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ON THE GEOMETRY OF CAYLEY AUTOMATIC GROUPS

DMITRY BERDINSKYA,B, MURRAY ELDER, AND JENNIFER TABACK

Abstract. In contrast to being automatic, being Cayley automatic a priori has no geometric
consequences. Specifically, Cayley graphs of automatic groups enjoy a fellow traveler property.
Here we study a distance function introduced by the first author and Trakuldit which aims to
measure how far a Cayley automatic group is from being automatic, in terms of how badly the
Cayley graph fails the fellow traveler property. The first author and Trakuldit showed that if
it fails by at most a constant amount, then the group is in fact automatic. In this article we
show that for a large class of non-automatic Cayley automatic groups this function is bounded
below by a linear function in a precise sense defined herein. In fact, for all Cayley automatic
groups which have super-quadratic Dehn function, or which are not finitely presented, we can
construct a non-decreasing function which (1) depends only on the group and (2) bounds from
below the distance function for any Cayley automatic structure on the group.

1. Introduction

Cayley automatic groups generalize the class of automatic groups while retaining their key
algorithmic properties. Namely, the word problem in a Cayley automatic group is decidable in
quadratic time, regular normal forms for group elements can be computed in quadratic time,
and the first order theory for a (directed, labeled) Cayley graph of a Cayley automatic group
is decidable. Their history traces back to Sénizergues who observed that the (standard) Cayley
graph for the integral Heisenberg group is FA-presentable, with a proof first appearing in [9] in
2004 (see in particular page 651), and the concept was brought to the attention of combinato-
rial/geometric group theorists by Kharlampovich, Khoussainov and Miasnikov in [20].

The family of Cayley automatic groups is much broader than that of automatic groups, as
it includes, for example, all finitely generated nilpotent groups of nilpotency class two [20],
the Baumslag-Solitar groups [5, 20], higher rank lamplighter groups [8], and restricted wreath
products of the form G ≀H where G is Cayley automatic and H is (virtually) infinite cyclic [4, 6].

The existence of a Cayley automatic structure for a group G appears to impose no restrictions
on its geometry. This differs from the existence of an automatic structure; if a group G admits
an automatic structure then the Cayley graph with respect to any finite generating set S enjoys
the so-called fellow traveler property. This geometric condition requires that the normal form
representatives for a pair of group elements at distance 1 in the Cayley graph Γ(G,S) remain a
uniformly bounded distance apart in this graph.

The goal of this paper is to explore the geometry of the Cayley graph of a Cayley automatic
group, and in particular, to understand an analogue of the fellow traveler property for these
groups. A Cayley automatic group differs from an automatic group in that the normal form
for group elements is defined over a finite symbol alphabet rather than a set S of generators.
However, without loss of generality we can take these symbols to be additional generators,
renaming the larger generating set S, and for g ∈ G obtain a normal form which describes a
path in the Cayley graph Γ(G,S) but (most likely) not a path to the vertex labeled g. In lieu
of a fellow traveler property, we investigate the distance in Γ(G,S) between the vertex labeled
g and the endpoint of this path.
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To quantify how far a Cayley automatic structure is from being automatic, we follow the
first author and Trakuldit in [7] and define the Cayley distance function fψ for a given Cayley
automatic structure ψ, where fψ(n) is the maximum distance between a normal form word
representing g ∈ G and the vertex labeled g, over all normal forms of word length at most n. In [7]
it is shown thatG is automatic if and only if this function is equivalent to a constant function, in a
notion of equivalence defined below. Thus for Cayley automatic groups which are not automatic
this function is always unbounded and non-decreasing. This motivates our investigation of when
the Cayley distance function might be bounded below by a non-constant function, quantitatively
separating G from the class of automatic groups. However, the possibility exists that a group
may admit a sequence of Cayley automatic structures for which the corresponding sequence of
Cayley distance functions limit to a constant function, but never contains the constant function.

In this paper we prove that such limiting behaviour is not possible in any group which is not
finitely presented, or in any finitely presented group that has a super-quadratic Dehn function,
as given in Definition 4.3. In each case, we construct a concrete unbounded function depending
only on the group, so that the Cayley distance function for any Cayley automatic structure on
the group is bounded below by this function, up to equivalence. We say that a Cayley automatic
group G is f -separated if the Cayley distance function with respect to any Cayley automatic
structure on G is bounded below by a function in the equivalence class of f (Definition 2.5).

Let i denote the function i(n) = n on some domain [N,∞). Super-quadratic and strongly-
super-polynomial functions, referred to in Theorem A below, are introduced in Definition 4.3.
We prove the following.

Theorem A (Finitely presented groups). If G is a finitely presented Cayley automatic group
with super-quadratic Dehn function, then there exists an unbounded function φ depending only
on G so that G is φ-separated. Furthermore, if G has strongly-super-polynomial Dehn function,
then G is i-separated.

The analogous theorem for non-finitely presented groups is as follows. A non-finitely presented
group is dense if its irreducible relators have lengths which are “dense” in the natural numbers;
see § 5 for a precise definition. Wreath products are the prototypical examples of dense groups.

Theorem B (Non-finitely presented groups). If G is a Cayley automatic group which is not
finitely presented, then there is a non-decreasing step function φ depending only on G that is
linear for infinitely many values, so that G is φ-separated. Furthermore, if G is dense then G
is i-separated.

We conjecture that for every Cayley automatic group that is not automatic, the distance
function with respect to every Cayley automatic structure on the group is bounded below by a
linear function, which is equivalent to being i-separated.

Conjecture 1. Let G be a Cayley automatic group. Then G is either automatic or i-separated.

Our results provide support for this conjecture by exhibiting lower bounds for Cayley distance
functions for all non-automatic Cayley automatic groups whose Dehn function is super-quadratic
or are not finitely presented. However, these bounds are not always equivalent to i.

While we believe the conjecture to be true, two groups for which this linear lower bound is
not obvious to us are the following.

• The higher Heisenberg groups H2k+1 for k > 2. These are nilpotent of step 2 so they
are Cayley automatic by [20, Theorem 12.4]. Since the only nilpotent automatic groups
are virtually abelian [15], they are not automatic. It is proved in [1, 19, 23] that their
Dehn function is quadratic.

• The higher rank lamplighter groups, or Diestel-Leader groups, proven to be Cayley au-
tomatic by Bérubé, Palnitkar and the third author in [8]. One can show that the Cayley
automatic structure constructed in [8] has Cayley distance function equivalent to the
identity function. These groups are not of type FP∞ [2], hence not automatic. See [8]
for a discussion explaining why their Dehn functions are quadratic.
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The paper is organised as follows. In Section 2 we review automatic and Cayley automatic
groups, define the Cayley distance function for a Cayley automatic structure, and finish with
a short discussion of Dehn functions. In Section 3 we prove Proposition 3.2, which relates the
Cayley distance function to the Dehn function for a finitely presented Cayley automatic group. In
Section 4 we define super-quadratic, super-polynomial and strongly-super-polynomial functions
and prove Theorem A. We then turn to non-finitely presented Cayley automatic groups. We
introduce the notion of a dense group in Section 5, then prove Theorem B in Section 6. We
include additional information about strongly-superpolynomial functions in Appendix A.

2. Automatic and Cayley automatic groups

We assume that the reader is familiar with the notions of regular languages, finite automata
and multi-tape synchronous automata. For more details, we refer the reader to [15]. We say a
language L ⊆ (X∗)n is regular if it is accepted by a synchronous n-tape automaton where n ∈ N
and X is a finite set, or alphabet.

For any group G with finite symmetric generating set S = S−1, let π:S∗ → G denote the
canonical projection map. For w ∈ S∗ let |w|S denote the length of w as a word in the free
monoid S∗.

For any M,N ∈ N, let [M,N ] = {n ∈ N |M 6 n 6 N} and [M,∞) = {n ∈ N | n >M}.

2.1. Automatic and Cayley automatic groups. We define automatic and Cayley automatic
groups, and provide some standard lemmas on the invariance of the Cayley automatic structure
under change of generating set.

