
Elsevier required licence: © <2022>. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/        
The definitive publisher version is available online at http://doi.org/10.1016/j.scitotenv.2021.150405



1 
 

Spatial modeling of soil erosion hazards and crop diversity change with 1 

rainfall variation in the Central Highlands of Sri Lanka  2 

Sumudu Senanayake1,2, Biswajeet Pradhan1,3,4*, Alfredo Huete1,5, Jane Brennan1 3 

1  The Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of 4 

Engineering and IT, University of Technology Sydney, Sydney, 2007 NSW, Australia 5 
2   Natural Resources Management Centre, Department of Agriculture, Peradeniya, 20400,  6 

Sri Lanka. 7 
3.  Department of Energy and Mineral Resources Engineering, Sejong University, Choongmu-gwan, 8 

209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea 9 
4 Earth Observation Center, Institute of Climate Change, University Kebangsaan Malaysia, 43600 10 

UKM, Bangi, Selangor, Malaysia 11 
5 Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia. 12 

* Correspondence: Biswajeet.Pradhan@uts.edu.au; or biswajeet24@gmail.com 13 

Abstract 14 

The spatial variation of soil erosion is essential for farming system management and resilience 15 

development, specifically in the high climate hazard vulnerable tropical countries like Sri 16 

Lanka. This study aimed to investigate climate and human-induced soil erosion through spatial 17 

modeling. Remote sensing was used for spatial modelling to detect soil erosion, crop diversity, 18 

and rainfall variation. The study employed a time-series analysis of several variables such as 19 

rainfall, land-use land-cover (LULC) and crop diversity to detect the spatial variability of soil 20 

erosion in farming systems. Rain-use efficiency (RUE) and residual trend analysis 21 

(RESTREND) combined with a regression approach were applied to partition the soil erosion 22 

due to human and climate-induced land degradation. Results showed that soil erosion has 23 

increased from 9.08 Mg/ha/yr to 11.08 Mg/ha/yr from 2000 to 2019 in the Central Highlands 24 

of Sri Lanka. The average annual rainfall has increased in the western part of the Central 25 

Highlands, and soil erosion hazards such as landslides incidence also increased during this 26 

period. However, crop diversity has been decreasing in farming systems, namely wet zone low 27 

country (WL1a) and wet zone mid-country (WM1a), in the western part of the Central 28 

Highlands. The RUE and RESTREND analyses reveal climate-induced soil erosion is 29 

responsible for land degradation in these farming systems and is a threat to sustainable food 30 

production in the farming systems of the Central Highlands. 31 

mailto:Biswajeet.Pradhan@uts.edu.au
mailto:biswajeet24@gmail.com


2 
 

Keywords: Soil erosion; rainfall variation; crop diversity change; remote sensing; GIS; Sri 32 

Lanka 33 

1. Introduction 34 

The global (macro and micro) climate variations inevitably influence agricultural food 35 

production. Tropical regions are more vulnerable in terms of reducing land productivity due to 36 

increasing temperature and monsoon rainfall variation (Borrelli et al., 2017). Scholars 37 

continuously struggle to understand the impact of climate change and to find solutions and 38 

adaptation measures to meet the growing food demand (Burrell et al., 2017; Panagos and 39 

Katsoyiannis, 2019). Lal (2011) emphasized that understanding the impact of climate change, 40 

vulnerability, and successful adaptation measures reduces the impact of unexpected events of 41 

climate variation. Similarly, modeling soil erosion and land-use change is important for 42 

predicting future impacts to take mitigation measures to secure food supply (Lal, 2011; 43 

Panagos and Katsoyiannis, 2019). 44 

Human-induced climate and land-use changes greatly contribute to land degradation 45 

(Sivakumar, 2007; Lal, 2011; Borrelli and Panagos, 2020). As one of the land degradation 46 

types, water-related soil erosion in tropical farming systems reduces agricultural productivity 47 

and ecosystem services (Han et al., 2020). Irregular and intense precipitation induce water 48 

erosion (Puente et al., 2019). The above-ground vegetation cover with its deep root systems 49 

helps to reduce the run-off and mass soil movement and ultimately reduces gully erosion and 50 

landslides vulnerability (Vannoppen et al., 2015). This is an important point because, as Poesen 51 

(2018) points out, water erosion may induce environmental hazards such as gully erosion and 52 

landslides in tropical hillslopes. 53 

Plant diversity enhances soil water storage capacity, reduces soil erosion, and improves other 54 

ecosystem services (Hou et al., 2016; Hunt et al., 2019). Plant diversity refers to the number of 55 

different plant species per land area unit and  increases with the plant density and plant cover 56 

while improving the functional diversity (Wang et al., 2012). Hou et al. (2016) found that 57 

increasing plant diversity inhibits soil erosion under heterogeneous vegetation cover. Several 58 

other researchers also found that plant diversity has a substantial impact on soil erosion and 59 

helps to protect soil erosion (Pohl et al., 2009; Berendse et al., 2015; Liu et al. 2018).  60 
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In the tropical region, South Asian countries are highly vulnerable to soil erosion due to climate 61 

hazards such as drought, floods, and other extreme rainfall events (Lal, 2011). Sri Lanka ranked 62 

as the second country on the global climate risk index in 2019 (Eckstein et al., 2019). South 63 

Asian monsoonal rainfalls are varied with increasing sea surface temperatures (Ratna et al., 64 

2021). The rainfall variation is emerging as a serious threat to national food production in Sri 65 

Lanka. There are major cropping seasons based on the monsoonal rainfall pattern in Sri Lanka. 66 

Evidence shows that the major economic crops such as tea and paddies are heavily impacted 67 

by these rainfall variations as 66% of total agricultural croplands are under rain-fed only(Esham 68 

and Garforth, 2013). A study by Hewawasam and Illangasinghe (2015), showed that rainfall 69 

variation heavily contributes to crop productivity losses and soil erosion in Sri Lanka. Further 70 

to this, rainfall variation and extreme events significantly increased soil erosion hazards such 71 

as gully erosion and landslides (Dang et al., 2019). Thus, the people and their livelihoods are 72 

highly vulnerable to the impact of climate change. The farming systems of Sri Lanka, 73 

particularly in the Central Highlands, are increasingly vulnerable to the adverse impact of 74 

climate change (Esham and Garforth, 2013).  75 

Remote sensing data provides useful information to monitor long-term changes in ecosystems 76 

and agricultural land management for sustainable food production. Several studies investigated 77 

land degradation and plant diversity using various remote sensing technologies with time-series 78 

observation (Wessels et al., 2007; Burrell et al., 2017; Mondal et al., 2020). Remote sensing 79 

and geographical information system (GIS) have been widely applied to soil erosion and land-80 

use change analysis (Senanayake et al., 2020a; Fenta et al., 2021). However, none of the studies 81 

attempted to employ spatial modeling of the soil erosion hazards and plant diversity change 82 

with respect to rainfall variation using time-series analysis with geo-informatics tools. 83 

