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Abstract: Smart logistics is an indispensable building block in smart cities development that requires
solving the challenge of efficiently serving the demands of geographically distributed customers
by a fleet of vehicles. It consists of a very well-known NP-hard complex optimization problem,
which is known as the capacitated vehicle routing problem (CVRP). The CVRP has widespread
real-life applications such as delivery in smart logistics, the pharmaceutical distribution of vacancies,
disaster relief efforts, and others. In this work, a novel giant tour best cost crossover (GTBCX)
operator is proposed which works stochastically to search for the optimal solutions of the CVRP. An
NSGA-II-based routing algorithm employing GTBCX is also proposed to solve the CVRP to minimize
the total distance traveled as well as to minimize the longest route length. The simulated study is
performed on 88 benchmark CVRP instances to validate the success of our proposed GTBCX operator
against the nearest neighbor crossover (NNX) and edge assembly crossover (EAX) operators. The
rigorous simulation study shows that the GTBCX is a powerful operator and helps to find results
that are superior in terms of the overall distance traveled, length of the longest route, quality, and
number of Pareto solutions. This work employs a multi-objective optimization algorithm to solve
the capacitated vehicle routing problem (CVRP), where the CVRP is represented in the form of a
two-dimensional graph. To compute the values’ objective functions, the distance between two nodes
in the graph is considered symmetric. This indicates that the genetic algorithm complex optimization
algorithm is employed to solve CVRP, which is a symmetry distance-based graph.

Keywords: smart logistics; capacitated vehicle routing problem; Pareto optimality; non-dominated
sorting

1. Introduction

Smart logistics is an indispensable building block in developing smart cities, and the
efficient delivery of the demands of geographically distributed customers plays a major
role [1–3]. As depicted in Figure 1, the CVRP problem is concerned with discovering
the optimal paths for a given fleet of motor vehicles to fulfill the demands of physically
distributed customers [3]. The CVRP and its variants are widely used in many real-life
applications, such as smart logistics [1,2], critical data collection in IoT platforms [4],
renting-sharing problems for urban bicycles [5], the routing and scheduling of chains of
retail stores [6], distributing medical supplies for emergencies [7], crop harvesting and
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transportation [8], and the dynamic vehicle routing problem with traffic congestion to name
a few. The CVRP is a widely-discussed NP-hard [3] problem, and therefore, optimization
methods including exact methods (dynamic programming, branch-and-bound); heuristics
(the Fisher–Jaikumar algorithm and the Clarke–Wright saving algorithm); swarm and
evolutionary algorithms (GA, ACO, and firefly algorithms); local search operators (swap,
inversion, scramble) and hybrid approaches have widely been employed to crack the
CVRP problem [3,8–14]. In the CVRP, multiple vehicles are required to serve the customers
in different routes, and only minimizing the overall distances traveled by all vehicles
may severely affect the distance traveled by individual vehicles. The minimization of
the total traveled distance with all motor vehicles may lead to route imbalance, i.e., one
vehicle is required to travel a higher distance to serve the assigned customers on the
longest route. On the longest route, the vehicle spends more time delivering the items, and
customers also experience deliveries with longer waiting times than customers on other,
shorter routes. The optimization of total traveled distance and the longest route provides
balanced routes and shorter distances travelled by all vehicles, leading to fair optimization
behavior with respect to each of the three stakeholders–the depot’s owners, the vehicle’s
owner/driver, and customers. The optimization of the total traveled distance and the
length of the longest route comes into conflict with each other, because minimization of
one negatively affects the other. The optimization of two objectives invites the application
of multi-criteria optimization methods, such as NSGA-II, NSGA-III, HypE, SMS-EMOA,
EMOA/D, etc. [15]. Elitist and fast multi-criteria evolutionary algorithms, such as the
non-dominated sorting genetic algorithm-II (NSGA-II), have proven their strength in the
optimization field and have successfully resolved various complex optimization problems,
such as scheduling, routing problems, wireless routing problems, and others [15–18].
However, the performance of the swarm and evolutionary algorithms heavily depends on
genetic operators (i.e., recombination and mutation operators) according to the problem
solved [19]. Therefore, it is required to design appropriate operators to search for the
optimal solutions of CVRP using evolutionary algorithms.

Figure 1. Graphical representation of the CVRP.

This work considers the bi-objective version of the CVRP for minimizing the overall
distance traveled by the fleet of vehicles and the length of the route with the longest
distance. For solving the bi-objective CVRP, a novel giant tour best cost crossover (GTBCX)
operator is proposed. The GTBCX operator is employed in NSGA-II to solve the CVRP to
reduce the total distance traveled and to minimize the longest route’s length. The GTBCX
operator was designed intelligently to avoid the generation of infeasible solutions which
may be generated during the crossover process. It also avoids premature convergence
and advances to the optimum problem solution with respect to all objectives. The unique
contributions of our research work are as follows:
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• A problem-specific crossover operator is proposed, i.e., giant tour best cost crossover
(GTBCX) operator for the CVRP.

• The routing algorithm, which combines NSGA-II and GTBCX, is proposed to resolve
the bi-objective CVRP.

• The performance of GTBCX is evaluated against the nearest neighbor crossover (NNX)
and edge assembly crossover (EAX) crossover operators [3,20,21].

• An extensive simulation is performed on 88 CVRP benchmark instances to check the
efficacy of the proposed GTBCX operator and routing algorithm by the number and
quality of Pareto solutions offered.

This research work focuses on the development of an optimization algorithm-based
genetic algorithm which is employed to solve the CVRP. The CVRP is modeled as a two-
dimensional graph in which the distance between two nodes is considered symmetric.
As the problem is complex, the genetic algorithm-based search algorithm employs non-
dominated sorting, crowding comparison operators, and genetic operators to perform
the global search. It also includes local search operators, i.e., swap, relocate, and 2-opt*
operators to search the neighborhood solutions of the given solution. This work explores a
complex algorithm to solve the capacitated vehicle routing problem, which is an application
of graph theory and symmetric in nature.

