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Abstract (256 words):  

Background: 

Aggressive fluid or blood component transfusion for severe haemorrhagic shock may restore 
macrocirculatory parameters, but not always improve microcirculatory perfusion and tissue 
oxygen delivery. We established an ovine model of haemorrhagic shock to systematically 
assess tissue oxygen delivery and repayment of oxygen debt; appropriate outcomes to guide 
patient blood management. 

Methods: 

Female Dorset-cross sheep were anaesthetised, intubated, and subjected to comprehensive 
macrohaemodynamic, regional tissue oxygen saturation (StO2), sublingual capillary imaging 
and arterial lactate monitoring, confirmed by invasive organ-specific microvascular 
perfusion, oxygen pressure and lactate/pyruvate levels, in brain, kidney, liver and skeletal 
muscle. Shock was induced by stepwise withdrawal of venous blood until mean arterial 
pressure (MAP) was 30mmHg, mixed venous oxygen saturation (SvO2) <60%, and arterial 
lactate >4mM. Resuscitation with PlasmaLyte® was dosed to achieve MAP >65mmHg. 
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Results: 

Haemorrhage impacted primary outcomes between baseline and development of shock: MAP 
89±5 to 31±5 mmHg (p<0.01), SvO2 70±7 to 23±8% (p<0.05), cerebral regional tissue 
oxygen saturation (StO2) 77±11 to 65±9% (p<0.01), peripheral muscle StO2 66±8 to 16±9% 
(p<0.01), arterial lactate 1.5±1.0 to 5.1±0.8mM (p<0.01), and base excess 1.1±2.2 to -
3.6±1.7mM (p<0.05). Invasive organ-specific monitoring confirmed reduced tissue oxygen 
delivery; oxygen tension decreased and lactate increased in all tissues, but moderately in 
brain. Blood volume replacement with PlasmaLyte® improved primary outcome measures 
toward baseline, confirmed by organ-specific measures, despite haemoglobin reduced from 
baseline 10.8±1.2 to 5.9±1.1g/dl post-resuscitation (p<0.01). 

Conclusion: 

Non-invasive measures of tissue oxygen delivery and oxygen debt repayment are suitable 
outcomes to inform Patient Blood Management of haemorrhagic shock, translatable for pre-
clinical assessment of novel resuscitation strategies. 

 

Keywords: 

haemorrhagic shock, fluid resuscitation, Patient Blood Management, tissue oxygen delivery, 
microvascular function, haemodynamic recovery, anaemia compensation. 
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Background 

Acute haemorrhage causes a blood pressure and flow-dependent decrease in tissue 
perfusion, progressing to shock and oxygen debt when tissue oxygen demand exceeds 
delivery. Crystalloids and blood are administered to restore intra-vascular volume, 
haemodynamic stability and oxygen carrying capacity of the macro-circulation, which is 
intended to restore tissue oxygen delivery and repay tissue oxygen debt. Without resuscitative 
interventions, the pathophysiology of haemorrhagic shock progresses rapidly from capillary 
collapse, anaerobic metabolism, endothelial glycocalyx degradation and coagulopathy, 
toward microvascular and endothelial dysfunction (1-3). Subsequent endothelial 
inflammation and leukocyte infiltration may result in tissue oedema, microvascular 
haemorrhage and further microvascular occlusion, culminating in multiple organ failure and 
death (1, 2, 4-6). Therefore, urgent effective treatment is critical in order to reduce 
haemorrhagic shock-associated mortality. 

Clinical assessment of shock to guide treatment and monitor recovery is often limited 
to macrohaemodynamic parameters, while patient-relevant measures of tissue oxygen 
delivery are rarely used. Interventions to restore microcirculatory flow and tissue oxygen 
delivery may have greater relevance for organ survival and patient outcomes than addressing 
haemoglobin in the macrocirculation alone (1). In severe cases of shock, microvascular 
dysfunction and endothelial disruption may progress to organ failure despite intensive 
treatment with fluids and blood products (6, 7). Patient Blood Management is a 
multidisciplinary approach to managing a patient’s own blood and haemostatic requirements. 
In principle, the decision to transfuse or use another treatment should be based not only on 
haemoglobin levels, but incorporate multiple clinical assessments to achieve the desired 
outcome of adequate tissue oxygen delivery. Therefore, confirmation and translation of 
reliable measurements of tissue oxygen delivery, and novel resuscitation strategies that 
restore microvascular function to prevent irreversible shock, may prove useful in guiding 
optimal treatment of haemorrhagic shock in the context of Patient Blood Management. 

