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Abstract 18 
Landslide is a type of slope processes causing a plethora of economic damage and loss of lives 19 
worldwide every year. This study aimed to analyze spatial landslide susceptibility mapping in 20 
the Khalkhal-Tarom Basin by integrating an adaptive neuro-fuzzy inference system (ANFIS) 21 
with two multi-criteria decision-making approaches, i.e. the best-worst method (BWM) and 22 
the stepwise weight assessment ratio analysis (SWARA) techniques. For this purpose, the first 23 
step was to prepare a landslide inventory map, which was then divided randomly by the ratio 24 
of 70/30% for model training and validation. Thirteen conditioning factors were selected based 25 
on the previous studies and available data. In the next step, the BWM and the SWARA methods 26 
were utilized to determine the relationships between the sub-criteria and landslides. Finally, 27 
landslide susceptibility maps were generated by implementing ANFIS-BWM and ANFIS-28 
SWARA ensemble models, and then several quantitative indices such as positive predictive 29 
value, negative predictive value, sensitivity, specificity, accuracy, root-mean-square-error, and 30 
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the ROC curve was employed to appraise the predictive accuracy of each model. The results 31 
indicated that the ANFIS-BWM ensemble model (AUC = 75%, RMSE = 0.443) has better 32 
performance than ANFIS-SWARA (AUC = 73.6%, RMSE = 0.477). At the same time, the 33 
ANFIS-BWM model had the maximum sensitivity, specificity and accuracy with values of 34 
87.1%, 54.3%, and 40.7%, respectively. As a result, the BWM method was more efficient in 35 
training the ANFIS. Evidently, the generated landslide susceptibility maps (LSMs) can be very 36 
efficient in managing land use and preventing the damage caused by the landslide 37 
phenomenon. 38 
Keywords: landslide susceptibility; machine learning; GIS; ANFIS; SWARA; BWM 39 
 40 
 41 
Introduction 42 
     Causing great losses of lives and properties, landslides are dangerous processes that occur 43 
repeatedly in mountainous and hilly areas worldwide, (Juliev et al. 2019; Gutiérrez et al. 2015). 44 
This mass movement occurs whenever the loading of an earth material exceeds its shear 45 
strength (Lin et al. 2017). Although this geological phenomenon is often triggered by 46 
earthquakes and heavy rainfalls, the expansion of anthropogenic activities in susceptible areas 47 
has always played an important factor in its occurrence (Baena et al. 2019). Despite the 48 
increased human knowledge regarding landslide occurrence and factors controlling this 49 
phenomenon, it is believed that the damage caused by landslides will increase due to 50 
deforestation, climate change and urban development (Pham and Prakash 2018). Therefore, it 51 
is essential to acquire accurate and realistic information about the spatial distribution and 52 
degrees of susceptibility to landslide-prone regions (Colkesen et al. 2016). To achieve this goal 53 
and to mitigate the destructive impacts of this phenomenon, landslide susceptibility maps can 54 
serve as an appropriate tool for increasing awareness and predicting future hazards (Feizizadeh 55 
et al. 2017). Based on previous landslides and identical physical features in similar areas, a 56 
landslide susceptibility map provides important signs regarding the locations where future 57 
landslides are likely to occur (Pradhan et al. 2017). 58 
      The Alborz Mountain has always been subjected to the natural disasters such as landslide 59 
due to its being on the seismic belt of the Himalayas (Farrokhnia et al. 2011). In a study of 60 
identifying high-risk regions of the world with respect to landslide hazard, Nadim et al. (2006) 61 
reported that the Alborz and Zagros Mountains of Iran were among the areas with moderate to 62 
high landslide risks. In addition, according to the National Committee on Natural Disaster 63 
Reduction of the Iranian Ministry of Interior, the annual damage caused by landslides in Iran 64 
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amounts to about 500 billion Rials (Arab Amiri et al. 2019). Consequently, if the loss of human 65 
life is taken into account, it is evident that zoning of the study area is necessary.  66 
     In the recent years, researchers have used different methods and their combinations to zone 67 
the areas susceptible to landslide in different areas worldwide that can generally classify into 68 
two quantitative and qualitative groups (Sahin 2020a). The qualitative approaches, also known 69 
as knowledge-driven approaches, are the techniques of assigning weights to and rank criteria 70 
and sub-criteria based on experts’ knowledge (Achour et al. 2017). Some of these methods, 71 
which have been used in various studies and have yielded acceptable results, include the 72 
analytic hierarchy process (AHP) (Yan et al. 2019; Du et al. 2019; Bahrami et al. 2020) and 73 
hybrid methods such as MCDA and MCE (Erener et al. 2016; Kumar et al. 2017; Wang et al. 74 
2019) and the WLC (Ahmed 2015; Gigović et al. 2019). The second group, also known as data-75 
driven approaches, consists of the techniques which are not influenced by experts’ opinions in 76 
the computational process (Kavzoglu et al. 2015). Instead, the relationship between the 77 
landslides and the effective parameters is determined by using numerical data and statistical 78 
equations (Yan et al. 2019). These methods, which have been used repeatedly in various studies 79 
on landslides, include bivariate and multivariate probability models such as frequency ratio 80 
(FR) (Hong et al. 2017; Sharma and Mahajan 2019; Berhane et al., 2020), weight of evidence 81 
(WoE) (Ding et al. 2017; Cui et al. 2017; Sifa et al. 2020) and logistic regression (LR) (Oh et 82 
al. 2018; Pham et al. 2019; Sun et al. 2021) as well as soft computing methods such as artificial 83 
neural network (ANN) (Bui et al. 2016; Zhu et al. 2018; Yu and Chen 2020), fuzzy logic 84 
(Ramesh and Anbazhagan 2015; Turan et al. 2020), adaptive neuro-fuzzy inference system 85 
(ANFIS) (Polykretis et al. 2019; Panahi et al. 2020; Mehrabi et al. 2020), random forest (RF) 86 
(Kim et al. 2018; Chen et al. 2020; Sahin et al. 2020b) and support vector machine (SVM) (Oh 87 
et al. 2018; Hong et al. 2019; Nhu et al. 2020). Although mentioned models have suitable 88 
performance as predictive models, there are some drawbacks when applied individually 89 
(Youssef et al. 2015). According to the literature review, ensemble models perform more 90 
accurate results than a single method (Roy et al. 2019b; Costache et al. 2020). For example, 91 
Aghdam et al. (2017) combined FR and WoE statistical methods with ANFIS algorithms to 92 
produce landslide susceptibility map of the Zagros Mountains in Iran. Their results indicated 93 
that FR-ANFIS and WoE-ANFIS have better performance compared with FR and WofE. In 94 
another study, Roy et al. (2019b) combined WoE statistical and SVM machine learning models 95 
with different kernel functions to identify landslide hazard zones. They found that WofE& 96 
Linear-SVM ensemble model with more than 90% accuracy has an excellent performance to 97 