The remainder of this paper is divided into six sections. Section 2 discusses the related
literature focusing on different dimensions of the capacitated vehicle routing problem
(CVRP) as well as NSGA-II. In Section 3, we present problem formulation corresponding to
the bi-objective CVRP. Section 4 presents the proposed work, including an overview of the
NSGA-II-based routing algorithm, GTBCX, and mutation operators. Section 5 presents an
extensive simulation study for benchmark CVRP instances. Finally, Section 6 puts forward
the conclusion and future research directions.

2. Related Work

As we know, the CVRP falls in the category of NP-hard problems [3]; in the liter-
ature, many meta-heuristic and heuristic approaches have been presented for different
applications and the routing environment. The literature can be divided into three ma-
jor categories.

• CVRP with the longest route length as the objective;
• CVRP with overall total traveled distance or other cost functions as the objectives;
• NSGA-II employed in the CVRP domain with different objectives

The first category consists of meta-heuristic and heuristic approaches, which have
been utilized for solving CVRP by minimizing the longest route length. The vehicle routing
issue with longest route minimization was first proposed in the form of a newspaper
routing problem by J. K. Lenstra and E. Aarts in a mathematics challenge named the
Whizzkids’96 (1996) [22]. The goal of the newspaper routing problem was to make certain
that all clients could provide newspapers as early as possible. Applegate et al. proposed an
algorithmic framework based on the branch-and-cut algorithm for the newspaper vehicles
route problem [23]. The MinMax CVRP problem was solved using a genetic algorithm [24],
fast Taboo search [25], and hybrid algorithms [26] to optimize the length of the longest
route for all vehicles. The work used natural number coding, the insertion method, the
individual amount control choice strategy, improved route crossover, the two-exchange-
based mutation operator and hill-climbing heuristic to generate feasible solutions and
maintain diversity among the solutions. Bertazzi et al. [27] performed a worst-case analysis
from a structural viewpoint to compare the optimal results of the CVRP (Min–Sum VRP)
and the Min-Max CVRP. Bertazzi et al. motivated the development of heuristic and meta-
heuristic approaches for the Min-Max CVRP, and concluded that the Min-Max algorithm
must be implemented in merely well-justified cases. Yakici et al. [28] proposed a variant
of MinMax CVRP in which mixed demands, heterogeneous vehicles, and split delivery
are allowed. Yakici et al. designed an algorithm consisting of the min-max set covering
problem solution, column (route) generation, and demand splitting phases. Yakici [29]



Symmetry 2021, 13, 1923 4 of 23

also applied an ACO algorithm to resolve a variant of the MinMax CVRP consisting of
mixed service demands and a mixed fleet. Son et al. [30] solved the Min-max CVRP using
a local search approach with different neighborhood structures to minimize the longest
route length, and a quality function was also employed to control the local search.

The second category includes meta-heuristics and heuristics, which have been em-
ployed to resolve the CVRP to minimize the total traveled distance or other objectives. In
this category, a plethora of algorithms and their hybrid variants have also been used to
solve CVRP and their variants. Lin et al. proposed a sweep algorithm-based population
starting strategy, the order aware genetic algorithm (OHGA) [13], and the best cost route
crossover (BCRC) operator to solve capacitated vehicle routing problems. The OHGA was
calculated using 86 CVRP cases, and it indicates reasonable performance against various
meta-heuristics. Altabeeb et al. designed CVRP-FA to resolve the CVRP using the firefly
algorithm (FA). Two different types of genetic and local neighborhood search operators are
combined with FA to search for quality solutions, as well as to speed up the convergence.
CVRP-FA significantly outperforms the fundamental edition of the firefly algorithm, as
reported in the experimental study [14]. Bahri et al. [31] studied multi-objective vehicle
routing problems considering objective functions as fuzzy values. A robust approach to
deal with fuzziness for vehicle routing problems is proposed for minimizing two goals,
i.e., the overall distance traveled and the total distance tardiness time. A Monte-Carlo
simulation study was performed to evaluate the results. Many more algorithms have been
employed to handle the CVRP, and some of them include large neighborhood search [32],
multi-start and multi-insertion algorithms [33,34], hybrid genetic algorithms [35], ant
colony optimization [36], particle swarm optimization [37], and others.

The third category entails NSGA-II-based routing algorithms that were used to solve
CVRP with different objectives. NSGA-II has also been utilized to resolve multi-objectives
CVRP and its variants. Li et al. [38] unraveled the multi-objective VRP using NSGA-II to
distribute the military logistics during wartime. A greedy algorithm has also been used
to improve the population initialization that leads to more effective solutions. Mandal
et al. [39] designed a memetic approach consisting of NSGA-II, the dominance-based local
search procedure (DBLSP), the clone management principle (CMP), and three crossover
operators to resolve multi-criteria mixed capacitated general VRP. The three-neighborhood
exploration heuristics λ-interchange, two-opt, and re-insertion have also been employed to
improve convergence capability and boosting diversity among different solutions. Psychas
et al. [40] designed a parallel version of NSGA-II, i.e., PMS-NSGA-II to unravel multi-
criteria VRPs to optimize three objectives, i.e., time, distance, and fuel consumption.
The PMS-NSGA-II employed a hybrid variable neighborhood search algorithm, multiple
populations, and multi-start methods to initialize the populations. Zhao et al. [41] studied
a time-dependent as well as two-objective VRP with time windows (TD-BO-VRPTW)
and suggested an NSGA-II-based solution to optimize the total transportation costs and
time. The time-dependency respects the FIFO principle, and the model assumes that the
departure time of the vehicle and the distance between two customers affect the vehicle’s
travel speed. An instance of Solomon’s data set (RC108) had been employed to reckon the
competitive performance of NSGA-II.