Therefore, the specific objectives of this study were set to examine (i) soil erosion hazards and 84 

crop diversity changes; and (ii) the relationship between soil erosion hazard and rainfall 85 

variation in different farming systems of the Central Highlands in Sri Lanka. The current study 86 

provides a novel approach by integrating land-use and land-cover change, soil erosion hazards, 87 

crop diversity change and rainfall variation for early detection of soil erosion in the farming 88 

systems. This combined spatial modeling approach further enables the partitioning between 89 

human and climate-induced land degradation.  90 

 91 

 92 
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2. Study area  93 

The Central Highlands of Sri Lanka is selected for this study as they are extremely vulnerable 94 

to soil erosion hazards, such as landslides and floods (Rathnayake et al., 2020; Ranasinghe et 95 

al., 2019). The central region of the country consists of hilly and mountainous terrain 96 

(Hewawasam et al., 2013). The total land area is about 10,618 km2, and the land rises up to 97 

2,500m above sea level. The western side of the region receives much higher rainfall (>2500 98 

mm) than the eastern side (2500-1750 mm) (Rathnayake et al., 2020). The region has a high 99 

density of landslides distribution. Every year, landslides releases high quantities of sediments 100 

to the rivers, especially during the rainy season (Hewawasam, 2010). The Central Highlands 101 

has been declared as a protected area by the soil conservation act of Sri Lanka. Figure 1 shows 102 

the study area.  103 

 104 

Figure 1. Location of the Central Highlands in Sri Lanka 105 

 106 

3. Material and Methods 107 

This study assessed the land-use and land-cover (LULC) change, the spatiotemporal 108 

distribution of soil erosion hazards, rainfall variation and crop diversity changes in farming 109 
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systems of the Central Highlands. The main framework of this study encompassed four major 110 

assessments using spatial modeling techniques. The overall methodology of this study is shown 111 

in Figure 2. The agricultural (cropping) area under each agro-ecological region is considered 112 

as a farming system (Senanayake et al., 2021). There are 34 agro-ecological regions in the 113 

Central Highlands. The primary datasets, including satellite data (Landsat- LT 05, LE 07 and 114 

LC 08), precipitation data (satellite and gauge), topographic data, and landslides incidence from 115 

2000 to 2019, were used in this study. Although Landsat is generally adequate for crop diversity 116 

analysis (Nagendra et al., 2010), cloud cover is one of the major limiting factors for this study 117 

area (Nay et al., 2018) especially to obtain bulk images throughout the year. Hence, 118 

atmospherically-corrected, Moderate Resolution Imaging Spectroradiometer (MODIS) 119 

product data (MOD13Q1) were used for crop diversity analysis. Data sources and spatial 120 

resolution can be found in Appendix A, Table A1 and A2.  121 

 122 

 123 

Figure 2. The flowchart of the methodology used for this study. 124 

 125 
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3.1 Land-use and land-cover change analysis 128 

The landuse / landcover (LULC) classification was carried out through the support vector 129 

machine algorithm (SVM) using Landsat satellite images (Appendix A, Table A2)  from 2000, 130 

2010, and 2019. The SVM is a widely used machine-learning method (see Appendix B), 131 

introduced by Vladimir Vapnik and co-workers (Cortes and Vapnik, 1995). The Environment 132 

for Visualizing Images (ENVI) software was used for image processing. Each acquired image 133 

was geometrically corrected and registered into WGS 84 datum and UTM zone 44N projection. 134 

The radiometric and atmospheric corrections are prerequisites for generating high-quality 135 

images (Chander et al., 2009). The dark object subtraction method was applied to all images 136 

(Chavez, 1996) using the ENVI software. LULC time-series analyses were conducted after pan 137 

sharpening.  138 

The land use maps were developed for 2000, 2010 and 2019. Six land-use classes were 139 

identified from the satellite images using land-use maps of the Land Use Policy Planning 140 

Department (LUPPD) of Sri Lanka. Olofsson et al. (2013) have highlighted the importance of 141 

accuracy assessment: user's, producer's and overall accuracy. Therefore, on average, 7500 142 

training pixels were considered for each image to conduct a validation process using a 143 

confusion matrix. Finally, Kappa coefficients were derived for each classified image for 2000, 144 

2010, and 2019. The Kappa coefficient is commonly used by researchers in accuracy 145 

assessment (Qi et al., 2012; Rizeei et al., 2016; Nampak et al., 2018).The Kappa coefficient is 146 

given in equation 1 (Bishop et al., 2007). 147 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = 𝑁𝑁∑ 𝑋𝑋𝑖𝑖𝑖𝑖−∑ (𝑥𝑥𝑖𝑖+)(𝑥𝑥𝑖𝑖+)𝑟𝑟
𝑖𝑖=1

𝑟𝑟
𝑖𝑖=1
𝑁𝑁2−∑ (𝑥𝑥𝑖𝑖+)(𝑥𝑥𝑖𝑖+)𝑟𝑟

𝑖𝑖=1
 (1) 148 

 149 

where, N is the total number of pixels of the ground truth (Singh et al., 2014) land-use classes, 150 

Xii denotes the confusion matrix diagonals, (𝑥𝑥𝑖𝑖+)(𝑥𝑥𝑖𝑖+) are the ground truth pixels in a class 151 

and the sum of the classified pixels in that class and the sum of overall classes. 152 

 153 

3.2 Soil erosion assessment 154 

The soil erosion vulnerability of each farming system in the Central Highlands was derived to 155 

find out the pattern of spatial and temporal variation of soil erosion. Although there are several 156 

approaches used to estimate soil erosion, a Revised Universal Soil Loss Equation (RUSLE) has 157 

been used in this study (see equation 2). The RUSLE method was used due to its easy 158 
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integration of geo-informatics techniques as well as a practical method of considering a large 159 

land area and data-scarce situation. The RUSLE is a widely accepted attractive tool and has 160 

been used under different climatic conditions worldwide (Angima et al., 2003; Fernández and 161 

Vega, 2018; Alewell et al., 2019). This model has been successfully employed in several 162 

applications in tropical counties such as India, Sri Lanka (Ganasri and Ramesh, 2016; 163 

