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Abstract—Existing automated road extraction approaches 5 
concentrate on regional accuracy rather than road shape and 6 
connectivity quality. Most of these techniques produce 7 
discontinuous outputs caused by obstacles, such as shadows, 8 
buildings, and vehicles. This study proposes a shape and 9 
connectivity-preserving road identification deep learning-10 
based architecture called SC-RoadDeepNet to overcome the 11 
discontinuous results and the quality of road shape and 12 
connectivity. The proposed model comprises a state-of-the-art 13 
deep learning-based network, namely, the recurrent residual 14 
convolutional neural network, boundary learning (BL), and a 15 
new measure based on the intersection of segmentation masks 16 
and their (morphological) skeleton called connectivity-17 
preserving centerline Dice (CP_clDice). The recurrent residual 18 
convolutional layers accumulate low-level features for 19 
segmentation tasks, thus allowing for better feature 20 
representation. Such representation enables us to construct a 21 
UNet network with the same number of network parameters 22 
but improved segmentation effectiveness. BL also aids the 23 
model in improving the road’s boundaries by penalizing 24 
boundary misclassification and fine-tuning the road form. 25 
Furthermore, the CP_clDice method aids the model in 26 
maintaining road connectivity and obtaining accurate 27 
segmentations. We demonstrate that CP_clDice ensures 28 
connection preservation for binary segmentation, thereby 29 
allowing for efficient road network extraction at the end. The 30 
proposed model improves F1 score accuracy to 5.49%, 4.03%, 31 
3.42%, and 2.27% compared with other comparative models, 32 
such as LinkNet, ResUNet, UNet, and VNet, respectively. 33 
Furthermore, qualitative and quantitative assessments 34 
demonstrate that the proposed SC-RoadDeepNet can improve 35 
road extraction by tackling shadow and occlusion-related 36 
interruptions. These assessments can also produce high-37 
resolution results, particularly in the area of road network 38 
completeness. 39 
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I. INTRODUCTION 61 

Very-high-resolution (VHR) images have become a crucial 62 
geospatial data source because of their extensive coverage 63 
and high accuracy [1]. The road network information derived 64 
from these imageries is useful in various applications 65 
containing transportation systems development, 66 
cartography, urban planning, and navigation [2]. Road 67 
networks form the majority of modern transportation 68 
infrastructure because they are significant man-made ground 69 
objects. Roads also provide essential data in geographic 70 
information systems; thus, their timely updates can impact 71 
numerous applications (e.g., emergency response and route 72 
analysis) that rely on these datasets [3].   73 

The most common method of extracting roads has been 74 
through manual visual interpretation, which takes a long time 75 
and costs a lot of money. Moreover, the obtained outcomes 76 
may differ because of the interpreter’s discrepancies. The 77 
technology of automatic road extraction has been a popular 78 
topic in this field because it can increase the effectiveness of 79 
road extraction [4]. However, high-resolution imagery can 80 
reveal the vehicles on the road and the shadows of buildings 81 
or trees on the roadside. Furthermore, the road segments are 82 
irregular, and the roads structures are complex [5]. The 83 
abovementioned challenges make extracting road networks 84 
from high-resolution data more difficult [6].  85 

Some scholars have used traditional methods or machine 86 
learning algorithms to overcome these difficulties, as 87 
evidenced by substantial studies in the literature. For 88 
example, a semi-automatic approach based on mean shift 89 
was presented by [7] to extract roads. The method separates 90 
the boundary between non-roads and roads by extracting the 91 
initial point from road seed points and a threshold. 92 
Furthermore, Unsalan and Sirmacek [8] applied graph theory 93 
and probability for road network extraction. In addition, 94 
Bakhtiari et al. [9] implemented a semi-automatic method 95 
based on edge detection, support vector machine, and 96 
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morphological operations to extract roads from VHR 97 
imagery. Compared with the methods mentioned above, 98 
machine learning approaches are usually more accurate. For 99 
instance, Alshehhi and Marpu [10] suggested a hierarchical 100 
graph-based image segmentation strategy for road 101 
extraction. Das et al. [11] extracted road networks from high-102 
resolution multispectral imagery based on designing a 103 
multistage framework to exploit two salient road features. 104 
Song and Civco [12] used SVM and shape index features to 105 
extract road sections. Although these methods may work 106 
well in some simple circumstances, their effectiveness is 107 
dependent on several threshold criteria that must be specified 108 
elaborately. Given that threshold settings fluctuate between 109 
imagery, conventional approaches can only perform with a 110 
limited set of data and cannot be tested in complex 111 
environments [13]. 112 

The deep learning technique, which is characterized by 113 
convolutional neural networks (CNNs), has attained a 114 
milestone in the computer vision field, owing to the 115 
exponential development of accessible data and 116 
computational capacity [14-19]. Researchers have preferred 117 
to use CNN-based algorithms to extract roads from remote 118 
sensing data in recent years because road extraction can be 119 
regarded as a binary segmentation issue. Mnih and Hinton 120 
[20] proposed a CNN method to extract roads from aerial 121 
imagery in early 2013. Furthermore, Rezaee and Zhang [21] 122 
developed a patch-based CNN model for extracting roads 123 
from images with 0.15 m spatial resolution. In another study, 124 
Wang et al. [5] used a patch-based CNN and finite state 125 
machine (FSM) model to recognize road patterns and track 126 
roads. These patch-based techniques use a sliding window 127 
technique, which limits their speed and efficiency. The road 128 
detection problem has made significant progress [22] with 129 
the advent of a significant number of outstanding semantic 130 
segmentation structures based on encoder-decoder 131 
frameworks, including DeepLab [23], UNet [24], and 132 
SegNet [25], or a fully convolutional network (FCN) [26]. Li 133 
et al. [27] detected a road from unmanned aerial vehicle 134 
imagery (UAV) using an improved D-LinkNet model. 135 
Meanwhile, Zhang [28] built a deep residual UNet 136 
(ResUNet) for road detection, which incorporates UNet with 137 
residual units in its architecture. To provide a wide receptive 138 
field, Zhang and Wang [29] presented a network with atrous 139 
convolution, which functions well in building and road 140 
extraction. Furthermore, Zhong et al. [30] developed an FCN 141 
model for road extraction that integrates the deep final-score 142 
layer with the shallow fine-grained pooling layer output.  143 