Xu et al. [42] studied time-dependent vehicle speed and flexible time windows-based
green VRP (GVRP), and a routing algorithm based on improved NSGA-II with greedy and
adaptive methods was proposed. The customer satisfaction as well as fuel consumption are
optimized by considering the vehicle’s load capacity, soft time windows, traffic congestion,
and time-dependent and non-linear vehicle speed. The computational study reported that
the NSGA-II-based routing model offered competitive results. Jemai et al. [43] proposed an
NSGA-II-based solution for the two-objective GVRP to optimize the carbon emissions and
the overall distance traveled. The GVRP benchmarks were evaluated and statistically ana-
lyzed to validate the results. Wang et al. [44] solved two-echelon collaborative many centers
VRP, i.e., 2E-CMCVRP, employing the clustering algorithm (k-means) and improved NSGA-
II to minimize operating costs and reduce carbon dioxide emissions. The sweep algorithm
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was used for population initialization, and the performance of the improved NSGA-II was
compared with NSGA-II and MOGA. The practicability and adaptability of solutions were
confirmed by an experimental study based in Chongqing, China. The NSGA-II algorithm
has also been used for other variants of the routing problem such as stochastic multi-period
location-routing problem [45], instant distribution vehicle routing optimization for total
cost and customer satisfaction [46–48], VRP for health care services [49], two-echelon VRP
(2E-VRP), and many other variants [3].

3. Bi-Objective Capacitated Vehicle Routing Problem

The bi-objective CVRP can be formally described as a tuple of nodes and a fleet of
vehicles. Assume G = (C, A) represents the Euclidian graph consisting of two elements. The
set C = {ci : 0 ≤ i ≤ n} consists of total of n + 1 nodes. Node c0 ∈ C represents the central
depot, while the remaining nodes represent n customers from c1, c2 . . . . . . ci . . . . . . cn ∈ C.
For each node ci ∈ C, the geographic coordinates (xi, yi) and the demand δi are given.
All customers have non-zero positive demands, i.e., δi > 0, ∀i > 0 whereas the central
depot c0 has zero demand. The set A =

{
(i, j) : ci, cj ∈ C, ci 6= cj

}
represents the set of

edges between nodes and the distance between node ci and cj is represented by Euclidean
distance dij. The fleet of identical vehicles V = {vk : 1 ≤ k ≤ m} is also given, and all
vehicles are assumed to be homogeneous with the same capacity limit Q.

In the bi-objective CVRP, it is required to employ the fleet of m identical vehicles and
deliver the demands of all n customers with objectives to minimize the overall distance
traveled by the fleet of vehicles as well as the length of the route with the longest distance.
It is also mandatory that the capacity limit of each vehicle must be observed, and the
demand of every customer is fulfilled by one vehicle without splitting the demand. The
vehicle always begins and ends the journey at the central depot [3,20].

The model has a decision variable Xk
ij for each vehicle vk ∈ V in order to move from

node ci ∈ C to a different node cj ∈ C. The value of the decision variable Xk
ij may be either

0 or 1. Whenever the vehicle vk ∈ V travels from node ci ∈ C to the next unvisited node
cj ∈ C, the value of Xk

ij will be 1, and otherwise it will be 0.
To deliver the demands of the physical distributed customers allocated to a vehicle

vk ∈ V, the distance traveled fk by the vehicle vk can be computed as

fk = ∑
ciεC

∑
cjε C

dij ∗ Xk
ij (1)

The longest route among all the routes is given by

f1 = max{ fk : ∀ vk ∈ V} = max

∑
ciεC

∑
cjε C

dij ∗ Xk
ij : ∀vk ∈ V

 (2)

To fulfill the demands of all physically distributed customers, the overall traveled
distance by the given fleet of vehicles is given by

f2 = ∑
vkεV

fk = ∑
vkεV

∑
ciεC

∑
cjε C

dij ∗ Xk
ij (3)

The two objectives are to optimize the overall distance traveled by the fleet of ve-
hicles and the length of the longest route. The objective function can be mathematically
formulated as:

Min


f1 = max

{
∑

ciεC
∑

cjε C
dij ∗ Xk

ij : ∀vk ∈ V

}
f2 = ∑

vkεV
∑

ciεC
∑

cjε C
dij ∗ Xk

ij

(4)
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With the following constraints

∑
vk ε V

∑
cj ε C

Xk
ij = 1, ∀ ci ∈ C (5)

∑
vk ε V

∑
ci ε C

Xk
ij = 1, ∀ cj ∈ C (6)

∑
ciε C−{c0}

δi ∑
cj ε C

Xk
ij ≤ Q, ∀ vk ∈ V (7)

∑
cj ε C

Xk
0j = 1, ∀ vk ∈ V (8)

∑
ciε C

Xk
ij − ∑

cjε C
Xk

ij = 0, ∀ ch ∈ C− {c0}, ∀ vk ∈ V (9)

∑
ciεC

Xk
i0 = 1, ∀ vk ∈ V (10)

Xk
ij ε {0, 1}, ∀ ci, cj ∈ C, ∀ vk ∈ V (11)

Equation (4) states that the two objectives of bi-objective CVRP must be minimized.
Equations (5) and (6) ensure that every customer must be visited once and just by one
vehicle, and Equation (7) ensures that each vehicle must not be allocated a quantity greater
than Q. Equations (8)–(10) ensure flow constraints, such that each vehicle starts the journey
from the central depot c0, leaves the customer after delivering the demand δi, and finally
comes back to the central depot c0. Constraints (11) ensure the integrity of the decision
variable Xk

ij.

4. The Proposed Work

This section discusses the proposed GTBCX operator and the NSGA-II-based routing
algorithm (i.e., NSGA-II_GTBCX) in the context of solving bi-objective CVRP. The popula-
tion initialization strategy, selection operator and the mutation operator are also discussed.