Senanayake et al., 2020b), and Malaysia (Nampak et al., 2018).    164 

A =  R ×  K ×  L ×  S ×  C ×  P                        (2) 165 

The annual soil loss per unit area (A) is given in tons per hectare per year. The rainfall erosivity 166 

factor (R) (MJ mm ha-1 h-1yr-1) was calculated with rainfall data from the past 30 years (1990-167 

2019). The soil erodibility factor (K) (t ha h MJ-1mm-1), slope length and steepness factor (LS) 168 

(dimensionless), crop factor (C) (dimensionless) and conservation practices factor (P) 169 

(dimensionless) were derived from data gathered from different sources. A detailed description 170 

of this analysis is provided in Appendix C.  The R, K, LS, C, and P factor layers were computed 171 

in 30m gridded raster format. The raster calculator tool in the spatial analysis was used to 172 

estimate the annual soil loss in the study area. The final soil erosion raster map was classified 173 

into five classes to identify the most vulnerable regions (Senanayake et al., 2020b). The soil 174 

erosion hazards maps were generated for 2000, 2010 and 2019. 175 

3.3 Rainfall variation  176 

Rainfall variation was analyzed to provide insight into the impact of climate variation on soil 177 

erosion. Rainfall data (ground-based) were collected from five agro-meteorological stations in 178 

the Central Highlands (Appendix E, Figure E1). The annual average of rainfall, rainfall 179 

anomaly and extreme indices such as maximum 1day precipitation, 95p, 99p (very and 180 

extremely wet days), the simple daily intensity index (SDII) and annual total wet day 181 

precipitation (PRCPTOT) were computed. Modified Mann-Kandall and Sen’s slope tests (see 182 

Appendix E, Section E2) were employed to detect significant trends in precipitation indices 183 

using the R software for statistical analysis (McLeod and McLeod, 2014).  184 

Moreover, the satellite rainfall dataset (PERSIANN-CDR) was downloaded from the Center 185 

for Hydrometeorology and Remote Sensing (CHRS) (https://chrsdata.eng.uci.edu/). Recent 186 

innovative trend analysis test (ITA) developed by Şen ( 2012), was also employed to evaluate 187 

the rainfall trends further (Şen, 2017). Satellite-based PERSIANN-CDR products matched well 188 

with the gauge-based precipitation in tropical regions (Sun et al., 2018). The CHRS data were 189 

https://chrsdata.eng.uci.edu/
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used by many researches due to its capability of assessing rainfall trends(Baez-Villanueva et 190 

al., 2018; Sadeghi et al., 2021). A detailed description of this analysis is provided in Appendix 191 

E (section E3). 192 

3.3.1 Rainfall variation and soil erosion hazards 193 

Landslides are a good indicator of soil erosion hazards (Pradhan et al., 2012). Landslides 194 

inventory (Appendix F, Figure F2) was prepared using the disaster information system of the 195 

United Nations International Strategy for Disaster Reduction ‘Desinventar’ (UNISDR, 2021). 196 

The relationship between rainfall variation and soil erosion hazards was assessed using the 197 

landslides frequency ratio in each farming system. Landslide frequency ratio (FR) for each 198 

farming system can be estimated using equation (3) (Lee and Talib, 2005; Meena et al., 2019). 199 

FR(𝑖𝑖) =
S(i)/A(𝑖𝑖)

∑ �
𝑆𝑆(𝑖𝑖)

𝐴𝐴(𝑖𝑖)
� �𝑛𝑛

1

 ,                                 (3) 200 

 201 

where, Si  the number of pixels containing landslides in class (i), Ai the total number of pixels 202 

in class (i). 203 

 204 

3.3.2 Rainfall and vegetation indices 205 

The MODIS data (MOD13Q1 - MODIS/Terra Vegetation Indices 16-Day) were downloaded 206 

(ORNL DAAC, 2018) from 2000 to 2019  and observed the relationship between NDVI and 207 

ground-based and satellite-based rainfall data. Pearson’s correlation coefficient was estimated 208 

between these two variables. Linear regression analysis was performed to estimate the 209 

coefficient of determination to identify respective trends of the NDVI. The coefficient of 210 

determination (R2) was computed to find how much variability can be caused by its relationship 211 

to another related factor (Landmann and Dubovyk, 2014). In addition, the latest modified 212 

Kling-Gupta efficiency (KGE’) was used to test the goodness of fit (Appendix I). The results 213 

of the parameters were found to be consistent with the Pearson’s correlation coefficient (r), 214 

bias (beta), and variability ratio (gamma) (Gupta et al., 2009; Kling et al., 2012).  215 

3.4 Crop diversity change analysis 216 

Estimating plant diversity using remote sensing techniques has been conducted through direct 217 

and indirect methods (Turner et al., 2003; John et al., 2008). Direct methods are used with 218 

spectral reflectance values and various spatial resolutions from different sensors (Warren et al., 219 

2014). Indirect methods have been derived from environmental parameters or biophysical 220 
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characteristics, such as primary productivity or habitat structure, which are estimated from 221 

remote sensing techniques (Turner et al., 2003; John et al., 2008).  222 

Plant diversity has been studied by many researchers using vegetation indices, such as NDVI 223 

and EVI (Waring et al., 2006; Levin et al., 2007; Chitale et al., 2019). Several researchers have 224 

reported that there is a strong relationship between plant species diversity with vegetation 225 

indices such as NDVI (Levin et al., 2007; Pouteau et al., 2018) and the enhanced vegetation 226 

index (EVI) (Waring et al., 2006; Morisette et al., 2006). Previous studies indicate that Landsat 227 

derived vegetation indices are highly sensitive to plant abundance and species richness in 228 

tropical landscapes (Nagendra et al., 2010). Nagendra et al. (2010) found that vegetation 229 

indices have low, non-significant relationships with stand density (the number of trees per unit 230 

area) and they also found stronger relationships with species richness and diversity. The 231 

standard deviation (SD) of the NDVI is positively correlated with total species richness and 232 

annual plant richness. Pau et al. (2012) found that NDVI values have increased by 30%- to 233 

60% due to variance of tree species richness in a tropical forest (Pau et al., 2012). In addition, 234 

they established that NDVI was positively correlated with the tree cover, and NDVI values can 235 

be used to distinguish between dense forests and non-forested areas, such as agricultural fields 236 

and savannahs. NDVI values range from −1 and +1. NDVI values are above zero in vegetated 237 

areas and below zero can be assumed to be non-vegetated (Warren et al., 2014).  238 

Many investigations have been conducted to identify the relationship associated with the EVI 239 

index and plant species richness (Waring et al., 2006; Morisette et al., 2006). There is a positive 240 

relationship between EVI and species richness. The EVI is independent of climate drivers 241 