To advance patient outcomes, clinically-relevant animal models of haemorrhagic 
shock could provide insight into the efficacy of novel resuscitation strategies and the 
mechanisms involved (1, 3-5). Our group has previously developed clinically-relevant ovine 
models of trauma (8), haemorrhage (9), transfusion (10), TRALI (11) and septic shock (12), 
to investigate the pathophysiology of these conditions and to assess outcomes of transfusion 
or fluid resuscitation. To investigate tissue-specific pathophysiology of haemorrhagic shock, 
we developed an ovine model of massive haemorrhage with critically reduced tissue oxygen 
delivery and cumulative oxygen debt, confirmed by real-time organ-specific oxygen delivery, 
inflammatory markers and post-mortem histology. To demonstrate clinical utility of non-
invasive measures of tissue oxygen delivery in guiding Patient Blood Management, we 
benchmarked these against invasive measures of tissue perfusion, oxygen delivery and 
oxygen debt in vital organs. 
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Methods 

The Queensland University of Technology University Animal Ethics Committee 
approved this study (approval #1800000493). Experiments were conducted in accordance 
with the Australian Code for the Care and Use of Animals for Scientific Purposes (13). 

Initial Instrumentation 

To establish the model, six non-pregnant Dorset-cross ewes, <3-years old, determined 
healthy by veterinary and haematological assessment, were fasted overnight before the 
procedure. The operating facility, monitoring and data management systems (Figure S1, 
http://links.lww.com/SHK/B327) are described in detail elsewhere (14). A 7-Fr three-lumen 
central venous catheter and two 8-Fr venous sheaths (Arrow International Inc., PA, USA) 
were inserted under local anaesthesia and sutured in place in the left and right jugular veins 
for fluid infusion, blood sampling or haemorrhage, and central haemodynamic monitoring. 
After insertion of the first sheath, animals were pre-medicated with midazolam (3-6mg 
bolus). Anaesthesia was induced with propofol (3-4mg/kg), and maintained with midazolam 
0.5-0.8mg/kg/hr, fentanyl 5-15µg/kg/hr and ketamine 2.5-7.5mg/kg/hr. An endotracheal tube 
(size 9, Smiths Medical, Australia) was inserted into the trachea through direct laryngoscopy, 
and after intubation the animal was placed on the lateral-left position on a heated operating 
table and connected to the ventilator (Galileo, Hamilton Medical, Switzerland). Initial 
mechanical ventilation parameters were 12 breaths/min, 8-10ml/kg tidal volume, 5cm H2O 
positive end-expiratory pressure (PEEP), and 40% inspiratory fraction of oxygen (FiO2). 
These settings were adjusted to maintain normocapnia and arterial oxygen saturation >92%. 
A 500-1000 ml bolus of Hartmann’s solution was initially given to compensate for overnight 
fasting and potential dehydration; fluids were maintained at 1ml/kg/hr thereafter. 

Systemic Monitoring 

Basic monitoring included a pulse oximeter probe attached to the tongue, 3-lead 
electrocardiogram, invasive blood pressure monitoring via a 16Ga femoral artery line (Arrow 
International, PA, USA), and continuous waveform capnography. A 7.5-Fr Swan-Ganz 
catheter (Continuous Cardiac Output (CCO) VIP Pulmonary Artery Catheter, Edwards Life 
Science, CA, USA) was inserted into the right jugular sheath for continuous haemodynamic 
monitoring of pulmonary artery blood pressure, body temperature, and cardiac output. Stroke 
volume, mixed venous oxygen saturation (SvO2), and systemic vascular resistance were 
measured at defined time points. A 12-Fr urinary catheter (Bard, GA, USA) and a 9-Fr 
nasogastric tube were inserted. Blood was sampled at major time points for arterial blood gas 
(ABG) analysis, 5-part differential blood counts (Mindray BC-5000 Vet), coagulation 
analysis using rotational thromboelastometry (ROTEM; Haemoview Diagnostics), and 
serum, plasma and urine stored for post-hoc tests and bio-banking. Additional ABG analyses 
were performed every 15min during haemorrhage and the first hour of resuscitation. 

Non-invasive Tissue Monitoring 

Non-invasive measures included continuous regional tissue oxygen saturation (StO2) 
measured by near infer-red spectroscopy (NIRS; ForeSight Elite, Australia), with probes 
sutured to close-shaved skin over the frontal cortex (Figure S2, 
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http://links.lww.com/SHK/B327) and biceps femoris muscle. Sublingual microvascular blood 
flow was assessed hourly by incident dark-field (IDF) imaging (CytoCam, Braedius Medical, 
Netherlands), and data from videos were expressed as proportion perfused vessels (PPV), 
perfused vessel density (PVD), and average perfusion speed index (APSI). 