Several works have updated the loss function to produce 144 
better road extraction outcomes and improve the network 145 
structure. For example, to increase the quality of road 146 
extraction, He et al. [31] used structural similarity as a loss 147 
function. Furthermore, to reduce class imbalance and 148 

improve the road extraction results, Abdollahi et al. [32] 149 
performed a VNet network with a novel combined loss 150 
function named the cross-entropy-dice-loss (CEDL) 151 
function. Moreover, Mosinska et al. [33] applied a pixel-wise 152 
loss function to preserve the topological characteristics of 153 
roads structures.  154 

All the approaches listed above can reliably segment roads 155 
in remote sensing imagery; nevertheless, they fail to detect 156 
roads obscured by buildings, shadows, trees, or other non-157 
road features [13]. Given the complex characteristics of 158 
covered roads, typical FCNs-based approaches cannot detect 159 
them accurately. Furthermore, given that these techniques 160 
are mainly encoder-decoder architectures, the boundary 161 
precision of the road extraction findings will diminish during 162 
the downsampling phase [34]. The number of feature maps 163 
in the encoder rises as the model goes deeper, whereas the 164 
spatial resolution declines [34]. The spatial resolution of 165 
feature maps is gradually recovered in the decoder arm 166 
through the up-sampling layer. However, edge information 167 
is lost through the process. Given that roads are man-made 168 
objects with distinct borders, concentrating on boundary and 169 
topology precision increases road network quality. 170 
Conventional FCN-based approaches convey context 171 
information through convolutional and down-sampling 172 
operations in the local receptive fields. Thus, they experience 173 
difficulties when detecting roads obscured by trees or 174 
buildings. The context information modeling mechanisms of 175 
traditional FCNs cannot build topological links between road 176 
segments split by obstacles, thus resulting in fragmented and 177 
discontinuous results for road extraction. Therefore, to 178 
address the challenges in shape accuracy and connectivity, a 179 
shape and connectivity-preserving road detection deep 180 
learning-based architecture (SC-RoadDeepNet) is suggested 181 
in this study.  182 

In the proposed model, we implement a new deep learning-183 
based network called the recurrent residual CNN model 184 
(RRCNN), which is based on the UNet network. The 185 
presented network uses recurrent residual convolutional 186 
layers (RRCLs), UNet, and residual networks. For 187 
segmentation tasks, RRCLs accumulate important features 188 
and thus enable better feature representation. They allow us 189 
to build a UNet network with similar network parameters but 190 
better segmentation performance. We also use road 191 
boundaries to make road semantic features more proper for 192 
the actual road form, solve irregular semantic features, and 193 
enhance the boundary of road semantic polygons. We 194 
leverage each road’s binary edge-map to penalize boundary 195 
misclassification and fine-tune the road shape. 196 

Furthermore, we offer a connectivity-preserving centerline 197 
Dice (CP_clDice), a new measure based on the intersection 198 
of segmentation masks and their (morphological) skeleton, 199 
to preserve road connectivity and obtain accurate 200 
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segmentations. Our measure states the network’s 201 
connectivity rather than evenly weighting each pixel given 202 
its morphological skeleton-based formulation. We show that 203 
CP_clDice ensures connectivity conservation for binary 204 
segmentation, thus allowing for proper road network 205 
extraction. We present experimental results on a challenging 206 
road dataset that includes original references and Google 207 
Earth images with a spatial resolution of 0.21 m per pixel, 208 
encompassing 21 urban regions of approximately 8 km2 with 209 
complex backgrounds. 210 

The rest of this paper is laid out as follows. An overview of 211 
the suggested method is introduced in Section II. Then, the 212 
comprehensive information about our Google Earth road 213 
dataset and experimental settings is described in Section III. 214 
The experimental results and ablation analyses are shown in 215 
Sections IV and V, respectively. Section VI presents the 216 
conclusion and main findings obtained in this study. 217 

II. METHODOLOGY 218 

This work suggests a new shape and connectivity-preserving 219 
road detection deep learning-based architecture (SC-220 
RoadDeepNet) from Google Earth imagery. The proposed 221 
technique consists of a deep learning model named RRCNN 222 
based on the original UNet network with better performance, 223 
the binary edge-map of each road, and a new connectivity-224 
aware similarity measure based on intersecting skeletons 225 
with masks (CP_clDice) to preserve road connectivity. In the 226 
following, the architecture of the RRCNN network and 227 
CP_clDice measure are explained.  228 

A. The Architecture of RRCNN 229 

We propose RRCNN (Figure 1), a new model for 230 
segmentation tasks that is inspired by UNet [24] (Figure 2), 231 
RCNN [35], and the deep residual model [36]. The original 232 
UNet model consists of two main parts: convolutional 233 
encoding and decoding units. In both the encoder and 234 
decoder parts of the model, the fundamental convolutional 235 
layers are applied, followed by ReLU activation. In the 236 
encoding part, 2×2 max-pooling layers are applied for down 237 
sampling [24]. The convolutional transpose layers are used 238 
to up-sample the feature maps during the decoding step. In 239 
the UNet network, cropping and copying method is used to 240 
crop and copy feature maps from the encoder part to 241 
the decoder part [24]. Therefore, the benefits of all three 242 
established deep learning approaches are combined in the 243 
proposed approach. Assuming a pixel in an input sample on 244 

the 
thk  feature map in the recurrent convolutional layers 245 

(RCL) that is located at ( , )i j  and input sample lx  in the 246 

layer 
thl  of the RCNN block, the network’s output ( )l

ijko t  247 

at the t  time step can be expressed as follows: 248 

( , ) ( , )( ) ( ) ( ) ( ) ( 1)l f T f i j r T r i j

ijk k l k l kO t w x t w x t b=  +  − + , (1) 249 

where kb  is the bias, 
r

kw  is the weight of the 
thk  RCL’s 250 

feature map, 
f

kw  is the standard convolutional layer’s 251 

weight, 
( , ) ( 1)r i j

lx t −  is the input for the 
thl  RCL, and 252 

( , ) ( )f i j

lx t  is the input for the standard convolutional layers. 253 

The RCL’s outputs are passed through the rectified linear 254 
unit (ReLU) activation function f , which is denoted as 255 
follows: 256 

