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Abstract: This study proposes a new model for land suitability for educational facilities based on
spatial product development to determine the optimal locations for achieving education targets in
West Java, Indonesia. Single-aspect approaches, such as accessibility and spatial hazard analyses,
have not been widely applied in suitability assessments on the location of educational facilities.
Model development was performed based on analyses of the economic value of the land and on
the integration of various parameters across three main aspects: accessibility, comfort, and a multi-
natural/biohazard (disaster) risk index. Based on the maps of disaster hazards, higher flood-prone
areas are found to be in gentle slopes and located in large cities. Higher risks of landslides are
spread throughout the study area, while higher levels of earthquake risk are predominantly in the
south, close to the active faults and megathrusts present. Presently, many schools are located in
very high vulnerability zones (2057 elementary, 572 junior high, 157 senior high, and 313 vocational
high schools). The comfort-level map revealed 13,459 schools located in areas with very low and
low comfort levels, whereas only 2377 schools are in locations of high or very high comfort levels.
Based on the school accessibility map, higher levels are located in the larger cities of West Java,

ISPRS Int. J. Geo-Inf. 2022, 11, 12. https://doi.org/10.3390/ijgi11010012 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11010012
https://doi.org/10.3390/ijgi11010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-7379-1777
https://orcid.org/0000-0001-9863-2054
https://orcid.org/0000-0003-3775-6437
https://orcid.org/0000-0002-4243-9359
https://orcid.org/0000-0003-2426-0547
https://orcid.org/0000-0002-8194-8869
https://orcid.org/0000-0002-3084-6694
https://doi.org/10.3390/ijgi11010012
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11010012?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2022, 11, 12 2 of 27

whereas schools with lower accessibility are documented far from these urban areas. In particular,
senior high school accessibility is predominant in areas of lower accessibility levels, as there are
comparatively fewer facilities available in West Java. Overall, higher levels of suitability are spread
throughout West Java. These distribution results revealed an expansion of the availability of schools
by area: senior high schools, 303,973.1 ha; vocational high schools, 94,170.51 ha; and junior high
schools, 12,981.78 ha. Changes in elementary schools (3936.69 ha) were insignificant, as the current
number of elementary schools is relatively much higher. This study represents the first to attempt to
integrate these four parameters—accessibility, multi natural hazard, biohazard, comfort index, and
land value—to determine potential areas for new schools to achieve educational equity targets.

Keywords: school location; natural and biological hazards; accessibility model; COVID-19;
West Java Province; Indonesia

1. Introduction

Education is a basic human right, playing a significant socio-economic role in each
nation. Several studies have shown the strategic role of education in improving the quality
of life and economy [1,2]. Furthermore, research in Indonesia has shown that education
level affects an individual’s welfare levels [3,4]; however, there are still numerous imped-
iments afflicting some developing countries. For example, the South Asian region had
the highest dropout rate, totaling to 11.32 million children in 2014 [5]. Unsurprisingly, the
COVID-19 pandemic has worsened the conditions. Some developing countries, such as
Indonesia, are experiencing severe educational problems with the current online learning
systems, experiencing even higher dropout rates in virtual classes [6]. The main issues lie
in the unpreparedness of facilities and lack of experience, as appropriate adaptations of
the learning process can require a significant amount of time to implement. In addition, re-
gional differences in internet coverage have exacerbated the condition of education during
the pandemic, as some locations do not even meet the most basic requirements [7,8]. Due
to the urgency of these global education issues, the United Nations has included quality
education as one of the targets of the Sustainable Development Goals [9]. Such programs
are necessary, considering that access to education is a long-term investment for achieving
equitable quality human resource development [10].

The predominantly young demographic of Indonesia can be viewed as a tremendous
opportunity that can only be acquired with a corresponding increase in the quality of
resources available [11]. Namely, raising the performance of the Indonesian educational
system is crucial for individuals to reach higher-income status. Recently, the Indonesian gov-
ernment has increased the education budget, reaching IDR 505.8 trillion (USD 35.5 billion) in
2020 or 20% of the state revenue and expenditure budget [12]. Improving rural infrastruc-
ture, expanding access to quality education, and labor market mobility could all boost the
earnings of vulnerable families, helping to combat inequality.

In addition to accessibility, several other parameters should be used when planning
the distribution and construction of educational facilities. As Indonesia is particularly
vulnerable to natural disasters and environmental change [13], both must be considered
in any realistic analyses. For example, vulnerability to earthquakes is high due to the
numerous active faults in the surrounding area [13] and this is worsened by the presence of
a subduction zone in South Java Island [14]. Geomorphological conditions and high rates
of urbanization also increase the risk of other natural disasters, such as floods and land-
slides [15,16]. Such disasters can threaten the safety and security of educational continuity
if left unacknowledged. In addition to disasters, a comfort aspect must be considered when
designing the distribution of new educational facilities due to worsening environmen-
tal problems, including increasing atmospheric pollution [17], temperatures [18,19], and
noise [20,21]. Air pollution can trigger respiratory disorders [22], potentially interfering
with educational activities and students’ capture power [23,24]. Several studies have also
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shown a negative correlation between classroom temperature and student performance [25].
In addition, noise is an important performance factor for both students and teachers [26],
yet convenience often sets new schools near noisier locations. Therefore, a comprehen-
sive, multiparameter approach is required for optimizing new school locations with
appropriate designs.

Single-aspect approaches, such as accessibility and spatial hazard analyses, have not
been widely applied in suitability assessments on the location of educational facilities. For
example, Prasetyo et al. [27] integrated a spatial approach in planning access to education,
developing a model for selecting school lands using a multi-criteria decision analysis and
a public participatory approach. Samad et al. [28] integrated AHP and GIS methods to
conduct a land suitability analysis on existing and potential school locations in the Perlis
area, Malaysia, using three levels of suitability values. Barthellos et al. [29] applied a
multi-hazard assessment method to increase the sensitivity of spatial products and focus
on urban development. This approach maintains great potential for developing new access
to education. Furthermore, by examining the resilience of school buildings with respect to
various potential disasters, losses in construction costs can be minimized.