  

4 

 

spatial modeling. Althuwaynee et al. (2016) indicated that the combination of CHAID and 98 
AHP methods has better results than stand-alone implementations of each model. 99 
In limited studies, the combination of machine learning algorithms with MCDM methods have 100 
been used (Dehnavi et al. 2015; Arabameri et al. 2020; Costache et al. 2020). For instance, 101 
Arabameri et al. (2020) used the VICOR-RF-FR as an MCDM statistical machine learning 102 
ensemble method to evaluate groundwater potential. They showed the strength ensemble model 103 
to improve the results of nonlinear problems. Dehnavi et al. (2015) showed that the ensemble 104 
ANFIS-SWARA model yielded more realistic results than the SWARA.  105 
    The best-worst method is one of the latest MCDM methods introduced by Rezaei in 2015. 106 
Although this method has been used in two different landslide studies (Gigović et al. 2019; 107 
Moharrami et al. 2020), it has not yet been applied in combination with machine learning 108 
methods. Reviewing the previous studies shows that despite very good results, the combination 109 
of machine learning algorithms with MCDM methods has received less attention. The aim of 110 
the present study is to combine the BWM method with ANFIS in to implement a new structure 111 
and compare it with the widely used SWARA method in order to fill this gap in the spatial 112 
modeling studies. 113 
     Two important points should be considered to achieve optimal results in the spatial 114 
modeling of landslides; (a) the quality of the input data, (b) the structure of the model used 115 
(Adineh et al. 2018). In connection with the first point, in this work, an attempt has been made 116 
to be as careful as possible in preparing the data. Regarding the second point, the difference 117 
between this study and other studies is the combination of BWM model with ANFIS machine 118 
learning method. Moreover, In this study, the hybrid ANFIS-SWARA model has been used to 119 
compare them to determine which of these two most widely used models of MCDM provides 120 
better results in combination with the ANFIS. After preparing landslide susceptibility maps, 121 
the performance of each model was estimated using the indices of sensitivity, specificity, 122 
accuracy, and ROC curve. The results showed that the ensemble ANFIS-BWM model 123 
performed better and can be used in future studies. 124 
 125 
Study Region 126 
     With an area of 8604 km2, the Khalkhal-Tarom Basin is located on the southern slopes of 127 
the Alborz mountain range along from 47⁰ 42 ́ 44 ́  ́to 49⁰ 10  ́34  ́́ E and 36⁰ 37 ́ 22 ́  ́to 37⁰ 56  ́128 
35 ́ ́ N (Fig. 1). Approximately 92% (7967 km2) of the Basin consists of highlands and the 129 
remainder of plains. The highest and lowest elevations are 3314 m and 288 m, respectively. 130 
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The data from the climatological stations of Iran Meteorological Organization and Ministry of 131 
Energy were utilized to estimate temperature and rainfall. The average annual temperature in 132 
the region is about 10.5˚ C; while, the coldest month is February, and the warmest is August. 133 
In addition, the average annual rainfall is about 375 mm. The difference in rainfall levels in the 134 
highlands on the two sides of the main river (the Ghezel Ozan River) results from the 135 
differences in the prevailing climatic conditions in the areas adjacent to the study area. 136 
Although the study area has diverse lithology, pyroclastic rocks of Karaj Formation cover most 137 
of its surface area. Moreover, based on the unit ages, Eocene has the highest coverage of the 138 
study area (Fig. 2). Various factors such as weather conditions, topography and human 139 
activities, including land use change, have increased the occurrence of landslides in this area. 140 
To confirm this important issue, the findings of this study showed that agricultural lands have 141 
the highest risk of landslides due to human activities. Given the existence of economic 142 
infrastructures and the growing residential areas on the unstable slopes in the future, zoning of 143 
landslide-prone regions seems to be vitally important. 144 