Definition 2.1. An automatic structure for a group G is a pair (S,L) where

(1) S is a finite symmetric generating set for G;
(2) L ⊆ S∗ is a regular language;
(3) π|L:L→ G is a bijection;
(4) for each a ∈ S the binary relation

Ra = {(u, v) ∈ L× L | π(u)a =G π(v)} ⊆ S∗ × S∗

is regular, that is, recognized by a two-tape synchronous automaton.

A group is called automatic if it has an automatic structure with respect to some finite generating
set.

It is a standard result, see, for example [15, Theorem 2.4.1], that if G is automatic then G
has an automatic structure with respect to any finite generating set.

Cayley automatic groups were introduced in [20] with the motivation of allowing the language
L of normal forms representing group elements to be defined over a symbol alphabet Λ rather
than a generating set S for G.

Definition 2.2. A Cayley automatic structure for a group G is a 4-tuple (S,Λ, L, ψ) where

(1) S is a finite symmetric generating set for G;
(2) Λ is an alphabet and L ⊆ Λ∗ is a regular language;
(3) ψ:L → G is a bijection;
(4) for each a ∈ S the binary relation

Ra = {(u, v) ∈ L× L |ψ(u)a =G ψ(v)} ⊆ Λ∗ × Λ∗

is regular, that is, recognized by a two-tape synchronous automaton.

A group is called Cayley automatic if it has a Cayley automatic structure (S,Λ, L, ψ) with
respect to some finite generating set S.

As for automatic groups, if G has a Cayley automatic structure (S,Λ, L, ψ) and Y is another
finite generating set for G, then there exists a Cayley automatic structure (Y,ΛY , LY , ψY ) for
G. See [20, Theorem 6.9] for a proof of this fact; we sharpen this in Proposition 2.10 below.
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Note that a Cayley automatic structure (S, S, L, π|L) for G, that is, one in which the symbol
alphabet is in fact a generating set, and the natural projection gives a bijection from L to G, is
simply an automatic structure for G.

A priori the symbol alphabet Λ has no relation to a generating set for G. However it is
straightforward to show that if (S,Λ, L, ψ) is a Cayley automatic structure for G, then there
exists another Cayley automatic structure (S′, S′, L, ψ) for G where S′ = Λ ∪ Λ−1 ∪ S, and so
we can always associate a Cayley graph with respect to a generating set which includes symbol
letters from the Cayley automatic structure. This is proven in [7] and in Proposition 2.10 below.
In this case, a word w ∈ L labels a path from 1G to π(w) in the Cayley graph Γ(G,S). It is
crucial to note that in general π(w) 6= ψ(w).

Definition 2.3. Let (G,S) be a group with Cayley automatic structure (S, S, L, ψ). The Cayley
distance function corresponding to ψ is defined to be

hS,ψ(n) = max{dS(π(w), ψ(w)) |w ∈ L6n}

where dS is the word metric on G with respect to S and

L6n = {w ∈ L | |w|6 n}.

Let F be the following set of non–decreasing functions:

F = {f : [N,∞) → R+ | N ∈ N ∧ ∀n(n ∈ domf ⇒ f(n) 6 f(n+ 1))}.

Note that if G is a group with Cayley automatic structure (S, S, L, ψ) and Cayley distance
function hS,ψ, then hS,ψ ∈ F .

We introduce the following partial order on F .

Definition 2.4. Let f, g ∈ F . We say that g �1 f if there exist positive integers K,M and N
such that [N,∞) ⊆ dom g ∩ dom f and g(n) 6 Kf(Mn) for every integer n > N . We say that
g ≈1 f if g �1 f and f �1 g.

The subscript in Definition 2.4 serves to distinguish this equivalence from the equivalence
on Dehn functions discussed in § 2.3. It is clear from the definition that both �1 and ≈1 are
transitive.

Definition 2.5. Let f, g ∈ F , and let G be a Cayley automatic group. We say that g is f -
separated if f �1 g, and that G is f -separated if for every Cayley automatic structure (S, S, L, ψ)
on G with distance function hS,ψ, hS,ψ is f -separated.

Note that since�1,≈1 are both transitive, ifG is f -separated and h ≈1 f thenG is h-separated
also.

Let z denote the zero function z(n) = 0 on some domain [N,∞), and i the function i(n) = n
on some domain [N,∞). We note that if f ∈ F and f(n) = 0 for infinitely many values of
n ∈ domf then f = z on its domain, because f ∈ F is non-decreasing.

The next lemma will be used repeatedly in the proofs below, and is a fact about certain types
of functions which are easily seen to be related or equivalent under the definition above.

Lemma 2.6. Let A,B,C,D ∈ R with A,D > 1 and B,C > 0. Let f, g ∈ F with f(n) 6

Dg(An+B)+C. If g 6= z, then f(n) �1 g(n). Moreover, if h(n) = Df(An+B)+C and f 6= z,
then h ∈ F and h ≈1 f .

Proof. If g is bounded, so g(n) 6 E for all n ∈ dom g for some fixed constant E, then f
is bounded as well. Since g(n) = 0 for at most finitely many values of n ∈ domg, we have
f(n) �1 g(n) (possibly increasing N0). If f is bounded and f(n) = 0 for at most finitely many
values of n ∈ domf , it follows immediately that h ≈1 f .

For the remainder of the proof, we assume that g is not bounded. There is a constant
N0 so that for n > N0 we have An > B. As g ∈ F , it follows that for n > N0 we have
Dg(An + B) + C 6 Dg(2An) + C. Since g is not bounded, there is a constant N1 so that for
n > N1 we have g(2An) > C. Then for n > max(N0, N1) we have f(n) 6 Dg(An + B) + C 6

Dg(2An) + C 6 (D + 1)g(2An) and thus f �1 g.
4



Letting g = f ∈ F the above reasoning shows that h �1 f . As it is clear that h(n) =
Df(An+B) + C ∈ F and f �1 h, it follows that f ≈1 h, as desired. �

Note that ≈1 defines an equivalence relation on the set F and �1 then gives a partial ordering
on the resulting set of equivalence classes. The poset of equivalence classes of elements of F has
a minimal element [z]. It follows from the previous lemma that all bounded functions f ∈ F for
which f(n) = 0 for at most finitely many values of n ∈ domf are in the same equivalence class.
Furthermore, every f ∈ F can be compared to a constant function. In contrast, we show that
the partial ordering is not a linear ordering, that is, there are functions in F which cannot be
compared to the identity function i under �1.

Lemma 2.7. Let c ∈ N and g : N → N the constant function g(n) = c. Let f ∈ F be any
function. Then either f �1 g or g �1 f .

Proof. If there is some D ∈ R+ so that f(n) 6 D =
(

D
c

)

c =
(

D
c

)

g(n) for all n ∈ domf then

f �1 g. If not, then for all D ∈ R+ there is an integer ND ∈ domf so that f(n) > D for n > ND.
In particular, there is an integer Nc ∈ domf so that f(n) > c = g(n) for all n ∈ domf ∩ [Nc,∞).
Thus g �1 f . �

Lemma 2.8 demonstrates that not every function f ∈ F is i-separated.

Lemma 2.8. There exists a function f ∈ F so that i �1 f and f �1 i.

Proof. Let n0 = 2 and define the infinite sequence of integers ni+1 = n2i = 22
i
. Consider the

step function f :N → R+ defined by

f(x) =

{

n2i n2i 6 x < n2i+1,
n2i+2 n2i+1 6 x < n2i+2.

Suppose f �1 i. Then ∃N0,K,M so that f(x) 6 Ki(Mx) = KMx for all x > N0. However,

f(n2i+1) = n2i+2 = n22i+1 6 KMn2i+1

which implies that n2i+1 6 KM for sufficiently large i, a contradiction. Thus f �1 i.
Conversely suppose i �1 f . Then ∃N0,K,M so that x 6 Kf(Mx) for all x > N0. This means

s
M

6 Kf(s) for all s = Mx > MN0, which implies that M⌊ s
M
⌋ 6 KMf(s) for all s > MN0.

However,

M

⌊

n22i − 1

M

⌋

=M

⌊

n2i+1 − 1

M

⌋

6 KMf(n2i+1 − 1) = KMn2i

and thus
⌊

n2
2i−1
M

⌋

6 Kn2i. Therefore,
n2
2i−1
M

6 Kn2i + 1, so n2i 6 KM + M+1
n2i

which is a

contradiction for sufficiently large i. Thus i �1 f . �

2.2. Invariance under change of generating set and change of structure. Here we de-
scribe how robust both the Cayley automatic structure and the function hS,ψ are to, respectively,
change in generating set and change in structure. First we recall the following standard fact.