From an analysis of previous research employing spatial technology to assess the
development in the education sector, a suitable method can be developed; however, to date,
few researchers have included such a factor. Additionally, integrating multiple natural
hazards and biohazards, particularly with respect to conditions of the COVID-19 pandemic,
can significantly influence the results as well. Due to the importance of sensitivity in
developing spatial products via land suitability analyses, the present study aimed to
build an educational land suitability model based on three primary aspects: accessibility,
multi-disaster resilience, and convenience. During product development, a distribution
scenario of new schools also considered an analysis of the economic value of the land.
This study represents the first to attempt to integrate these four parameters—accessibility,
multi-natural hazard and biohazards, comfort index, and land value—in determining
potential areas for new schools to achieve educational equity targets. This research study
can also serve as the foundation for other developmental strategies in a more strategic,
comprehensive, and sustainable manner, especially regarding those on school facilities in
different regions of Indonesia or similar countries.

2. Materials and Methods
2.1. Study Area

Indonesia’s education system is generally divided into two main groups: primary
and higher education at the university level. Primary education consists of three stages:
elementary school (SD, Sekolah Dasar), junior high school (SMP, Sekolah Menengah Pertama),
and senior high school, which consists of an academic senior high school, henceforth
referred to as a senior high (SMA, Sekolah Menengah Atas), and a vocational senior high
school, henceforth referred to as a vocational high (SMK, Sekolah Menengah Kejuruan). The
study area was located in the West Java Province, Indonesia (Figure 1), which necessitates
a systematic effort to improve educational facility access. The unequal distribution to
educational facilities and the high dropout rate are substantial obstacles in this region [30].
For example, out of 626 sub-districts in West Java, 35% had no public senior high school [31].
According to the Ministry of Education and Culture (Kemendikbud), 6030 West Javan
students dropped out of school at the elementary level in the 2019/2020 academic year [4],
an approximate 67% increase since the previous year (3596 students) [4]. Due to these
conditions, the West Java provincial government launched various priority programs to
increase educational access, which relates to the construction of new schools [32]. As
West Java maintains the highest population and urbanization [11] rates in the country,
coupled with its demographic diversity and a high level of disaster vulnerability [33], a
comprehensive approach is demanded prior to designing the equitable and sustainable
distributions of new schools.



ISPRS Int. J. Geo-Inf. 2022, 11, 12 4 of 27

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 4 of 29 
 

 

[33], a comprehensive approach is demanded prior to designing the equitable and sus-
tainable distributions of new schools. 

 
Figure 1. Study area: West Java Province, Indonesia. 

2.2. Data 
Various geospatial data products were used and integrated to improve the sensitivity 

and accuracy of the results. Table 1 summarizes the characteristics of the data used and 
Table 2 shows the distribution of data use across the four main research objectives, namely 
the effective factors of erosion, floods, earthquakes, comfort, and school distance. Broadly 
speaking, these data products can be grouped into three major types: vector, static raster, 
and dynamic raster. 

2.2.1. Vector Data 
This study used three types of vector data, namely points, lines, and polygons. Point 

data used are locations of schools, earthquake epicenters, COVID-19 case counts, and 
flood and landslide occurrences, whereas line data include roads, rivers, and fault lines. 
Meanwhile, administrative boundaries, watershed areas, soil types, and protected areas 
are all polygon data used in this study. Figure 2a shows the availability distribution maps 
for public elementary, junior high, senior high, and vocational high schools (point location 
data were obtained from the Educational Agency [34]). Elementary schools were the most 
abundant type of school compared to junior high, senior high, and vocational high schools 
(19,692; 5372; 1643; and 2938, respectively). Indonesia’s 9-year primary education level 
(from elementary to junior high) drives this pattern. Figure 2b shows aggregate points for 
COVID-19 patient locations, accumulating case information until December 2020, while 
Figure 2c shows earthquake data points including the location, date of occurrence, and 
magnitude. The earthquake data were derived from the USGS Earthquake Catalog [35], 
and was further reduced to earthquake magnitude data by interpolation. Figure 2c also 
describes food and landslide occurrence distribution from the National Agency for Disas-
ter Management (BNPB). 

Road data were used as a network layer to inform accessibility analyses, whereas 
river network data showed the river flow in West Java. Fault data showed the locations of 
the four active faults in West Java: Lembang, Garsela, Baribis, and Kendeng. Provincial 
and district administrative boundary data were obtained from the official government 
data produced by the Geospatial Information Agency [36]. Watershed data (DAS) con-
tained information about areas bounded by a topographic barrier, united by its receipt, 
storage, and drainage of rainwater through a common river point. The soil type map [37] 
was differentiated based on the Fe/Al chemical component developed by the World Ref-
erence Base for Soil Resources (WRB). The World Database on Protected Areas (WDPA) 

Figure 1. Study area: West Java Province, Indonesia.

2.2. Data

Various geospatial data products were used and integrated to improve the sensitivity
and accuracy of the results. Table 1 summarizes the characteristics of the data used and
Table 2 shows the distribution of data use across the four main research objectives, namely
the effective factors of erosion, floods, earthquakes, comfort, and school distance. Broadly
speaking, these data products can be grouped into three major types: vector, static raster,
and dynamic raster.

2.2.1. Vector Data

This study used three types of vector data, namely points, lines, and polygons. Point
data used are locations of schools, earthquake epicenters, COVID-19 case counts, and
flood and landslide occurrences, whereas line data include roads, rivers, and fault lines.
Meanwhile, administrative boundaries, watershed areas, soil types, and protected areas
are all polygon data used in this study. Figure 2a shows the availability distribution maps
for public elementary, junior high, senior high, and vocational high schools (point location
data were obtained from the Educational Agency [34]). Elementary schools were the most
abundant type of school compared to junior high, senior high, and vocational high schools
(19,692; 5372; 1643; and 2938, respectively). Indonesia’s 9-year primary education level
(from elementary to junior high) drives this pattern. Figure 2b shows aggregate points for
COVID-19 patient locations, accumulating case information until December 2020, while
Figure 2c shows earthquake data points including the location, date of occurrence, and
magnitude. The earthquake data were derived from the USGS Earthquake Catalog [35],
and was further reduced to earthquake magnitude data by interpolation. Figure 2c also
describes food and landslide occurrence distribution from the National Agency for Disaster
Management (BNPB).

Road data were used as a network layer to inform accessibility analyses, whereas river
network data showed the river flow in West Java. Fault data showed the locations of the
four active faults in West Java: Lembang, Garsela, Baribis, and Kendeng. Provincial and
district administrative boundary data were obtained from the official government data
produced by the Geospatial Information Agency [36]. Watershed data (DAS) contained
information about areas bounded by a topographic barrier, united by its receipt, storage,
and drainage of rainwater through a common river point. The soil type map [37] was differ-
entiated based on the Fe/Al chemical component developed by the World Reference Base
for Soil Resources (WRB). The World Database on Protected Areas (WDPA) [38] is the most
current and comprehensive source of information on protected areas, updated monthly
with submissions from international governments, NGOs, landowners, and communities.
It is managed by the United Nations Environment Program’s World Conservation Monitor-
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ing Center (UNEP-WCMC), with support from the IUCN and its World Commission on
Protected Areas (WCPA).
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Figure 2. (a) School locations across West Java (Source, Education Office of West Java); (b) COVID-19
cases from April–December 2020; and (c) distribution and magnitude of earthquakes, floods, and
landslide occurrence, with major fault distributions.