(Waring et al., 2006). The EVI was developed to optimize the vegetation signal to improve 242 

vegetation monitoring by removing the background soil signal and atmospheric influences 243 

(Huete et al., 2002). The difference between the EVI and NDVI of MODIS satellite products 244 

is an adjustment for the atmosphere and soil background (Huete et al., 2002). Therefore, it is 245 

worth to note that NDVI and EVI can be used for mapping and predicting patterns of species 246 

richness in large areas. These applications are relatively low cost (Levin et al., 2007; Nagendra 247 

et al., 2010). In addition, researchers commonly use the soil adjusted vegetation index (SAVI) 248 

to investigate land degradation. SAVI minimizes the spectral variation caused by the soil 249 

background (Huete, 1988). The vegetation indices and the respective equations can be found 250 

below (Eq 4-6). 251 

 NDVI 
NDVI =

(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅                 (4) 

(Rouse et al., 
1974) 
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SAVI 

SAVI =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)(1 + 𝐿𝐿)
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅 + 𝐿𝐿               (5) 

 
Where L= correction factor between 0 and 1 
 

(Huete, 1988)  

EVI 
EVI = 𝐺𝐺

(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐶𝐶1.𝑁𝑁𝑅𝑅𝑅𝑅 − 𝐶𝐶2.𝐵𝐵 + 𝐿𝐿)          (6) 

 
G = 2.5; C1 = 6; C2 = 7.5; L = 1 
 

(Liu and Huete, 
1996)  

This study examines the crop diversity change and soil erosion hazard using NDVI, EVI, and 252 

SAVI using multiple data sources. Yang et al. (2020) highlighted that using various data 253 

sources complements for the cross-validation of a study. Nagendra et al. (2010) claimed that 254 

Landsat imagery is more suitable for vegetation diversity assessment. They found medium-255 

resolution Landsat ETM+ (30m) correlates stronger than high-resolution IKONOS imagery (4 256 

m) with plant diversity in a dry tropical forest. Due to higher cloud cover around Sri Lanka 257 

throughout the year, trend analysis could not be carried out only with Landsat imageries. 258 

Hence, MODIS -250m 16 days’ products (MODIS-MOD13Q1) were used for time series 259 

analysis for the years 2001–2019 (LPDAAC, 2021). The MODIS-derived variables have also 260 

shown the ability to predict plant species richness at the regional level (John et al., 2008). In 261 

addition, MODIS productivity estimates (NDVI/EVI/GPP) are readily available online and 262 

provide global coverage (Huete et al., 2002). The MODIS vegetation index products are 263 

generated by compositing daily data every 16 days, resulting in 23 composites per year and 264 

avoid cloud cover and other effects (Huete et al., 2002).  265 

The Shannon diversity index is used to measure plant diversity (Nagendra, 2002). This 266 

diversity index produces an evaluation of landscape richness and evenness. It measures the 267 

number and the relative abundance or evenness of each species. A MODIS derived Shannon 268 

diversity index was used to evaluate the crop diversity during this period. The Shannon 269 

diversity index (SHDI) (Shannon, 1948) is given in equation (7). 270 

SHDI = 1 −  �𝑃𝑃𝑖𝑖  × In𝑃𝑃𝑖𝑖

N

i=1

         (7) 271 

 272 
where, N is the number of land cover types, and Pi is the proportional abundance of the ith type 273 

(Nagendra, 2002). This index ranges in theory from 0 to infinity. 274 
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In this study, crop diversity changes were further assessed using the case study approach. Three 275 

case studies were conducted covering the Central Highlands to identify the crop diversity 276 

changes at the farming system level. The most vulnerable two farming systems (WL1a, WM1a) 277 

and moderate vulnerable farming system (IU3e) for soil erosion were identified based on the 278 

cropping area, soil erosion and number of landslides occurrence in the last two decades. The 279 

following criteria were used to select farming systems for the case studies (Appendix F, Figure 280 

F3): (i) the percentage of land area under high and very high soil erosion hazard classes; (ii) 281 

the number of landslides occurrence in the past two decades; and (iii) the agricultural area’s 282 

vulnerability to soil erosion. The identified farming systems are given in Figure 3.  283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

(a) (b) (c) 
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Figure 3. a) Average soil erosion rate, b) the number of landslides occurred, c) agricultural 300 
cropping area in the farming system, and d) selected farming systems for three case studies. 301 

The Pearson’s correlation coefficients (r) were computed to explore the relationship between 302 

vegetation indices values, plant species richness and diversity of disturbance types (Warren et 303 

al., 2014). Pearson’s correlation coefficient provides correlation statistically as a measure of 304 

the strength of the linear relationships. Values that are closer to one indicate a stronger 305 

relationship or correlation. Statistical models were developed using the linear regression 306 

technique.   307 

 308 

2.4.1 Vegetation indices and soil erosion  309 

Many researchers have used vegetation indices to differentiate soil erosion/land degradation 310 

from climate change and anthropogenic activities. The Rain-use efficiency (RUE) and residual 311 

trend (RESTREND) indices are derived from vegetation indices (NDVI and EVI) to study land 312 

degradation (Wessels et al., 2012; Cunha et al., 2020). RUE and RESTREND analyses have 313 

been popularized for assessing the long-term changes in vegetation over the last few decades 314 

(Kundu et al., 2017). The following rule of thumb is applied: where vegetation dynamics are 315 

strongly driven by rainfall, declining RUE is correlated with land degradation. In humid areas, 316 

where vegetation is not as strongly driven by rainfall variation, the NDVI is strongly correlated 317 

with vegetation dynamics and may be taken as a proxy for land degradation (Yengoh et al., 318 

2014).  319 

2.4.2 Rain-use efficiency  320 

Rain-use efficiency (RUE) can be used to normalize the effects of rainfall in vegetation 321 

productivity (Fensholt et al., 2013; Liu et al., 2015). The RUE is the ratio between the annual 322 

sum of vegetation productivity and annual rainfall (Wessels et al., 2012). Temporal change of 323 

RUE has been used to detect land degradation (Liu et al., 2015). Prince et al. (1998) highlighted 324 

that decreased RUE referred to land degradation by reduced vegetation coverage and increased 325 

run-off. The declining RUE is correlated with land degradation (Yengoh et al., 2014). RUE 326 

may vary with species distribution (Fensholt et al., 2013). However, some researchers still 327 

argue whether RUE is an effective indicator of land degradation (Wessels et al., 2007). The 328 

RUE can be derived from equation 8, 329 

 RUE =
∑ NDVI

 Average annual rainfall            (8) 330 

where, ∑NDVI is the average annual sum of NDVI. 331 
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2.4.3 Residual trend analysis  332 