( ) ( ( )) max(0, ( ))l l

l l ijk ijkF x w f O t O t= = ,  (2) 257 

where ( )l lF x w  denotes that the outputs of the 
thl  RCNN 258 

layer are used in the encoding and decoding arms of the 259 
network for down-sampling and up-sampling layers, 260 
respectively. For the RRCNN model, the last output that is 261 
passed through residual units can be expressed as follows: 262 

1 ( )l l l lx x F x w+ = + ,  (3) 263 

where, in the RRCNN’s encoding and decoding arms, 1lx +  264 

is used as the input for immediate subsequent down or up-265 
sampling layers, and the RRCNN-input block’s samples are 266 

represented by lx . 267 

The suggested RRCNN model is the building block of the 268 
stacked recurrent residual convolutional units depicted in 269 
Figure 3(c). This study investigated convolutional and 270 
recurrent convolutional units in various variants for three 271 
distinct architectures, as shown in Figures 3(a)–3(c). The 272 
first is the primary UNet architecture [24] with encoder-273 
decoder arms and a crop and copy method (skip connection). 274 
This model’s fundamental convolutional unit is depicted in 275 
Figure 3(a). The second is ResUNet [37], which is the 276 
original UNet model with forwarding convolutional and 277 
residual connection units, as illustrated in Figure 3(b). 278 
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 279 
Fig. 1. Architecture of the proposed RRCNN model, including encoder-decoder units based on recurrent RRCL and UNet networks 280 

 281 
Fig. 2. Architecture of the original UNet model, including convolutional encoder-decoder units282 

The final architecture is the proposed RRCNN, including the 283 
primary UNet with RCL and residual connections, as 284 
depicted in Figure 3(c). When compared with UNet, the 285 
proposed architecture offers various advantages. One of 286 
these advantages is network productivity, which is measured 287 
in relation to the number of network parameters. Compared 288 
with UNet and ResUNet, the suggested RRCNN model is 289 
built to have similar parameters while performing efficiently 290 
on feature extraction. Recurrent or residual units do not 291 
increase the number of network parameters. However, they 292 

have a considerable effect on the training/testing results. 293 
Furthermore, the RCL units of the proposed model provide 294 
an efficient feature accumulation mechanism. Concerning 295 
distinct time-steps, feature accumulation guarantees more 296 
reliable and robust feature representation. As a result, it aids 297 
in the extraction of low-level features that are critical for 298 
feature extraction. This, we eliminate the cropping and 299 
copying method from the primary UNet network and replace 300 
it with concatenation operation, which leads to a 301 
considerably more elegant design with improved efficiency. 302 

 303 
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 304 
Fig. 3. Convolution and recurrent convolution units in various variants: (a) forward convolution units, (b) residual convolution 305 
units, and (c) recurrent residual convolution units.306 

 B. Emphasizing Connectivity Using CP_clDice 307 

Figure 4 depicts a schematic overview of our suggested 308 
CP_clDice technique. On the basis of intersecting skeletons 309 
with masks, we present a new connectivity-preserving 310 
measure for evaluating road structure segmentation. The 311 

ground truth ( )GM  and detected segmentation ( )DM  312 

masks are two binary masks that we consider. From GM  313 

and DM , skeletons GS  and DS  are first extracted, 314 

respectively. 
1{ }N

D i iS g ==  is the detected skeleton of a 315 

detected mask DM , while 
1{ }N

G i iS h ==  is the true 316 

skeleton of a true mask GM , where ih  and ig  are the 317 

skeleton points of  GS  and DS , respectively. Then, we 318 

calculate the proportion of GS  that exists within DM , 319 

which we call connectivity sensitivity or ( , )sens G DC S M , 320 

and vice-a-versa. We compute connectivity precision or 321 

( , )prec D GC S M  as follows: 322 

( , ) ; ( , )
G D D G

sens G D prec D G

G D

S M S M
C S M C S M

S S

 
= =

,    (4) 323 

Or 

1 1
1 1

( )( )
;

N N
i G ii D i

sens precN N
i ii ij j

g M gh M h
C C

h g= =
= =

= = 
 

. 324 

The metric the measure, ( , )sens G DC S M , is prone to false 325 

negatives in prediction, whereas ( , )prec D GC S M  is prone 326 

to false positives, thus clarifying why we refer to 327 

( , )sens G DC S M  as the sensitivity of the connectivity and 328 

( , )prec D GC S M as its precision. We calculate CP_clDice 329 

as the harmonic mean of both measures because we want to 330 
maximize sensitivity and precision: 331 

( , ) ( , )
_ ( , ) 2

( , ) ( , )

prec D G sens G D

D G

prec D G sens G D

C S M C S M
CP clDice M M

C S M C S M


= 

+

.        (5) 332 

C. Soft-skeletonization with soft CP_clDice 333 

The following section demonstrates how we use the 334 
CP_clDice formulation to train a connectivity-preserving 335 
network using our theory effectively. Our strategy relies on 336 
correct skeletons extraction. A variety of ways have been 337 
presented for this task. However, most of them are not 338 
entirely distinguishable and thus unsuitable for use in a loss 339 
function. The repeated morphological thinning [38] or 340 
Euclidean distance transform [39] are two popular methods. 341 
A series of erosions and dilation operations are used in 342 
morphological thinning. The Euclidean distance transform 343 
remains a discrete operation, thus prohibiting it from being 344 
used in a loss function for neural network training. As a 345 
grayscale alternative to morphological erosion and dilation, 346 
min and max filters are often used. As a result, we suggest 347 
soft-skeletonization, in which iterative min-max pooling is 348 
used as a surrogate for morphological dilation and erosion. 349 
Figures 5 and 6 illustrate the sequential steps of our 350 
skeletonization intuitively. Initial iterations (Figure 5) 351 
skeletonize and maintain structures with a small radius until 352 
later iterations skeletonize and maintain thicker structures, 353 
thus allowing for the creation of a parameter-free, 354 
morphologically focused soft skeleton. The iterative 355 
processes involved in its computation are described in 356 
Algorithm 1 (soft-skeletonization) shown in Figure 6. The 357 
iterations are represented by the hyper-parameter, which 358 
must be equal to or greater than the maximum witnessed 359 
radius. 360 