2.2.2. Static Raster

The static raster data consisted of a digital surface model (DSM) and population
density. ALOS DSM 30 (AW3D30) [39], with a resolution of ~30 m (1 arcsec mesh), was
used here to build maps of elevation and slope. Population density data (WorldPop [40])
consisted of contemporary, global high-resolution data on human population distributions.
Such data is a prerequisite for accurately measuring the impact of population growth, mon-
itoring changes, and planning interventions. Residential area data (Facebook CIESIN [41])
provided an estimation of human population distribution at a resolution of 1 arc-second
(~30 m) for 2015, derived from recent census data and high-resolution (0.5 m) satellite im-
agery (Digital Globe). Such population grids provide a detailed delineation of settlements
in urban and rural areas, which is useful for disaster response, humanitarian planning, and
future development. Figure 3 shows the constraint analysis results for the protected and
unpopulated areas. Protected area constraints (Figure 3a) generally pertained to natural
forests of mountainous areas within the study region. Figure 3b shows the unpopulated
locations as obtained from the Facebook CIESIN high-resolution settlement layer.

2.2.3. Dynamic Raster Type Data

Dynamic raster data included land use land cover (LULC), rainfall, residential area, precip-
itation, land surface temperature (LST), and air pollution. For LULC, the MCD12Q1 V6 [42],
Land Cover Type 1: Annual International Geosphere-Biosphere Program classification
(16 classes), global product was used. In particular, the residential (predominantly housing)
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area product had a spatial resolution of 30 m. Precipitation data were used to determine
the effectiveness of school distances, whereas Climate Hazards Group InfraRed Precipita-
tion with Station data (CHIRPS) [43] is a 30+ year quasi-global rainfall dataset. CHIRPS
incorporates 0.05◦ resolution satellite imagery with in situ station data to create a gridded
rainfall time-series for trend analysis and seasonal drought monitoring. LST data can
be observed through satellite imagery containing a thermal sensor. Here, LST data were
acquired from Landsat-8 (30 m resolution) [44,45] and used to describe school comfort
related to the optimal temperature. Air pollution data consisted of CO (carbon monoxide),
NO2 (nitrogen dioxide), and SO2 (sulfur dioxide), which are all significant parameters of
the air quality index, obtained from observations of the Sentinel-5 Precursor [46] and used
here to further determine the comfort level of school areas.
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Table 1. Summary of data types and sources.

Dataset Product Data Description/Processing Data Type-Format Resolution Reference

School location Educational agency Education Office of West Java Vector-point - [34]

Earthquakes USGS Vector-point - [35]

Landslides and
floods BNPB - Vector-point [47]

COVID-19 case PIKOBAR Vector-point - [48]

Rivers BIG Converted to network data
using a network analysis tool Vector-line - [36]

Faults BNPB Weighted by
Euclidean distance Vector-line - [47]

Roads BIG Converted to network data
using a network analysis tool Vector- line - [36]

Watershed area MENLHK Vector -polygon - [37]

Soil types MENLHK Vector -polygon - [37]

Protected areas UNEP Vector-polygon - [38]

Provincial
boundaries BIG Vector-polygon - [36]

District boundaries BIG Vector-polygon - [36]

Elevation ALOS 30 Derived from DEM Raster 30 m [39]
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Table 1. Cont.

Dataset Product Data Description/Processing Data Type-Format Resolution Reference

Slope ALOS 30 Extracted from DEM Raster 30 m [39]

Land use MCD12Q1 Reclassified to 5 classes Raster 500 m [42]

Precipitation CHRIPS Raster 0.05 arc◦ [43]

Sulphur dioxide

Sentinel 5-P

Raster
0.01 arc◦ 3, 5 × 7,

5 km

[46]

Nitrogen dioxide Raster [46]

Carbon monoxide Raster [46]

Land surface
temperature Landsat 8 Derived from Landsat-8 Raster 30 m [44,45]

Population density WorldPop Raster 100 m [40]

Residential area CIESIN Raster 30 m [41]

Table 2. Dataset use in the present research study.

Dataset Landslide
Effective Factor

Flood Effective
Factor

Earthquake
Effective Factor

Comfort
Effective Factor

School Distance
Effective Factor

Rivers - X - - -

Watershed area - X - - -

Faults - - X - -

Roads - - - X X

School location - - - - X

Earthquakes - - X - -

Soil types X X - - -

Protected areas X X X X X

Elevation - X X - -

Slope X X X - -

Land use X X - - -

Precipitation X X - - -

Sulphur dioxide
(SO2) - - - X -

Nitrogen dioxide
(NO2) - - - X -

Carbon monoxide
(CO) - - - X -

Land surface
temperature - - - X -

Population density - - - - X

Residential area - - - - X

Provincial
boundaries X X X X X

District boundaries X X X X X

2.3. Methodology
2.3.1. New School Location Suitability

Data processing underwent four analytical stages: disaster, comfort, accessibility, and
land suitability. Figure 4 shows an overview of the research methodology used in this
study. Geographic information systems (GIS) provided data processing tools for analyses
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and assessments of each research stage. A multi-criteria decision analysis (MCDA) was
employed for model building. Its more comprehensive range of application lies in its
dependence on a set of environmental parameters determined by the analyst [49]. The sub-
methods used to calculate each criterion included multi-hazard assessments, overlays, and
network analyses. Furthermore, a new school location suitability analysis was conducted
for local government recommendation with respect to these three primary aspects: security
from natural disasters, comfort, and accessibility. Several scenarios were used to determine
the suitability of school locations under various economic conditions to obtain a more
accurate depiction of conditions after construction and to serve as a basis for both local
governments and policymakers when placing new schools. The disaster analysis contained
a synthesis of spatial data to produce a map of disaster vulnerability levels within each
academic unit; the comfort analysis synthesized data on air quality, noise, and temperature;
the accessibility analysis measured the distance from a school using the network analysis
method; and the land suitability study contained a synthesis of these three aspects to obtain
an overall fitness of each area in West Java Province.
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2.3.2. School Accessibility Analysis