Residual trend analysis (RESTREND) was proposed by Evans and Geerken (2004). Predicted 333 

NDVI indicates the climatic impact on NDVI, whereas observed NDVI is the result of both 334 

climate and anthropogenic factors. A negative RESTREND indicates human-induced 335 

degradation of vegetation, and a positive RESTREND indicates the improvement of vegetation 336 

conditions (Kundu et al., 2017). RESTREND is obtained from the differences between the 337 

observed ∑NDVI and the ∑NDVI predicted by the rainfall using regressions calculated for 338 

each pixel. The equation for RESTREND is in equation 9 (Wessels et al., 2008; Wessels et al., 339 

2012). 340 

RESTREND = observed ∑NDVI  −  predicted ∑NDVI    (9) 341 

In this study, the RUE and RESTREND were employed using NDVI and EVI indices of 342 

MODIS data to find the impact of climate and human-induced soil erosion/land degradation. 343 

The time-series analysis of NDVI and EVI indices from 2000 to 2019 were used to derive RUE 344 

and RESTREND. 345 

 346 

4. Results  347 

4.1 Land-use and land-cover change  348 

Land-use and land-cover (LULC) change analysis was carried out using Landsat imagery for 349 

2000, 2010 and 2019 by employing the support vector classifier algorithm. The accuracy 350 

assessments indicate the Kappa coefficients: 0.83 in 2000, 0.81 in 2010 and 0.83 in 2019 (see 351 

Appendix D,  Table D2- 4). Figure 4 shows the resulted classification maps for 2000, 2010 and 352 

2019. Table 1 shows the respective findings of the analysis. The results indicate that dense 353 

forest and open forest have decreased during this period by 14.5% and 5.8%, respectively, 354 

while agricultural areas and built-up areas have increased by 15.4% and 2.35%. 355 



14 
 

 356 

 357 

Figure 4. LULC maps in the Central Highlands: a) 2000, b) 2010, and c) 2019 358 

 359 

 360 

 361 

 362 

 363 

 364 
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Table 1. LULC change from 2000 to 2019 365 

Area (km2) 
Classes 2000 % 2010 % 2019 % Change 
Dense Forest 3452.9 32.9 2491.9 23.7 1927.5 18.4 -1525.4 
Open forest 3761.4 35.8 3391.6 32.3 3150.9 30.0 -610.6 
Agriculture area 2718.3 25.9 3881.4 37.0 4333.2 41.3 1614.9 
Built-up area 299.5 2.85 373.6 3.6 546.0 5.2 246.5 
Water bodies 137.4 1.31 59.9 0.6 137.3 1.3 -0.1 
Other (Cloud) 130.4 1.24 383.6 3.7 404.6 3.9 274.2 
  10500.0 100.0 10500.0 100.0 10500.0 100.0   

 366 

4.2 Soil erosion hazards  367 

The generated soil erosion hazards maps are illustrated in figure 5. The details of soil erosion 368 

hazard class distribution from 2000 to 2019 are given in Table 2 and Appendix C (Figure C3). 369 

According to the results of the study, soil erosion rates are increasing. The mean annual soil 370 

erosion rate was 9.08 Mg/ha/yr in 2000, and it increased to 10.17 Mg/ha/yr in 2010 and 11.08 371 

Mg/ha/yr in 2019 (Table 2). The land areas under high and very high soil erosion classes were 372 

increased by  286.1km2 and 166.3 km2, respectively. The average soil erosion rate and landslide 373 

frequency ratio for each farming system were also assessed. The results are given in Appendix 374 

F, Table F1. The highest soil erosion rates can be observed in farming systems in the wet zone. 375 

This increasing soil erosion trend may be a result of the climate variation and anthropogenic 376 

impact of LULC change.  377 
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378 

 379 

Figure 5. Soil erosion hazard map for: a) 2000, b) 2010, and c) 2019 380 

 381 

 382 

 383 

(b) 

(c) 

(a) 
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Table 2. The details of soil erosion hazard classes, rates, and area distribution 384 

Class Soil erosion 
rate 

Area 
(km2) 

Change 

    2000 2010 2019 2000 -2019 
Verylow <5 5494.7 5345.6 5140.3 -354.4 

Low 5-10 1733.3 1569.5 1555.3 -178.1 
Moderate 10-20 1831.1 1847.4 1911.2 80.2 

High 20-50 1221.2 1404.3 1507.3 286.1 
Very high 50< 219.7 333.2 385.9 166.3 
Total land  10500.0 10500.0 10500.0  

Average annual soil erosion 
(t/ha/yr)  

9.08 10.17 11.08   

 385 

4.3 Rainfall variation  386 

The increasing trend of average annual rainfall could be observed in all stations in the Central 387 

Highlands. According to table 3, satellite-based rainfall data show a significantly increasing 388 

trend in all the stations. Similarly, ground-based rainfall data also indicate significantly 389 

increasing rainfall except in Nuwara Eliya and Kundasale stations. Figure 6 illustrates the 390 

results of innovative trend analysis based on satellite rainfall data. Researchers have reported 391 

the increasing trend of average annual precipitation in Sri Lanka. Nearly 75% of meteorological 392 

stations have shown a significantly increasing trend (Jayawardena et al., 2018). 393 

        
Table 3. Results for innovative trend test (slope s) of annual rainfall in the Central Highlands. 
    

Station  
Slope 
(s)  

Trend 
indicate
(r) 

Standard 
deviation 
(σ)  

Slope 
standard 
deviation 
(σs)  

 Level 
90%  
Sig.  

Level 
95% 
Sig. 

Level 
99% 
Sig. 

Type of 
trend 

Satellite rainfall data        
Ratnapura 22.66⁎⁎ 0.98 317.45 1.61 ±2.64 ±3.14 ±8.17  Increasing 
Peradeniya 21.53⁎⁎ 1.18 281.64 2.48 ±4.08 ±4.86 ±6.39  Increasing 
Nuwaea Eliya 21.30⁎⁎ 1.03 300.21 2.68 ±4.4 ±5.24 ±5.29  Increasing 
Bandarawella 21.30⁎⁎ 1.03 300.21 2.68 ±4.40 ±5.24 ±6.89  Increasing 
Kundasale 21.53⁎⁎ 1.18 281.64 2.48 ±4.08 ±4.86 ±6.39  Increasing 
         