Invasive Tissue Monitoring  

Laser optical probes (Oxford Optronix, UK) were inserted into the liver, kidney, 
skeletal muscle and brain to invasively monitor microvascular perfusion (MNP probes; MSP 
for liver) and tissue oxygen partial pressure (LAS-8 probes); the monitoring system is 
illustrated in Figure S3, http://links.lww.com/SHK/B327. Interstitial glucose, lactate and 
pyruvate levels were sampled hourly using micro-dialysis probes (MD63; M Dialysis AB, 
Sweden) perfused at 0.3µl/min, and assessed in an ISCUS analyser (M Dialysis AB). Details 
on surgical insertion of probes into liver, kidney, muscle and brain are described and 
illustrated in Figures S4-S7, http://links.lww.com/SHK/B327, respectively.  

Experimental timeline 

Animals were instrumented then rested one-hour before the experimental protocol. At 
experimental baseline (T0), haemorrhage commenced and shock was induced within 90min. 
Resuscitation commenced at T1 followed by four hours assessment of recovery (T2-T5), as 
per the experimental timeline in Figure 1. 

Haemorrhagic shock protocol 

To minimise splenic auto-transfusion during haemorrhage (15), we infused adrenaline 
(0.001-0.1µg/kg/min) until splenic contraction was achieved after an elevated heart rate for 
5min, confirmed by increased haemoglobin levels. Venous blood draws commenced 
immediately using an automated blood collector (T-RACII, Tumero BCT, Australia). The 
first 450ml blood was rapidly drawn within 10min. The next two draws of 225ml each 
continued if MAP was >40mmHg. Subsequent blood draws continued cautiously until targets 
of shock (SvO2 <60%) and oxygen debt (arterial lactate >4mM) were achieved, while 
maintaining MAP around 30mmHg. Estimated iatrogenic blood loss from sampling and 
surgery before resuscitation was 300ml (8-12% TBV). 

Resuscitation protocol 

The target for fluid resuscitation was MAP >65mmHg, equivalent to 70-80% baseline 
MAP, and noradrenaline was given if MAP <50mmHg. An initial rapid bolus of 
PlasmaLyte® based on the haemorrhage volume of was administered within 10min, then 
tapered to 20ml/kg/hr. If MAP >65mmHg after 15min, infusion was decreased to 10ml/kg/hr. 
If MAP >65mmHg after 15min, fluids were reduced to maintenance dose of 1ml/kg/hr. 
Fluids were increased accordingly when MAP <65mmHg, and noradrenaline given if MAP 
<50mmHg. Noradrenaline was ceased if MAP could be maintained >50mmHg. 

Outcome measures 

The primary outcome measures were clinical markers of haemodynamic recovery and 
non-invasive measures of tissue oxygen delivery. Treatment targets were MAP >65mmHg, 
SvO2 >65%, StO2-brain >60% and StO2-muscle >50%, and repayment of oxygen debt 
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defined by arterial lactate <2mM and positive base excess. Secondary outcome measures 
included heart rate, and less frequently used clinical and experimental variables, including 
cardiac output, systemic vascular resistance index (SVRI), PaO2/FiO2 (P/F ratio), urinary 
output, and sublingual capillary perfusion (IDF imaging). Investigational invasive organ-
specific measures of oxygen delivery included microvascular perfusion and oxygen tension 
by laser probes, and lactate and lactate/pyruvate ratios by micro-dialysis. 

Post-mortem assessment  

Animals were euthanised with lethal dose pentobarbitone. Histopathological evidence 
of tissue damage induced by shock was determined in samples taken from brain (right frontal 
cortex), right kidney, right liver lobe, small intestine, heart (right and left ventricle), lung 
(right upper and middle lobes) and biceps femoris muscle. Tissues were fixed and stained 
with haematoxylin and eosin, or frozen for post-hoc analysis. A three-stage veterinary 
histopathology scoring system (Table S1, http://links.lww.com/SHK/B327) was established 
as described for lung (16), brain (17), kidney (18), heart (19), liver (20), intestine (21), and 
skeletal muscle (22). 

Analysis of inflammatory markers 

The concentration of inflammatory cytokines in serum (ovine IL-6, IL-8, IL-10 and 
IL-1β) was determined by ELISA using commercial antibodies (Abacus, Meadowbrook, 
QLD, Australia) based on previously published methods (23), and the endothelial glycocalyx 
component hyaluronan was assessed using an ELISA kit (R&D Systems, Minneapolis, USA), 
according to the manufacturer’s protocol. 