The accessibility analysis was based on a new government regulation (Minister of
Education Regulation no. 23/2013) [50] regarding a maximum school distance from the
residential area. These 12 regulations suggest that a primary school must exist ≤3 km
from a residential, urban area, whereas secondary schools must be within ≤6 km. The
regulation only applies to schools in urban areas, whereas most of the areas in our study
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consist of urban and rural areas. Due to this, we used an extended definition in rural areas
from a minimum distance of 3 km to 5 km for primary schools and 6 km to 10 km for
secondary schools. We reason that using the default distances defined by the government
regulation for rural areas would result in many potential areas being analyzed unfavorably
and extending the definitions would avoid this issue. The accessibility analysis employed
a multi-network at each school point location (elementary, junior high, senior high, and
vocational high school). Current school accessibility was then categorized by area: ≤5 km
radius was considered a higher level of school availability; between 5 and ≤10 km were
deemed moderate levels of school availability; and those >10 km were termed low school
availability. The results of this accessibility categorization were in the form of different
scores for each class. Furthermore, the accessibility results were associated with population
density data, classified into five classes using the quantile method. The next stage was the
reduction of two accessibility layers to produce a single one showing the balance of supply
(school availability) and demand (population density levels).

2.3.3. Multi-Natural Hazard Analysis

A multi-hazard analysis was then conducted, focusing on several types of disasters,
including floods, earthquakes, and landslides. Generally, parameters for each type of
disaster were determined based on a literature study and merged into an overall disaster
map. The parameters used for the flood disaster analysis were land cover, soil type,
slope, elevation, rainfall, and river density. The LULC type most affected by flooding was
settlements, whereas forests and waters were the least affected. Soil types were split into
five categories based on their sensitivity to water intrusion, varying from insensitive to
very sensitive: insensitive soil types consisted of alluvial, planosol, gray hydromorph, and
groundwater laterite; slightly sensitive soil types consisted of latosol; moderately sensitive
soil types consisted of brown forest and Mediterranean soils; sensitive soil types consisted
of andosol, laterite, grumosol, podsol, and podzolic; and very sensitive soil types consisted
of regosol, litosol, organosol, and renzina. The sloping contours tended to hold water longer,
thus increasing the likelihood of flooding, whereas steeper contours tended to displace
water in lower elevation areas, thus flooding probability was low. The primary determining
factor of flooding was the intensity of rainfall [51]. Furthermore, low river densities can also
cause flooding. River density (DD) was calculated according to Equation (1):

DD =
∑ L
A

(1)

where ΣL is the sum of river flow lengths and A is the basin area. The quantile classification
method was used for scoring parameters with numerical values (slope, elevation, rainfall,
and river density). This approach is advantageous because of its uniform representation
on the map, simplifying class calculations [52]. Moreover, the quantile method also aims
to standardize parameter values with different units and measurement methods, ranging
from 1–5 in the present analysis. The simple additive weighting (SAW) method, often used
to complete multi-attribute decision-making [51], was employed here to combine each
parameter and was calculated according to Equation (2):

Suitability Index = ∑(score × weight) (2)

where the weight value was modified from Darmawan et al. [53]. The validation of the
results involved flood point data from the BNPB. The landslide disaster analysis used slope,
land use, soil type, and rainfall parameters. Upland land cover was the most likely to cause
landslides, while plantations, mixed gardens, settlements, and rice fields also had landslide
potential. Soil erodibility was another reference for categorizing soil type, varying with land
use and changing over time: high erodibility soils include regosol; moderate erodibility
includes andosol, glei hummus, Mediterranean, and podzolic soil types; and low erodibility
includes alluvial, latosol, and grumosol soil types. High rainfall could cause landslides, as
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the slip surface is exposed to water and causes the ground above to move. Parameter values
ranged from 1 to 5 and the distribution of the score values was obtained using the quantile
method. A similar SAW method technique for combining all the parameters was used
(Equation (2) and validation was conducted using landslide point data from the BNPB. The
weight value was modified from Kusratmoko [54]. The earthquake analysis parameters
used were the distance from the fault, distance from megathrust, elevation, slope, and
magnitude. The closer a place is to a fault, the greater the potential earthquake damage [55].
West Java has four active faults spreading throughout the region and a megathrust located
in the southern part, especially in the Indian Ocean, increasing the earthquake potential.
The recorded magnitude of previous events could indicate how large an earthquake may
be and the spatial interpolation of these magnitudes produced a raster map for further
calculations. In particular, the slope elevation and slope were also very influential, where
the higher the elevation and slope angle, the greater the potential for damage caused by
the earthquake. The standardization of the parameter values used was 1–5. Similarly, the
distribution of the score values was obtained using the quantile method and the SAW
method technique of combining all the parameters was used here as well (Equation (2).
Validation was conducted and obtained using earthquake point data from the USGS.

2.3.4. Biohazard: Dynamic COVID-19 Model

A biohazard analysis was employed to measure the transmission level of COVID-19
in West Java using case point distributions. The assumptions used in the study aimed to
anticipate future developments in the short term, while the COVID-19 pandemic is still
ongoing. Accordingly, it will be necessary to build schools in areas with low COVID-19
transmission rates, mainly because children and adolescents are the lowest priority in
vaccination efforts focused on health workers, teaching staff, the elderly, and the vulnerable.
COVID-19 case locations were obtained from the Information and Coordination Center
West Java Province (Pikobar) [48]. The first step was the rasterization of COVID-19 points,
with each pixel containing the number of corresponding cases. Rasterized data was created
via inverse distance weighted (IDW) interpolation to produce case densities across West
Java, helping to further constrain the location of new schools.

2.3.5. Air, Noise, and Temperature Comfort Analysis

The comfort analysis consisted of air pollution, noise level, and temperature analy-
ses. General air pollutant data came from Sentinel-5P and included CO, NO2, and SO2.
Sentinel-5P data have been used in various previous studies to measure and monitor air
quality. For example, Zheng et al. [56] and Kaplan et al. [57] used NO2 data to measure the
impact factor on air quality. In contrast, Kaplan et al. [58] used Sentinel-5P data to analyze
the relationship between pollutants, geographic, and social data. CO is a byproduct of
fuel combustion in cars or trucks, small engines, stoves, lanterns, grills, fireplaces, gas
ranges, or furnaces, potentially building up indoor and poisoning inhabitants [59]. NO2
is one of several nitrogen oxides and an intermediate in the industrial synthesis of nitric
acid, millions of tons of which are produced each year for use primarily in the production
of fertilizers. At higher temperatures, it is a reddish-brown gas [60]. SO2 is a toxic gas
that is naturally released by volcanic activity and also produced as a by-product of copper
extraction and fossil fuel (namely coal) combustion. All pollutant data generated from
the Sentinel-5P sensor were obtained using the Google Earth Engine platform. The pixel
average throughout 2019 was used to represent pollution levels under normal conditions,
as 2020 patterns were severely affected by the COVID-19 lockdown. The data were then
split into a five-level quantile classification. Next, the three data points were combined by
averaging them to obtain an overall air pollution map.