Ground-based rainfall data        
Ratnapura 35.53⁎⁎ 0.99 536.89 4.90 ±8.60 ±9.06 ±12.62  Increasing 
Peradeniya 22.90⁎⁎ 1.20 381.54 2.71 ±4.46 ±5.31 ±6.99  Increasing 
Nuwaea Eliya 3.40 0.20 381.89 3.99 ±6.57 ±7.83 ±10.29  Increasing 
Bandarawella 16.97⁎⁎ 1.02 310.07 4.77 ±7.84 ±9.35 ±12.28  Increasing 
Kundasale 5.20 0.36 343.97 3.17 ±5.22 ±6.22 ±8.17  Increasing 
         
⁎ and ⁎⁎ represent 95% and 99% significance levels, respectively     
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 394 

 395 

 396 

 397 

Figure 6. The Inovative trend analysis in (a) Bandarawela (b) Kundasale, (c) Nuwara Eliya 398 
(d) Peradeniya and (e)Ratnapura,  stations from satellite-based rainfall data. 399 

4.3.1 The relationship between rainfall variation and soil erosion hazards  400 

Findings indicate that there are positive correlations between variables (Appendix I,Table I1):  401 

average annual rainfall and soil erosion rates r = 0.390 (p<0.05), landslides frequency ratio and 402 

average soil erosion rate r = 0.416 (p<0.05). The regression model in Figure 7 shows the 403 

(a) (b) 

(c) (d) 

(e) 
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relationships between soil erosion rate and average annual rainfall and average soil erosion rate 404 

and landslide frequency ratio in each farming system. Modified Kling–Gupta efficiency values 405 

are shown in table I2. Ranasinghe et al. (2019) highlighted that heavy and prolonged rainfalls 406 

are the main triggering factors for landslides in Sri Lanka. Rozos et al. (2013) argue that soil 407 

erosion could trigger landslides manifestation. Hence, the results of this study indicate that 408 

rainfall erosivity and soil erosion triggers the incidence of landslides in the Central Highlands. 409 

Hence, the results of this study indicate that rainfall erosivity and soil erosion triggers the 410 

incidence of landslides in the Central Highlands. 411 

 412 

 413 
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 415 

 416 

Figure 7. The details of the relationship between a) soil erosion and average annual rainfall 417 
b) average annual soil erosion rate and landslide frequency and (c) rainfall erosivity and 418 

landslides frequency ratio in each farming systems. 419 
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4.4 Crop diversity change in the farming systems 421 

Based on the results of vegetation indices, the NDVI, EVI and SAVI show an overall increasing 422 

trend over the years. Figure 8 shows the distribution of vegetation indices over the period and 423 

respective images (Appendix G, Figure G1-3)  derived from Landsat and MODIS imagery for 424 

the NDVI, EVI and SAVI.  425 

  426 
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Figure 8. (a) Landsat-derived: NDVI, EVI and SAVI distribution over the period in the 428 
Central Highlands and (b) MODIS-derived: NDVI and EVI distribution over the period with 429 

annual average rainfall (ARF- satellite and gauge ) in Ratnapura area (WL1a). 430 

In this research, Landsat data provide the NDVI, EVI and SAVI values that demonstrate the 431 

combined effect of land-uses in the Central Highlands: dense forest, open forest, agriculture, 432 

water bodies and urban/built-up areas. For further analysis of crop diversity in farming systems, 433 

three case studies were conducted. From the analysis of three case studies, a similar pattern of 434 

NDVI, and EVI variation could be observed over the years (Appendix H, Figure H1-4). Further 435 

to this, the increasing trend of NDVI and EVI was greater than SAVI. Researchers also 436 

observed similar trends in other regions (Sarmah et al., 2018; Liu et al., 2018). NDVI is closely 437 

related to the net and gross primary productivity. NDVI strongly correlates with plant biomass 438 

and net primary productivity (NPP), which is the difference between carbon fixed by 439 

photosynthesis and carbon lost to autotrophic respiration (Evans and Geerken, 2004). The 440 

MODIS-derived GPP and EVI provide reasonable estimates of productivity in the forest and 441 

grassland biomes (Waring et al., 2006). The MODIS derived NDVI and EVI values are 442 

positively correlated with NPP (0.76 and 0.53). 443 

Earlier researchers have revealed a positive relationship between species richness and 444 

productivity (Fensholt et al., 2013), although the relationship may differ among ecosystems 445 

and dependent on spatial scales. Therefore, increasing trends in vegetation indices may indicate 446 

increasing heterogeneity or species diversity. Hence, this study further analyzed crop diversity 447 

and evenness using the Shannon diversity index derived from MODIS data. Nagendra (2002) 448 

described landscape diversity as evaluating richness and evenness in the context of measuring 449 

diversity. Richness refers to the number of different species (land cover types) in the landscape, 450 

and evenness refers to the relative percentage of land distributed amongst these different cover 451 

types. The Shannon diversity index of these three case studies shows some change over the 452 

period (Appendix J). However, the most prominent change was observed in the farming system 453 

of WL1a. The richness and evenness have decreased in WL1a from 2000 to 2019. The evenness 454 

values have changed on WM1a in this period. The reasons for these changes would be land 455 

fragmentation, land degradation, land-use change, and landslides during this period.  456 

 NDVI and EVI relationships between rainfalls were also observed. It is somewhat surprising 457 

to note a weak correlation between NDVI and rainfall (r = 0.22). However, there is a moderate 458 

positive correlation between EVI and rainfall (r = 0.45) (Appendix I, Table I1). The correlation 459 

between NDVI and EVI was observed as r = 0.36. Pau et al. (2012) indicated that precipitation 460 
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and structural complexity strongly affected the correlation between the NDVI and plant 461 

species. Precipitation has a consistent direct effect on the NDVI and species richness. However, 462 

structural complexity has strong direct and indirect effects on the NDVI. The increase in 463 

rainfall would enhance the growth of weeds and crop growth in farming systems. These may 464 

be reasons for the increase in NDVI value in the study. The effect of rainfall can be normalized 465 

by employing rain use efficiency (RUE). Researchers previously highlighted that the RUE 466 

index identifies land degradation that is independent from rainfall (Wessels et al., 2008; Prince 467 

et al., 1998). 468 

4.4.1 Soil erosion hazards and crop diversity change  469 

This study estimated the ratio between vegetation indices (VI) and rainfall in the farming 470 

systems of the three case studies. The time series analysis was executed from 2000 to 2019 to 471 

normalize the VI for the influence of rainfall. This is known as rain-use efficiency (RUE). The 472 

ratio between RUE and rainfall can be found in Appendix K (Table K1). Figure 9 shows the 473 

VI and RUE variations for the three case studies. 474 

 475 
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 477 

 478 

Figure 9. The trend of RUE in three farming systems: (a) WL1a, (b) WM1a, and (c) IU3e  479 
farming systems. 480 

