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Abstract— We investigate the performance of multi-user
multiple-antenna downlink systems in which a base station (BS)
serves multiple users via a shared wireless medium. In order
to fully exploit the spatial diversity while minimizing the passive
energy consumed by radio frequency (RF) components, the BS is
equipped with M RF chains and N antennas, where M < N .
Upon receiving pilot sequences to obtain the channel state infor-
mation (CSI), the BS determines the best subset of M antennas
for serving the users. We propose a joint antenna selection and
precoding design (JASPD) algorithm to maximize the system
sum rate subject to a transmit power constraint and quality of
service (QoS) requirements. The JASPD algorithm overcomes the
non-convexity of the formulated problem via a doubly iterative
algorithm, in which an inner loop successively optimizes the
precoding vectors, followed by an outer loop that tests all valid
antenna subsets. Although approaching (near) global optimality,
the JASPD suffers from a combinatorial complexity, which may
limit its application in real-time network operations. To overcome
this limitation, we propose a learning-based antenna selection
and precoding design algorithm (L-ASPA), which employs a deep
neural network (DNN) to establish underlaying relations between
key system parameters and the selected antennas. The proposed
L-ASPD algorithm is robust against the number of users and
their locations, the transmit power of the BS, as well as the
small-scale channel fading. With a well-trained learning model,
it is shown that the L-ASPD algorithm significantly outperforms
baseline schemes based on the block diagonalization and a
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learning-assisted solution for broadcasting systems and achieves
a better effective sum rate than that of the JASPA under limited
processing time. In addition, we observed that the proposed
L-ASPD algorithm can reduce the computation complexity by
95% while retaining more than 95% of the optimal performance.

Index Terms— Multiuser, precoding, antenna selection,
machine learning, neural networks, successive convex
optimization.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) is an
enabling technology to deal with the rapidly increasing

demand for data-hungry applications in current and future
mobile networks. By using a large number of antennas,
an MIMO base station is able to send multiple informa-
tion streams to multiple users simultaneously with negligible
inter-user interference. The advantages of MIMO systems,
under a proper beamforming design, comprise not only high
spectral efficiency but also improved energy efficiency [1].
When the number of antennas in MIMO systems becomes
very large, antenna selection (AS) can be employed to improve
the performance in terms of both hardware cost and tech-
nological aspects [2]. This is due to the fact that the radio
frequency (RF) chains are usually much more expensive than
antenna elements. More importantly, a proper AS strategy is
capable of not only obtaining full spatial diversity but also
considerably minimizing the RF chains’ energy consumption,
hence improving the system energy efficiency [3]. In general,
AS is an NP-hard problem whose optimal solution is only
guaranteed via exhaustive search, which tries all possible
antenna combinations. The high complexity of AS may limit
its application in practice, especially in 5G services which
usually have stringent latency and real-time decision making
requirements [4].

Low-complexity solutions have become necessary to make
AS practically feasible, especially for BSs with medium to
large numbers of antennas. A block diagonalization-based
algorithm is proposed in [5] for multiuser MIMO systems,
which selects the best antennas to either minimize the symbol
error rate (SER) upper bound or maximize the minimum
capacity. This method consecutively eliminates one antenna
at a time that imposes the highest energy consumption
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in the corresponding orthogonal beamformers. The authors
of [6] propose a joint beamforming design and AS algo-
rithm to minimize the multicasting transmit power. By using
group sparsity-promoting l1,2 norms instead of the l0 norm,
the selected antennas and beamformers can be obtained via
an iterative algorithm. The application of l1,2 norms is also
employed in massive MIMO for minimizing the transmit
power [7] and in cell-free MIMO downlink setups for joint
access point selection and power allocation [8]. In [9], an AS
algorithm based on mirror-prox successive convex approxi-
mation (SCA) is proposed for maximizing the minimum rate
in multiple-input single-output (MISO) broadcasting systems.
A similar SCA-based approach is proposed in [10], [11] for
energy efficiency maximization.