Statistical analysis 

Summary statistics are presented as mean ± standard deviation. Changes in primary 
outcome measures and experimental variables from baseline through shock and recovery 
were assessed by 1-way ANOVA (Friedman’s non-parametric test). Dunn’s post-tests 
defined variance from baseline to hourly observation points to determine time to recovery in 
each outcome measure. 

Results 

Development of shock targets during haemorrhage, and resuscitation requirements 

To establish our model, six animals (55±4kg) were bled until criteria of shock and 
oxygen debt were observed. Baseline characteristics and interventions are summarised in 
Table 1. Adrenaline-induced splenic contraction increased circulating haemoglobin by 29% 
from 8.4±1.9 to 10.8±1.2g/dL, before haemorrhage commenced. Combined haemorrhagic 
and iatrogenic blood loss was 1465±198ml (41% TBV). All animals met our criteria for 
haemorrhagic shock; MAP was 31±5mmHg, SvO2 was 23±8%, and arterial lactate was 
5.1±0.8mM. Resuscitation with 3707±1918ml PlasmaLyte® was 2.4±1.1 times total blood 
loss. Resuscitation concluded early in two sheep (35, 87min) because MAP rapidly increased 
and remained >65mmHg. Other animals required ongoing PlasmaLyte® throughout the 
recovery period. All six animals completed the experimental protocol. 
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Impact of shock and resuscitation on clinical haemodynamic markers and tissue oxygen 
delivery 

All primary outcome measures, including shock criteria (MAP, SvO2 and arterial 
lactate), regional tissue oxygen delivery, and base excess were achieved with the 
haemorrhage protocol. Baseline levels, shock-associated nadir, and time to recovery of these 
primary outcome measures are reported in Table 2 and illustrated in Figure 2. MAP (Figure 
2a) and SvO2 (Figure 2b) were rapidly impacted by both haemorrhage and fluid resuscitation 
interventions. Regional tissue oxygen saturation in brain (Figure 2c) was relatively conserved 
during haemorrhage (16% decrease) compared with peripheral muscle (76% decrease; Figure 
2d). The cerebral NIRS probe on animal PL2 had a weak signal due to poor skin contact, and 
was not included in the average. Critically-reduced tissue oxygen delivery was defined by 
decreased SvO2 (23±8%) and skeletal muscle oxygen saturation (16±9%). All animals 
developed oxygen debt after achieving shock, measured by increased arterial lactate (Figure 
2e) and base deficit (Figure 2f). Recovery from oxygen debt closely followed increased tissue 
oxygen delivery in 5 of 6 animals. Delayed peripheral tissue oxygen delivery in one animal 
(PL5) was associated with failure to repay oxygen debt during the observation period. 

Clinical features of shock confirmed by secondary outcome measures 

The secondary outcome measures identified additional features defining the clinical 
response to haemorrhagic shock (Table 2). The initial haemodynamic response to 
haemorrhage characterised by reduced MAP coincided with reduced cardiac output (p<0.05), 
partially compensated by increased heart rate (p<0.05) and/or SVRI (p<0.05). Reduced MAP 
also coincided with decreased pulmonary gas exchange (P/F ratio; p<0.001), urinary output 
(p<0.05), while sublingual microvascular perfusion, a non-invasive surrogate measure of 
microvascular perfusion for other vital organs, was not significantly reduced during 
haemorrhage.  

In the resuscitation phase, all outcome measures recovered toward baseline within two 
hours, defined by p>0.05 in post-tests. MAP and urinary output recovered by three hours, but 
haemoglobin remained low due to haemodilution from resuscitation with PlasmaLyte (Table 
2). 

Impact of shock observed at an organ level 

The impact of haemorrhage on organ-specific perfusion, oxygen tension and oxygen 
debt were measured in brain, kidney, liver and skeletal muscle (Figure 3). The brain was 
representative of other vital organs (e.g. heart), while peripheral muscle was considered a low 
priority of non-vital organ. While non-invasive sublingual perfusion was not significantly 
reduced during haemorrhage, invasive measures demonstrated reduced perfusion in brain and 
muscle, while perfusion in kidney and liver tended to increase between the end of 
haemorrhage (variable time between animals) and the start of resuscitation (T1; shock 
observation point), and was not significantly reduced. In agreement with non-invasive NIRS, 
tissue oxygen tension declined significantly in all organs except brain, confirming 
compensated oxygen delivery to this vital organ. Lactate increased in all tissues during shock, 
but to a lesser extent in brain as expected from oxygen levels. During resuscitation, 
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microvascular perfusion and oxygen tension increased in all tissues. Lactate declined earlier 
in highly vascularised kidney, peaked later in liver, and plateaued longer in muscle. The 
lactate/pyruvate ratio was significantly elevated in kidney and liver during shock, but 
metabolic recovery in liver was delayed in some animals.  