 145 
Database Development and Data Preparation 146 
     It is necessary to create a spatial database in any study using geographical information 147 
system. The landslide susceptibility mapping is no exception, and database creation including 148 
inventory map and conditioning factors is considered as the first and the most important step 149 
in this process. The landslide inventory map shows the locations and spatial distribution of 150 
landslides that happened in the past (Ding et al. 2017). Since it is crucial to pinpoint the 151 
locations of the past and present landslides in order to predict future high-risk areas, preparation 152 
of a landslide inventory map is a requisite to any study on landslides (Regmi et al. 2014). 153 
Information on the locations of past landslides and their spatial distributions was obtained from 154 
the Forest, Rangeland and Watershed Organization of Iran (Fig. 1). According to Fig. 1, the 155 
inventory map was employed to randomly select 172 (or 70%) of the 242 landslides that have 156 
occurred in the region for training the data and the 30% for model validation.  157 
      Various factors including geology, hydrology, geomorphology, climate and topography 158 
affect slope instability. Determination of these factors is among the basic, and initial steps in 159 
landslide susceptibility mapping. In this study, thirteen conditioning factors including slope 160 
angle, slope aspect, altitude, topographic wetness index (TWI), plan curvature, profile 161 
curvature, distance to roads, distance to streams, distance to faults, lithology, land use, rainfall, 162 
normalized difference vegetation index (NDVI) were selected based on the available data and 163 
previous studies for the spatial modeling of the landslides (Table 1). According to Table 1, 164 
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these thirteen factors were determined by using the information obtained from the related 165 
organizations and the reference data. Following that, ArcGIS was employed to generate and 166 
digitalize the maps (30-×30-m pixels). Raster data models of the layers were then prepared by 167 
using the selected methods. 168 
      In order to prepare the different information layers, the digital elevation model (DEM) was 169 
prepared first using ASTER satellite images. DEM is one of the most important databases in 170 
any landslide study because preparation of some important thematic maps depends on it. The 171 
slope angle, slope aspect, altitude, TWI and plan and profile curvature layers were extracted 172 
from the DEM (Fig. 3 a-f). The other considered factors (distance to roads, distance to streams, 173 
distance to faults, lithology, land use, rainfall and the Normalized Difference Vegetation Index 174 
were then determined, respectively (Fig. 3 g-m). In addition, the conditioning factors were 175 
categorized based on experts’ opinions, previous studies and study area characteristics. 176 
The slope degree is always considered as an essential factor in analyzing the areas susceptible 177 
to landslide (Umar et al. 2014), because it is the major cause of mass movements. Exposure to 178 
sunlight, dry winds, and increased relative humidity due to rainfall are all factors associated 179 
with slope aspect that trigger landslides (Kavzoglu et al. 2014). Therefore, slope aspect has 180 
always been consideration by researchers. This factor is divided into 9 classes. Altitude is not 181 
directly involved in the occurrence of landslides; however, other factors related to it such as 182 
tectonic activity, weathering and climate change influence the entire process (Rozos et al. 183 
2008). The topographic wetness index is a useful tool for estimating moisture conditions at 184 
basin scale (Grabs et al. 2009). This factor was used due to the varying humidity conditions in 185 
the study area. The values obtained from the slope curvature show the morphology of the 186 
different elevation points (Erener et al. 2010). In this paper, both the profile curvature curve 187 
and the plan curvature were taken into account. The former indicates the velocity and process 188 
of sediment transport and the second the divergence and convergence of the flow passing 189 
through the surface (Dehnavi et al. 2015). Road construction, especially when engineering 190 
principles are ignored, reduces slope stability and consequently triggers landslides (Moosavi 191 
and Niazi 2016). Therefore, the distance from the road has always attracted the interest of 192 
researchers (Xiao et al. 2019; Bui et al. 2012).  Streams decrease shear strength by eroding the 193 
materials from the toe of the slope. Consequently, the factor of distance from the stream is very 194 
important in relation to slope stability (Achour et al. 2017). Faults, especially in seismic zones, 195 
play a significant role in triggering mass movements (Shirzadi et al. 2017). They either act 196 
directly as a triggering factor for landslides or indirectly by causing fractures in slope layers 197 
that lead to the penetration of water into joints and fissures, thereby reducing the shear strength 198 
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of materials constituting the slope that results in the occurrence of landslides (Dehnavi et al. 199 
2015). Lithology as a geological factor has always played  an important role in predicting 200 
landslide, because different geological units with varying degrees of permeability influence 201 
slope stability (Chalkias et al. 2014). Due to their impacts on slope instability, different types 202 
of land use have always attracted many researchers in their research on landslides (Conforti et 203 
al. 2014; Dou et al. 2014). The rainfall factor was used in this research because the amount of 204 
rainfall varies with changes in elevation and rainfall directly and indirectly influences landslide 205 
occurrence. The NDVI index was calculated to analyze the effect of vegetation on slope 206 
instability:  207 
 208 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁+𝑅𝑅

                                                                                                                      (1)                                                                              209 