4.1. NSGA-II-Based Routing Algorithm

The proposed routing algorithm employs NSGA-II and the GTBCX operator to search
the optimal solution consisting of effective routes corresponding to the bi-objective CVRP.
The multi-criteria NSGA-II combines the non-dominated sorting and genetic algorithm for
optimization of different objectives. It consists of three special features, i.e., non-dominated
sorting, the fast-crowding distance estimation procedure, and the simple crowding com-
parison operator [18].

As shown in Figure 2, the proposed routing algorithm initially sets the maximum
iteration count, and the population Pt of η solutions (chromosomes) is generated randomly.
After initialization, the fitness values of all chromosomes are computed, i.e., the values of
the overall distance traveled and longest route are computed using a cluster-first route-
second approach [3,20]. Next, the population Pt is sorted and decomposed into Pareto
fronts using a non-dominated sorting approach. Pareto fronts are groups of chromosomes
based on the objective values. The first front ρ0 consists of the best chromosomes of the
population, i.e., it consists of all non-dominated solutions whose fitness values are better
than or equal to the remaining solutions. The next front ρ1 consists of all chromosomes
which are dominated by the chromosomes of first from ρ0 but non-dominated with respect
to all remaining chromosomes. The last front ρl-1 consists of all chromosomes dominated
by all chromosomes in other fronts from ρ0 to ρl-2. After non-dominated sorting, another
parameter, i.e., crowding distance, is assigned to all chromosomes in every front. In each
front, the chromosome with a higher crowding distance is better than the chromosome
with a lower crowding distance. The process of generating the offspring population Qt
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begins with the selection of two chromosomes from the current population Pt using their
front numbers and crowding distances. Next, the GTBCX operator discussed in Section 4.3
is used on selected chromosomes to generate the two offspring chromosomes. As discussed
in Section 4.4, the mutation operator is used to mutate the newly generated offspring
chromosomes. To ensure elitism, the currently generated population Qt and the population
Pt are combined to form a combined new population Rt. Next, the cluster-first, route-
second method is employed to compute the fitness of all chromosomes in the combined
population Rt. The population Rt is decomposed into Pareto fronts using non-dominated
sorting, and the crowding distance is assigned to all chromosomes. For a new population
Pt+1, the Pareto fronts from ρ0 to ρk are added one by one until the total number of
chromosomes exceeds the population size η. To choose the chromosomes from the last
front, all chromosomes are arranged in decreasing order of crowding distance, and the best
chromosomes are selected to fill all population slots. The process of generating offspring
population is repeated for the known number of generations (iterations).

Figure 2. Flowchart of NSGA-II.

4.2. Chromosome Initialization and Evaluation

The population is initialized randomly, consisting of permutations of given customers.
Each chromosome π is a random permutation of customers without trip delimiters which
can be viewed as a giant tour (trip) intended for an unrestricted capacity vehicle. The total
number of customers to be served is n; each chromosome π consists of a total of n genes
corresponding to all given customers, and each customer appears just once in each chro-
mosome. A typical chromosome π with nine customers representing a giant tour is shown
in Figure 3a. The cluster-first, route-second method is utilized to split the giant tour into
routes as per the capacity limit of vehicles, and it is followed by appending the central
node 0 (c0 = 0), as depicted in Figure 3b. The corresponding graphical CVRP is given in
Figure 3c.
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Figure 3. (a) A random chromosome π. (b) Converting chromosome into routes. (c) Graphical CVRP.

4.3. Giant Tour Best Cost Crossover (GTBCX) Operator

The basic idea behind the proposed giant tour best cost crossover (GTBCX) operator
is that every customer must reach its global optimal position that results in the optimized
total traveled distance as well as the longest route. This idea is inspired by the best cost
route crossover (BCRC) [13]. The GTBCX and BCRC are different from each other, such
that the former operator uses the crossover strategy without splitting the chromosome
into routes, while the latter employs the crossover strategy after splitting the chromosome
into routes. Therefore, GTBCX is less costly in comparison to the BCRC operator. The
GTBCX operator carries forward the information from the parent chromosomes to generate
the best possible offspring chromosomes, and this operator also ensures producing only
feasible chromosomes. To generate two offspring chromosomes πo

1 and πo
2 , two-parent

chromosomes, πp
1 and πp

2 , are selected. Next, two consecutive customers are chosen from
both parent chromosomes, πp

1 and πp
2 . The consecutive customers selected from π

p
1 are

removed from the other parent chromosome πp
2 , which leads to a partial giant tour πr

2 .
Similarly, the consecutive customers selected from π

p
2 are removed from the other parent

chromosome πp
1 , which leads to the generation of a partial giant tour πr

1 . In both partial
giant tours πr

1 and πr
2 , the removed customers can be inserted at n-1 positions, requiring

high computational effort and ultimately a very high time complexity. In view of the time
complexity, the removed customers are inserted stochastically at a constant number of
positions out of all possible positions. To insert the customer, a stochastic integer k between
1 and n/2 is generated. Next, the customer is inserted at k random position in the partial
chromosome, and the chromosome with the best value of total traveled distance as well as
the longest route is chosen as offspring πo

1 . Similarly, the offspring πo
2 is also generated.

Figures 4 and 5 show the process of generating two chromosomes (parent πp
1 and

π
p
2 ) using the GTBCX operator. As shown in Figure 4a, two chromosomes are selected

using the eight-way tournament selection method, which is followed by the removal of
two customers from both the parents as shown in Figure 4b. Next, the stochastic process
is started to search the global optimal position for each removed customer. This process
ensures that the GTBCX operator generates no infeasible solution. Moreover, it also searches
the global position stochastically for the removed customers in constant time.
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Figure 4. (a) Selected parent chromosomes π
p
1 and π

p
2 . (b) Partial chromosomes πr

1 and πr
2.

Figure 5. (a) Insertion of first customer. (b) Insertion of second customer. (c) Offspring πo
1 and πo

2.