 361 
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 362 

 363 
Fig. 4. An overview of our suggested CP_clDice technique. The CP_clDice method can be implemented in any generic 364 
segmentation model. We apply the RRCNN network in this work. Pooling functions from any common deep learning toolbox can 365 
be used to build soft-skeletonization.366 

This parameter varies depending on the dataset. For example, 367 
in our experiments, 5...20k = , which corresponds to the 368 
pixel radius of the largest witnessed road structures. A low 369 
k  results in incomplete skeletonization. Increasing the 370 
value of k  does not decrease the performance but lengthens 371 
the computation time. Given the previously stated soft-372 
skeletonization, we can used CP_clDice as an optimizable, 373 
real-valued, and fully differentiable measure. The 374 
implementation is described in Algorithm 2 (Figure 6) and is 375 
known as the soft CP_clDice. The amount of linked loops 376 
determines the homotopy type for a single connected 377 
foreground component without knots. As a result, no 378 
pairwise linked loops are detected, and reference pixels are 379 
not homotopy-equal. The deformation retracted skeleton of 380 
the solid foreground must be added or removed to include or 381 
omit these extra loops. Thus, the addition of new pixels that 382 
have been appropriately detected is needed. Unlike other 383 
losses, such as cross-entropy and Dice, CP_clDice only 384 
analyzes the deformation-retracted graphs of the solid 385 
foreground structure. As a result, we assert that CP_clDice 386 
needs the minimum number of new properly detected pixels 387 
to ensure homotopy equality. Cross-entropy or Dice can only 388 
ensure homotopy equivalence in these lines provided that 389 
each pixel is properly segmented. CP_clDice can ensure the 390 
equivalence of homotopy for a wider combination of pixels, 391 
which is an intuitively appealing trait because it renders 392 
CP_clDice powerful against noisy segmentation labels. 393 

D. Cost Function 394 

We integrate our suggested soft CP_clDice with soft-Dice (a 395 
function to calculate dice loss) in the following manner to 396 
preserve connectivity while obtaining correct segmentations 397 
(our objective) rather than the learning skeleton: 398 

(1 )(1 ) (1 )cL softDice softCPclDice = − − + − ,  (6) 399 

where 

2 2

2 i

N

i

i

N N

i i

i i

s c

p o

i

p

oftD e

o

=

+



 

, 400 

where N denotes the total pixels, i Dp M  is the detected 401 

binary pixels, and i Go M  is the ground truth pixels. 402 

This study aims to learn a connectivity-preserving 403 
segmentation, not learning the centerline. As a result, we 404 
limited   options (weight for the CP_clDice element) in our 405 

experiments to [0.1,0.5]  to achieve high-quality results. 406 

Furthermore, we use the binary edge-map of each road to 407 
penalize boundary misclassification, solve irregular road 408 
forms, and enhance the shape of semantic roads. In fact, 409 
reliable annotated road edges are integrated into semantic 410 
polygons to improve the semantic polygon's border, repair 411 
discontinuous areas, assure the road's continuity and 412 
integrity, and obtain more precise boundary positioning. We 413 
test our CP_clDice and binary edge-map information on a 414 
new state-of-the-art deep learning model (RRCNN). We 415 
propose a new method named SC-RoadDeepNet, a shape and 416 
connectivity-preserving method, to show the effectiveness of 417 
the model in preserving connectivity while obtaining 418 
accurate segmentation. 419 

III. EXPERIMENTS AND EVALUATION 420 

We outlined the experimental dataset in-depth in this section. 421 
Then, we introduced the experimental setup in the suggested 422 
technique. Finally, we presented the evaluation measures 423 
used for assessing the accuracy of the proposed method.  424 

A. Dataset 425 
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This part describes the dataset used to train and assess SC-426 
RoadDeepNet, including Google Earth imagery [42], with a 427 
spatial resolution of 0.21 m per pixel covering approximately 428 
8 km2. The dataset was more comprehensive and difficult to 429 
work with because of the numerous obstacles and shadows 430 
generated by avenue trees and cars along the roads. A total 431 

of 696 images were included in the dataset, which was 432 
divided into a training set and a testing set of 651 images and 433 
45 images. Every original image had a size of 512 512  434 
pixels. Figure 7 shows various samples of the primary and 435 
corresponding ground truth imagery with different 436 
backgrounds in the dataset.437 

 438 
Fig. 5. Sequential bagging of skeleton pixels (dark blue) by iterative skeletonization leads to complete skeletonization based on 439 
the initial road structure (blue), where k j i   signifies iterations and d diameter. 440 

Algorithm 1: soft-skeletonization Algorithm 2: soft CP_clDice 

   Input: ,M k  

        
'M  ← max (min ( ))pooling pooling M  

        Skel  ← 
'( )relu M M−  

    for  m ← 0  to k do 

        M ← min ( )pooling M  

       
'M ← max (min ( ))pooling pooling M  

      Skel ←
'(1 ) ( )Skel Skel relu M M+ − −  

    end 

 Output: Skel  

Input: 
DM , GM  

    DS ← soft-skeletonization (
DM ) 

    GS ← soft-skeletonization ( GM ) 

    ( , )prec D GC S M ←
D G

D

S M

S


 

   ( , )sens G DC S M ←
G D

G

S M

S


 

   CP_clDice ←    

( , ) ( , )
2

( , ) ( , )

prec D G sens G D

prec D G sens G D

C S M C S M

C S M C S M




+
 

                          

Output: CP_clDice 

Fig. 6. The suggested soft-skeleton is calculated using Algorithm 1, where k  is the number of iterations for skeletonization and 441 