The NDVI benefits from the ratio of near-infrared (NIR) reflection to red (R) reflection to 210 
estimate vegetation density (Nhu et al. 2020).            211 
 212 
Methodology 213 
 214 
Adaptive neuro fuzzy inference system (ANFIS) 215 
    Although a fuzzy inference system (FIS) using “if-then” rules can analyze complex 216 
processes, it is unable to perform the learning process. The adaptive neuro fuzzy inference 217 
system (ANFIS) (Jang 1993) is one of the most widely used fuzzy systems for modeling 218 
nonlinear problems. This approach, developed by combining a FIS and an artificial neural 219 
network (ANN), utilizes the advantages of both approaches to solve problems. The ANN model 220 
is able to optimize the fuzzy logic solution through the learning process (Oh and Pradhan 2011). 221 
The details of the ANFIS model structure are as follows: 222 
     The ANFIS structure was developed by using the Takagi-Sugeno fuzzy rule base (the details 223 
are presented in equations 10 and 11). 224 

 225 
Rule 1: if x is 𝐴𝐴1 and y is  𝐵𝐵1 then 𝑓𝑓1=𝑝𝑝1𝑥𝑥 + 𝑞𝑞1𝑦𝑦 + 𝑟𝑟1                                                   (2)                                          226 

Rule 2: if x is 𝐴𝐴2 and y is  𝐵𝐵2 then 𝑓𝑓2=𝑝𝑝2𝑥𝑥 + 𝑞𝑞2𝑦𝑦 + 𝑟𝑟2                                                   (3)                                            227 
 228 
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Here, x and y are the system inputs and A1, A2, B1 and B2 are fuzzy membership functions. 229 
In addition, pi, qi and ri (∀ i = 1, 2) are the parameters of the output function (Jang 1993). In 230 
general, the ANFIS structure is made of five layers described below (Fig. 4):  231 
 232 
Layer 1: This layer is responsible for the fuzzification of the variables, and the nodes in this 233 
layer are adaptive nodes.   234 
 235 
𝑂𝑂𝐴𝐴𝑖𝑖
1 =  𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥), i = 1, 2                                                                           (4)                                                                           236 

𝑂𝑂𝐵𝐵𝑖𝑖
1 =  𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦), i = 1, 2                                                                       (5)                                                                  237 

Here, i represents the related node and x and y its input variables, Ai and Bi are linguistic 238 
terms and μAi (x) and μBi (y) the membership functions of the node i. 239 
Layer 2: In this section, every node is a fixed node and each one is responsible for multiplying 240 
signals entering it. The nodes are named by the Π label and their outputs are as follows (Oh 241 
and Pradhan 2011): 242 

𝑂𝑂2,𝑖𝑖 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥).𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦) = 𝑊𝑊𝑖𝑖 ,     𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2                             (6) 243 

Here, Wi (the so called firing strength of each fuzzy rule) represents each node’s output. 244 
Layer 3: This layer has the task of normalizing the output of the second layer. Therefore, the 245 
nodes, which are fixed ones and named by the N label, normalize the input values (Equation 246 
15). The numerator of the fraction includes the firing strength of each fuzzy rule, and the 247 
denominator includes the total firing strength of each rule. 248 

𝑂𝑂3,𝑖𝑖 = 𝑊𝑊𝑖𝑖

𝑊𝑊1+𝑊𝑊2
= 𝑊𝑊�𝑖𝑖   𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2                                                                                          (7)                                        249 

                                                  250 
Layer 4: This is considered the second adaptive layer in the ANFIS structure and each node’s 251 
output is obtained from the following equation: 252 

𝑂𝑂4,𝑖𝑖 = 𝑊𝑊�𝑖𝑖 .𝑓𝑓𝑖𝑖 =  𝑊𝑊𝑖𝑖 . (𝑝𝑝𝑖𝑖𝑥𝑥 + 𝑞𝑞𝑖𝑖𝑦𝑦 + 𝑟𝑟𝑖𝑖)    𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2                                                         (8)                    253 
 254 
In this equation, 𝑊𝑊�𝑖𝑖  is the normalized firing strength of the third layer. 𝑝𝑝𝑖𝑖, 𝑞𝑞𝑖𝑖 and 𝑟𝑟𝑖𝑖 are the 255 
variable parameters (also referred to as the result parameters) of the node i. 256 
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Layer 5: The only node existing in this layer is fixed node labeled Σ. This node sums up all the 257 
input signals and calculates the resulting output (Equation 17). 258 

𝑂𝑂5,𝑖𝑖 = ∑ 𝑊𝑊�𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖 =  ∑ 𝑊𝑊𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖
∑ 𝑊𝑊𝑖𝑖𝑖𝑖

                                                                                                   (9)                       259 

    For more details on the layers and the algorithms, refer to Jang (1993) and Jang and Sun 260 
(1995).  261 
 262 
Best-worst multi-criteria decision making (BWM) model 263 
     The best-worst method (BWM) is one of the newest and most efficient multi-criteria 264 
decision-making approaches introduced in 2015 by Rezaei to calculate the final weights of 265 
criteria in decision-making problems. As in other MCDM methods such as AHP, pair-wise 266 
comparisons are used in BWM. One of the advantages of BWM over AHP are that fewer pair-267 
wise comparisons are used (for AHP we need 𝑛𝑛(𝑛𝑛 − 1)/2 comparisons, and for the BWM 268 
method we need 2𝑛𝑛 − 3 comparisons) (Rezaei 2015). However, the differences in the final 269 
weight calculation in this method have made the final result much more realistic and consistent 270 
than methods such as AHP. The advantages of BWM over AHP are that fewer pair-wise 271 
comparisons are used, the numbers used for pair-wise comparisons are integers ranging 272 
between 1 and 9, and there is no need for fractional numbers. It is also possible to integrate the 273 
BWM with other MCDM methods (Ahmad et al. 2017). The various steps in this method and 274 
its algorithms for problem solving are as follows (Rezaei 2015): 275 