4.4. Mutation Operator

To preserve the genetic diversity and to avoid the precipitate convergence or local op-
tima, the mutation operator is used, which may be based on different operators depending
on the problem. The proposed NSGA-II-based routing algorithm employs swap, exchange,
and two-opt* operators stochastically to perform the mutation operation [3,20]. One of
the three local operators is selected to perform the mutation according to the mutation
probability. For given chromosome π, the swap, relocate, and two-opt* operators can be
applied to compute the new chromosome πi as per Equations (12)–(14), respectively.

π1 = π′, π′[k] = π[l]andπ′[l] = π[k]∀k, l ∈ [n] (12)
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π2 = π′π′[k] = π[l], π′[k + 1] = π[k], π′[k + 2] = π[k + 1], . . . π′[l]
= π[l − 1], ∀ k, l ∈ [n]

(13)

π3 = π′π′[k] = π[l], π′[k + 1] = π[l + 1] . . . . . . π′[k + p] = π[l + p]; π′[l]
= π[k], π′[l + 1] = π[k + 1] . . . . . . π′[l + q]

= π[k + q] f ork, l, p, q ∈ [n]
(14)

where π[i] represents the customer at ith index.

5. Simulation Study

The simulation study is devoted to assessing the competence of the proposed NSGA-II-
based routing algorithm with GTBCX operator. The proposed routing algorithm optimizes
two objectives, i.e., the overall travelled distance by all vehicles and the length of the longest
route. The solutions offered by the routing algorithm are based on the trade-off between the
two objectives and are represented by non-dominated and dominated solutions in the form
of Pareto solutions. A solution π1 dominates π2 if and only if the solution π1 is no inferior
in comparison to π2 in all objective values and solution π1 is strictly better than π2 in no
less than one objective value. To evaluate the performance, three versions of NSGA-II based
on three different crossover operators, i.e., NSGA-II_NNX, NSGA-II_GTBCX, and NSGA-
II_EAX, were employed. The NSGA-II_NNX, NSGA-II_GTBCX, and NSGA-II_EAX utilize
nearest-neighbour crossover (NNX), giant tour best cost route crossover (GTBCX), and
edge assembly crossover (EAX) operators, respectively. The EAX operator was proposed
by Y. Nagata [21], while the NNX operator is a greedy crossover operator that works based
on nearest neighbour heuristics [3,20]. The three versions of NSGA-II were developed
using Python 3.9.6 on DESKTOP-L9O54PJ, Intel(R) Core™ i7-8700, Windows-10.

The 88 benchmark CVRP instances from five sets, i.e., sets A, B, P, F, and E, were
utilized for the simulation study. Augerat et al. proposed the sets A, B, and P, while set E
and set F were proposed by Christofides and Eilon and Fisher, respectively [50]. Table 1
presents the basic information of all sets. Sets A, B, P, E, and F consist of 27, 23, 24, 11, and
3 CVRP instances, respectively. In each set, the CVRP instances are different according to
the locations of customers and their demands. The minimum and maximum demands, as
well as the distances of the nearest customer and the farthest customer from the central
depot, are also given in Table 1. Table 2 shows the system parameters which were used for
the simulation study. For every instance, the population of 200 random chromosomes was
created using the Numerical Python (NumPy) library. Every chromosome was a random
permutation of customers given in the CVRP instance.

Table 1. CVRP instances with demands and distances.

Set Total Instances Minimum
Demand

Maximum
Demand

Distance of Nearest Customer
from Central Depot

Distance of Farthest Customer
from Central Depot

A 27 1 72 2.0 125.88
B 23 1 69 6.33 116.85
P 24 1 2500 2.24 49.92
E 11 1 4100 2.24 118.87
F 3 1 21,611 0.0 146.77

All three versions of NSGA-II were fed with the same initial population, and they
evolved over 200 generations to search near-optimal solutions with optimum values of
the total travelled distance and the length of the longest route. For every CVRP instance,
10 experiments were conducted using the same population, and the best values for both
objectives are reported in this paper. The values of both the objectives are also shown
for 200 generations offered by NSGA-II_NNX, NSGA-II_GTBCX, and NSGA-II_EAX. All
figures of vehicle routes given in this paper correspond to the best solutions among
10 experiments for all three versions of NSGA-II. For each set, the graphical results for
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one CVRP instance are presented, and the results offered corresponding to the remaining
CVRP instances are presented in the tabular form.

Table 2. System parameters.

Parameter Values

CVRP Instances 88
Size of population 200

Generations 200
Probability range for crossover 0.4–0.9

Probability for mutation 0.1–0.3
Experiments for each CVRP instance 10

Objective Values Chosen Best
Vehicle Routes Chosen Best

For CVRP instance A-n48-k7, Figure 6a shows the Pareto solutions offered by NSGA-
II_NNX, NSGA-II_GTBCX, and NSGA-II_EAX. All Pareto solutions offered by NSGA-
II_GTBCX dominate all Pareto solutions offered by NSGA-II_EAX. However, there are very
few solutions offered by NSGA-II_NNX that dominate the worst Pareto solutions offered by
the proposed NSGA-II_GTBCX. However, there are some solutions offered by the proposed
NSGA-II_GTBCX that completely dominate all solutions of NSGA-II_NNX. Figure 6b,c
show the total travelled distance and the length of the longest route for 200 generations,
and it can be observed that NSGA-II_GTBCX offers better values of both objectives. The
best routes offered by NSGA-II_NNX, NSGA-II_GTBCX, and NSGA-II_EAX are depicted
in Figure 6d–f, respectively.