Lemma 2.9. Let G be a Cayley automatic group and S a finite symmetric generating set for
G. Let (S,Λ, L, ψ) be a Cayley automatic structure for G. Then for any w ∈ S∗,

Lw = {(u, v) ∈ L2 | ψ(v) =G ψ(u)w}

is regular.

Proof. Let w = s1 . . . sn where si ∈ S for 1 6 i 6 n. As (S,Λ, L, ψ) is a Cayley automatic
structure for G, for each s ∈ S there is a synchronous 2-tape automaton Ms which accepts the
language

L(Ms) = {(u, v) ∈ L2 | ψ(v) =G ψ(u)s}.

Let M′i be a synchronous (n+ 1)-tape automaton accepting

(z0, . . . , zi−1, u, v, zi+2, . . . , zn)

where zj ∈ Λ∗, j ∈ [0, i − 1] ∪ [i + 1, n], u, v ∈ L and ψ(v) = ψ(u)si. We construct M
′
i

from Msi by replacing each edge labeled (a, b) ∈ Λ2 by the finite number of edges labeled
5



(x0, . . . xi−1, a, b, xi+2, . . . , xn) ∈ Λn+1 for all possible choices of xj ∈ Λ where 0 6 j 6 i − 1
and i+ 2 6 j 6 n.

Then

Lw =

n
⋂

i=1

L(M′i)

which is regular since this is a finite intersection, then apply a homomorphism to project onto
the first and last factors. �

Proposition 2.10. Let G be a Cayley automatic group and S a finite symmetric generating set
for G.

(1) If (S,Λ, L, ψ) is a Cayley automatic structure for G, then so is (S′, S′, L, ψ) where S′ =
Λ ∪ Λ−1 ∪ S

(2) If (S, S, L, ψ) is a Cayley automatic structure for G with Cayley distance function hS,ψ,
and Y is a finite symmetric generating set for G, then there exists a language L′ ⊆ Y ∗

and a bijection ψ′:L′ → G so that (Y, Y, L′, ψ′) is a Cayley automatic structure for G
with Cayley distance function hY,ψ′ ≈1 hS,ψ.

Proof. (1) Suppose 〈S | R〉 is a presentation for G. For each a ∈ Λ choose an element ga ∈ G,
and choose a word ua ∈ S∗ with π(ua) = ga. Note that this choice is arbitrary; the element
ga corresponding to the symbol letter a could be any group element. Let Λ−1 be the disjoint
set {a−1 | a ∈ Λ}; we will not use these letters, but include them to ensure our new generating
set is symmetric. Since Λ is finite, there is a bound on the length of all ua words. We have
S′ = Λ ∪ Λ−1 ∪ S and G is presented by 〈S′ | R ∪ {a = ua | a ∈ Λ}〉.

With this new generating set, we have the same language L which is regular, and the map
ψ:L → G. For each s ∈ S there is an automaton Ms recognizing multiplication by s, and it
follows from Lemma 2.9 that there is an analogous 2-tape automaton Ma for each a ∈ Λ±1.

(2) We have L ⊆ S∗ is a regular language in bijective correspondence with G. For each s ∈ S,
choose a word us ∈ Y ∗ with s =G us and for each y ∈ Y , choose a word vy ∈ S∗ with y =G vy.
Let M1 = max{|vy |S | y ∈ Y } and M2 = max{|us|Y | s ∈ S}.

Let the monoid homomorphism ρ:S∗ → Y ∗ be defined by ρ(s) = us. It follows that L
′ = ρ(L)

is a regular language in bijection with G, where ψ′:L′ → G defined by ψ′ = ψ ◦ (ρ|L)
−1 is a

bijection. Note that for all w ∈ L we have π(w) = π(ρ(w)) and ψ(w) = ψ′(ρ(w)). For each
w ∈ L6n we claim that

(1) dS (π(w), ψ(w)) 6M1hY,ψ′ (M2n)

To see this, we argue as follows.

• Under ρ, the path labeled w from 1G to π(w) in Γ(G,S) is mapped to a path labeled
ρ(w) from 1G to π(ρ(w)) = π(w) in Γ(G,Y ), and this path has length at most M2n,
replacing each letter s of the path by us. See Figure 1.

• By definition, the distance from π(ρ(w)) to ψ′(ρ(w)) in Γ(G,Y ) is at most hY,ψ′(M2n)

since this is the maximum such distance over all possible words in (L′)6M2n.
• Then in Γ(G,Y ) we have a path from π(w) to ψ(w) of length at most hY,ψ′(M2n) in the
letters from Y ; call it γ. Replacing each of these letters y by uy we obtain a path ρ−1(γ)
in Γ(G,S) from π(w) to ψ(w) of length at most M1hY,ψ′(M2n).

Since Equation (1) is true for all w ∈ L6n, it follows that hS,ψ �1 hY,ψ′ .
Similarly for each w′ = ρ(w) ∈ (L′)6n the same argument shows that

dY
(

π(w′), ψ′(w′)
)

6M2hS,ψ (M1n)

as π(w′) = π(w) and ψ(w) = ψ′(w′) are the same vertices.
Thus hY,ψ′ �1 hS,ψ and it follows that hY,ψ′ ≈1 hS,ψ �

Remark 2.11. Note that a given group may admit many different Cayley automatic structures
whose Cayley distance functions are not equivalent under �1. Part (2) of Proposition 2.10 proves
that given one Cayley automatic structure for a group G with respect to a generating set S, we

6



w

ρ−1(γ)

1G

π(w) = π(ρ(w))

ψ(w) = ψ′(ρ(w))

(a) In Γ(G,S)

ρ(w)

γ

1G

π(w) = π(ρ(w))

ψ(w) = ψ′(ρ(w))

(b) In Γ(G, Y )

Figure 1. Drawing w ∈ L and ρ(w) ∈ L′ in each Cayley graph.

can create a new Cayley automatic structure for G over a generating set Y so that both Cayley
distance functions are equivalent under �1.

2.3. Dehn functions. Let P = 〈X | R〉 be a finite presentation of a group G and FX the free
group on X. If w ∈ FX is equal to 1G in G, then there exist N ∈ N, ri ∈ R and ui ∈ FX such
that

wFX
=

N
∏

i=1

u−1
i rǫii ui

We define the area of w, denoted AP(w), to be the minimal N ∈ N so that w has such an
expression.

Definition 2.12. The Dehn function of a presentation is the function δP :N → N given by

δP(n) = max{AP(w) | w ∈ FX , w =G 1G, |w|6 n}

Note that if f is a Dehn function then f ∈ F . It is standard to define the following partial
order on Dehn functions.

Definition 2.13. For f, g ∈ F we define f �2 g if there exists a constant C > 0 so that
f(n) 6 Cg(Cn) + Cn for all n ∈ N. We write f ≈2 g if f �2 g and g �2 f .

Recall that each presentation of a group G can give rise to a different Dehn function. It is a
standard fact that all Dehn functions on a group G are equivalent under the relation ≈2. Thus
we can consider the equivalence class of these functions as a quasi-isometry invariant of the
group. In particular, we can refer to a group as possessing a linear, quadratic or exponential
Dehn function, for example.

Recall that there are no groups with Dehn function equivalent to nα for α ∈ (1, 2) [10, 18, 21].

3. Finite presentability and Dehn functions

We start with the following observation.

Lemma 3.1 ([20], Lemma 8.2; [14], Lemma 8). Let (S,Λ, L, ψ) be a Cayley automatic structure
for G. Then there are constants m, e ∈ N, depending on the Cayley automatic structure, with
m > 1 so that for each u ∈ L,

|u|6 mdS(1G, ψ(u)) + e
7



where dS denotes the word metric in G with respect to the generating set S.