1. Specifying the decision-making criteria for evaluation. The set of criteria is defined as 276 
{C1, C2, … , Cn}. 277 

2. Determining the best (B) and worst (W) criteria by the experts. The best criterion 278 
include most important or the most desirable criterion, whereas the worst ones include 279 
those with the least desirability and/or lowest importance. 280 

3. Determining the priority of the best criteria compared to all the others (the numbers 1 281 
to 9 are used for this purpose). This preference is represented in the form of the 282 
following vector: 283 

AB =  �αB1, αB2, … , αB3�                                                                                                      (10) 284 

Here, αB1 represents the preference of the best criterion (B) over the criterion j (αBB = 1) (Fig. 285 
5). 286 
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4. Determining the priority of all the criteria over the worst one (W). The preference vector 287 
for this phase is as follows: 288 

AW = (α1W, α2W, … , αnW)T                                                                                               (11) 289 
 290 
Here, αjW is the preference of the j criterion over the worst one (W) (αWW=1) (Fig. 5). 291 

5. Calculating the final weights of the criteria. The following equations are used for this 292 
purpose: 293 

  Min ᶓ 294 
   s.t. 295 

   �𝑊𝑊𝐵𝐵

𝑊𝑊𝑗𝑗
− 𝛼𝛼𝐵𝐵𝐵𝐵� ≤ ᶓ ,∀𝑗𝑗 = 1,2, … ,𝑛𝑛 296 

   �
𝑊𝑊𝑗𝑗

𝑊𝑊𝑊𝑊
− 𝛼𝛼𝑗𝑗𝑗𝑗� ≤ ᶓ ,∀𝑗𝑗 = 1,2, … ,𝑛𝑛                                                                                  (12)                                                                                           297 

    ∑ Wj
W
j = 1 298 

    Wj ≥ 0,∀j = 1,2, … , n 299 

 300 
     The values of the final optimum weights (W1

∗, W2
∗ , … . Wn

∗) and *ᶓ  are obtained by Equations 301 
8. In addition, the consistency ratio for each criterion can be estimated by using the consistency 302 
index table (Table 2) and the *ᶓ  value. The following equation states that:  303 

Consistency Ratio =  ᶓ∗

Consistency Index
                                                                                 (13) 304 

     It is evident that the closer the value of the consistency index is to zero, the more realistic 305 
the results will be. Refer to Rezaei et al. (2015) for more details of this method. 306 
 307 
Step-wise weight assessment ratio analysis (SWARA) model 308 
     This is a multi-criteria decision-making method with an ultimate objective like that of other 309 
similar approaches: assigning weights to criteria and sub-criteria. Since its introduction by 310 
Keršulien et al. in 2011, researchers have used it to analyze various areas (Mardani et al. 2015). 311 
An advantage of this method is its flexibility that allows experts to prioritize the criteria based 312 
on the existing conditions. The main feature of this approach is its capability in estimating 313 
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experts’ opinions in relation to the relative importance of the criteria in order to determine their 314 
weights (Keršulien et al. 2011). This procedure consists of the following steps: 315 

1. Selecting the required criteria and ranking them according to their degrees of 316 
importance (the most important criteria take the highest position of ranking and the 317 
least important ones the lowest). 318 

2. Calculating the coefficient Kj, which is a function of the relative importance of each 319 
criterion. 320 

3. Determining the initial weight of each criterion. 321 
4. Calculating the final normalized weight. 322 

 323 
    The final weight for each criterion is calculated through the following equations (Keršulien 324 
et al. 2011): 325 

Sj =  ∑ Ain
i
n

                                                                                                                               (14) 326 

 In this equation, j and n represent the criterion number and the number of experts, respectively. 327 
The value of Ai also indicates the suggested rating of each criterion. 328 

Kj = Sj + 1                                                                                                                          (15) 329 

Qj =
Xj−1

Kj
                                                                                  (16) 330 

Here, Kj and Qi are functions of the relative importance and initial weight of each criterion, 331 
respectively. 332 