Recently, the use of machine learning (ML) in communi-
cations systems has attracted much attention [12]–[24]. The
main advantage of ML-aided communications lies in the
capability of establishing underlying relations between system
parameters and the desired objective, hence being able to
shift the computation burden in real-time processing to the
offline training phase [25], [26]. The authors of [16] propose a
beamforming neural network (BNN) for minimizing the trans-
mit power of multiuser MISO systems, which employs con-
volutional neural networks (CNN) and a supervised-learning
method to predict the magnitude and direction of the beam-
forming vectors. This method is extended in [17], [18] for
unsupervised-learning to maximize the system weighted sum-
rate. In [19], a deep learning-aided transmission strategy is
proposed for single-user MIMO system with limited feed
back, which is capable of addressing both pilot-aided training
and channel code selection. The authors of [20] develop a
deep learning-based beamforming design to maximize the
spectral efficiency of a single-user millimeter wave (mmWave)
MISO system, which achieves a better spectral efficiency
than conventional hybrid beamforming designs. The appli-
cation of Q-learning is elaborated in [21] to overcome the
combinatorial-complexity task of selecting the best channel
impulse response in vehicle to infrastructure communications.
A similar Q-learning based method is proposed in [23] to solve
the joint design of beamforming, power control, and interfer-
ence coordination of cellular networks. In [22], the authors
develop a deep reinforcement learning framework which can
autonomously optimize broadcast beams in MIMO broadcast
systems based on users’ measurements. A common data set
for training mmWave MIMO networks is provided in [24]
considering various performance metrics.

Towards the learning-aided physical layer design, the appli-
cation of ML to AS is a promising way to tackle the
high complexity of AS [27]–[30]. A joint design for AS
and hybrid beamformers for single-user mmWave MIMO is
proposed in [27] based on two serial CNNs, in which one CNN
is used to predict the selected antennas and another CNN is
used to estimate the hybrid beamformers. The authors of [28]
propose a multi-class classification approach to tackle the AS
problem in single-user MIMO systems based on two classifica-
tion methods, namely multiclass k-nearest neighbors and sup-
port vector machine (SVM). In [29], a neural network-based
approach is proposed to reduce the computational complexity

of AS for broadcasting. The neural network (NN) is employed
to directly predict the selected antennas that maximize the
minimum signal to noise ratio among the users. The authors
of [30] propose a learning-based transmit antenna selection
method to improve the security in the wiretap channel.
Therein, two learning-based SVM and naive-Bayes schemes
are considered. Although being able to improve the secrecy
performance with a reduced feedback overhead, the setup
analyzed in [30] is limited to only a single antenna selection.

A. Contributions

In this paper, we investigate the performance of a multiuser
MISO downlink system via a joint design of AS and precoding
vectors to improve the system sum rate while guaranteeing the
users’ quality of service (QoS) requirements. Our contributions
are as follows:

• First, we develop a joint antenna selection and beam-
forming design (JASPD) framework to maximize the
effective system sum rate, which accounts for the time
overhead spent on both channel estimation and computa-
tional processing, subject to users’ QoS requirements and
a limited transmit power budget. The proposed JASPD
works in an iterative manner, which first optimizes the
beamforming vectors for a given antenna subset, and then
selects the best antenna subset.

• Second, to tackle the non-convexity in optimizing the
beamforming vectors of JASPD, we propose two itera-
tive optimization algorithms based on semidefinite relax-
ation (SDR) and SCA methods. The convergence of the
proposed iterative algorithms to at least a local optimum
is theoretically guaranteed.

• Third, we propose a learning-based antenna selection and
precoding design (L-ASPD) algorithm to overcome the
high computational complexity of AS, which employs
a deep neural network (DNN) to capture and reveal
the relationship between the system parameters and
the selected antennas via an offline training process.
More importantly, our leaning model is robust against
the channel fading and the number of users and their
locations. Compared to existing works, which either
study single-user MIMO systems [27], [28], a single
beamformer for broadcasting [29] or a single antenna
selection [30], we consider a more general multi-user
system.

• Finally, extensive simulation results show that, under
the same limited processing time, the proposed L-ASPD
algorithm outperforms the JASPD algorithm and sig-
nificantly outperforms existing AS schemes based on
model-based [5] and ML-aided [29] designs. We observed
that the L-ASPD algorithm can achieve more than 95%
of the optimal sum rate while reducing more than 95%
the computational time.

The rest of the paper is organized as follows. Section II
presents the system model and key parameters. Section III
develops two iterative optimization algorithms used in the
JASPD. Section IV introduces a ML-aided joint design to
accelerate real-time processing. Section V demonstrates the
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Fig. 1. Diagram of multiuser MISO system. A subset of antennas is selected
for data transmission.

effectiveness of the proposed algorithms via numerical results.
Finally, Section IV concludes the paper.

Notations: The superscript (.)T , (.)H and Tr(.) stand for the
transpose, Hermitian transpose, and trace operation, respec-
tively.

(
n
k

)
represents the binomial coefficients. |.| and ‖.‖

denote the cardinality and the l2-norm of a set, respectively.