Proof. For each x ∈ S let Mx be a synchronous 2-tape automaton accepting

{(u, v) ∈ L2 | ψ(v) =G ψ(u)x},

and let |Mx| denote the number of states in Mx, and m = max{|Mx|| x ∈ S}. Let u0 ∈ L be such
that ψ(u0) = 1G, and e = |u0|.

For u ∈ L let x1 . . . xk be a geodesic for ψ(u) where xi ∈ S, so k = dS(1G, ψ(u)). Define
ui ∈ L by ψ(ui) =G x1 . . . xi. Then for i = 1, . . . , k we have

||ui|−|ui−1|| 6 m.

If this difference in length was greater than m, the path accepted by the two-tape automaton
would end with a sequence of $ symbols in one coordinate of length greater than m. One could
then apply the pumping lemma to this path, and contradict the fact that ψ is a bijection.

It then follows from the triangle inequality that

|u| = ||uk|−|uk−1|+|uk−1|− · · · − |u1|+|u1|−|u0|+|u0||
6 |(|uk|−|uk−1|)|+ · · ·+ |(|u1|−|u0|)|+ |u0|
6 mk + e

which establishes the bound. �

The following proposition relates the Cayley distance function to fillings of loops in the Cayley
graph of a Cayley automatic group.

Proposition 3.2. Let (S, S, L, ψ) be a Cayley automatic structure for G with Cayley distance
function hS,ψ. There exist constants c, d, ς, n0,D ∈ N, depending on the Cayley automatic
structure, so that the following holds.

(1) For every w ∈ S∗ with w =G 1G and |w|> n0, there exist wi, ρi ∈ S∗ with wi =G 1G for
1 6 i 6 k so that

w =FS

k
∏

i=1

ρiwiρ
−1
i and |wi|6 4hS,ψ(c|w|+d) + ς.

(2) If G is finitely presented, and δ is the Dehn function with respect to a fixed presentation
〈S | R〉, then

δ(n) 6 Dn2δ(f(n))

for all n > n0, where f ≈1 hS,ψ.

Note that the constants D, c, and ς in the statement of the proposition depends only on the
Cayley automatic structure and not on the Dehn function δ.

Proof. Let m = maxs∈S{|Ms|} be the maximum number of states in any two-tape synchronous
automaton accepting Rs as in Definition 2.2 in the Cayley automatic structure for G and u0 ∈ L
the word representing the identity element of G of length e as in Lemma 3.1. Without loss
of generality we assume that m is even, so that all arguments of the function hS,ψ below are
integers.

Choose a loop in Γ(G,S) based at 1G labeled by the path w = s1 . . . sn where si ∈ S and
π(w) = 1G. For each gi = π(s1 . . . si) let ui ∈ L be such that ψ(ui) = gi. For 1 6 i 6 n, as
d(1G, gi) 6 n/2, it follows from Lemma 3.1 that

(2) |ui|S6 mn/2 + e

so the distance from π(ui) to gi is at most hS,ψ(mn/2 + e). Let γi be a path from π(ui) to
gi of length at most this bound. We will describe how to fill “corridors” having perimeter
uiγisiγ

−1
i+1u

−1
i+1 with relators of bounded perimeter. See Figure 2 for an example of such a

corridor.
Let ui = ai,1ai,2 . . . ai,|ui|S and for 0 6 j 6 |ui|S define pij = π(ai,1ai,2 . . . ai,j) to be the point

in Γ(G,S) corresponding to the prefix of ui of length j. If j > |ui|S then let pij = π(ui).
8



ui ui+1

si

γi γi+1

π(ui)
π(ui+1)

gi gi+1

Figure 2. The exterior of the figure is labeled by a loop w = s1s2 · · · sn with
w =G 1. The figure depicts a corridor whose sides are labeled by the closed path
uiγisiγ

−1
i+1u

−1
i+1.

We know that the pair (ui, ui+1) is accepted byMsi . Consider the state ofMsi which is reached
upon reading the input {(ai,l, ai+1,l)}

l
j=1} where ai,l, ai+1,l ∈ S ∪ {$}. There must be a path of

length at most m in Msi from this state to some accept state of Msi . Denote the labels along
this path by {(bi,j,r, bi+1,j,r)}

m
r=1 where bi,j,r, bi+1,j,r ∈ S ∪{$} and we insert the padding symbol

$ in both coordinates if the path has length less than m. Then if xi,j denotes the concatenation

{ai,j}
l
j=1{bi,j,r}

m
r=1, and xi+1,j denotes {ai+1,l}

j
l=1{bi+1,j,r}

m
r=1, then ψ(xi,j)si = ψ(xi+1,j), and

both these points, as well as π(xi,j) and π(xi+1,j) are depicted in Figure 3.

si

γi γi+1

π(xi,j) π(xi+1,j)

ψ(xi,j) ψ(xi+1,j)

βi βi+1

pi,j pi+1,j

π(ui)
π(ui+1)

gi gi+1gi gi+1

Figure 3. Depiction of a path in Γ(G,S) between pi,j = π(ai,1ai,2 . . . ai,j)
and pi+1,j = π(ai+1,1ai+1,2 . . . ai+1,j), where ui = ai,1ai,2 . . . ai,|ui|S is such that
ψ(ui) = gi.

Thus there is a path in Γ(G,S) from pij to pi+1,j of length at most 2m+2hS,ψ(mn/2+e+m)+1
consisting of the following segments, as shown in Figure 3:
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• βi = {bi,j,r}
r
i=1 from pi,j to π(xi,j) of length at most m,

• a path from π(xi,j) to ψ(xi,j) of length at most hS,ψ(mn/2 + e+m),

• an edge labeled si from ψ(xi,j) to ψ(xi+1,j),

• a path from ψ(xi,j)si = ψ(xi+1,j) to π(xi+1,j) of length at most hS,ψ(mn/2 + e+m),

• βi+1 = {bi+1,j,r}
r
i=1 from π(xi+1,j) to pi+1,j of length at most m.

In Figure 4 the paths between pi,j and pi+i,j for all 1 6 j < max{|ui|S , |ui+1|S} are depicted

for one corridor. Between p|ui| and p|ui+1| we use that existing path γisiγ
−1
i+1.

These corridors create two types of cells. The first type are created from two of these paths
and their connecting edges, for some j and j + 1 < max{|ui|S , |ui+1|S}. This creates a cell with
perimeter at most

2(2m+ 2hS,ψ(mn/2 + e+m) + 1) + 2 = 4m+ 4hS,ψ(mn/2 + e+m) + 4,

where the additional +2 accounts for the single edges ai,j+1 between pi,j and pi,j+1, and ai+1,j+1

between pi+1,j and p+1,j+1, which lie on the paths ui and ui+1, respectively, and are not part of
the paths previously constructed.

si

γi γi+1

gi gi+1

pi,j
pi+1,j

π(ui)
π(ui+1)

gi gi+1

Figure 4. Filling the corridors created by the paths uiγi with cells of bounded
perimeter.

The second type is the “top” cell created by the path from pi,|ui|−1 to pi+1,|ui+1|−1 together

with the path ai,|ui|−1γisiγ
−1
i+1ai+1,|ui+1|−1. This cell has perimeter at most

(2m+ 2hS,ψ(mn/2 + e+m) + 1) + 2 + (2hS,ψ(mn/2 + e) + 1)
= 2m+ 2hS,ψ(mn/2 + e+m) + 2hS,ψ(mn/2 + e) + 4
6 4m+ 4hS,ψ(mn/2 + e+m) + 4

where the terms in the first line come, respectively, from

• the path from pi,|ui|−1 to pi+1,|ui+1|−1,

• the two edges labeled ai,|ui|−1 and ai+1,|ui+1−1, and

• the path γisiγ
−1
i+1.

To obtain the inequality, note that hS,ψ ∈ F and m > 1, so 2m+ 4 6 4m+ 4 and

2hS,ψ(mn/2 + e+m) + 2hS,ψ(mn/2 + e) 6 4hS,ψ(mn/2 + e+m).