To summarise the value of invasive measures in confirming organ-specific 
contributions to non-invasive measures of tissue oxygen delivery and debt, average changes 
in oxygen saturation in brain and muscle (Figure 4a) agreed with average changes in tissue 
oxygen tension (Figure 4b). These data confirmed relative preservation of oxygen delivery to 
brain compared to other organs. Arterial and tissue lactate levels were concordant between 
animals; failure to clear arterial lactate in animal PL5 (Figure 4c) was associated with 
elevated lactate levels in multiple organs (Figure 4d). Lactate from non-vital organs was 
closely associated with changes in arterial lactate 
Inflammatory and tissue injury markers 

Serum markers of inflammation, degradation of the endothelial glycocalyx, and 
changes in the circulating neutrophil count (Figure 5) demonstrated an inflammatory 
response to shock, and partial recovery during fluid resuscitation. The principal inflammatory 
cytokine, IL-6, increased during shock and remained high during resuscitation. Cytokines IL-
8 and IL-10 increased during shock then declined during resuscitation, while endothelial 
glycocalyx breakdown product hyaluronan increased during initial bolus resuscitation then 
declined during tapered fluid treatment. IL-1β tended to decline throughout the protocol, 
while neutrophils gradually increased and remained in circulation. 

Evidence of shock-associated inflammation and tissue injury was further confirmed 
by histopathological examination (Table S1, http://links.lww.com/SHK/B327). Examples of 
the following histopathological observations are illustrated in Figure 5. Mild to moderate 
injury was observed in lung (haemorrhage and neutrophilic infiltration of alveoli and 
interstitium, and bronchus-associated lymphoid tissue hyperplasia), brain (microvascular 
congestion and perivascular oedema), heart (occasional myocytolysis in the right ventricle, 
and infiltration of low numbers of neutrophils and necrosis of myocardiocytes in left and 
right ventricles), kidney (Bowman’s capsule dilation, and proximal/distal tubule granular 
debris and hyaline casts), liver (microvascular congestion and neutrophilic infiltration), small 
intestine (abnormal villi structure and neutrophilic infiltration in the mucosa and lamina 
propria), while skeletal muscle showed no pathological effects. 

Discussion 

We developed an ovine model of controlled haemorrhage and shock, defined by 
reduced tissue oxygen delivery and oxygen debt. The primary strengths of the model are 
reproducible induction of clinically-relevant shock, confirmed by standard-of-care 
haemodynamic measures, surrogate and non-invasive measures of tissue oxygen delivery, 
supported by experimental invasive organ-specific measures. Intensive care and monitoring 
were designed on procedures, equipment and materials used in human intensive care 
management, supplemented with invasive methods, and protocols optimised for clinical 
translatability (14). To model physiological haemorrhagic shock, blood withdrawal was 
initially rapid, then withdrawal rate was reduced and guided by MAP to 30mmHg, until 
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oxygen debt accumulated to arterial lactate >4mM. The model replicated clinical progression 
of shock. Acute haemorrhage and hypovolemia defined by reduced MAP and cardiac output, 
was compensated by increasing heart rate and to a lesser extent systemic vascular resistance 
(24), despite potential attenuation of these compensatory mechanisms by anaesthesia (25). 
Onset of shock was defined by reduced SvO2 and peripheral regional oxygen saturation; and 
finally the severity of shock defined by arterial lactate and base deficit, confirmed by invasive 
assessment of oxygen tension and lactate levels in vital and non-vital organs (1, 4, 5, 7, 26). 
Organ-specific effects of shock were confirmed by post-mortem histological analysis. Post-
hoc tests confirmed a systemic inflammatory cytokine and neutrophil response to shock, and 
the endothelial glycocalyx experienced some degradation during shock and the initial rapid 
fluid bolus treatment, but soluble hyaluronan decreased during tapered fluid dosing. The 
primary treatment outcomes focussed on tissue oxygen delivery and repayment of oxygen 
debt (27), which are translatable as patient-outcome measures to guide Patient Blood 
Management. Although aggressive fluid resuscitation may adversely impact microvascular 
function via glycocalyx degradation, causing increased lung injury after severe shock (28, 
29), histological assessment of lung tissue and the wet:dry ratio confirmed that fluid-
associated lung injury was minimal. Importantly, the resuscitation protocol restored both 
macrocirculatory and microcirculatory parameters (6, 30-32). 