As can be observed, the overlapping of routes is minimal in the best solution provided
by NSGA-II_GTBCX, while overlapping is maximal in the best solution given by NSGA-
II_EAX. For CVRP instance A-n48-k7, the total travelled distances offered by NSGA-
II_NNX, NSGA-II_GTBCX, and NSGA-II_EAX are 1431, 1074, and 1144, respectively. The
lengths of the longest routes offered by the three versions are 210, 204, and 243, respectively.
The NSGA-II_GTBCX offers the best values among the three versions of NSGA-II. However,
the distance travelled for the best-known solution is 1073, but this solution is optimized in
the context of the single objective optimization method, which does not consider the other
objectives. Figure 7 shows the solutions offered by NSGA-II_NNX, NSGA-II_GTBCX, and
NSGA-II_EAX for CVRP instance P-n55-k7. As depicted by Figure 7a, all Pareto solutions
offered by NSGA-II_GTBCX completely dominate all solutions offered by NSGA-II_EAX.
On the other hand, some Pareto solutions of NSGA-II_GTBCX completely dominate all
the solutions of NSGA-II_NNX while there are very few solutions of NSGA-II_NNX
which dominate the worst Pareto solutions offered by NSGA-II_GTBCX. Figure 7b,c show
the total travelled distance and the route with the largest distance after 200 generations,
and it can be observed that NSGA-II_GTBCX offers better values for both objectives.
Figure 7d–f depict the best routes offered by NSGA-II_NNX, NSGA-II_GTBCX, and NSGA-
II_EAX, respectively.

As can be observed, the overlapping of routes is minimal in the best solution given by
NSGA-II_GTBCX, while it is maximal in the best solution provided by NSGA-II_EAX. For
the CVRP instance P-n55-k7, NSGA-II_NNX, NSGA-II_GTBCX, and NSGA-II_EAX offered
total travelled distances of 606, 579, and 796, respectively.



Symmetry 2021, 13, 1923 12 of 23

Figure 6. Optimized Outcome for instance A-n48-k7 after 200 iterations. (a) Pareto solutions; (b,c) total travelled distance
and length of the longest route; (d) NSGA-II_NNX route; (e) NGSA-II_GTBCX route; (f) NSGA-II_EAX route.
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Figure 7. Optimized outcome for instance P-n55-k7 after 200 iterations. (a) Pareto solutions; (b,c) total travelled distance
and length of the longest route; (d) NSGA-II_NNX route; (e) NGSA-II_GTBCX route; (f) NSGA-II_EAX route.

However, the lengths of the longest routes offered by the three versions are 105,
99, and 134, respectively. For CVRP instances B-n50-k8, E-n51-k5, and F-n45-k4, the
solutions offered by NSGA-II_NNX, NSGA-II_GTBCX, and NSGA-II_EAX are provided in
Figures 8–10, respectively, and it can be seen that the behaviour of these three versions of
NSGA-II for the three CVRP instances is almost similar as for the CVRP instances A-n48-k7
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and P-n55-k7. As observed from Figure 8a, Figure 9a, Figure 10a, the Pareto solutions
offered by NSGA-II_NNX and NSGA-II_GTBCX dominate the maximum Pareto solutions
offered by NSGA-II_EAX. However, some of the worst Pareto solutions offered by NSGA-
II_GTBCX are dominated by the best solutions offered by NSGA-II_NNX. For the total
travelled distance and the length of the longest route, NSGA-II_GTBCX consistently offers
better values of both objectives in comparison to NSGA-II_NNX and NSGA-II_EAX. The
route overlapping is minimal in the best solution provided by NSGA-II_GTBCX, while it is
maximal in the best solution given by NSGA-II_EAX.

Figure 8. Cont.
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Figure 8. Optimized outcome for instance B-n50-k8 after 200 iterations. (a) Pareto solutions; (b,c) total travelled distance
and length of the longest route; (d) NSGA-II_NNX route; (e) NGSA-II_GTBCX route; (f) NSGA-II_EAX route.

Figure 9. Cont.
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Figure 9. Optimized outcome for instance E-n51-k5 after 200 iterations. (a) Pareto solutions; (b,c) total traveled distance and
length of the longest route; (d) NSGA-II_NNX route; (e) NGSA-II_GTBCX route; (f) NSGA-II_eax Route.

Figure 10. Cont.
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Figure 10. Optimized outcome for instance F-n45-k4 after 200 iterations. (a) Pareto solutions; (b,c) total traveled distance
and length of the longest route; (d) NSGA-II_NNX route; (e) NGSA-II_GTBCX route; (f) NSGA-II_EAX route.

The results for all remaining CVRP instances are given in Tables 3–7. In the tables,
the best results are marked with a burgundy colour. As regards the results provided in
Table 3, the performance order for all CVRP instances of set A is given as NSGA-II_GTBCX,
NSGA-II_NNX, and NSGA-II_EAX. The NSGA-II_GTBCX offers optimized values of total
travelled distance and longest distance. However, NSGA-II_NNX offers better values of
the longest route for five CVRP instances, such as A-n45-k6, A-n55-k9,A-n63-k9, A-n63-
k10, and A-n65-k9. However, NSGA-II_GTBCX offers better values of the total travelled
distances for all CVRP instances in comparison to NSGA-II-NNX and NSGA-II_EAX. The
value of the total travelled distance of the best-known solution is slightly better than the
values of Pareto solutions offered by NSGA-II_BCX. The reason for this is that NSGA-
II_GTBCX searches for a solution that optimizes two objectives, i.e., total travelled distance
and the length of the longest route. As regards the results provided in Table 4 for set B,
NSGA-II_GTBCX performs better among the three versions of NSGA-II. The performance
order for set B is given as NSGA-II_GTBCX, NSGA-II_NNX and NSGA-II_EAX. However,
NSGA-II_NNX offers better values of the longest distance for five CVRP instances, i.e.,
B-n41-k6, B-n43-k6, B-n51-k7, B-n52-k7, and B-n67-k10. As regards the results provided in
Table 5 for set P, NSGA-II_GTBCX is the best performer among the three versions of NSGA-
II. The performance order for set P also remains as NSGA-II_GTBCX, NSGA-II_NNX, and
NSGA-II_EAX. The NSGA-II_NNX offers a better value of the total travelled distance for
CVRP instance P-n55-10 and the longest distance for CVRP instance P-n20-k2. The results
for sets E and F are given in Tables 6 and 7, respectively. The NSGA-II_GTBCX performs
best among the three versions of NSGA-II. The performance order for sets E and F for all
instances remains NSGA-II_GTBCX, NSGA-II_NNX, and NSGA-II_EAX. However, the
NSGA-II_NNX offers a better value of the longest route length than NSGA-II_GTBCX and
NSGA-II_EAX.
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Table 3. The outcome for set A.