Wj =  
Qj

∑ Qjm
j=1

                                                                                 (17) 333 

In this formula, j represents the criterion number, and m shows the number of criteria when Wj 334 
indicates the final weight. 335 
     The final weight (Wj) obtained for each sub-criteria in this study indicates the relationship 336 
between landslides and conditioning factors (Table 3). 337 
 Fig. 6 shows the process of the study, including methods and type of combination used. 338 
 339 
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 340 
Results and Validation 341 
     Table 3 shows the weights obtained from the BWM model and SWARA. As shown in Table 342 
3, the values are between 0 and 0.5. The higher are these values, the greater is their impact. 343 
The values for the slope factor indicate that most of the landslides that occurred in the study 344 
area were of the 5-15˚ class with weights of 0.409 and 0.405, respectively. Aghdam et al. (2017) 345 
also reported that the highest probability of landslide occurrence is related to the slope 5-20 346 
degrees, and this probability decreases with an increase in degree. Among the different slope 347 
aspects, the north-east aspect, with the values of 0.249 (BWM) and 0.486 (SWARA), had the 348 
highest effect on landslide occurrence, due to increased moisture. According to Fig. 7, the main 349 
areas with high and very high degrees of sensitivity are in the areas of north and northeast. In 350 
line with the present study, Sahin (2020a) also showed that the northeast of the study area has 351 
the highest sensitivity to landslide. In relation to the altitude factor, the 1500-1700 m class had 352 
the highest impact on landslide (with values of 0.212 and 0.434 for BWM and SWARA, 353 
respectively). As shown in Table 3, the degree of susceptibility decreases with an increase in 354 
altitude. In a study, Ding et al. (2017) concluded that the highest probability of landslide 355 
occurrence is up to medium altitude and this probability decreases with increasing this altitude. 356 
The results of the BWM model for the TWI showed that the 5.65-7.31 and 7.31-9.87 classes 357 
with the weight of 0.371 had the highest impact on landslide occurrence. For the SWARA, the 358 
7.31-9.87 class with values of 0.482 had the highest probabilities. Consistent with the present 359 
study, Roy et al. (2019a) also found that low and medium TWI values (7.37-9.76) have the 360 
highest risk. For the plan curvature factor, according to Table 3, the maximum weights obtained 361 
from the BWM and SWARA were for the convex class with weights of 0.769 and 0.410, 362 
respectively. This is due to divergence and convergence water flow (Arabameri et al. 2019). 363 
The obtained results are in accordance with the findings of Chen et al. (2020). For the profile 364 
curvature factor, the highest BWM weight (0.470) was that of the concave and convex classes 365 
and for SWARA the highest value (0.489) was that of the concave class. Finding of a study by 366 
Dehnavi et al. (2015) also revealed that the class “concave’’ has the highest impact on the 367 
landslide occurrence. Results obtained from BWM indicated that the distance to road, distance 368 
to stream and distance to fault in the 0-100 m, 0-100 m and 1200 - 1500 m classes with weights 369 
of 0.397, 0.297 and 0.330, respectively, had the highest influence on landslide. As in the BWM 370 
method, in the SWARA also the same classes had the highest weights with the values of 0.311, 371 
0.404 and 0.386, respectively. Consistent with the present study, Aghdam et al. (2017) also 372 
concluded that the maximum weight for the factors of distance to road and distance to stream 373 
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is related to the distance of 0-100 meters and it decreases with an increase in distance. 374 
Concerning lithology, the Jl and PlQc classes had the highest values in the BWM method (0.2), 375 

and the highest in the SWARA (0.344) was in the Jl class. For the land use factor, the 376 
Agriculture class in both models had the strongest relationship with landslide occurrence with 377 
values of 0.505 and 0.270, respectively. The results of this study showed that land use change 378 
disturbs the natural balance of the slopes and increases the risk of landslide occurrence. The 379 
findings of Arabameri et al. (2019) also showed that the class “dryfarming-agriculture” has the 380 
highest risk. Landslides were more likely to occur with increases in rainfall. For the rainfall 381 
factor, 332.9 - 387.65 mm of rainfall had the highest weights in the BWM model and SWARA 382 
(0.352 and 0.647 and 0.352, respectively). In relation to the NDVI factor, the likelihood of 383 
landslide occurrence was greatest for the class >0.5 with the weights of 0.574 and 0.356 for the 384 
BWM method and SWARA, respectively. 385 

 386 
Integration of the ANFIS with SWARA and BWM  387 
     In this study, MATLAB was employed to construct the ANFIS model and the SWARA 388 
method and BWM to feed it for training the network. For this purpose, all the data were first 389 
divided into the training and validation sets. As mentioned earlier, 70% of the data (172 390 
landslide locations) were allocated for training and 30% (70 landslide locations) for validarion, 391 
and they were assigned the value of 1. Using the training data and the SWARA model and 392 
BWM, the weights of the sub-criteria were calculated (Table 3). In the next step, 242 non-393 
landslide points, showing the total number of data, were created in the non-landslide areas. 394 
Then 0 was allocated to each of them. Out of these non-landslide points, 70% (172) points were 395 
selected randomly and considered for training the network. Next, 172 landslide and non-396 
landslide points (with values of 1 and 0) were overlaid upon the conditioning factors, and the 397 
value of each one was determined. This process was carried out once for the SWARA model 398 
and once for the BWM. The values obtained from the overlaying were used as input data for 399 
ANFIS training. After ANFIS training using the BWM method and SWARA, all the pixels 400 
were entered into MATLAB and the final value of each pixel was determined using the created 401 
network. Finally, landslide susceptibility maps were prepared for the ensemble ANFIS-BWM 402 
and ANFIS-SWARA models (Fig. 7). The prepared maps were divided into five classes with 403 
sensitivity degree of very low, low, moderate, high, and very high by applying natural break 404 
method (Ilia et al. 2015; Ding et al. 2017; Panahi et al. 2020). Fig. 8 shows the percent area for 405 
each class in the ANFIS-BWM and ANFIS-SWARA ensemble models. It is quite clear that 406 
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the class with very high landslide susceptibility had the lowest area in both LSMs with values 407 
of 18.65% and 16.21%, respectively (Table 4). In addition, the classes with low and high 408 
landslide susceptibility had the largest areas with the values of 20.50% and 23.01% for ANFIS-409 
BWM and ANFIS-SWARA, respectively.  410 