In support of the model’s clinical translatability and capacity to inform Patient Blood 
Management, reliable non-invasive diagnosis of tissue perfusion and oxygen delivery could 
guide the decision to transfuse or not when haemoglobin is at or below the transfusion 
threshold, and confirm efficacy when other treatment options are used (27, 33-38). Recovery 
of critical oxygen delivery, measured in our model by regional oxygen saturation and tissue 
oxygen pressure, did not depend on haemoglobin recovery, but on restoration of blood 
volume, cardiac output and perfusion pressure. The average reduction in haemoglobin to 
5.9g/dL in sheep after resuscitation with PlasmaLyte® was equivalent to haemodilution to 
<7g/dL in humans; below the restrictive transfusion threshold. Haemoglobin was therefore 
considered a treatment variable applicable to transfusion, not a surrogate measure of tissue 
oxygen delivery. 

Microvascular perfusion and tissue oxygen delivery are increasingly supported in 
evidence-based treatment of shock, although the ideal platforms for diagnosis and monitoring 
are subject to ongoing investigation (33, 38, 39). Reliability of sublingual capillary imaging 
was inconclusive in our study, because instrumentation procedures may have induced 
inflammation and impacted sublingual perfusion before haemorrhage, since post-resuscitation 
data were substantially higher than pre-haemorrhage levels. NIRS identified acute changes in 
tissue oxygen delivery, with vital organs represented by cerebral StO2, and peripheral muscle 
StO2 was a reliable measure for peripheral tissues and a surrogate for non-vital organ oxygen 
delivery. Arterial lactate and base excess are considered reliable surrogate measures of tissue 
oxygen delivery, predictors of severity of shock and oxygen debt, and measurements of 
efficacy to guide treatment (4, 5, 40). Our data suggested arterial lactate adequately 
represented oxygen debt across multiple organs during shock and recovery. 
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The primary objective in developing this model was to reliably induce clinically-
relevant haemorrhagic shock, and demonstrate utility of technologies measuring tissue 
oxygen delivery, translatable to studies of novel treatment options incorporating outcomes 
centred on tissue oxygen delivery. We performed haemorrhage in a controlled ICU 
environment, with standardised ventilation parameters appropriate for anaesthetised sheep 
(14, 41, 42). Deep anaesthesia was mandatory for the extensive instrumentation procedures. 
Fully-preserved compensatory mechanisms in awake sheep may sustain perfusion pressure 
during early haemorrhage (15). Furthermore, the initial high haemorrhage rate in our 
anaesthetised sheep was key to early reductions in MAP and tissue oxygen delivery, and 
development of shock (25, 43, 44). Thereafter, the haemorrhage rate was reduced to maintain 
MAP ≥30mmHg, and continued until oxygen debt accumulated to arterial lactate >4mM, 
which peaked >5mM after initial blood volume replenishment. Oxygen delivery to vital 
organs (brain and heart) remained compensated after onset of systemic shock and oxygen 
debt, and recovered rapidly upon resuscitation. Our haemorrhage protocol was designed to 
induce treatable shock encountered in most clinical haemorrhage scenarios (45), whereas 
models that induce prolonged haemorrhagic shock with large base deficit often cause 
decompensation of vital organ perfusion and reduced survival (46). The haemodynamic 
targets during treatment were likewise appropriate for anaesthetised sheep. 

This model of haemorrhagic shock is an improvement on models that haemorrhage to 
volume or pressure targets instead of shock and oxygen debt targets, and our comprehensive 
organ-specific assessments provide greater insight into the pathophysiology of shock (Table 
S2). In our earlier model of haemorrhage and transfusion (9), sheep were bled to a moderate 
volume target (30-35% TBV haemorrhage), resulting in moderate MAP nadir, and minimum 
haematocrit decrease because of splenic auto-transfusion. Another recent ovine model of 
haemorrhagic shock, designed to determine the impact of shock and resuscitation on 
haemodynamic microcirculatory coherence (47), did not induce substantial oxygen debt 
because haemorrhage ceased when MAP=30mmHg, not guided by lactate. Instead, our ovine 
shock model was comparable to benchmark models of severe haemorrhagic shock and critical 
oxygen debt developed in dogs (4) and swine (5, 44). These models used arterial lactate and 
base deficit to define a lethal-dose50 for oxygen debt, but because we resuscitated animals 
with PlasmaLyte®, which contains bicarbonate equivalents, we chose lactate alone to define 
repayment of oxygen debt. We therefore redeveloped a benchmark haemorrhagic shock 
model, and superimposed comprehensive invasive organ monitoring procedures developed in 
our model of hyperdynamic septic shock (12). These technologies confirmed that currently-
available clinical measures, in particular NIRS assessment of tissue oxygen saturation in 
central and peripheral tissues, provide appropriate advanced monitoring required by 
evidence-based Patient Blood Management programs. 