Setting c = m/2, d = e+m and ς = 4m+ 4 proves the first claim in the proposition.
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To prove the second claim in the proposition, we count the total number of cells required to
subdivide the initial loop into cells of bounded perimeter. This will yield the inequality involving
the Dehn function δ.

It follows from Lemma 3.1 that |ui|6 mn/2+ e for all 1 6 i 6 n. Each corridor is filled by at
most (mn/2+e) cells, each of perimeter at most 4hS,ψ(cn+d)+ ς, where c, d and ς depend on m
and e. For a fixed finite presentation 〈S | R〉 for G with Dehn function δ, each cell constructed
above can be filled by at most δ(4hS,ψ(cn+d)+ ς) cells with perimeter labeled by a relator from
the set R.

With n corridors, there are n · (mn/2+ e) = n(cn+ e) such cells to fill. Thus an upper bound
on the number of relators required to fill w is

n(cn+ e) · δ (4hS,ψ(cn + d) + ς) = n2(c+
e

n
) · δ (4hS,ψ(cn+ d) + ς)

6 n2(c+ e) · δ (4hS,ψ(cn+ d) + ς) .

Setting D = c+ e and noting that it follows from Lemma 2.6 that 4hs,ψ(cn+ d) + ς ≈1 hs,ψ(n)
proves the second claim of the proposition. �

4. Separating finitely presented Cayley automatic groups from automatic
groups

In this section we prove Theorem A. First we introduce the following notion.

Definition 4.1. Let f, g ∈ F . We say that f ≪ g if there exists an unbounded function t ∈ F
such that ft �1 g.

Example 4.2. If g(n) = nc with c > 2 and f(n) = n2 then f ≪ g. Take t(n) = nc−2. Then
t ∈ F is an unbounded function and

f(n)t(n) = nc �1 g(n).

Next we define the following.

Definition 4.3. A function f ∈ F is super-quadratic if for all constants M > 0 we have
f(n) 6 Mn2 for at most finitely many n ∈ N. A non-zero function is f ∈ F is strongly-super-
polynomial if n2f ≪ f .

Example 4.4. The functions n2 lnn and nc for c > 2 are super-quadratic; the functions en and
nlnn are strongly-super-polynomial.

Ol’shanskii introduces the notion of a function being almost quadratic in [22]; our definition
of a super-quadratic function is the same as being not almost quadratic. However, our notion of
a strongly-super-polynomial is stronger than the more standard definition of a super-polynomial
function given, for example, in [17]:

Definition 4.5. A function f :N → R is super-polynomial if

lim
n→∞

ln f(n)

lnn
= ∞.

In Lemma A.2 we give an example of a function in F which satisfies the above limit but is
not strongly-super-polynomial. However Proposition A.3 justifies our use of “strongly” since it
shows that every strongly-super-polynomial function is super-polynomial.

Proposition A.1 shows that f is strongly-super-polynomial if and only if ncf ≪ f for any
c > 0, that is, there is nothing special about the choice of the exponent 2 in Definition 4.3.

Lemma 4.6. A function f ∈ F is super-quadratic if and only if n2 ≪ f .

Proof. Assume first that n2 ≪ f . Since n2 ≪ f , there exist an unbounded function t ∈ F and
integer constants K,N > 0 and M > 1 such that n2t(n) 6 Kf(Mn) for all n > N . Assume
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that for some M ′ > 1 there exist infinitely many ni ∈ N, i > 1 with 1 6 ni < ni+1 for which
f(ni) 6M ′n2i . Let ni = kiM + ri, where ki is an integer and 0 6 ri < M . Then we have:

1

K
k2i t(ki) 6 f(Mki) 6 f(ni) 6M ′n2i =M ′M2k2i + 2M ′Mriki +M ′r2i 6

M ′M2k2i + 2M ′M2ki +M ′M2
6M ′M2(ki + 1)2

for all ki > N . Therefore, t(ki) 6 KM ′M2 (ki+1)2

k2i
6 2KM ′M2 for all ki > max{N, 3}, where

the 3 follows from the simple observation that if k > 3 then (k+1)2

k2
6 2. This contradicts the

fact that t is an unbounded function.
Now assume that f is super-quadratic. Then for each integer i > 1 the set

{m | ∀n
[

n > m =⇒ f(n) > in2
]

}

is non-empty. Let mi = min{m | ∀n
[

n > m =⇒ f(n) > in2
]

}. We define a function t(n) as
follows: for 0 6 n < m1, let t(n) = 0, and for mi 6 n < mi+1 with i > 1, let t(n) = i. By
construction, t(n) is a nondecreasing and unbounded function. As n2t(n) 6 f(n), it follows that
n2 ≪ f . �

In [25] Ol’shanskii gives an example of a finitely presented group which has Dehn function
bounded above by c1n

2 for infinitely many values of n, bounded below by c2n
2 log′ n log′ log′ n

for infinitely many values of n, where log′(n) = max{log2 n, 1}, and bounded between c3n
2 and

c4n
2 log′ n log′ log′ n for all n ∈ N. Since this Dehn function is not super-quadratic, it follows

that Theorem A below does not apply to this example.
We now prove Theorem A.

Theorem A (Finitely presented groups). If G is a finitely presented Cayley automatic group
with super-quadratic Dehn function, then there exists an unbounded function φ depending only
on G so that G is φ-separated. Furthermore, if G has strongly-super-polynomial Dehn function,
then G is i-separated.

Proof. Fix a presentation for G and let δ be the Dehn function arising from this presentation.
Fix a Cayley automatic structure (S, S, L, ψ) for G. If n2 ≪ δ, there is an unbounded function
t(n) ∈ F and positive constants K,M,N0 ∈ N so that n2t(n) 6 Kδ(Mn) for all n > N0.

From Proposition 3.2 we know that there are constants N1,D > 1 and a function f ∈ F so
that for n > N1, we have δ(n) 6 Dn2δ(f(n)) where f ≈1 hS,ψ(n).

Combining these equations we have that for all n > max{N0, N1}

n2t(n) 6 Kδ(Mn) 6 KDM2n2δ (f(Mn))

and dividing both sides by KDM2n2 we obtain

(3)
t(n)

KDM2
6 δ (f(Mn)) .

Define

φ(n) = min

{

m

∣

∣

∣

∣

t(n)

KDM2
6 δ(m)

}

.

It is immediate from Equation (3) that in the definition of φ(n) we have φ(n) 6 f(Mn) for
all n > max{N0, N1}, and hence φ �1 f . Since t ∈ F is unbounded, it follows that φ ∈ F and
φ is unbounded.

Now assume that the inequality n2δ ≪ δ is satisfied. Therefore, there exist integer constants
K,M,N0 > 0 and an unbounded function t ∈ F such that

(4) n2δ(n)t(n) 6 Kδ(Mn)

for all n > N0. It follows from statement (2) of Proposition 3.2. that there exists a function
f ≈1 hS,ψ and integer constants N1 > 0 and D > 0 for which the inequality

δ(n) 6 Dn2δ(f(n))
12



holds for all n > N1. This implies that δ(Mn) 6 DM2n2δ(f(Mn)) for all n > N1. Combining
this with the inequality in (4) we obtain that

n2δ(n)t(n) 6 Kδ(Mn) 6 DKM2n2δ(f(Mn))

for all n > max{N0, N1}. Therefore,

δ(n)τ(n) 6 δ(f(Mn))

for all n > max{N0, N1}, where τ(n) =
t(n)

DKM2 . Let

m0 = min{n ∈ dom(τ) ⊆ N | τ(n) > 2};

such m0 exists because τ(n) is unbounded. Therefore,

2δ(n) 6 δ(f(Mn)))

for all n > max{N0, N1,m0}. Let d0 = min{n | δ(n) > 1}.
If f(Mn) < n for some n > max{N0, N1,m0, d0} then 2δ(n) 6 δ(f(Mn)) 6 δ(n), which is a

contradiction. Thus for all n > max{N0, N1,m0, d0} we must have that

n 6 f(Mn).