Noise analysis was performed using road and airport location data. The former were
divided into major roads (those that can be passed by all types of motorized vehicles and
thus are noisier) and local roads (roads that cannot be passed by heavy cars). Next, the
buffer data were used to represent the range of noise levels by mean. The three buffer
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results (major roads, local roads, and airports) were overlaid and scored. The highest score
(5) covered all three sources, whereas the lowest (1) covered only a single source. The
temperature analysis was based on Landsat-8 imagery to extract LST values using the
retrieval algorithm proposed by Jimenez-Munoz et al. [44] and Rajeshwari and Mani [45],
expressed through Equations (3) and (4)):

T = TB/
[

1 +
(

λ × TB
c2

)
× ln (e)

]
(3)

where TB is the brightness temperature (temperature band 10, landsat 8); λ is the emission
wavelength (0.0015); C2 is h x c/s = 1.4388 × 10−2 m·K; and e is emissivity = 0.004 × Pv + 0.986,
where

Pv =

(
NDVI − NDVImin

NDVImax − NDVImin

)2
(4)

3. Results
3.1. School Accessibility

School accessibility modeling is the first step taken to investigate the current state of
access to education in West Java. Figure 5 shows the population distribution based on age
groups in West Java at 30 m resolution. Ages were divided into five groups: baby–toddler
(0–5 year old), child (6–9 year old), teenager (10–24 year old), adult (25–59 year old), and
elderly (>59 year old). Based on the analysis, the population density ranged from 0 to
43 people per 900 m2. Teenager and adult groups also varied more compared to the other
three groups. The results were then combined with school availability distribution data
to determine the balance between supply and demand in the research area. The result
of combining these two maps was the school accessibility map (Figure 6). Accessibility
levels ranged from very low to very high, with the former indicating information related to
high population size and a lack of school availability. The latter is related to the size of the
population and the sufficient availability of schools. Elementary schools maintained the
highest level of accessibility across almost all areas in West Java. Areas with the highest
priority for new school construction are thus those with low or no accessibility to achieve
equal distribution.
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3.2. Multi-Hazard Index Analysis

High levels of variability were recorded for flood susceptibility (Figure 7a), with
a greater tendency of floods in the western and northern parts of the study area, with
relatively flat to gentle slope conditions, poorer soil water absorption and drainage, more
built-up lands, and stronger rainfall conditions. Very low levels of flood risk were confined
to the southern region, generally dominated by hilly and montane topography. Figure 7b
shows the class division earthquake vulnerability, with higher levels recorded in the south
due to the larger number of active faults scattered throughout the area. The existence of a
megathrust zone in the South Java Sea also increases local earthquake vulnerability. The
history of large earthquakes in the southern region also contributes to its higher levels of
vulnerability. Lower risk levels were recorded in the northern part of the research area.
Figure 7c shows that the high to very high landslide susceptibility levels were relatively
evenly distributed across almost all areas of West Java, mainly deriving from the dominance
of hilly and mountainous terrain. These areas tended to have very high rainfall, slopes, and
soil erodibility potential. In addition, changes in land use exacerbate these conditions by
replacing the function of native plants’ roots as a binder of soil and rock aggregates with
certain seasonal, weaker rooted plants, or dry agricultural land. Several historical records
also show numerous previous occurrences and high landslide points in the study area.

Meanwhile, the northern area is dominated by low sloping relief, resulting in decreased
landslide susceptibility. Accordingly, landslide vulnerability is essential to any suitability
analysis when building new schools due to the relatively even distribution of high-risk
areas. A multi-hazard susceptibility index analysis (Figure 7d) and multi-hazard probability
map (Figure 8) was carried out for floods, earthquakes, and landslide disaster potential,
collectively maintaining the highest frequency in the research area. Disaster potential
was then grouped from very low to very high. Overall, the northern area maintained the
lowest overall disaster vulnerability, yet the current distribution of schools is still mostly in
disaster-prone regions (Figure 9).
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3.3. Multi-Comfort Level Product

Figure 10 shows the results of the multi-comfort level product based on the analysis
of air pollution, temperature, and noise level conditions in the research area. Figure 10a
illustrates the total pollution value as a combination of CO, NO2, and SO2 data, showing
that high pollution values were dominant in the northern and eastern regions, in addition
to the spread of CO throughout the study area. This pollution usually originates from
the combustion of fuel and is thus influenced by the number of motorized vehicles and
factory waste. The obtained results indicate elevated CO conditions in urban areas, a
well-documented phenomenon closely related to anthropogenic activities, especially in
industrialized sectors; however, CO can be transported to rural areas via meteorological
factors. The distribution of NO2 was highest in the northwestern area, primarily due to
the influence of industrial effluents and agricultural fertilizers, which are correlated to the
number of factories and plantation areas. In urban areas, NO2 pollutants can also be caused
by the industrial sector and the use of motor vehicles. The northwest region is a massive
industrialized area close to Jakarta, the most densely populated portion of the country. SO2
in the study area is generally produced naturally by volcanic activity or anthropogenically
through the combustion of fossil fuels in industries, cars, planes, and ships, leading to a
relatively even distribution.

