input variables 408 

(causative factors and historical landslides) and output (landslide susceptibilities) that revealed 409 

that the magnitude of the modeling error (RMSE) of the three models ranges from 0.088 410 

(GMDH-CSA) to 0.224 (GMDH) in the training phase and from 0.089 (GMDH-CSA) to 0.226 411 

(GMDH) in the validation phase (Figs 8-10). These results show that the two hybrid 412 

intelligence models achieved lower training and validation errors than the standalone GMDH 413 

model, indicating that the CSA and WOA meta-heuristic optimization algorithms performed 414 

well in optimizing the structure of the base GMDH model toward achieving higher modeling 415 

accuracy. The GMDH-CSA model that showed lower magnitude of validation error than that 416 

of the GMDH and GMDH-WOA models was identified as the most accurate hybrid model in 417 

terms of the predictive capability.  418 
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 419 

Fig. 8. GMDH performance: a) target and output values in the training phase, b) target and 420 

output values in the validation phase, c) magnitude of training error, d) distribution of 421 

training error, e) magnitude of validation error, and f) distribution of validation error. 422 
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 423 

Fig. 9. GMDH-CSA performance: a) target and output values in the training phase, b) target 424 
and output values in the validation phase, c) magnitude of training error, d) distribution of 425 

training error, e) magnitude of validation error, and f) distribution of validation error. 426 
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 427 

Fig. 10. GMDH-WOA performance: a) target and output values in the training phase, b) 428 
target and output values in the validation phase, c) magnitude of training error, d) distribution 429 

of training error, e) magnitude of validation error, and f) distribution of validation error. 430 
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We computed the success rate and prediction rate as the global performance metrics that further 431 

demonstrated the superiority of the hybrid models that achieved the highest training 432 

performance (success rate ≅ 0.93) compared to the standalone GMDH model (success rate ≅ 433 

0.85) (Fig. 11a). In terms of the predictive capability (i.e., prediction rate), the hybrid models 434 

with the AUC values of >0.90 significantly outperformed the standalone GMDH model that 435 

had AUC = 0.79 (Fig. 11b). 436 

 437 

Fig. 11. (a) Success rates; and (b) prediction rates  of the models 438 

 439 

The Wilcoxon signed-rank test showed that except for the two hybrid models that were not 440 

significantly different from each other in both training (Table 2) and validation (Table 3) 441 

phases, z- and p-values for each of the other pair-wise comparisons of the three predictive 442 

models demonstrated that the generalization and predictive abilities of the standalone GMDH 443 

model are statistically significantly lower than the two hybrid models. 444 

 445 

 446 

 447 

 448 
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Table 2. Pairwise comparison of the success rates using the Wilcoxon signed-rank test. 449 

Pair-wise 
comparison 

Difference 
between AUCs 

Standard 
error 

95% confidence 
interval 

z-value p-value Sig. 

GMDH vs. 

 GMDH-CSA 
0.089 0.0168 0.0571 to 0.0123 5.366 0.0001 Yes 

GMDH vs.  

GMDH-WOA 
0.084 0.0168 0.0558 to 0.122 5.286 0.0001 Yes 

GMDH-CSA vs. 

GMDH-WOA 
0.005 0.00122 -0.00117 to 0.00360 1.000 0.3175 No 

 450 

 451 

 452 

Table 3. Pair-wise comparison of the prediction rates using the Wilcoxon signed-rank test. 453 

Pairwise 
comparison 

Difference 
between AUCs 

Standard 
error 

95% confidence 
interval 

z-value p-value Sig. 

GMDH vs. 

 GMDH-CSA 
0.118 0.0295 0.0655 to 0.181 4.181 0.0001 Yes 

GMDH vs.  

GMDH-WOA 
0.111 0.0284 0.0594 to 0.171 4.053 0.0001 Yes 

GMDH-CSA vs. 

GMDH-WOA 
0.007 0.00643 -0.00444 to 0.0208 1.269 0.2043 No 

 454 

The robustness analysis revealed that the standalone GMDH model performed slightly 455 

differently using different folds of training and validation datasets (Table 4). In the training 456 

phase, RMSEs and AUCs of the standalone GMDH model ranged from 0.224 to 0.235 (mean 457 

= 0.231), and from 0.841 to 0.849 (mean = 0.844), respectively. In the validation phase, RMSEs 458 

and AUCs of the standalone GMDH model ranged from 0.226 to 0.241 (mean = 0.235), and 459 

from 0.768 to 0.791 (mean = 0.779), respectively. However, the two hybrid models were stable 460 

when the datasets changed, indicating higher robustness compared to the standalone GMDH 461 

model.  462 
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Table 4. Robustness analysis using five-fold cross-validation. 463 