From this we obtain that i �1 f . As f �1 hS,ψ it follows that i �1 hS,ψ, and we conclude that
G is i-separated. �

5. Dense groups

We introduce a property of some infinitely presented groups which will allow us to obtain
sharper lower bounds on the Cayley distance function of such a Cayley automatic group. This
property will be shown to be independent of generating set and the prototypical examples of
groups with this property are restricted wreath products.

Recall that FX denotes the free group generated by a set X.

Definition 5.1 (Densely generated). Let G be a group with finite generating set X. We say
that G is densely generated by X if there exist constants E,F,N0 ∈ N, 1 6 E < F such that for
all n > N0 there is a word wn ∈ (X ∪X−1)∗ which has the following properties:

• wn =G 1G,

• En 6 |wn|6 Fn, and

• for any collection of words ui, ρi ∈ (X ∪X−1)∗, 1 6 j 6 k with ui =G 1G and

wn =FX

k
∏

i=1

ρiuiρ
−1
i ,

we have |uj |> n for some 1 6 j 6 k.

In other words, for every interval [En,Fn] there is a loop wn whose length lies in that interval
which cannot be filled by loops all having length at most n. It follows that if G is densely
generated by X then every presentation for G over X is infinite.

The following lemma shows that being densely generated is independent of the choice of finite
generating set.

Lemma 5.2. If G is densely generated by X and Y is another finite generating set for G then
G is densely generated by Y .

Proof. Let |·|X denote the length of a word in (X ∪X−1)∗ and |·|Y denote the length of a word
in (Y ∪ Y −1)∗.

For each x ∈ X choose a nonempty word vx ∈ (Y ∪ Y −1)∗ with x =G vx. Let M1 =
maxx∈X{|vx|Y }, and τ : (X ∪ X−1)∗ → (Y ∪ Y −1)∗ be the monoid homomorphism defined by
τ(x) = vx. For each y ∈ Y choose a nonempty word qy ∈ (X ∪ X−1)∗ with y =G qy. Let
M2 = maxy∈Y {|qy|X}, and κ: (Y ∪ Y −1)∗ → (X ∪X−1)∗ the monoid homomorphism defined by
κ(y) = qy.
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As G is densely generated by X, there exist fixed constants E,F,N0 ∈ N as in Definition 5.1.
Suppose G is not densely generated by Y . Then for all constants E′, F ′, N ′

0 ∈ N there exist
some s > N ′

0 so that all words equal to 1G of length between E′s and F ′s can be filled by cells
of perimeter at most s.

Choose E′ = EM2 and F ′ =M1M2F , and N
′
0 = max{N0,M1M2+1}. Let s0 > N ′

0 be chosen
so that with respect to these constants, all words equal to 1G of length between E′s0 and F ′s0
can be filled by cells of perimeter at most s0.

As G is densely generated by X, choose n =M2s0. There must be a word wn ∈ (X ∪X−1)∗

so that wn =G 1G and whose length satisfies

E(M2s0) 6 |wn|6 F (M2s0)

which cannot be filled by cells all of perimeter at most n. Then τ(wn) labels a path in Γ(G,Y )
so that

EM2s0 6 |τ(wn)|6 M1FM2s0.

Note that the map τ does not decrease length, as τ(wn) is obtained by substitution, with no
free reduction.

Since E′s0 6 |τ(wn)|6 F ′s0, by our choice of s0 we can fill this word by cells of perimeter
at most s0. Now consider this van Kampen diagram as a subgraph of Γ(G,Y ). Map the entire
subgraph, edge-by-edge, into Γ(G,X) by applying the map κ; the boundary of the new subgraph
consists of paths of the form κ(τ(xi)), where w = x1x2, · · · xn. These paths form the boundary
of the subgraph in Γ(G,X) connecting the original vertices on the path labeled by wn, and have
length at most M1M2. We have thus created cells of the form κ(τ(xi))x

−1
i of perimeter at most

1 +M1M2. These boundary cells, together with the copy of the van Kampen diagram, provide
a filling of wn.

In summary, the filling we have created has cells of two types:

• the boundary cells, of perimeter 1 +M1M2, and
• images of the cells in the van Kampen diagram in Γ(G,Y ), which had perimeter at most
s0; after applying the homomorphism κ, the image of such a cell has perimeter at most
M2s0.

Note that we chose N ′
0 = max{M2M1 + 1, N0} so all of these cells have perimeter at most

M2s0 = n. This contradicts the existence of wn. Thus G is also densely generated by Y . �

A group is called dense if it is densely generated by some, hence any, finite generating set.
This definition is inspired by Baumslag’s paper [3] about wreath products G ≀H. We prove in
Proposition 5.3 that if H is infinite then G ≀H is dense.

Proposition 5.3. Let G and H be finitely generated groups. If G is nontrivial and H is infinite,
then G ≀H is dense.

Proof. For x, y ∈ G let xy = y−1xy, and [x, y] = x−1y−1xy. Let G = 〈X |P 〉 and H = 〈Y |Q〉 be
presentations of the groups G and H, where X ⊆ G and Y ⊆ H are finite generating sets. For
each h ∈ H choose a geodesic word uh ∈ (Y ∪Y −1)∗ with π(uh) =G h, and let U = {uh|h ∈ H}.
Then the wreath product G ≀H has presentation

G ≀H = 〈X ∪ Y |P ∪Q ∪ {[au1 , a
v
2] | a1, a2 ∈ X,u, v ∈ U, u 6= v}〉.

Let BH,Y (n) denote the ball of radius n in the group H with respect to the generating set Y .
For a given positive integer m, define the set of relators

Rm = P ∪Q ∪ {[au1 , a
v
2] | u, v ∈ U, u 6= v, π(u), π(v) ∈ BH,Y (m)}.

For any set S ⊆ H, define the relation TS = {(s1h, s2h) | s1, s2 ∈ S, h ∈ H}. Now we mimic
Baumslag’s argument for proving the non-finite presentability of wreath products, presented in
Lemma 3 of [3], see also [12]. Baumslag constructs a group GG,H,S generated by G and H with
the following properties:

• Gh1 ∩Gh2 = {1GG,H,S
} for all h1, h2 ∈ H with h1 6= h2, and

•
[

Gh1 , Gh2
]

= {1GG,H,S
} if and only if (h1, h2) ∈ TS .
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Note that instead of requiring all conjugacy classes to commute in GG,H,S , we only require this
when the conjugating elements form a pair in the relation TS .

Choosing S = BH,Y (n) for any fixed n, it follows that in GG,H,S we have [G,Gh] 6= 1GG,H,S

for any h for which (1H , h) 6∈ TS . In particular, this holds for any h ∈ BH,Y (2n+1) \BH,Y (2n).

Therefore there is a relation [a1, a
h
2 ] in R2n+1 \ R2n which cannot be obtained as a product of

conjugates of the relations from Rn.
Now observe that every loop w ∈ (X ∪ X−1 ∪ Y ∪ Y −1)∗ of length |w|6 n in the wreath

product G ≀ H can be represented as a product of conjugates of relations from Rn. Therefore,
the loop of length 8n+8, given by the relation [a1, a

h
2 ], cannot be decomposed into smaller loops

of length less or equal than n. Thus, G ≀H is dense. �

6. Separating non-finitely presented Cayley automatic groups from automatic
groups

The proof of Theorem B relies on the following proposition.

Proposition 6.1. Let G be a non-finitely presented group with finite generating set S. Then
there exists a non-decreasing step function φG,S ∈ F , depending on G and S, and an infi-
nite sequence of integers {ni} such that φG,S(ni) = ni and for any Cayley automatic structure
(S, S, L, ψ) on G,

(1) φG,S �1 hS,ψ, and
(2) if G is dense then i �1 hS,ψ.

Proof. Since G is not finitely presented, there exists an infinite sequence of words wi ∈ S∗ so
that

• wi =G 1G,

• if wi =
∏k
j=1 ρjujρ

−1
j for some k ∈ N and uj, ρj ∈ S∗ for 1 6 j 6 k, then |uj |> |wi| for

at least one value of j, and

• |wi|= li, and li < li+1.