M  is the mask to be soft-skeletonized. The soft CP_clDice loss is calculated using Algorithm 2, where GM  is the ground truth 442 

mask and DM  is the segmentation mask.  denotes the Hadamard product.443 

B. Experiment Settings 444 

Given that the size of our road dataset was still small, which 445 
might lead to an over-fitting issue, some data augmentation 446 
techniques were utilized to increase the dataset size. We used 447 
data augmentation tactics, such as rotating (90, 180, and 270 448 
degrees) the images and flipping (vertical and horizontal) 449 

them to enhance the dataset’s capacity. The proposed 450 
network was trained on a GPU Nvidia Quadro RTX 6000 451 
under Keras framework and with Tensorflow backend with 452 
batch size 1 for 100 epochs across the datasets. This study 453 
also used an adaptive moment estimation (Adam) optimizer 454 
with a 1 3e −  learning rate and decay of 0.9 to optimize the 455 
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loss function and learn model parameters. The Sigmoid 456 
activation was also applied to sort the outcomes. The final 457 
layer provided outputs in the continuous value from 0 to 1, 458 

as it was activated by the Sigmoid function. As a result, we 459 
used a 0.5 threshold to attain the final segmentation map of 460 
the input images.461 

462 

 463 
Fig. 7. Examples of (a) RGB Google Earth imagery and (b) 464 
their reference maps. 465 

C. Evaluation Metrics 466 

In this work, Precision, Recall, F1 score, Matthew 467 
Correlation Coefficient (MCC), Overall Accuracy (OA), and 468 
Intersection over Union (IoU) were used as metrics to 469 
analyze the suggested method’s quantitative performance in 470 
road network extraction [40]. Precision and Recall came up 471 
with the F1 score. This score, which can be calculated as 472 
follows (7), is a powerful assessment metric for the harmonic 473 
mean of Precision and Recall. 474 

2 Pr Re
1

Pr Re

ecision call
F

ecision call

 
=

+
   (7)  where Pr

TP
ecision

TP FP
=

+
 475 

and Re
Tp

call
TP FN

=
+

,   476 

where the proportion of matched pixels in the extraction 477 
outcomes is measured by Precision and the percentage of 478 
matched pixels in the reference is measured by Recall. False 479 
negative, false positive, true positive, and true negative are 480 
represented by FN, FP, TP, and TN, respectively. The 481 
proportion of the overlapping predicted and reference areas 482 
to the whole area was measured by IoU (8), which is 483 
expressed as follows: 484 

TP
IoU

TP FP FN
=

+ +
.       (8) 485 

MCC stands for the correlation coefficient between predicted 486 
and detected binary categorization, which is expressed as: 487 

. .

( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

−
=

+ + + +

.    (9) 488 

OA is also a simple summary assessment of a case’s 489 
likelihood of being correctly classified, which is calculated 490 
as: 491 

TP+TN
OA=

N
.    (10) 492 

IV. EXPERIMENTAL RESULTS 493 

This study was compared with some state-of-the-art 494 
techniques, including deep learning approaches, such as 495 
LinkNet [41], DeeplabV3+ [23], ResUNet [37], UNet [24], 496 
and VNet [32], to examine the applicability of the presented 497 
SC-RoadDeepNet method for road segmentation from 498 
Google Earth imagery. We tested the proposed RRCNN 499 
model by integrating the edge map to the semantic 500 
segmentation to determine how boundary learning (BL) fine-501 
tunes the road shape via penalizing boundary 502 
misclassification. We called this network RRCNN-503 
boundary-learning or RRCNN+BL. Furthermore, we 504 
compared the proposed SC-RoadDeepNet with different 505 
values of  , such as 0.1 = , 0.3 = , 0.5 = , 0.7 = , and 506 

0.9 = , to show the effect of the alpha parameter on the 507 
road connectivity and segmentation results. All of the 508 
mentioned methods were tried using the same collection of 509 
imagery to make the assessments fair and objective.  510 

Table 1 demonstrates the quantitative findings obtained by 511 
the methods. The accuracy of the methods was calculated 512 
using IoU and F1 scores. LinkNet, DeeplabV3+, ResUNet, 513 
and UNet achieved the lowest IoU values with 81.52%, 514 
82.53%, 84%, and 85.01%, respectively, when we compared 515 
the outcomes of different approaches (Table 1). VNet could 516 
improve the results to 86.99% compared with the mentioned 517 
four methods. By adding BL to the proposed RRCNN 518 
method (RRCNN+BL) and the proposed loss function to the 519 
model without BL (RRCNN+CP_clDIce), the accuracy of 520 
the IoU was also increased to 89.02% and 89.75%, 521 
respectively. These methods were the third-best and second-522 
best methods in all approaches, thus proving the influence of 523 
edge-map and CP_clDice on improving road shape and 524 
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segmentation results. In contrast, by including BL and 525 
connectivity-preserving CP_clDice techniques to the 526 
proposed SC-RoadDeepNet, IoU values reached 90.04%, 527 
90.43%, 91.05%, 90.34%, and 89.85% for 0.1 = , 0.3 = , 528 

0.5 = , 0.7 = and 0.9 = , respectively. We found that 529 
including CP_clDice in any value ( 0  ) resulted in the 530 
improvement of road connectivity and segmentation. Figures 531 
8 and 9 also depict the qualitative results obtained using 532 
state-of-the-art techniques.  533 

According to the findings, all extraction methods could 534 
reduce the impact of occlusions to some extent. However, 535 
LinkNet, DeeplabV3+, UNet, ResUNet, and VNet 536 
approaches were sensitive to noise and introduced some FPs 537 
in some parts, such as the shadows, buildings, and trees, and 538 
could not extract roads accurately. Benefiting from BL and 539 

CP_clDice, the proposed RRCNN+BL and 540 
RRCNN+CP_clDice methods could reduce boundary 541 
misclassification and achieve relatively satisfactory results. 542 
Furthermore, the proposed SC-RoadDeepNet, which took 543 
advantage of BL and CP_clDice techniques, could obtain 544 
fewer FPs (shown in blue) and FNs (shown in red), reduce 545 
road discontinuity, and produce high-resolution road 546 
segmentation maps compared with the other approaches. The 547 
presented SC-RoadDeepNet model with 0.5 =  improved 548 
the results of IoU to 2.03% and 1.3% compared with the 549 
RRCNN+BL (third best) and RRCNN+CP_clDice (second 550 
best) models, respectively. They all showed that combining 551 
the suggested BL and CP_clDice techniques in the shape and 552 
connectivity-aware SC-RoadDeepNet model resulted in 553 
superior performance than other current approaches.554 