 464 

 465 

4.3. Susceptibility maps 466 

The landslide susceptibility values obtained from the application of three predictive models 467 

were used to develop the distribution maps of the landslide susceptibilities that were 468 

subsequently categorized into five (i.e., very low, low, moderate, high, and very high) 469 

susceptibility classes (Fig. 12). Whereas the hybrid GMDH-CSA and GMDH-WOA models 470 

revealed a relatively similar spatial variability of landslide susceptibilities across the study area, 471 

the standalone GMDH model produced a distribution map with greater portions of high and 472 

very high susceptibilities to landslide occurrences. In general, the south, southwestern, and 473 

central parts of the area are highly prone to landslide occurrences, while the northern and 474 

southwestern parts show significantly less landslide activity and are a rather low-susceptible 475 

zone. Visual comparison of the enlarged insets clipped from the susceptibility maps further 476 

revealed that susceptibility classes delineated by the standalone GMDH model disagreed with 477 

those defined by the hybrid models, particularly in areas without any evidence of historical 478 

Model  Phase  Measure  Fold 
Mean 

      1 2 3 4 5 

 
 

Training 
 RMSE  0.224 0.231 0.231 0.235 0.235 0.231 

  AUC  0.849 0.841 0.843 0.843 0.844 0.844 

GMDH            

 
 

Validation 
 RMSE  0.226 0.234 0.235 0.241 0.239 0.235 

  AUC  0.791 0.777 0.784 0.768 0.774 0.779 

            

 
 

Training 
 RMSE  0.088 0.089 0.089 0.088 0.088 0.0884 

  AUC  0.938 0.938 0.937 0.937 0.937 0.937 

GMDH-CSA            

 
 

Validation 
 RMSE  0.089 0.089 0.089 0.089 0.089 0.089 

  AUC  0.909 0.909 0.909 0.909 0.909 0.909 

            

 
 

Training 
 RMSE  0.099 0.099 0.102 0.103 0.099 0.1004 

  AUC  0.933 0.933 0.933 0.933 0.933 0.933 

GMDH-WOA            

 
 

Validation 
 RMSE  0.129 0.130 0.130 0.129 0.129 0.129 

  AUC  0.902 0.902 0.902 0.902 0.902 0.902 
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landslides. The hybrid models generated a clearer and more accurate differentiation of zones 479 

with and without landslide, which is evident in the proportional distribution of the susceptibility 480 

classes each model assigned (Fig. 13). The standalone GMDH model has classified 481 

approximately 41% of the study area as highly landslide active, which contradicts the historical 482 

evidence of landslide occurrences in the area. Conversely, the hybrid models present more 483 

realistic representations of landslide susceptibility because the zones classified as high and very 484 

high susceptibility by these two models are smaller proportions of the whole. 485 

 486 

 487 
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 488 

 489 

Fig. 12. Landslide susceptibility maps produced using the a) GMDH, b) GMDH-CSA, and c) 490 

GMDH-WOA models. 491 
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 492 

Fig. 13. Distribution of susceptibility classes in three landslide susceptibility maps. 493 

 494 

5. Discussion  495 

Landslides are dangerous hazards that seriously affect social life, economy, and environment. 496 

In this study, we developed two novel hybrid models that combine the GMDH method and the 497 

CSA and WOA optimization algorithms for the spatially explicit prediction of the landslide 498 

susceptibility. To the best of our knowledge, this is the first study that developed such 499 

predictive models and verified their utility using real-world data from a landslide-prone area. 500 

The recent works reported in the literature underscore the efficacy of swarm intelligence 501 

optimization algorithms for many real-world problems (Banadkooki et al., 2020; Jaafari et al., 502 

2019b; Naghibi et al., 2017; Nguyen et al., 2019a). This greatly motivated us to utilize these 503 

two algorithms to optimize the GMDH model and develop two novel hybrid intelligence 504 

predictive models. These hybrid models allowed for spatially explicit predictions of future 505 

landslides based on the different geo-environmental factors that reflected local characteristics 506 

of the study area and the inherent behavior of historical landslides. Using a five-fold cross-507 
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validation procedure, the hybrid models achieved an average success rate of AUC = 0.935 508 

compared to AUC = 0.844 achieved by the standalone GMDH model. In terms of the prediction 509 

rates, the average AUC values of 0.906 and 0.779 were produced by the hybrid models and 510 

standalone model, respectively. Higher success rate compared to the prediction rate is common, 511 

and generally expected since the models have been trained on a much larger data sample (70%) 512 

compared to the validation dataset (30%) (Rahmati et al., 2020). However, the standalone 513 

GMDH model showed a much greater AUC decreases from success rate to prediction rate 514 

compared to the hybrid models that indicate lower robustness and reliability. This problem can 515 

be attributed to the over-fitting during the training phase, in which the standalone GMDH 516 

model mostly describe the random patterns among the training data rather than learning to 517 

generalize from the relationships between the causative factors and historical landslides to 518 

predict future landslides (Jaafari et al., 2019b; Moayedi et al., 2019e; Rahmati et al., 2019b). 519 