Define φG,S ∈ F by φG,S(n) = li for li 6 n < li+1.
Let c, d, ς, and n0 be the constants from Proposition 3.2. Then for any i ∈ N with li > n0 we

can decompose wi into loops ui,j using the algorithm described in Proposition 3.2, and illustrated
in Figures 2, 3 and 4, so that |ui,j |6 4hS,ψ(cli + d) + ς. Our choice of wi ensures that for some
j we have φG,S(li) = li = |wi|6 |ui,j|.

Suppose li 6 n < li+1. It follows that for this choice of j,

φG,S(n) = li 6 |ui,j |6 4hS,ψ(cli + d) + ς 6 4hS,ψ(cn + d) + ς.

It then follows from Lemma 2.6 that φG,S(n) �1 hS,ψ(n).
Now suppose that G is densely generated by X, so there exist constants E,F and N0 so that

for all n > N0 there exists a loop wn =G 1G so that

• En 6 |wn|6 Fn, and
• wn cannot be subdivided into loops all of whose lengths are bounded above by n. That
is, if we write wn = Πki=1ρiuiρ

−1
i where each ui =G 1G then for some i we have |ui|> n.

Again it follows from Proposition 3.2 that there are constants c, d, ς and n0 so that for n >

max(n0, N0), each uj in the above decomposition of wn we have |uj |6 4hS,ψ(cFn+ d)+ ς. Since
G is dense, it follows that for some j we have

n 6 |uj |6 4hS,ψ(cFn+ d) + ς.

As this is true for every n ∈ N with n > max(n0, N0), it follows from Lemma 2.6 that i �1

hS,ψ. �

We now prove Theorem B.

Theorem B (Non-finitely presented groups). If G is a Cayley automatic group which is not
finitely presented, then there is a non-decreasing step function φ depending only on G that is
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linear for infinitely many values, so that G is φ-separated. Furthermore, if G is dense then G
is i-separated.

Proof. Suppose (Y, Y, L, ψ) is a Cayley automatic structure for G with respect to some arbitrary
finite generating set Y .

If G is dense. it follows from part (2) of Proposition 6.1 that i �1 hY,ψ.
Next, choose a finite generating set S for G. It follows from part (1) of Proposition 6.1 that

the function φG,S is such that φG,S �1 hS,ψ′ ≈1 hY,ψ. Setting φ = φG,S gives a step function
which suffices to prove the theorem. �

7. Conclusion

Theorems A and B together imply that the only possible candidates for non-automatic Cayley
automatic groups where the geometry comes close to resembling that of an automatic group (in
the coarse sense considered here) are groups with quadratic or almost quadratic Dehn function.
The class of groups with quadratic Dehn function is a wild and interesting collection (Gersten
referred to the class as a “zoo” in [16]), including the following groups.

(1) The higher Heisenberg groups H2k+1 for k > 2 [1, 19, 23].
(2) The higher rank lamplighter groups, or Diestel-Leader groups [8].
(3) Stallings’ group and its generalizations [11, 13]. These examples are not of type FP∞,

hence not automatic; it is not known whether they admit Cayley automatic structures.
(4) Thompson’s group F , which is not known to be automatic or Cayley automatic though

is 1-counter-graph automatic [14].
(5) An example of Ol’shanskii and Sapir [24] which has quadratic Dehn function and un-

solvable conjugacy problem.

Ol’shanskii [25, 22] also gives an example of a group whose Dehn function is almost quadratic,
and so Theorem A does not apply to this group. It is not known whether this example or
the unsolvable conjugacy example of Ol’shanskii and Sapir are Cayley automatic. Note that
our definition of a super-quadratic function is equivalent to saying the function is not almost
quadratic, as shown in Lemma 4.6.

Progress towards proving Conjecture 1 takes two forms. First, one must improve the exhibited
bounding functions given for groups with super-quadratic Dehn function and for non-dense non-
finitely presented groups to show that these groups are i-separated. Second, one must prove that
non-automatic Cayley automatic groups with quadratic and almost quadratic Dehn function are
i-separated. We have some optimism for progress on the first part, and find the second more
difficult.

Appendix A. Further remarks on strongly-super-polynomial functions

In this appendix we give more details on strongly-super-polynomial and super-polynomial
functions.

Proposition A.1. Let c, d ∈ R such that 0 < c < d. Then for a function f ∈ F , we have
ncf ≪ f if and only if ndf ≪ f .

Proof. Assume first that ndf ≪ f . Then there exists an unbounded function t ∈ F and
integer constants K,M > 0 and N > 0 such that ncf(n)t(n) 6 Kf(Mn) for all n > N . Let
τ(n) = nd−ct(n). Then τ ∈ F and as t is unbounded, so is τ . Writing ncf(n)τ(n) 6 Kf(Mn),
it follows that ncf ≪ f .

Now assume that ncf ≪ f . Then there exists an unbounded function t ∈ F and integer
constants K,M > 0 and N > 0 such that ncf(n)t(n) 6 Kf(Mn) for all n > N . Therefore, the
inequality

nct(n) 6 K
f(Mn)

f(n)
.

holds for all n > N . This implies that the inequality

(5) (Mkn)ct(Mkn) 6 K
f(Mk+1n)

f(Mkn)
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holds for all integers k > 0 and n > N . Let k0 = ⌊d
c
⌋; then we have d 6 (k0 +1)c. Allowing k to

take all values between 1 and k0 in (5) and multiplying the resulting inequalities together yields

nct(n)(Mn)ct(Mn) . . . (Mk0n)ct(Mk0n)

6 Kk0+1 f(Mn)

f(n)

f(M2n)

f(Mn)
. . .

f(Mk0+1n)

f(Mk0n)
= Kk0+1 f(M

k0+1n)

f(n)
.

It follows that

(6) M ′nc(k0+1)τ(n) 6 Kk0+1 f(M
k0+1n)

f(n)

holds for all n > N , where τ(n) = t(n)t(Mn) . . . t(Mk0n) and M ′ = M c M2c . . .Mk0c. Since
M ′ > 1, the inequality in (6) implies that

(7) nc(k0+1)f(n)τ(n) 6 Kk0+1f(Mk0+1n)

for all n > N . By construction, τ(n) is both an element of F and an an unbounded function.

Therefore, nc(k0+1)f ≪ f . As d 6 (k0+1)c it follows from the initial argument in the proof that
ndf ≪ f . �

The following lemma presents an example of a function which is super-polynomial but not
strongly-super-polynomial.

Lemma A.2. For given real number α > 1, let fα:N → R be the function defined by fα(n) =

α(lnn)1.5 . Then

(1) f ∈ F ,
(2) fα is super-polynomial, and
(3) fα is not strongly-super-polynomial.

Proof. It is clear that fα ∈ F since α > 1.
We have

lim
n→∞

ln(α(lnn)1.5)

lnn
= lim

n→∞

(ln n)1.5 ln(α)

lnn
= ln(α) lim

n→∞
(ln n)0.5 = ∞

so fα is super-polynomial. Note that α > 1 so lnα > 0.
Suppose (for contradiction) that fα is strongly-super-polynomial, so there is an unbounded

function t ∈ F and positive integer constants K,M and N such that n2fα(n)t(n) 6 Kfα(Mn)
for all n > N . This means

t(n) 6
Kα(ln(Mn))1.5−(ln(n))1.5

n2

Taking the logarithm of this inequality we obtain:

ln(t(n)) 6 lnK +
[

(ln(Mn))1.5 − (ln(n))1.5
]

lnα− 2 ln n

which we can write as

ln(t(n)) 6 lnK +
[

(ln(M) + ln(n))(ln(Mn))0.5 − (ln(n))(ln(n))0.5
]

lnα− 2 ln n

which becomes

ln(t(n)) 6 lnK + (ln(M))(ln(Mn))0.5 lnα+ (ln(n))
[(

ln(Mn))0.5 − (ln n)0.5
)

ln(α)− 2
]

which becomes

ln(t(n)) 6 lnK + (ln(M))(ln(Mn))0.5 lnα+ ln(α)(ln(n))

[

(

ln(Mn))0.5 − (ln n)0.5
)

−
2

ln(α)

]

Now if we let B = ln(Mn)0.5−(lnn)0.5 then B(ln(Mn)0.5+(lnn)0.5) = ln(Mn)−(lnn) = lnM
and so

B =
lnM

(ln(Mn))0.5 + (ln n)0.5
.