In haemorrhagic shock, oxygen delivery to vital organs such as the brain is prioritised 
over that of non-vital organs such as the kidneys and skeletal muscle. Both non-invasive 
NIRS and invasive oxygen tension confirmed that oxygen delivery was relatively preserved 
in the brain during shock, and recovered earlier during resuscitation. The likely cause was 
vasoconstriction in peripheral tissues and lower priority organs to preserve blood flow to the 
brain (46, 48). Accordingly, tissue lactate accumulation was least in brain. The onset of 
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lactate clearance in other organs demonstrated repayment of oxygen debt earlier in kidney 
than in lower priority liver and muscle tissue. The lactate/pyruvate ratio defines tissue 
metabolic redox recovery (49, 50), which confirmed the priority for cerebral oxygen debt 
repayment. 

The primary limitation of this study, in common with other similar studies (Table S2), 
was the relatively short-term assessment of post-resuscitation outcomes, because the highly 
invasive organ monitoring required deep anaesthesia until euthanasia, and it was not feasible 
to continue the experiment overnight. Our model instead focused on the restoration of 
haemodynamic variables, oxygen delivery and repayment of oxygen debt, which are critical 
short-term outcomes defining adequate resuscitation. To minimise impact on primary 
haemodynamic measures and oxygen exchange, we did not invasively monitor heart or lung 
tissue, apart from Swan-Ganz catheterisation. Real-time measures of organ dysfunction 
during shock and recovery were limited to urinary output. while the longer-term impacts of 
haemorrhagic shock and resuscitation on organ function and recovery could not be 
investigated. Histopathological evidence of tissue injury confirmed that our haemorrhage 
protocol resulted in clinically-relevant shock. Pulmonary inflammation (neutrophil 
infiltration and BALT hyperplasia) was the main form of lung injury associated with shock, 
while fluid-associated tissue damage in the form of alveolar oedema was mild, confirmed by 
normal lung wet/dry ratios. In other organs, very few histological changes were considered 
shock-specific (intestinal villi structural modifications) or treatment-specific (dilated 
Bowman’s capsule in renal tissue associated with fluid loading). 

Other limitations of this study were associated with animal variation, in particular the 
compensatory mechanisms in response to haemorrhage. We did not screen or exclude 
animals based on phase of oestrus cycle, whereby animals in proestrus may have exhibited 
reduced inflammatory responses and enhanced cardiovascular function and tissue perfusion 
after shock (51). Variations in heart rate and systemic vascular resistance impacted MAP, and 
since the ethics-approved protocol prohibited haemorrhage when MAP <30mmHg, TBV loss 
was lower in some animals, despite fulfilling criteria of shock, resulting in earlier 
haemodynamic recovery and completion of resuscitation in two animals. Our follow-on study 
comparing treatments will therefore require larger numbers of animals per treatment arm. 
Another negative consequence of invasive organ assessment is an increased inflammatory 
response which may have impacted microvascular perfusion. Furthermore, increasing the 
time in shock may reveal greater differences between investigational treatments. However, 
our choice of 90min haemorrhage time before resuscitation reflects the majority of clinical 
scenarios for both surgical and traumatic haemorrhagic shock. 

This ovine model may inform current debate about appropriate fluid dosing for shock. 
Lung injury is a known outcome of shock exacerbated by aggressive fluid resuscitation in 
large animal models. Our ovine model of hyperdynamic endotoxemic shock demonstrated 
increased endothelial glycocalyx shedding, inflammatory cytokine levels and lung injury 
associated with high fluid dosing (28, 29). The same inflammatory effect was observed in a 
canine haemorrhagic shock model with high-dose fluids (52). Therefore, we used a 
conservative fluid resuscitation protocol to minimise lung injury. This was confirmed by 
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post-mortem lung wet/dry ratios (6.2±1.1) which were comparable with those previously 
reported in control anaesthetised sheep (5.7±0.4) (53). Although reduced PaO2/FiO2 ratios 
can indicate injury-associated impairment of oxygen extraction, the observed decrease in 
PaO2/FiO2 ratios during shock were likely caused by reduced pulmonary perfusion pressure. 
Ongoing studies of the effects of resuscitation regimens on inflammatory and endothelial 
glycocalyx markers in our model will provide further insight into appropriate treatments for 
shock. 