CVRP
INSTANCES

BKS by Single
Optimization Method

(Total Distance)

NSGA-II_EAX NSGA-II_GTBCX NSGA-II_NNX

Total
Distance

Longest
Route

Total
Distance

Longest
Route

Total
Distance

Longest
Route

A-n32-k5 784 881 234 787 212 827 226
A-n33-k5 661 719 173 669 157 674 167
A-n33-k6 742 825 174 743 152 771 158
A-n34-k5 778 891 194 782 173 802 178
A-n36-k5 799 951 230 818 214 853 220
A-n37-k5 669 833 194 676 180 737 185
A-n37-k6 949 1105 228 963 208 975 211
A-n38-k5 730 846 183 737 162 756 163
A-n39-k5 822 1051 225 839 192 877 201
A-n39-k6 831 956 200 846 183 870 195
A-n44-k6 937 1169 222 949 201 986 203
A-n45-k6 944 1212 214 952 195 992 194
A-n45-k7 1146 1456 231 1158 205 1194 211
A-n46-k7 914 1178 203 943 184 1004 184
A-n48-k7 1073 1431 243 1074 204 1144 210
A-n53-k7 1010 1484 235 1022 197 1078 199
A-n54-k7 1167 1705 265 1291 199 1253 214
A-n55-k9 1073 1455 188 1082 170 1120 168
A-n60-k9 1354 1787 238 1393 222 1458 222
A-n61-k9 1034 1489 185 1043 149 1119 153
A-n62-k8 1288 1887 269 1305 216 1381 223
A-n63-k9 1616 2242 269 1630 246 1722 243
A-n63-k10 1314 1782 225 1330 189 1420 187
A-n64-k9 1401 1978 260 1429 221 1509 223
A-n65-k9 1174 1813 221 1199 177 1237 170
A-n69-k9 1159 1845 227 1185 153 1251 163
A-n80-k10 1763 2541 309 1799 245 1833 260

Table 4. The outcome for set B.

CVRP
INSTANCES

BKS by Single Optimization
Method (Total Distance)

NSGA-II_EAX NSGA-II_GTBCX NSGA-II_NNX

Total
Distance

Longest
Route

Total
Distance

Longest
Route

Total
Distance

Longest
Route

B-n31-k5 672 717 190 676 190 683 190
B-n34-k5 788 843 184 790 157 798 165
B-n35-k5 955 1020 251 962 234 989 234
B-n38-k6 805 884 178 812 177 828 179
B-n39-k5 549 650 197 557 191 565 192
B-n41-k6 829 950 180 838 169 846 168
B-n43-k6 742 860 178 747 166 768 158
B-n44-k7 909 1060 177 923 168 934 172
B-n45-k5 751 916 219 754 174 788 174
B-n45-k6 678 810 157 688 135 729 135
B-n50-k7 741 945 182 745 140 790 147
B-n50-k8 1312 1508 230 1321 224 1364 226
B-n51-k7 1032 (1016) 1243 202 1034 165 1039 152
B-n52-k7 747 1016 186 751 160 777 158
B-n56-k7 707 958 190 718 183 743 183
B-n57-k7 1153 (1140) 1529 222 1152 196 1194 198
B-n57-k9 1598 1864 237 1612 224 1666 224
B-n63-k10 1496 2059 250 1507 217 1592 221
B-n64-k9 861 1203 173 871 152 936 152
B-n66-k9 1316 1799 239 1352 208 1368 209
B-n67-k10 1032 1417 200 1049 196 1102 184
B-n68-k9 1272 1714 226 1288 189 1324 189
B-n78-k10 1221 1884 234 1243 190 1304 190
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Table 5. The outcome for set P.

CVRP
INSTANCES

BKS by Single
Optimization Method

(Total Distance)

NSGA-II_EAX NSGA-II_GTBCX NSGA-II_NNX

Total
Distance

Longest
Route

Total
Distance

Longest
Route

Total
Distance

Longest
Route

P-n16-k8 450 451 65 451 65 451 65
P-n19-k2 212 212 106 212 106 212 106
P-n20-k2 216 220 99 217 109 217 99
P-n21-k2 211 216 113 212 113 216 113
P-n22-k2 216 219 118 217 103 221 118
P-n22-k8 603 (590) 598 99 589 99 592 99
P-n23-k8 529 531 88 531 88 541 88
P-n40-k5 458 534 121 463 99 491 105
P-n45-k5 510 677 149 520 111 564 122
P-n50-k7 554 708 121 580 91 600 101
P-n50-k8 631 839 116 639 85 669 91

P-n50-k10 696 892 103 706 81 738 87
P-n51-k10 741 952 106 762 89 795 92
P-n55-k7 568 796 134 579 99 606 105
P-n55-k8 576 790 120 590 98 623 103

P-n55-k10 694 921 102 724 86 723 89
P-n55-k15 856 1157 86 956 77 971 77
P-n60-k10 744 1080 117 755 89 812 100
P-n60-k15 968 1195 98 992 85 1035 85
P-n65-k10 792 1223 135 821 94 874 105
P-n70-k10 827 1202 135 870 100 930 107
P-n76-k4 593 1025 273 623 160 656 176
P-n76-k5 627 1147 240 653 137 694 168

P-n101-k4 681 1317 349 770 199 803 213

Table 6. The outcome for set E.