 411 
Models validation and comparison      412 
     Validation is a very important step in estimating the accuracy of a method in producing 413 
landslide susceptibility maps. In this study, validation was performed by using 30% of landslide 414 
and non-landslide locations (72 points with values of 0 and 1) in three stages. In the first stage, 415 
the mean-squared-error (MSE) and root-mean-squared-error (RMSE) was calculated to 416 
estimate the accuracy of ANFIS trained network using SWARA and BWM methods. MSE and 417 
RMSE are defined as follows: 418 
 419 

 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛

 ∑ ( 𝑇𝑇𝑗𝑗𝑛𝑛
𝑗𝑗=1 −  𝑇𝑇�𝑗𝑗  )²                                                                                                 (18) 420 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛

 ∑ ( 𝑇𝑇𝑗𝑗𝑛𝑛
𝑗𝑗=1 −  𝑇𝑇�𝑗𝑗 )²                                                                                           (19) 421 

where, 𝑇𝑇𝑗𝑗 is the target values and 𝑇𝑇�𝑗𝑗 is the output values and n is the total number of samples. 422 
RMSE is the square root of MSE. 423 
     The lower MSE value is (closer to zero) the lower the amount of error in the final prediction 424 
and hence the more accuracy the modeling will be (Moayedi et al. 2019) Fig. 9c shows MSE 425 
and RMSE for the test dataset. The results showed that the MSE values for the ANFIS-BWM 426 
and ANFIS-SWARA models are 0.242 and 0.299, and RMSE values are 0.443 and 0.477, 427 
respectively (Table 4). As the results indicate, the new BWM method outperformed the 428 
SWARA model in training the ANFIS. 429 
     In the second step, indices such as positive predictive value (PPV), negative predictive value 430 
(NPV), sensitivity (SST), specificity (SPE), and accuracy (ACC) were calculated using the 431 
error matrix (Bui et al. 2016; Wang et al. 2020). The following equations were used to calculate 432 
the indices:  433 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                                                                                                          (20) 434 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                                                                                                         (21) 435 
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𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                                                                                                           (22) 436 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                                                                                                          (23) 437 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