Conclusions 

We established an ovine model of haemorrhagic shock that reproduced the pathology 
observed clinically; hypotension, reduced tissue perfusion and oxygen delivery, accumulating 
oxygen debt, inflammation, compromised endothelial glycocalyx, and tissue damage. The 
model’s design enables investigation of the clinical indicators of recovery from haemorrhagic 
shock, applicable for pre-clinical studies of novel resuscitation strategies. Invasive organ 
monitoring confirmed the utility of NIRS in characterising changes in oxygen delivery 
associated with haemorrhage and shock, and arterial lactate was representative of oxygen 
debt accumulation across multiple tissues. Further research in this area will help define 
optimal outcome measures and clinical options applicable to Patient Blood Management. 
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Table 1. Baseline characteristics, haemorrhage volumes and fluid requirements. 
Animal ID PL1 PL2 PL3 PL4 PL5 PL6 Mean ± SD 

Weight (kg) 48 54 58 59 52 50 54.6 ± 3.8 

Pre-adrenaline haemoglobin (g/dL) 8 5.1 10.3 8.6 8.1 10 8.4 ± 1.9 

Post-adrenaline haemoglobin (g/dL) 10 9.5 11.5 10.6 10.4 12.7 10.8 ± 1.2 

Total blood volume loss (ml)1 1200 1380 1500 1605 1756 1351 1465 ± 198 

% total blood volume lost1 37% 38% 39% 41% 50% 40% 40.8 ± 4.7% 

Haemorrhage time (min) 60 65 75 84 88 59 71.8 ± 12.4 

Resuscitation volume (ml) 1320 1830 5410 5510 5254 2917 3707 ± 1918 

Resuscitation time (min) 352 872 240 240 240 240 180 ± 94 

Resuscitation : haemorrhage ratio 1.1 1.3 3.6 3.4 3.0 2.2 2.4 ± 1.1 

Average resuscitation rate (ml/kg/hr) 47.1 23.4 23.3 23.3 25.3 14.6 26.2 ± 10.9 

1Total blood loss at start of resuscitation included approximately 250ml iatrogenic loss from sampling and surgery. 
2Resuscitation concluded early in the 4hr recovery period because MAP was sustained >65mmHg. 
 

Table 2. Primary and secondary outcomes defining haemorrhagic shock and recovery after 
resuscitation with PlasmaLyte®. 

 baseline (T0) shock (nadir or peak) study end 3recove  

 unit unit 2p value unit time (hr) 1ANOVA

Primary outcomes:       

MAP (mmHg) 87 ± 4 31 ± 5 <0.01 64 ± 6 2 0.0001 

SvO2 (%) 70 ± 7 23 ± 8 <0.05 68 ± 10 1 0.0012 

StO2-brain (%) 77 ± 11 65 ± 9 <0.01 72 ± 11 1 0.0022 

StO2-muscle (%) 66 ± 8 16 ± 9 <0.01 57 ± 6 1 0.0001 

arterial lactate (mM) 1.5 ± 1.0 5.1 ± 0.8 <0.01 2.4 ± 2.2 1 0.0014 

base excess (mM) 1.1 ± 2.2 -3.6 ± 1.7 <0.05 2.8 ± 3.8 1 0.0018 

Secondary outcomes:       

heart rate 101 ± 12 159 ± 45 <0.05 123 ± 31 1 0.076 

cardiac index (l/min/m2) 4.1 ± 1.6 1.1 ± 0.4 <0.05 4.3 ± 1.8 1 0.002 

SVRI (dynes*sec/cm5/m2) 1642 ± 810 3274 ± 1654 <0.05 1059 ± 450 1 0.007 

PaO2/FiO2 ratio 322 ± 62 212 ± 53 <0.001 275 ± 83 1 0.0059 

urinary output (ml/hr) 80 ± 31 19 ± 11 <0.05 79 ± 68 2 0.0081 

4IDF- Proportion Perfused Vessels 87 ± 13 56 ± 19 NS 93 ± 8 NA 0.8 

IDF- Perfused Vessel Density 9.0 ± 2.1 4.9 ± 1.6 NS 14.4 ± 6.3 NA 0.0342 

IDF-Av. Perfusion Speed Index 4.0 ± 0.6 3.2 ± 0.2 NS 4.8 ± 0.2 NA 0.19 

haemoglobin (g/dl) 10.8 ± 1.2 6.0 ± 0.8 <0.05 5.9 ± 1.1 >4 0.0154 

1One way repeated measures ANOVA (Friedman’s test), with Dunn’s post-tests comparing 2shock (nadir) with 
baseline (T0), and 3recovery time defined as first hourly observation similar to baseline (p>0.05). 4IDF: 
sublingual capillary imaging using an incident dark field camera. Mean ± SD. NS: not significant. NA: not 
applicable. 

View publication statsView publication stats

https://www.researchgate.net/publication/351758883