CVRP
INSTANCES

BKS by Single
Optimization Method

(Total Distance)

NSGA-II_EAX NSGA-II_GTBCX NSGA-II_NNX

Total
Distance

Longest
Route

Total
Distance

Longest
Route

Total
Distance

Longest
Route

E-n22-k4 375 377 105 375 102 377 105
E-n23-k3 569 575 253 569 247 580 242
E-n30-k3 534 (503) 558 178 511 166 547 175
E-n33-k4 835 974 259 844 246 860 247
E-n51-k5 521 754 157 524 113 584 124
E-n76-k7 682 1149 186 740 120 781 134
E-n76-k8 735 1212 166 765 110 824 121
E-n76-k10 830 1323 143 876 96 939 106
E-n76-k14 1021 1530 131 1056 93 1132 96
E-n101-k8 815 1591 230 943 145 960 146

E-n101-k14 1071 1870 163 1204 110 1261 113

Table 7. The outcome for set F.

CVRP
INSTANCES

BKS by Single
Optimization Method

(Total Distance)

NSGA-II_EAX NSGA-II_GTBCX NSGA-II_NNX

Total
Distance

Longest
Route

Total
Distance

Longest
Route

Total
Distance

Longest
Route

F-n45-k4 724 976 261 728 259 774 259
F-n72-k4 237 429 100 245 66 275 71

F-n135-k7 1165 1308 299 1182 306 2712 413
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The overall observations and future research directions are as follows:

• For all sets, A, B, P, E, and F, the overall performance order from best to worst is given
as NSGA-II_GTBCX, NSGA-II_NNX, and NSGA-II_EAX. Pareto solutions offered by
NSGA-II_GTBCX dominates all Pareto solutions offered by NSGA-II_EAX. However,
there are very few solutions offered by NSGA-II_NNX that dominate the worst Pareto
solutions offered by NSGA-II_GTBCX. However, there are some solutions offered
by NSGA-II_GTBCX that completely dominate all solutions of NSGA-II_NNX. For
most CVRP instances, NSGA-II_GTBCX offered the total traveled distance close to the
best-known solution. However, the value of the best-known solution is offered by the
single objective optimization method, which does not consider the other objectives.
This shows that the proposed GTBCX operator is superior to the NNX and EAX
operators in the context of CVRP.

• Since the minimal overlapping of routes leads to a better quality of solutions and helps
provide better values of total traveled distance and the longest route. The overlapping
of routes is minimal in the best Pareto solution offered by NSGA-II_GTBCX, while
it is maximal in the best solution offered by NSGA-II_EAX. This shows that NSGA-
II_GTBCX is a better performer in comparison to NSGA-II_NNX and NSGA-II_EAX.

• As the proposed NSGA-II-based routing algorithm offers solutions with a trade-off
between the overall distance traveled and the route with the longest length, the user
can employ different solutions to meet their requirements.

• It is also observed that the quality of the final solutions is affected by the quality of initial
solutions. Intelligent heuristics can be developed to generate good initial solutions.

• The duplicate solutions are also observed during the evolution process, and therefore,
intelligent heuristics can be developed to deal with duplicate solutions.

• It is also observed from the simulation study that the order of time complexity from
best to worst is given as NSGA-II_NNX, NSGA-II_EAX, and NSGA-II_GTBCX. To
reduce the time overheads of NSGA-II_GTBCX, the quantum-inspired algorithm can
also be applied.

• The proposed multi-objective algorithms can also be extended for different CVRP
variants, i.e., CVRP with time windows, drones, multiple depots, multiple/many
echelons, split deliveries, and others.

• Cloud computing and vehicles linked through the Internet of Things can also be used
for the execution of the proposed NSGA-II-based routing algorithm [51].

• The crossover and mutation probabilities can also be learned using reinforcement learn-
ing algorithms (SARSA, Q-Learning) and another machine learning algorithms [52,53].

• The concept of blockchain can also be incorporated in the proposed algorithm for
making decisions based on trustworthy data across the transportation and logis-
tics ecosystem.

6. Conclusions

This work proposes a giant tour best cost crossover (GTBCX) operator for capacitated
vehicle routing problems (CVRP). An NSGA-II-based routing algorithm employing GTBCX
is also proposed for solving the CVRP to optimize two objective values, i.e., the overall
distance travelled by the given fleet of vehicles and the length of the longest route. The
GTBCX employs the crossover strategy without splitting the chromosome, in comparison
to other existing crossover operators that employ the crossover strategy after splitting the
chromosome into routes. The GTBCX operator also avoids the generation of infeasible
solutions and offers better objective values, and speed-up the convergence. The mutation
operator works based on three local search operators, i.e., swap, two-opt*, and relocation,
and selects one of the three stochastically to mutate the chromosome. The three versions
of NSGA-II employing different crossover operators, i.e., NSGA-II_GTBCX with GTBCX,
NSGA-II_NNX with nearest neighbor crossover (NNX), and NSGA-II_EAX with edge
assembly crossover (EAX) operators, were compared using 88 benchmark CVRP instances.
The extensive simulation study confirms that the overall performance order from the best
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to worst is NSGA-II_GTBCX, NSGA-II_NNX, and NSGA-II_EAX. The NSGA-II_GTBCX
algorithm offers better results for the maximum number of CVRP instances. The simulation
study shows that the GTBCX is a powerful operator and helps to search for better solutions
in terms of the overall distance traveled, length of the longest route, and number, as well
as the quality of Pareto optimal solutions.

The proposed routing algorithm can also be adopted for different CVRP variants, such
as CVRPs with drones, time windows, multiple depots, many echelons, split deliveries, etc.
A parallel version can also be designed for cloud computing in the context of the Internet of
Vehicles (IoT). The proposed algorithm can also be extended with a resource consumption
view, i.e., resource-aware vehicle routing algorithm that consume minimum resources in
order to generate routes for large VRPs. The crossover and mutation probabilities can also
be learned using reinforcement learning algorithms to improve the effectiveness.
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