                                                                                                              (24) 438 

Here, TP indicates pixels which have correctly been classified as the landslide occurrence, TN 439 
stands for pixels which have correctly been classified as non-slip pixels, FP represents pixels 440 
that have incorrectly been classified as slip pixels, and FN also indicates pixels that are 441 
incorrectly classified as non-slip pixels. As shown in Table 5, the PPV values for ANFIS-BWM 442 
and ANFIS-SWARA are 65.6% and 63.8%, the NPV values are 80.9% and 78.3%, the SST 443 
values are 87.1% and 85.7%, the SPE values are 54.3% and 51.4%, and the ACC values are 444 
70.7% and 68.6%, respectively. The results show that the ANFIS-BWM model has a higher 445 
percentage in all indicators. 446 
     In the third stage the LSMs were evaluated using the ROC curve. The ROC curve is a 447 
graphical representation of the balance between negative and positive error values that can 448 
quantitatively estimate the model accuracy. The area under the curve (AUC) illustrates the 449 
predicted value of the system by describing its ability in correctly estimating the occurrence of 450 
the event (landslide) and the non-occurrence of the event (non-landslide) (Yan et al. 2019). 451 
Therefore, the larger the area under (AUC) the curve is the more accurate the model will be 452 
and the lower AUC show weak performance of the model. Further details on this curve for 453 
validating landslide susceptibility maps are provided in articles by Pourghasemi et al. 2013 and 454 
Fan et al. 2017. 455 
     In this study, 72 landslide and non-landslide points were overlaid upon the conditioning 456 
factors to plot the ROC curves. The values obtained for each point were then used as input data. 457 
Fig. 10 shows the ROC curves for the methods. Based on the results, the areas under the curves 458 
for the ANFIS-BWM and ANFIS-SWARA ensemble models are 75% and 73.6%, respectively. 459 
The results obtained from the evaluation of the zoning suggested that both models were able to 460 
predict the landslide prone areas well; however, the ANFIS-BWM model was more accurate 461 
and, hence, yielded more reliable outputs.  462 
 463 
Discussion 464 
     Landslide spatial modeling is a nonlinear and complex problem because it is affected by 465 
various parameters. Therefore, to achieve the better results, using new methods and their 466 
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combination is necessary. In spatial modeling of landslide, the combination of machine 467 
learning algorithms with MCDM methods has received less attention. In this study, we 468 
produced a new ensemble ANFIS-BWM model for landslide susceptibility mapping in the 469 
Khalkhal-Tarom, Iran. The performance of this model was then compared with the ensemble 470 
ANFIS-SWARA model using confusion matrix and ROC curve. One of the important steps in 471 
spatial modeling is to compare the results with other similar studies. 472 
     The research models have attracted the interest of spatial modeling studies. Gigovic et al. 473 
(2019) integrated the BWM with the WLC and OWA methods for zoning regional landslides 474 
in western Serbia. They showed that the ensemble MCDM-BWM methods with more than 90% 475 
accuracy can be a powerful method for spatial modeling of landslides. In another study, 476 
Moharrami et al. (2020) applied the combination of fuzzy with BWM and AHP methods to 477 
evaluate areas that are prone to landslides. Their findings showed that FBWM ensemble 478 
method has better performance than FAHP. According to studies, the BWM method has 479 
advantages such as (1) it requires less pairwise comparisons compared to other widely used 480 
MCDM methods like AHP, (2) its results are more reliable because it has a higher consistency 481 
ratio compared to AHP, and (3) Working with this method is more accurate and easier because 482 
it does not use secondary comparisons. They also stated that the combination of BWM method 483 
with other models has better performance than stand-alone implementation. Consistent with 484 
previous studies, the results of the present study showed that the ensemble ANFIS-BWM 485 
method has a good performance and is more accurate in preparing LSM when compared to 486 
ANFIS-SWARW.  487 
     In spatial modeling, the ANFIS method has been used as a powerful method in combination 488 
with other methods (Chen et al. 2021; Costache et al. 2020; Dehnavi et al. 2015). Chen et al. 489 
(2021), for example, used the ANFIS model and its combination with two intelligent TLBO 490 
and SBO algorithms to generate a landslide susceptibility map. Their results showed that the 491 
hybrid ANFIS-SBO model outperformed the ANFIS and ANFIS-TLBO models. In addition, 492 
they stated that the advantages of the ANFIS method such as capacity, simplicity and speed of 493 
estimation have made it to have better adaptability to other methods in order to create a hybrid 494 
model. Panahi et al. (2020) also stated that the ANFIS model has some benefits, including good 495 
learning ability, good integration by its neural network and more flexibility in nature. In another 496 
study, Costache et al. (2020) used a combination of ANFIS with three qualitative and 497 
quantitative methods of AHP, CF and WOE. Their findings showed that all three ensemble 498 
models with the accuracy more than 80% have excellent performance in flood sensitivity 499 
zoning. They also suggested that although ANFIS is a powerful method, the type of model used 500 
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in the production of input data is important and can affect the accuracy of the results. The 501 
results of this study also showed that the combination of ANFIS method with two BWM and 502 
SWARA models can provide good results in generating landslide sensitivity map. Consistent 503 
with the study, in this study we showed that although both models used are of MCDM type, 504 
the BWM method is better than SWARA in combination with ANFIS. Since bringing the 505 
prediction closer to reality is the most important objective in complex environmental issues 506 
such as landslides, it is necessary to compare newly introduced ensemble methods with the 507 
previous ones in order to achieve more optimal results. To generate landslide susceptibility 508 
map, Dehnavi et al. (2015) integrated the SWARA multi-criteria decision-making approach 509 
with the ANFIS method. They found that the ANFIS-SWARA model with the area under the 510 
curve of 0.8 yielded a more accurate prediction than the SWARA method. In line with the study 511 
conducted, we also concluded that the hybrid ANFIS-SWARA model has a good performance 512 
in landslide sensitivity zoning with more than 70% accuracy. 513 
     In this study, the importance of using models to improve the performance of machine 514 
learning methods was shown. According to the literature review, the type of model that is used 515 
to determine the correlation between conditioning factors and the landslide occurrence is 516 
effective in improving the results (Dehnavi et al. 2015; Aghdam et al. 2017; Costache et al. 517 
2020). Based on the results shown in Table 3, although both methods are of the type of MCDM 518 
and include values between 0 and 0.5, the new BWM model performs better compared to 519 
SWARA model. In other word, the results indicated that the new BWM produced more realistic 520 
results than the SWARA method which trained the ANFIS model well and obtained an 521 
acceptable output from it.  522 
     The ensemble ANFIS-BWM model used in this study has some advantages: those are (1) 523 
high speed with complex and large datasets (2) suitable performance, and (3) flexibility with 524 
other spatial modeling. There are also disadvantages. For a limited number of landslide points, 525 
the model does not provide a suitable output. In this research, lack of information was a serious 526 
issue. As a final conclusion, based on the ROC results with more than 70% accuracy, the 527 
ensemble models used in this study have a logical structure and suitable for use in other spatial 528 
modeling studies. It is recommended to integrate novel multi-criteria decision-making models 529 
with machine learning algorithms such as ANFIS for improve the accuracy. 530 

 531 
Conclusion 532 
     Known as natural destructive ground-deforming phenomena, landslides have occurred in all 533 
historical periods. In the current study, for spatial prediction of landslide in the Khalkhal-534 
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Tarom, Iran, a new combination of MCDM method and machine learning algorithm was 535 
conducted. For this purpose, we integrated BWM method with ANFIS model. Moreover, the 536 
ANFIS-SWARA ensemble model was applied to compare with ANFIS-BWM to select more 537 
realistic LSM. The results of ROC showed that with more than 70% accuracy, the ensemble 538 
models used in this study have a suitable structure for spatial modeling of landslides. Although 539 
both the BWM and the SWARA technique were multi-criteria decision-making models, their 540 
outputs differed in types of ranking and weighting. Our results indicated that the new ensemble 541 
ANFIS-BWM model performed more accurately than ANFIS-SWARA. In addition, the results 542 
of sensitivity, specificity and accuracy proved the superiority of the ANFIS-BWM. Therefore, 543 
it is essential to decide the output of which method should be utilized to train a machine 544 
learning model. Since the ANFIS-BWM model yielded better results, it is recommended for 545 
use in other similar areas because it can substantially help land use managers and planners in 546 
making essential decisions. 547 

 548 
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