The over-fitting problem can significantly decrease the generalization power and the 520 

transferability of the model outputs (Rahmati et al., 2020).  A review of the literature reveals 521 

numerous examples of over-fitted and unreliable prediction outcomes due to the application of 522 

a single machine learning method alone (Bui et al., 2019; Liu et al., 2019; Nguyen et al., 2019b; 523 

Xi et al., 2019).    524 

The robust and excellent predictive performance of our hybrid GMDH-CSA and GMDH-WOA 525 

models is indebted to a well-mapped of the historical landslides within the study area, selecting 526 

the most contributing causative factors that best defined the occurrence mechanism, and 527 

strength of the optimization algorithms (Liu et al., 2019; Moayedi et al., 2019b; Rahmati et al., 528 

2019b; Tien Bui et al., 2019) that best adjusted the base GMDH model.  529 

The AUC values of ≥0.90 for our novel models favorably fall within the range of the excellent 530 

predictive performances classified by Hosmer Jr et al. (2013) and the AUCs reported for the 531 

most recent intelligence hybrid models for the prediction of landslides around the world. For 532 
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example, our hybrid models are quite competitive to the hybrid ANFIS-DE (AUC = 0.84), 533 

ANFIS-GA (AUC = 0.8), ANFIS-PSO (AUC = 0.78) models for the prediction of landslides 534 

in the Hanyuan County of China (Chen et al., 2017),  to the hybrid SVM-ABC model (AUC = 535 

0.90) for the prediction of landslides in the Lao Cai area in Vietnam (Bui et al., 2017), to the 536 

hybrid ANFIS-WOA (AUC = 0.86) and ANFIS-GWO (AUC = 0.87) models for the prediction 537 

of landslides in the Anyuan County of China (Chen et al., 2019a), and to the hybrid ANFIS-538 

PSO (AUC =0.89) and ANFIS-SFLA (AUC = 0.89) models for the prediction of landslides in 539 

the Langao Hanyuan County of China (Chen et al., 2019b). However, our models were 540 

outperformed by the hybrid models developed by Jaafari et al. (2019a) that combined ANFIS 541 

with the GWO and BBO optimization algorithms (AUC ≅ 0.95) for the prediction of landslides 542 

in the Tehri Garhwal district of India, and Yuan and Moayedi (2019) who developed five hybrid 543 

models combining multilayer perceptron ANN (MLPANN) and ACO, PSO, GA, probability-544 

based incremental learning (PBIL), and evolutionary strategy (ES) optimization algorithms and 545 

achieved AUCs ranging from 0.798 (ACO-MLPANN) to 0.960 (GA-MLPANN). These 546 

different model performances typically stem from three main sources. First, local 547 

characteristics of the research area and the situations that caused the landslides. Second, the 548 

size and quality of input data. In general, there is always a trade-off between the quality and 549 

size of the data utilized and the quality of modeling output (Jaafari, 2018; Jaafari et al., 2018; 550 

Moghaddam et al., 2020; Rahmati et al., 2019a). Lastly, the nature and proper configuration of 551 

the optimization algorithms (Bezerra et al., 2020) that were used to optimize the base model.  552 

 553 

6. Conclusion  554 

Despite the long-standing practice of landslide modeling and mapping, yet there is a need to 555 

enhance landslide prediction capabilities. Here, we approached this problem by developing two 556 

novel hybrid predictive models that combine the GMDH method with two meta-heuristic 557 
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optimization algorithms. A spatially explicit database was used where a cross-validation 558 

procedure generated five different training and validation sets for handling uncertainty in data. 559 

Linking the historical landslides to a set of geo-environmental factors using two hybrid HDGH-560 

CSA and GMDH-WOA models and the standalone GMDH model provided a reliable 561 

estimation of landslide susceptibility in a 31,340 Km2 landscape in the northwest of Iran. Our 562 

hybrid models that profited from an intelligent approach to automatically adjust the parameters 563 

of the base GMDH model showed excellent performance in both training and validation phases, 564 

particularly when compared to the most recent proposed hybrid models for landslide prediction. 565 

In addition to the improved accuracy, our hybrid models demonstrated robust capacity to 566 

spatially explicit model landslide susceptibility. Looking forward, future works might 567 

incorporate other meta-heuristic optimization algorithms into the scheme. Such models can 568 

take manifold data from different sources into account to generate accurate estimates of 569 

landslide susceptibility even for complex terrains. These sophisticated predictive models are 570 

also applicable for the prediction of other types of natural hazards, such as floods, wildfires, 571 

land subsidence, and gully erosion, for the benefit of developing more efficient policies for the 572 

management of natural hazards. 573 

 574 
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