Thus

ln(t(n)) 6 lnK + (ln(M))(ln(Mn))0.5 lnα+ ln(α)(ln(n))

[(

lnM

(ln(Mn))0.5 + (lnn)0.5

)

−
2

ln(α)

]
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which becomes

ln(t(n)) 6 lnK + lnα ln(M)

[

(ln(Mn))0.5 + (ln(n))

[(

1

(ln(Mn))0.5 + (lnn)0.5

)

−
2

ln(α) lnM

]]

which becomes

ln(t(n)) 6 lnK + lnα ln(M)

[

(ln(Mn))

(ln(Mn))0.5
+ (ln(n))

[(

1

(ln(Mn)0.5 + (lnn)0.5

)

−
2

ln(α) lnM

]]

which becomes

ln(t(n))6 lnK+lnα ln(M)

[

(ln(M) + ln(n))

(ln(Mn))0.5
+(ln(n))

[(

1

(ln(Mn)0.5 + (lnn)0.5

)

−
2

ln(α) lnM

]]

which becomes
ln(t(n)) 6 lnK

+ lnα ln(M) ln(n)

[[

ln(M)

(ln(n)) ln(Mn))0.5
+

1

(ln(Mn))0.5
+

1

(ln(Mn)0.5 + (lnn)0.5

]

−
2

ln(α) lnM

]

.

The expression in the inside square brackets is going to 0 as n → ∞, so eventually it will be
less than 2

ln(α) lnM , contradicting the fact that t ∈ F . �

The next proposition proves that any function which is strongly-super-polynomial is also
super-polynomial.

Proposition A.3. Let f ∈ F be a non-zero function. If f is strongly-super-polynomial, then f
is super-polynomial.

Proof. Since f is strongly-super-polynomial, by Proposition A.1 we have ncf ≪ f for any
arbitrary c > 0 we wish to choose. So for any c > 0 there are positive constants Kc,Mc and Nc

and an unbounded function tc ∈ F so that the inequality

ncf(n)tc(n) 6 Kcf(Mcn)

holds for all n > Nc. Therefore, for all n > NcMc we have
⌊

n

Mc

⌋c

f

(⌊

n

Mc

⌋)

tc

(⌊

n

Mc

⌋)

6 Kcf

(

Mc

⌊

n

Mc

⌋)

6 Kcf(n).

Taking the logarithm of this inequality we obtain

c ln

⌊

n

Mc

⌋

+ ln f

(⌊

n

Mc

⌋)

+ ln tc

(⌊

n

Mc

⌋)

6 lnKc + ln f(n).

which becomes

c ln

⌊

n

Mc

⌋

+ ln f

(⌊

n

Mc

⌋)

+ ln tc

(⌊

n

Mc

⌋)

− lnKc 6 ln f(n).

Now since f and tc are both unbounded functions, there exists some N ′
c > NcMc so that

ln f

(⌊

n

Mc

⌋)

+ ln tc

(⌊

n

Mc

⌋)

− lnKc > 0

for all n > N ′
c. Thus we have

c ln

⌊

n

Mc

⌋

6 ln f(n)

for all n > N ′
c.

Dividing sides by lnn, we obtain that

(8) c
ln

⌊

n
Mc

⌋

lnn
6

ln f(n)

lnn

for all n > N ′
c.
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Now choose Ic ∈ N so that Ic > N ′
c and

ln
⌊

n
Mc

⌋

lnn > 0.9 for all n > Ic. Observe that the limit

limn→∞

ln
⌊

n
Mc

⌋

lnn = 1 and the term
ln
⌊

i
Mc

⌋

ln i is increasing, so such a value Ic exists.
Then from this observation and equation (8) we get

0.9c 6 c
ln

⌊

n
Mc

⌋

lnn
6

ln f(n)

lnn

for all n > Ic.

Since c > 0 can be arbitrary, this shows that the limit of ln f(n)
lnn must go to ∞. �
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[9] Achim Blumensath and Erich Grädel. Finite presentations of infinite structures: automata and interpreta-
tions. Theory Comput. Syst., 37(6):641–674, 2004.

[10] B. H. Bowditch. A short proof that a subquadratic isoperimetric inequality implies a linear one. Michigan
Math. J., 42(1):103–107, 1995.

[11] William Carter and Max Forester. The Dehn functions of Stallings-Bieri groups. Math. Ann., 368(1-2):671–
683, 2017.

[12] Spring 2015 Cornell Mathematics Department, The Berstein Seminar. Exploring the works
of Gilbert Baumslag. https://berstein2015.wordpress.com/2015/06/21/more-about-wreath-products-and-
finiteness/. Accessed: 2020-08-01.

[13] Will Dison, Murray Elder, Timothy R. Riley, and Robert Young. The Dehn function of Stallings’ group.
Geom. Funct. Anal., 19(2):406–422, 2009.

[14] Murray Elder and Jennifer Taback. C-graph automatic groups. J. Algebra, 413:289–319, 2014.
[15] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P.

Thurston. Word Processing in Groups. Jones and Barlett Publishers. Boston, MA, 1992.
[16] S. M. Gersten. Introduction to hyperbolic and automatic groups. In Summer School in Group Theory in

Banff, 1996, volume 17 of CRM Proc. Lecture Notes, pages 45–70. Amer. Math. Soc., Providence, RI, 1999.
[17] Rostislav Grigorchuk and Igor Pak. Groups of intermediate growth: an introduction. Enseign. Math. (2),

54(3-4):251–272, 2008.
[18] M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res. Inst. Publ., pages

75–263. Springer, New York, 1987.
[19] M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory, Vol. 2 (Sussex, 1991),

volume 182 of London Math. Soc. Lecture Note Ser., pages 1–295. Cambridge Univ. Press, Cambridge, 1993.
[20] Olga Kharlampovich, Bakhadyr Khoussainov, and Alexei Miasnikov. From automatic structures to automatic

groups. Groups Geom. Dyn., 8(1):157–198, 2014.
[21] A. Yu. Ol’shanskii. Hyperbolicity of groups with subquadratic isoperimetric inequality. Internat. J. Algebra

Comput., 1(3):281–289, 1991.
[22] A. Yu. Ol’shanskii. Groups with undecidable word problem and almost quadratic Dehn function. J. Topol.,

5(4):785–886, 2012. With an appendix by M. Sapir.

19



[23] A. Yu. Olshanskii and M. V. Sapir. Quadratic isometric functions of the Heisenberg groups. A combinatorial
proof. volume 93, pages 921–927. 1999. Algebra, 11.

[24] A. Yu. Olshanskii and M. V. Sapir. Conjugacy problem in groups with quadratic Dehn function. Bull. Math.
Sci., 10(1):1950023, 103, 2020.

[25] Alexander Yu. Ol’shanskii. Groups with quadratic-non-quadratic Dehn functions. Internat. J. Algebra Com-
put., 17(2):401–419, 2007.

aDepartment of Mathematics, Faculty of Science, Mahidol University, Bangkok, 10400, Thai-
land bCentre of Excellence in Mathematics, Commission on Higher Education, Bangkok, 10400,
Thailand

Email address: berdinsky@gmail.com

School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW
2007, Australia

Email address: murray.elder@uts.edu.au

Department of Mathematics, Bowdoin College, 8600 College Station, Brunswick, ME 04011,
USA

Email address: jtaback@bowdoin.edu

20


	1. Introduction
	2. Automatic and Cayley automatic groups
	2.1. Automatic and Cayley automatic groups
	2.2. Invariance under change of generating set and change of structure
	2.3. Dehn functions

	3. Finite presentability and Dehn functions
	4. Separating finitely presented Cayley automatic groups from automatic groups
	5. Dense groups
	6. Separating non-finitely presented Cayley automatic groups from automatic groups
	7. Conclusion
	Appendix A. Further remarks on strongly-super-polynomial functions
	Acknowledgements
	References