Figure 10b shows the LST from Landsat-8 to measure the mean temperature through-
out 2019. In general, the LST mean ranged from 9.58 to 43.76 ◦C and was further grouped
into five classes from very low to very high. The temperature data analysis and processing
results showed very high temperature areas in the north, whereas in the highlands, espe-
cially in the central part of the research area, the temperatures tended to be lower, with
higher LST values interspersed within. Figure 10c shows the analysis results of the noise
level in the research area, which were similarly grouped into five classes. High-to-very high
noise levels were generally located in large urban areas close to airports as well as major
and local roads. Medium-to-very low levels were typically located far from these locations.
Validation was conducted using a comparison test of the noise level index and VIIRS night
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light average radiance. Population and infrastructure developments could affect light and
sound emissions, given their magnitude, geographical extent, and the degree to which
they represent unprecedented environmental conditions [61]. Accordingly, 500 random
sample points distributed throughout the study area were used for validation, revealing
a positive correlation between the two datasets. A map of the total comfort distribution
was created by combining air pollution parameters, noise levels, and LSTs (Figure 10d).
The highest comfort levels were observed in the southwest, with numerous additional
moderate-to-high comfort level conditions scattered throughout.
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3.4. New School Location Suitability

The suitability analysis of new school locations incorporated the above disaster, com-
fort, accessibility, and land suitability aspects (Figure 11). These results were further
processed into location suitability for the various academic levels assessed, namely elemen-
tary (Figure 11A), junior high (Figure 11B), senior high (Figure 11C), and vocational high
schools (Figure 11D), before being subsequently divided into five classes from very high to
very low. High-to-very high suitability locations were primarily those with low disaster
hazard, high comfort, and low accessibility values, whereas the inverse was true for low
suitability locations. Figure 4 shows the lack of senior high schools throughout West Java;
therefore, the need for corresponding suitable locations is greater than that of elementary,
junior high, and vocational high schools.
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4. Discussion

The educational infrastructure suitability analysis used a multi-hazard and accessi-
bility model based on disaster, comfort, accessibility, and land suitability to achieve equal
education distribution across the research area. Data were normalized across all layers prior
to analysis using a scale setting of 1–5. Weights were applied equally to avoid subjectivity
by combining data via the SAW method. The discussion section of this study focuses on
the analysis and comparison of results, hazard and comfort analyses of the existing school
locations, new school distribution based on the budget scenario, and the correlated effects
of accessibility, limitations, and future research directions.

4.1. Results and Corresponding Data Comparison

Figure 12 shows a comparison of the findings from the present study, including
validations of the disaster points, the noise index and night light data, and a comparison of
the land values to those of Somantri [62]. Figure 12a shows the validation results of the
disaster vulnerability map using historical data. Results showed that the middle-to-very
high classes of floods, earthquakes, and landslides were 81.045%, 73.478%, and 63.859%
accurate, respectively.
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The noise map validation used a comparison test between the noise level index and
the VIIRS night light average radiance across 500 random sample points throughout the
study area (Figure 12b). Results of the analysis showed a positive correlation between
the two datasets. Population and infrastructure developments can affect light and sound
emissions given the magnitude of their respective geographic ranges and the extent to
which they represent unnatural environmental conditions [61]. Land value validation came
from comparing the results of land value maps here with actual world prices according
to Somantri [62], who surveyed land prices in fifteen district in the North Bandung area
(Figure 10c). Five-hundred point samples were randomly distributed for comparison,
revealing a positive correlation between the land value index and land prices.

4.2. Hazard Analysis of Existing Schools

The hazard analysis of the existing schools was based on overlaying disaster vul-
nerability maps with school point locations (Table 3). Based on the results, the suitable
locations for new senior high schools are more widely distributed than those for elementary,
junior high, or vocational high schools. The number of schools located under high or
very-high levels of vulnerability were 5028 and 3099, respectively. The identification of
disaster-prone areas, especially for landslides and earthquakes, was needed to create the
priority analysis in school retrofitting efforts, where those most prone to earthquakes could
be retrofitted with earthquake-resistant building standards as soon as possible. Different
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retrofitting methods are needed for schools vulnerable to landslides, such as strengthening
soil conditions, foundations, or relocating buildings. An evacuation area plan is required
for all disasters. It can be further informed by the analysis here according to the most likely
types of disaster and the nearest safest locations.

Table 3. The number of schools at each level of disaster vulnerability.

Vulnerability
Level

Number of Schools

Elementary Junior High Senior High Vocational High

Very low 4324 (22.11%) 994 (18.56%) 251 (15.31%) 516 (17.82%)

Low 5192 (26.54%) 1585 (29.60%) 576 (35.14%) 853 (29.46%)

Medium 4521 (23.11%) 1303 (24.33%) 420 (25.62%) 782 (27.01%)

High 3462 (17.70%) 900 (16.80%) 235 (14.33%) 431 (14.88%)

Very high 2057 (10.51%) 572 (10.68%) 157 (9.57%) 313 (10.81%)

4.3. Comfort Analysis of Existing Schools

Table 4 shows the results of the comfort analysis for existing schools, where 2332 and
45 schools held high and very high levels of comfort, respectively. Optimization efforts
in areas of lower comfort levels are needed to bolster student performance and thus the
quality of education. Schools in areas with low comfort levels are affected by temperature,
noise, and air pollution, which are directly proportional to the urban development and
population growth in West Java.

Table 4. The number of schools at each comfort level.

Comfort Level
Number of Schools

Elementary Junior High Senior High Vocational High

Very low 977 (4.99%) 316 (5.89%) 144 (8.76%) 197 (6.80%)

Low 7561 (38.63%) 2191 (40.88%) 781 (47.56%) 1272 (43.90%)

Medium 9340 (47.72%) 2452 (45.75%) 633 (38.55%) 1228 (42.38%)

High 1655 (8.45%) 394 (7.35%) 84 (5.11%) 199 (6.86%)

Very high 38 (0.19%) 6 (0.11%) 0 (0%) 1 (0.03%)

4.4. New School Distribution by Budget Scenario

Figure 13 shows the land value across the research area, where red indicates high-value
locations, yellow indicates medium values, and blue indicates low land values. Figure 14
shows the results of the new school distribution based on the budget scenario analysis for
each academic level analyzed and potential future school sites were located in areas with
high to very high levels of suitability. Each scenario included 200 new schools placed on
correlated land values (red dots, high value; yellow dots, medium value; and green dots,
low value) according to the levels of disaster vulnerability, comfort, and accessibility.
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4.5. Evaluation of Existing and New School Based on COVID-19 Transmission Level

Educational activities in schools were highly impacted by public health measures and
restrictions during the COVID-19 pandemic, and thus we processed and used COVID-19
transmission rate data in West Java as part of this analysis. COVID-19 transmission levels
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(Figure 15) were categorized into several classes: very high, moderate, low, and very low.
The analysis results show high to very high transmission levels in larger urban areas, such as
the cities of Bandung, Bekasi, and Pangandaran Regency, where transmission is positively
correlated with total cases. This COVID-19 transmission rate modeling was further used to
analyze existing schools (Figure 16) and the distribution of potential new school locations
(Figure 17) for elementary, middle high, senior high, and vocational high schools.
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Analysis of COVID-19 transmission rates at existing school locations is based on the
condition of educational activities in Indonesia during the pandemic; schools are mandated
to enforce policies aimed at reducing COVID-19 transmission rates and infection and
to protect students. Examples of these policies include conducting classes fully online,
partially online using a hybrid approach, or fully offline for schools deemed low risk for
virus transmission. In our analysis, we rank the level of COVID-19 transmission in schools,
which will be beneficial to the provincial, as well as local, governments in determining
which policies regarding teaching models and health protocols in schools to enact and
prioritize. This is considered to protect students who are among the groups with the lowest
vaccination priority.