 481 
The farming systems WL1a and WM1a showed a negative trend of the RUE index, while IU3e 482 

showed a positive trend over the years. A similar trend of EVI based RUE (ΣEVI/rainfall) was 483 

also observed in farming systems WL1a and WM1a (see Appendix K, Table K2). The areas 484 

with a negative trend indicated land degradation. It is also noteworthy that these farming 485 

systems receive the highest rainfall compared to the IU3e. The positive trend of RUE in the 486 

IU3e farming system indicates the changes in increasing land cover or land conditions during 487 

the study period. The negative trend may occur due to land-use changes, which reduces NDVI 488 

values. Landmann and Dubovyk (2014) have observed a negative NDVI trend that indicates a 489 

gradual decline of vegetation cover or sudden land transformations such as deforestation.  490 
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This study examined the correlation between RUE and rainfall. There is a strong negative 491 

correlation between RUE and rainfall (r = -0.94, standard deviation = 0.001). Further to this, 492 

the coefficient of determination (R2) was estimated to find the relationship between RUE, and 493 

rainfall. The results show there is a strong negative relationship between RUE and rainfall in 494 

three case studies: WL1a (R2 =0.88), WM1a (R2 =0.78), and IU3e (R2 =0.86) (Appendix L, 495 

Figure L1).   496 

The time-series analysis of MODIS VI was employed to obtain the RESTREND. The 497 

RESTREND of the three farming systems has shown a positive slope over the years. The 498 

farming system WL1a showed a slightly positive trend of RESTREND (R2=0.23). However, 499 

the farming systems WM1a and IU3e reported a stronger positive trend of RESTREND 500 

R2=0.33 and R2=0.45, respectively. A similar trend of the EVI based RESTREND was also 501 

found in the same farming systems (Appendix K, Table K2). According to Kundu et al. (2017), 502 

the positive trend of RESTREND, indicates human interference on the landscape, such as 503 

plantation, cropping and agricultural development that supports increasing NDVI values. The 504 

findings of this study are also showing a positive trend of RESTREND. Hence, these findings 505 

provide evidence to prove the effect of human interference on the improvement of the 506 

vegetation cover in the three case studies. Farming system IU3e indicates the highest effect of 507 

human interference on the improvement of vegetation cover. Figure 10 shows the trends of 508 

RESTREND in the three case studies.  509 

 510 
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Figure 10.  RESTREAND over the years: a) WM1a, b) WL1a, and c) IU3e farming systems. 538 
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4. Discussion 539 

Spatial modeling with four assessments: LULC change, soil erosion hazards, rainfall variation, 540 

and crop diversity change assessments were conducted to address the research questions of the 541 

study. The LULC evaluation indicates forest and open forest areas have decreased while 542 

agricultural and built-up areas have increased during the study period. Other studies also 543 

indicated similar findings in their researches (Jayawardena et al., 2018). This study highlighted 544 

the large-scale deforestation, which has taken place due to agricultural activities, expansion of 545 

home gardens and construction of household settlements. According to a recent study, forest 546 

area is decreasing in Sri Lanka (Mondal et al., 2020). Ranasinghe et al. (2019) also confirmed 547 

some of these findings, such as decreasing the forest cover and increasing home gardens and 548 

agricultural areas in Bandula district of the Central Highlands during the period of 1990 to 549 

2018. These findings clearly show the anthropogenic impact on natural ecosystems during the 550 

past few decades. 551 

According to the RUSLE analysis, the majority of the land area of the Central Highlands, in an 552 

ecological and economic sense, has been subjected to soil erosion over the past two decades. 553 

The analysis revealed high and very-high soil erosion classes, representing 18.04% of the total 554 

land area. The global investigation of modeling and mapping studies (GIMMS) in 1981–2003 555 

has indicated 32.09% of the land area was under degradation in Sri Lanka (Bai et al., 2012). 556 

The higher rate of soil erosion was evident from the amount of silt piling up behind the dams 557 

across the Mahaweli River, which drains through the greater part of the Central Highlands 558 

(Khaniya et al., 2019).  559 

In addition, the rainfall variation in terms of the increase of rainfall intensity and average 560 

rainfall was observed during this study period. A significant increase in rainfall intensity could 561 

be observed in Nuwara Eliya. This study found a positive correlation between average annual 562 

rainfall and soil erosion. Ratnayake and Herath (2005) claimed spatial locations of recent 563 

landslides in the Central Highlands correlate highly with an increase in rainfall intensity. A 564 

recent study further revealed a recent incidence of a landslide in the Aranayake area in the 565 

Central Highlands, which was triggered by heavy, intense rainfall. This soil mass movement 566 

caused great damage in the Aranayake area by killing 127 people and demolishing 75 houses 567 

(Dang et al., 2019). However, the impact of climatic variation, particularly rainfall variation in 568 

the Central Highlands, is not uniform everywhere.  569 
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The drastic land-use changes may cause changes in heat and moisture fluxes that would lead 570 

to local rainfall variation. In addition, the relationship between rainfall and temperature may 571 

be a result of factors such as global warming and land-use change. The increase in sea surface 572 

temperature may also be responsible for the increase in rainfall in the western part of the Central 573 

Highlands (Wickramagamage, 1998). Scholars indicated the moisture retention capacity of the 574 

atmosphere might increase by 7% by increasing global mean temperature from one degree 575 

Celsius (Mullan et al., 2012; Almagro et al., 2017). The increasing atmospheric water vapor 576 

may change the hydrological cycle and induce more intensive precipitation events (Nearing et 577 

al., 2005; Mullan et al., 2012).  578 

Studies show that the onset of the two-monsoon pattern (southwest and northeast) in Sri 579 

Lanka has also been altered, and the increase of rainfall intensity could be observed in the 580 

recent past (Jayawardena et al., 2018; Burt and Weerasinghe, 2014). The changes of onset of 581 

monsoons have been affected farming activities in the Central Highlands. The smallholdings 582 

and rain-fed agriculture dominate the Central Highlands. Borrelli et al. (2017) also highlighted 583 

that the most severe impacts of global climate change would be felt mostly on smallholder 584 

farmers in developing countries.  585 

The NDVI, EVI and standard deviations of GPP across the highlands were used as measures 586 

of vegetation heterogeneity. Ecosystem productivity has shown a good correlation with species 587 

diversity, as it is the integrative expression of factors such as topography, land use, disturbance, 588 

and soil nutrients (Evans and Geerken, 2004; John et al., 2008). As a measure of plant diversity, 589 

plant species richness is often considered a measure of ecosystem health and resilience 590 