TABLE 1.  QUANTITATIVE EXPERIMENTAL OUTCOMES YIELDED BY THE COMPARATIVE APPROACHES FOR 555 
THE GOOGLE EARTH ROAD DATASET. 556 

  Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Average 

LinkNet 

F1 score 0.8821 0.9183 0.9149 0.8830 0.8970 0.8930 0.8981 

IoU 0.7890 0.8488 0.8430 0.7905 0.8132 0.8067 0.8152 

MCC 0.7903 0.8474 0.8615 0.8225 0.8341 0.8214 0.8295 

OA 0.8869 0.9231 0.9334 0.9154 0.9219 0.9137 0.9157 

ResUNet 

F1 score 0.8851 0.9302 0.9404 0.8870 0.9177 0.9157 0.9127 

IoU 0.7938 0.8694 0.8874 0.7969 0.8478 0.8445 0.8400 

MCC 0.7941 0.8662 0.9054 0.8288 0.8661 0.8564 0.8528 

OA 0.8923 0.9331 0.9556 0.9181 0.9364 0.9304 0.9277 

UNet 

F1 score 0.8901 0.9354 0.9313 0.9064 0.9284 0.9210 0.9188 

IoU 0.8019 0.8785 0.8714 0.8289 0.8663 0.8536 0.8501 

MCC 0.8051 0.8743 0.8906 0.8584 0.8840 0.8639 0.8627 

OA 0.8953 0.9372 0.9487 0.9333 0.9452 0.9328 0.9321 

DeeplabV3+ 

F1 score 0.8626 0.9159 0.9254 0.8901 0.9226 0.9067 0.9039 

IoU 0.7584 0.8448 0.8612 0.8020 0.8563 0.8293 0.8253 

MCC 0.7516 0.8510 0.8791 0.8336 0.8668 0.8479 0.8383 

OA 0.8738 0.9231 0.9426 0.9206 0.9347 0.9274 0.9204 

VNet 

F1 score 0.9315 0.9390 0.9418 0.9108 0.9312 0.9277 0.9303 

IoU 0.8718 0.8850 0.8899 0.8361 0.8713 0.8650 0.8699 

MCC 0.8784 0.8797 0.9063 0.8647 0.8880 0.8758 0.8822 

OA 0.9382 0.9386 0.9559 0.9370 0.9463 0.9393 0.9426 

RRCNN+BL 

F1 score 0.9344 0.9517 0.9584 0.9209 0.9455 0.9397 0.9418 

IoU 0.8768 0.9078 0.9202 0.8534 0.8965 0.8862 0.8902 

MCC 0.8833 0.9052 0.9337 0.8811 0.9113 0.8971 0.9020 

OA 0.9414 0.9052 0.9689 0.9435 0.9576 0.9501 0.9445 

RRCNN+CP_clDice 

F1 score 0.9362 0.9669 0.9628 0.9213 0.9456 0.9418 0.9458 

IoU 0.8800 0.9359 0.9282 0.8541 0.8967 0.8900 0.8975 

MCC 0.8865 0.9352 0.9405 0.8810 0.9117 0.9002 0.9092 

OA 0.9423 0.9673 0.9721 0.9444 0.9578 0.9513 0.9559 

SC-RoadDeepNet  

(α=0.1) 

F1 score 0.9399 0.9719 0.9601 0.9247 0.9440 0.9437 0.9474 

IoU 0.8866 0.9453 0.9232 0.8599 0.8939 0.8934 0.9004 

MCC 0.8935 0.9450 0.9361 0.8865 0.9085 0.9034 0.9122 

OA 0.9462 0.9723 0.9700 0.9466 0.9557 0.9527 0.9573 

SC-RoadDeepNet 

 (α=0.3) 

F1 score 0.9411 0.9726 0.9610 0.9301 0.9459 0.9467 0.9496 

IoU 0.8888 0.9466 0.9248 0.8693 0.8973 0.8988 0.9043 

MCC 0.8956 0.9479 0.9375 0.8945 0.9119 0.9090 0.9161 
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OA 0.9472 0.9738 0.9610 0.9509 0.9575 0.9558 0.9577 

SC-RoadDeepNet  

(α=0.5) 

F1 score 0.9435 0.9775 0.9677 0.9331 0.9466 0.9493 0.9530 

IoU 0.8929 0.9560 0.9374 0.8746 0.8985 0.9034 0.9105 

MCC 0.8997 0.9561 0.9484 0.8992 0.9132 0.9130 0.9216 

OA 0.9495 0.9781 0.9758 0.9529 0.9581 0.9574 0.9620 

SC-RoadDeepNet  

(α=0.7) 

F1 score 0.9398 0.9687 0.9611 0.9283 0.9475 0.9491 0.9491 

IoU 0.8864 0.9392 0.9251 0.8661 0.9002 0.9031 0.9034 

MCC 0.8934 0.9390 0.9373 0.8916 0.9146 0.9129 0.9148 

OA 0.9458 0.9695 0.9705 0.9498 0.9591 0.9575 0.9587 

SC-RoadDeepNet  

(α=0.9) 

F1 score 0.9367 0.9711 0.9495 0.9311 0.9457 0.9441 0.9464 

IoU 0.8809 0.9438 0.9039 0.8710 0.8970 0.8941 0.8985 

MCC 0.8876 0.9439 0.9201 0.8956 0.9127 0.9052 0.9109 

OA 0.9441 0.9720 0.9625 0.9521 0.9589 0.9541 0.9573 

 557 
TABLE 2.  QUANTITATIVE EXPERIMENTAL OUTCOMES YIELDED BY THE RRCNN APPROACH FOR ROAD 558 
EXTRACTION WITHOUT BL AND CP_CLDICE TECHNIQUES 559 

  Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Average 

RRCNN 

F1 score 0.9350 0.9424 0.9513 0.9140 0.9386 0.9301 0.9352 

IoU 0.8779 0.8909 0.9071 0.8415 0.8842 0.8693 0.8785 

MCC 0.8853 0.8876 0.9227 0.8694 0.9000 0.8807 0.8910 

OA 0.9407 0.9438 0.9637 0.9402 0.9522 0.9421 0.9471 

560 

V. DISCUSSION 561 

In this section, we evaluated the performance of the proposed 562 
framework by analyzing the ablation study and testing the 563 
model on another road dataset.  564 

A. Ablation study 565 

To assess the efficiency of the proposed shape and 566 
connectivity-preserving the ability of the SC-RoadDeepNet 567 
model to improve road discontinuity and road shape 568 
segmentation, we conducted an ablation study in this work. 569 
In this case, we applied the proposed RRCNN model with 570 
the primary binary cross-entropy loss function and without 571 
BL and CP_clDice techniques to see the influence of these 572 
methods on fine-tuning road shape and preserving road 573 
connectivity. We obtained the quantitative and visualization 574 
findings by the model in road segmentation from the Google 575 
Earth dataset. Table 2 contains the quantitative results, 576 
whereas Figure 10 depicts the visualization results. After 577 
adjusting various variables and removing those crucial 578 
techniques, the accuracy of the IoU in the proposed RRCNN 579 
model was reduced to 87.85%, as shown in Table 2. 580 
Furthermore, as shown in Figure 14, the suggested approach 581 
introduced spurs and generated more FPs and FNs in 582 
homogeneous areas, thus reducing the smoothness and 583 
connectedness of the road segmentation network 584 
significantly. Therefore, BL and CP_clDice showed a 585 
significant role in preserving road shape and connectivity 586 
and producing high-quality road segmentation maps.  587 

B. DeepGlobe and Massachusetts road datasets 588 

Furthermore, we applied our proposed SC-RoadDeepNet 589 
model on more road datasets called DeepGlobe [42] and 590 
Massachusetts [43] to show the model’s efficiency in road 591 
segmentation from various types of remote sensing imagery. 592 
The DeepGlobe dataset was captured in India, Indonesia, and 593 
Thailand, which contained 8570 images with 50 cm per pixel 594 
spatial resolution and covered 2220 km2. Each image was 595 
1024 1024  pixels in size. The training and testing datasets 596 
consisted of 1006 and 26 images in this study, respectively. 597 
The Massachusetts dataset that we used contained 1032 598 
training and 32 testing images with a size of 768 768  and 599 
spatial resolution of 0.5 m. We obtained quantitative and 600 
visualization outcomes yielded by the presented RRCNN, 601 
RRCNN+BL, RRCNN+CP_clDice, and SC-RoadDeepNet 602 
models for road segmentation from the DeepGlobe and 603 
Massachusetts datasets, which are demonstrated in Table 3 604 
and Figure 11 for the DeepGlobe dataset and Table 4 and 605 
Figure 12 for the Massachusetts dataset, respectively. Table 606 
3 shows that the proposed RRCNN model did not benefit 607 
from BL and CP_clDice techniques achieved the lowest F1 608 
score with 91.49% for DeepGlobe and 87.19% for 609 
Massachusetts.  610 

In contrast, the proposed RRCNN+BL, 611 
RRCNN+CP_clDice,  and SC-RoadDeepNet could improve 612 
the results of DeepGlobe to 92.08%, 92.30%, and 92.78%  613 
for F1 score and the results of Massachusetts to 87.95%, 614 
88.47%, and 89.33%, respectively. According to the 615 
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visualization results (Figures 11 and 12), the proposed 616 
RRCNN model failed to segment roads in the complex areas, 617 

where the road was covered by shadows and trees and 618 
brought in more FPs, FNs, and discontinuity. 619 

 620 
Fig. 8. Road qualitative results were compared visually using various comparing models: (i) original RGB Google Earth images, 621 
(ii) reference images, (iii) LinkNet results, (iv) ResUNet results, (v) UNet results, (vi) VNet results, and (vii) DeeplabV3+ results. 622 
TPs, FPs, and FNs are represented by yellow, blue, and red, respectively. 623 

TABLE 3.  QUANTITATIVE EXPERIMENTAL OUTCOMES YIELDED BY THE RRCNN, RRCNN+BL, 624 
RRCNN+CP_CLDICE, AND SC-ROADDEEPNET APPROACHES FOR ROAD EXTRACTION FROM THE DEEPGLOBE 625 
ROAD DATASET 626 

  Image 1 Image 2 Image 3 Image 4 Image 5 Average 

RRCNN 

F1 score 0.9207 0.9250 0.8927 0.8918 0.9444 0.9149 

IoU 0.8529 0.8604 0.8061 0.8047 0.8947 0.8438 

MCC 0.9078 0.9157 0.8632 0.8763 0.9329 0.8992 

OA 0.9774 0.9835 0.9534 0.9722 0.9808 0.9735 

RRCNN+BL 

F1 score 0.9327 0.9296 0.8976 0.8973 0.9469 0.9208 

IoU 0.8738 0.8684 0.8141 0.8137 0.8990 0.8538 

MCC 0.9215 0.9209 0.8707 0.8823 0.9360 0.9063 

OA 0.9807 0.9846 0.9563 0.9734 0.9817 0.9753 

RRCNN+CP_clDice F1 score 0.9394 0.9304 0.8983 0.8988 0.9481 0.9230 
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IoU 0.8858 0.8698 0.8154 0.8161 0.9013 0.8577 

MCC 0.9294 0.9217 0.8726 0.8834 0.9380 0.9090 

OA 0.9828 0.9846 0.9570 0.9733 0.9824 0.9760 

SC-RoadDeepNet 

F1 score 0.9416 0.9349 0.9062 0.9065 0.9499 0.9278 

IoU 0.8896 0.8777 0.8285 0.8289 0.9046 0.8659 

MCC 0.9319 0.9271 0.8805 0.8924 0.9394 0.9143 

OA 0.9834 0.9859 0.9593 0.9756 0.9826 0.9774 

 627 

 628 
Fig. 9. Road qualitative results were compared visually using proposed models: (i) original RGB Google Earth images, (ii) 629 
RRCNN+BL results, (iii) RRCNN+CP_clDice results, (iv) SC-RoadDeepNet results (α=0.1), (v) SC-RoadDeepNet results 630 
(α=0.3), (vi) SC-RoadDeepNet results (α=0.5), (vii) SC-RoadDeepNet results (α=0.7), and (viii) SC-RoadDeepNet results, (α=0.9). 631 
The TPs, FPs, and FNs are represented by yellow, blue, and red, respectively. 632 