Furthermore, analysis of COVID-19 transmission rates at potential new school lo-
cations were also conducted to identify the need for supporting infrastructure in the
implementation of educational activities in schools. Experience during the pandemic has
shown that the success of online and long-distance learning hinges on the availability and
quality of the supporting infrastructure. Data on COVID-19 transmission rates at potential
new school locations can be integrated with data on the availability of local infrastructure,
which will be useful in determining whether new schools in those particular locations are
feasible, cost-effective, and/or beneficial. Policy holders and relevant agencies can use
this information to identify any lack of infrastructure for new schools and plan accord-
ingly, in order for those schools to be ready in the event of more mandated online and
long-distance learning and educational activities. Figure 17 shows the results of the new
school distribution based on the COVID-19 transmission rates analysis for each academic
level analyzed.

Figure 18 shows the results of field checks through high-resolution imagery using
Google Earth Pro by sampling four new school points. This process ensured that the
resulting points were sufficiently close to residential or populated areas. In general, it was
revealed that the proposed points were near public roads, buildings (sometimes within), or
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residential areas. These point distribution results were the only ground-level assessments
of suitable areas for new school development. The distribution must also be considered
against a cadastral map to ensure that the proposed points have an owner or sit on vacant
land.
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4.6. Building New Schools by Budget Scenario and Accessibility

The results of the effect of building new schools based on budget scenarios and
accessibility are shown in Figure 19, revealing the expansion of school availability after the
inclusion of additional school points (see Section 4.3).
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The expansion is indicated in all colors other than blue, each correlating to the effect
of certain scenarios on expansion. The most significant expansions occurred for senior
high (303,973.1 ha), followed by vocational high schools (94,170.51 ha) and junior high
schools (12,981.78 ha). Alternatively, the change in elementary schools was not significant
(3936.69 ha) considering the high number of schools already in existence. The overall
results indicate that the construction of senior high and vocational high schools is the most
critical due to their relatively lower numbers in reality.

4.7. Limitations and Future Possible Direction

Several limitations are present in the current research study, including technical issues
requiring several assumptions. The available input data used as input parameters in each
model have different resolutions, potentially leading to biases in the resulting model. The
weighting mechanism employed the SAW method, giving equal weights to each analysis
result. Mechanism development could be used in the Analytic Hierarchy Process (AHP)
method based on expert-based assessments or weights derived through a community-based
method that has been empirically tested [63,64].

To improve the accuracy of the new school land suitability maps created, further
research could be conducted with the inclusion of (1) better weights through expert-based
or community-based analyses and methods that have been empirically tested; (2) field
measurements and institutional surveys to obtain and more comprehensively validate
results; (3) an updated or replaced land value map with more official data; (4) detailed
cadastral maps to distribute new schools and prioritization of school retrofitting; and
(5) several additional factors, such as evacuation area and retrofitting, for school prioritiza-
tion based on disaster type and risk, thus providing a more optimal school location.

Improvements regarding hazard and comfort analyses can also be done in the fu-
ture. The machine learning method can be used to improve multi-hazard analysis in the
future [65,66]. Besides improvement in the method, the intensive use of data, such as
the inclusion of extreme precipitation, antecedent, and time of concentration information,
will enhance the quality of the flood hazard map [67]. These parameters are helpful to
distinguish flood types (e.g., fluvial and flash floods). For the comfort analysis, it is better to
include humidity information in addition to the temperature. Meteorological stations can
be used to adjust the temperature information of the LST data so that the air temperature
will be more representative. This study uses several compounds for air quality indicator;
however, it is better to add particulate matters for a more comprehensive study.

In addition, data integration with other natural disasters is also a potential element
to be developed. For instance, buildings in West Java Province are also susceptible to
strong wind incidents [68]. Other disasters such as land subsidence [69,70], volcanic
eruption [71,72], tsunami [73,74], and wildfire [75,76] should be considered in Indonesia.
This multi-hazard analysis and comfort index could be applied in other potential sectors
such as transportation [77] or other infrastructure developments such as power plants [78]
and river networks [79]. Moreover, disaster vulnerability could be estimated, especially
when ecosystem service calculation is used. Coastal [80–83], cropland [84,85], and forest
ecosystems [86] including mangrove [87–89] are the potential ecosystems important to be
analyzed for its vulnerability.

5. Conclusions

A new model of land suitability for educational facilities was created based on spatial
product development to determine the optimal locations for achieving education targets in
West Java, Indonesia. The research results can serve as the foundation for policyholders’
developmental strategies, especially in the education sector. Considering multi-aspect
development scenarios based on the impacts of increasing access, minimizing risk, and
allocating available funds, future development must be carried out in a more systematic,
impactful, and sustainable manner. Therefore, there is a need for improvement (i.e.,
retrofitting) and mitigation efforts to sufficiently prepare for disasters in the most prone
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areas. Thus, it is necessary to optimize schools placed in locations with high levels of
comfort to increase student performance and therefore the quality of education. Based on
the school accessibility map, higher levels were located in the larger cities of West Java,
whereas lower accessibility was documented far from these urban areas. In particular,
senior high school accessibility is predominant in areas of lower accessibility levels, as there
are comparatively fewer facilities available in West Java. Overall, higher levels of suitability
were spread throughout West Java. The distribution of schools based on potential future
budget scenarios was conducted using the created land value map. The results of this study
can also serve as the foundation for developmental strategies, especially school facilities in
other Indonesian regions or countries with similar characteristics.

Author Contributions: Anjar Dimara Sakti, Muhammad Ario Eko Rahadianto, and Ketut Wikantika
conceived and designed the experiments; Anjar Dimara Sakti, Muhammad Ario Eko Rahadianto,
Tania Septi Anggraini, and Andhika Dimas Purnomo performed the experiments; Hubbi Nashrullah
Muhammad, I Gusti Ayu Andani, Prasanti Widyasih Sarli, Muhammad Rais Abdillah and Biswajeet
Pradhan analyzed the data; Riki Ridwana, Fajar Yulianto, Masita Dwi Mandini Manessa, Afina Nur
Fauziyyah, Lissa Fajri Yayusman, pre-processed the base datasets; all authors wrote the paper; all
authors read the paper and provided revision suggestions. All authors have read and agreed to the
published version of the manuscript.