(Symstad and Jonas, 2011). Pohl et al. (2009) indicated that plant species richness significantly 591 

increased the topsoil aggregate stability on slopes.  592 

In the crop diversity assessment of this study, NDVI was normalized by rainfall (RUE index). 593 

Findings show a decreasing trend of RUE in WL1a and WM1a farming systems. Further to 594 

this, soil erosion of these two farming systems is also high. Previous research emphasizes that 595 

a decreasing trend of RUE indicates land degradation that is independent from rainfall (Wessels 596 

et al., 2008; Prince et al., 1998). Thus, the findings of this study confirmed the land degradation 597 

in WL1a and WM1a farming systems. Levin et al. (2007) found that a decreasing trend of 598 

vegetation indices would be an indication of the decreasing heterogeneity or species diversity. 599 

The Shannon index (plant richness and evenness) in the WL1a and WM1a farming systems 600 

(western part of the Central Highlands) also decreases. Hence, the present study provides 601 
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evidence for the decreasing of crop diversity. Besides, crop diversity in farmland can vary due 602 

to various reasons, such as socio-economic factors. Farmers would shift from one crop to 603 

another crop due to changes in market prices (Maitima et al., 2009), environmental influences 604 

or socio-economic factors in farming systems (Shrestha et al., 2010). Therefore, further 605 

assessment and ground-based validation are needed to generalize the correlation between soil 606 

erosion and plant diversity change.  607 

The study further investigated land degradation using RESTREND analysis to distinguish 608 

human-induced land degradation. To interpret the NDVI trends in terms of land degradation or 609 

improvement, researchers have to eliminate the impact of climatic variability from the residual 610 

sum of NDVI to detect human influence (Wessels et al., 2007; Kundu et al., 2017). A negative 611 

trend of RESTREND indicates human-induced land degradation, while a positive trend of 612 

RESTREND indicates human influences on the improvement of vegetation (Kundu et al.,2017; 613 

Evans, 2004).  The present study demonstrates an increasing trend of RESTREND, which 614 

means an improvement of vegetation cover in the farming systems. Findings provide evidence 615 

to prove the effect of human interference on the improvement of vegetation in three case 616 

studies.  617 

The increasing farming areas, improved farming techniques, and land reclamation may be the 618 

reasons for improving vegetation cover. Similarly, Burrell et al. (2017) found that certain 619 

farming practices such as fertilizer applications, irrigation, high breed varieties of seasonal 620 

crops, etc. significantly increase the NDVI values. Fensholt et al. (2013) described trends of 621 

vegetation productivity as dependent on climatic factors and non-climatic factors such as land 622 

management, cropping practices, and nutrient status. Climatic factors are precipitation, 623 

atmospheric temperature, global sea surface temperature, and soil moisture (Fensholt et al., 624 

2013; Ibrahim et al., 2015). Burrell et al. (2017) and other researchers argued that increasing 625 

trends of vegetation cover due to the long-term increasing trend of rainfall or CO2 fertilization 626 

due to anthropogenic greenhouse gas emissions (Sarmah et al., 2018; Anyamba and Tucker, 627 

2005).  628 

There are several important areas in this study that make an original contribution to the body 629 

of knowledge; extraction of farming systems based on the agro-ecological regions, application 630 

of rain use efficiency and trend analysis for land degradation in farming systems, and residual 631 

trend analysis to distinguish the human-induced land degradation at a farming system level. To 632 

the best of the knowledge of the authors of this paper, no studies have previously been 633 
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conducted to integrate these aspects at a farming system level in Sri Lanka. The present study 634 

gives a novel spatial modeling approach by combining LULC, soil erosion hazards, crop 635 

diversity change, and rainfall variation. Moreover, this study provides comprehensive scientific 636 

insights into sustainable land and farming system management. These insights are very critical 637 

in developing strategies to ensure food security and sustainable land management (Visser et 638 

al., 2019; Djekic et al., 2021). In other words, food security and sustainable land management 639 

are paramount two aspects in achieving sustainable development goals (SGDs) and 2030 640 

agenda: particularly in achieving goals 2 and 15 (Zero hunger and Life on land). Hence, this 641 

research contributes to developing strategies in achieving SGDs of the United Nations. 642 

However, there are some limitations to this study. The relationship between rainfall and plant 643 

water availability is not a simple process, and only a fraction of the rainfall, becomes available 644 

for transpiration and evaporation. These parameters did not consider in this study. In addition, 645 

an increase in temperature and CO2 changes were also not considered.  646 

The model developed by this study can be used for early detection and to reduce the potential 647 

adverse impact of climate change and future damages to farming systems. Hence, this approach 648 

provides a basis for a new direction for future research. The policy implication of this study 649 

provides a direction towards developing strategies for land management and resilience 650 

building, guiding future land-use planning for the soil and ecological conservation in areas 651 

under high and very high soil erosion categories to protect the farming systems sustainably. 652 

The significance of this study implies an improved understanding of soil erosion hazards  653 

caused by rainfall variation and crop diversity changes through remote sensing applications, 654 

accompanied to formulate climate risk management strategies and mitigation measures for 655 

better management of farming systems and risk reduction.  656 

5. Conclusion   657 

This paper presents time-series segmentation of LULC change, soil erosion hazards, crop 658 

diversity change, and rainfall variation in the Central Highlands of Sri Lanka from 2000 to 659 

2019. The LULC indicates agricultural lands (15.4%)  and built-up areas (2.35%)  have been 660 

increasing while reducing the dense forest(14.5%)  and open forest cover(5.8%). The soil 661 

erosion has increased from 9.08 Mg/ha/yr to 11.08 Mg/ha/yr. The rainfall variation revealed a 662 

significantly increasing trend. Crop diversity has also been decreased in the WL1a (SHDI from 663 

o.45 to 0.41)  and WM1a (SHDI from 0.69 to 0.65 )  farming systems. Furthermore, a positive 664 

trend of RESTREND is reported in WL1a ,WM1a and IU3e farming systems. This is evidence 665 
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to prove the effect of human interference on the improvement of vegetation in the WL1a, 666 

WM1a and IU3e farming systems. It suggests climate-induced soil erosion may be responsible 667 

for land degradation in these farming systems. These findings imply the complex relationships 668 

among soil erosion, plant diversity change and rainfall variation. The combined spatial 669 

modeling approach provides a better understanding of the ground situation and can predict the 670 

situation with a meaningful outcome. Remote sensing derived NDVI and EVI indices provide 671 

the best solution for monitoring vegetation cover and plant diversity change. Overall, these 672 

findings are evidence that human-induced LULC change and climate-induced land degradation 673 

create significant damage to farming systems that greatly threaten the food production of the 674 

Central Highlands of Sri Lanka. 675 
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