In contrast, the presented SC-RoadDeepNet that benefited 633 
from BL and CP_clDice could obtain the segmentation map 634 
with fewer FPs and FNs and showed higher extraction 635 
accuracy on the boundary and road connectivity than others. 636 
In summary, the proposed method could improve road 637 
extraction by tackling occlusion-related interruptions. It 638 
could solve discontinuity in road extraction results and 639 
produce high-resolution results compared with the other 640 
methods. We also calculated the runtime of the presented 641 
method on each dataset, which took 117 s, 388 s, and 226 s 642 

per epoch for the training process for the Ottawa, 643 
DeepGlobe, and Massachusetts datasets, respectively. The 644 
model was trained for 100 epochs. Therefore, it took 195 645 
minutes for the Ottawa dataset, 646.66 minutes for the 646 
DeepGlobe dataset, and 376.66 minutes for the 647 
Massachusetts dataset. As the size of images and datasets 648 
increased, the training time also increased. Overall, the 649 
suggested method did not need a huge training dataset or a 650 
lot of computational effort, yet it still outperformed previous 651 
models in terms of statistical outcomes. 652 
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TABLE 4. QUANTITATIVE EXPERIMENTAL OUTCOMES YIELDED BY THE RRCNN, RRCNN+BL, 653 
RRCNN+CP_CLDICE, AND SC-ROADDEEPNET APPROACHES FOR ROAD EXTRACTION FROM THE 654 
MASSACHUSETTS ROAD DATASET 655 

  Image 1 Image 2 Image 3 Image 4 Image 5 Average 

RRCNN 

F1 score 0.8827 0.8591 0.8785 0.8663 0.8730 0.8719 

IoU 0.8099 0.7729 0.8032 0.7841 0.7946 0.7929 

MCC 0.8586 0.8320 0.8614 0.8490 0.8543 0.8511 

OA 0.9552 0.9534 0.9680 0.9677 0.9642 0.9617 

RRCNN+BL 

F1 score 0.8964 0.8711 0.8866 0.8700 0.8733 0.8795 

IoU 0.8321 0.7915 0.8162 0.7898 0.7950 0.8049 

MCC 0.8738 0.8477 0.8704 0.8529 0.8538 0.8597 

OA 0.9627 0.9599 0.9716 0.9698 0.9663 0.9661 

RRCNN+CP_clDice 

F1 score 0.8985 0.8743 0.8898 0.8820 0.8790 0.8847 

IoU 0.8357 0.7966 0.8215 0.8088 0.8040 0.8133 

MCC 0.8765 0.8518 0.8743 0.8665 0.8604 0.8659 

OA 0.9629 0.9611 0.9726 0.9726 0.9678 0.9674 

SC-RoadDeepNet 

F1 score 0.9037 0.8808 0.9039 0.8899 0.8881 0.8933 

IoU 0.8443 0.8070 0.8446 0.8216 0.8187 0.8272 

MCC 0.8828 0.8581 0.8902 0.8762 0.871 0.8757 

OA 0.9655 0.9617 0.976 0.9752 0.9695 0.9696 

656 

 657 

 658 
Fig. 10. Road qualitative results were compared visually 659 
using the proposed RRCNN model: (i) original RGB Google 660 
Earth images, (ii) reference images, (iii) RRCNN results. 661 
TPs, FPs, and FNs are represented by yellow, blue, and red, 662 
respectively. 663 

VI. CONCLUSION 664 

This study introduced SC-RoadDeepNet, a new method for 665 
extracting roads from remote sensing imagery based on a 666 
shape and connectivity-preserving road segmentation deep 667 
learning model. The proposed model consisted of a state-of-668 
the-art deep learning model called the RRCNN model, BL, 669 
and CP_clDice techniques. The RRCNN model included 670 
convolutional encoder-decoder units similar to the primary 671 
UNet model. However, in the encoder-decoder arms, RRCLs 672 
were used instead of standard forward convolutional layers. 673 
RRCLs aided in the development of a more effective deeper 674 
structure. Furthermore, the suggested model’s RRCL units 675 
provided an effective feature accumulation mechanism. 676 
Concerning distinct time-steps, feature accumulation 677 
guaranteed stronger and better feature representation. As a 678 
result, it aided in the extraction of low-level features that are 679 
critical for segmentation tasks. We also used BL to punish 680 
boundary misclassification and fine-tune the road form as a 681 
result. We provided CP_clDice for maintaining road 682 
connectivity and obtaining correct segmentations. The 683 
suggested framework was tested on high-resolution remote 684 
sensing datasets, and the findings demonstrated its 685 
usefulness and feasibility in increasing the performance of 686 
road semantic segmentation. Qualitative comparisons were 687 
compared with several comparative semantic segmentation 688 
algorithms. The presented model outperformed the other 689 
models, thus preserving shape and road connectivity and 690 
achieving high-resolution segmentation maps according to 691 
the results of the experiments. Compared with the 692 
aforementioned semantic segmentation methods, the 693 
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suggested method could also improve the complete 694 
assessment metrics, such as the IoU and F1 score. 695 
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Fig. 11. Road qualitative results achieved by the models from the DeepGlobe road dataset: (i) original RGB images, (ii) reference 720 
images, (iii) RRCNN results, (iv) RRCNN+BL results, (v) RRCNN+CP_clDice results, and (vi) SC-RoadDeepNet results. TPs, 721 
FPs, and FNs are represented by yellow, blue, and red, respectively. 722 
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 724 
Fig. 12. Road qualitative results achieved by the models from the Massachusetts road dataset: (i) original RGB images, (ii) 725 
reference images, (iii) RRCNN results, (iv) RRCNN+BL results, (v) RRCNN+CP_clDice results, and (vi) SC-RoadDeepNet 726 
results. TPs, FPs, and FNs are represented by yellow, blue, and red, respectively. 727 
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