Funding: This project was funded in 2021 by the Capacity Building Research Program for ITB Young
Scientists by the Institute of Research and Community Service, Institut Teknologi Bandung and
Indonesia Endowment Fund for Education (LPDP), Ministry of Finance Republic of Indonesia.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author upon reasonable request.

Acknowledgments: The authors are grateful to acknowledge the support from the Indonesia En-
dowment Fund for Education (LPDP), Ministry of Finance Republic of Indonesia, and the Institute
of Research and Community Service, Institut Teknologi Bandung. We also thank the anonymous
reviewers whose valuable comments greatly helped us to prepare an improved and clearer version
of this paper. All persons and institutes who kindly made their data available for this analysis are
acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barro, R.J. Education and Economic Growth. The Contribution of Human and Social Capital to Sustained Economic Growth and Well-Being.

2001, pp. 14–41. Available online: https://www.oecd.org/innovation/research/1825902.pdf (accessed on 16 December 2021).
2. Hanushek, E.A.; Woessmann, L. Education and economic growth. Econ. Educ. 2010, 60–67.
3. Reza, F.; Widodo, T. The Impact of education on economic growth in Indonesia. J. Indones. Econ. Bus. 2013, 28, 23–44.
4. Ministry of Education and Culture Republic of Indonesia (MEC). Kementrian Pendidikan dan Kebudayaan. Strategic Plan-

ning (Rencana Strategis) 2020–2024. 2020. Available online: https://dikti.kemdikbud.go.id/wp-content/uploads/2020/10/
RENSTRA-KEMENDIKBUD-full-version.pdf (accessed on 12 May 2020).

5. Max Roser and Esteban Ortiz-Ospina—Primary and Secondary Education. 2020. Available online: https://ourworldindata.org/
primary-and-secondary-education (accessed on 12 May 2020).

6. Yustika, G.P.; Subagyo, A.; Iswati, S. Masalah Yang Dihadapi Dunia Pendidikan Dengan Tutorial Online: Sebuah Short Review.
Tadbir. J. Stud. Manaj. Pendidik. 2019, 3, 187. [CrossRef]

7. Saleh, A.M. Problematika Kebijakan Pendidikan Di Tengah Pandemi Dan Dampaknya Terhadap Proses Pembelajaran Di
Indonesia. J. Pendidik. 2020, 2, 24.

8. Ahyar, M. Problematika Pendidikan Berbasis Masyarakat dan Solusinya di Era New Normal COVID-19. J. El-Huda Study Islam
2020, 11, 15.

9. Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 12 May 2020).
10. Kristiansen, S. Decentralizing education in Indonesia. Int. J. Educ. Dev. 2006, 26, 513–531. [CrossRef]
11. Indonesia Statistics. 2020. Available online: https://www.bps.go.id/publication/2020/04/29/e9011b3155d45d70823c141f/

statistik-indonesia-2020.html (accessed on 20 May 2020).
12. Indonesia’s Budget Planning. 2020. Available online: http://www.dpr.go.id/dokakd/dokumen/BANGGAR-RJ-20200311-08560

9-9144.pdf (accessed on 18 August 2020).
13. Indonesia’s Disasters Occurrence Report. 2010. Available online: https://bnpb.go.id/infografis/kejadian-bencana-tahun-2010

(accessed on 20 August 2020).

https://www.oecd.org/innovation/research/1825902.pdf
https://dikti.kemdikbud.go.id/wp-content/uploads/2020/10/RENSTRA-KEMENDIKBUD-full-version.pdf
https://dikti.kemdikbud.go.id/wp-content/uploads/2020/10/RENSTRA-KEMENDIKBUD-full-version.pdf
https://ourworldindata.org/primary-and-secondary-education
https://ourworldindata.org/primary-and-secondary-education
http://doi.org/10.29240/jsmp.v3i2.1178
https://sdgs.un.org/goals
http://doi.org/10.1016/j.ijedudev.2005.12.003
https://www.bps.go.id/publication/2020/04/29/e9011b3155d45d70823c141f/statistik-indonesia-2020.html
https://www.bps.go.id/publication/2020/04/29/e9011b3155d45d70823c141f/statistik-indonesia-2020.html
http://www.dpr.go.id/dokakd/dokumen/BANGGAR-RJ-20200311-085609-9144.pdf
http://www.dpr.go.id/dokakd/dokumen/BANGGAR-RJ-20200311-085609-9144.pdf
https://bnpb.go.id/infografis/kejadian-bencana-tahun-2010


ISPRS Int. J. Geo-Inf. 2022, 11, 12 25 of 27

14. Widiyantoro, S.; Gunawan, E.; Muhari, A.; Rawlinson, N.; Mori, J.; Hanifa, N.R.; Putra, H.E. Implications for megathrust
earthquakes and tsunamis from seismic gaps south of Java Indonesia. Sci. Rep. 2020, 10, 15274. [CrossRef]

15. Reichenbach, P.; Mondini, A.C.; Rossi, M. The influence of land use change on landslide susceptibility zonation: The Briga
catchment test site (Messina, Italy). Environ. Manag. 2014, 54, 1372–1384. [CrossRef]

16. Rahmati, O.; Darabi, H.; Panahi, M.; Kalantari, Z.; Naghibi, S.A.; Ferreira, C.S.S.; Bui, D.T. Development of novel hybridized
models for urban flood susceptibility mapping. Sci. Rep. 2020, 10, 12937. [CrossRef]

17. Yang, G.; Liu, Y.; Li, X. Spatiotemporal distribution of ground-level ozone in china at a city level. Sci. Rep. 2020, 10, 7229.
[CrossRef]

18. Du, Y.; Xie, Z.; Zeng, Y.; Shi, Y.; Wu, J. Impact of urban expansion on regional temperature change in the Yangtze River Delta. J.
Geogr. Sci. 2007, 17, 387–398. [CrossRef]

19. Nurwanda, A.; Honjo, T. The prediction of city expansion and land surface temperature in Bogor City, Indonesia. Sustain. Cities
Soc. 2020, 52, 101772. [CrossRef]

20. Doygun, H.; Gurun, D.K. Analysing and mapping spatial and temporal dynamics of urban traffic noise pollution: A case study in
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