II. SYSTEM MODEL

We consider a multiuser MISO downlink system operated
in time division duplex (TDD) mode, in which a multi-antenna
base station (BS) servers K single-antenna users in the same
frequency resource,1 as depicted in Fig. 1. The BS is equipped
with M RF chains and N antennas, where N > M ≥ K .
The motivation of having more antennas than the number
of RF chains is that the BS can i) fully exploit spatial
diversity gains and ii) minimize the static energy consumed
by hardware components [3], e.g., RF chains and amplifiers.
The system operates in a quasi-static block fading channel
in which the channel gains are constant within on block
and independently change from one block to another. Before
sending data to the users, the BS needs to acquire the channel
state information (CSI) via pilot-aided channel estimation2 in
order to perform reprocessing, e.g., beamforming and power
allocation.

Fig. 2 illustrates the three phases in one transmission
block. Let T and τcsi denote the block duration and channel
estimation time, both expressed in terms of channel use
(c.u.), respectively. The block duration is determined by the
system coherence time. Assuming mutually orthogonal pilot
sequences across the users, the channel estimation time is
τcsi = K(�N/M� + 1) c.u., where �x� denotes the largest
integer not exceeding x. Unlike most of previous works that
ignore the processing time, we consider the general case in
which the processing time takes place in τpro (c.u.). In prac-
tice, the value of τpro largely depends on the beamforming
techniques and the hardware capability.

Let hk ∈ C
1×N denote the channel vector from the

BS’s antennas to user k, including the pathloss. We assume
that full CSI is available at the BS. Because there are only
M < N RF chains, the BS has to determine an optimal

1In practice the whole bandwidth is divided into multiple sub-frequency
bands. The proposed scheme is directly applied to each band.

2The system is assumed to operate above certain SNR levels in which the
CSI can be accurately estimated.

Fig. 2. Block diagram of one transmission block.

subset of M antennas for sending data to the users. Let
A = {a1, a2, . . . , aM}, am ∈ [N ] � {1, 2, . . . , N}, be a
subset of M antennas (out of N ), and let A be the collection of
all possible antenna subsets. By definition, we have |A| = M
and |A| = (

N
M

)
.

Denote by hk,A ∈ C1×M the channel vector from
active antennas in a subset A to user k, i.e., hk,A =
[hk[a1], hk[a2], . . . , hk[aM ]], where am ∈ A and hk[n] is
the n-th element of hk. Before serving the users, the BS
first precodes the data to suppress inter-user interference.
Let wk,A ∈ C

M×1 be the precoding vector for user k
corresponding to the selected antenna subset A. The received
signal at user k is

yk,A = hk,Awk,Axk +
∑

i�=k
hk,Awi,Axi + nk, (1)

where nk is the Gaussian noise with zero mean and variance
σ2. The first term in (1) is the desired signal, and the second
term is the inter-user interference.

By considering interference as noise, the effective achiev-
able rate of user k is

Rk(A) = B

(
1− τcsi + τpro

T

)

× log2

(
1 +

|hk,Awk,A|2∑
i�=k|hk,Awi,A|2 + σ2

)
, ∀k, (2)

where B is the shared channel bandwidth and 1 − τcsi+τpro

T
accounts for the actual time for data transmission. The total
transmit power3 is

∑K
k=1‖wk,A‖2.

Remark 1: It is observed from (2) that the effective data rate
is determined not only by the precoding vectors wk,A but also
by the channel estimation and processing times. In particular,
spending more time on either channel estimation or processing
will degrade the effective transmission rate.

III. OPTIMAL ANTENNA SELECTION

AND PRECODING DESIGN

In this section, we develop a joint antenna selection and
precoding design to maximize the system sum rate while
satisfying the minimum QoS requirements and limited power
budget. The joint optimization problem can be formulated

3The energy consumed by hardware components is excluded since it is
constant and does not affect the precoding design.
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as follows:

P0 : maximize
A∈A,{wk,A}

∑K

k=1
Rk(A) (3)

s.t. Rk(A) ≥ ηk, ∀k,∑K

k=1
‖wk,A‖2 ≤ Ptot,

where Rk(A) is given in (2), Ptot is the total transmit power
budget at the BS, and ηk is the QoS requirement for user k.
In problem (3), the first constraint is to satisfy the minimum
user QoS requirement and the second constraint states that the
total transmit power can not exceed the power budget. We note
that the problem formulation in (3) can be directly extended
to the weighted sum rate metric with the weights that are used
as part of the training input.

In general, problem (3) is a mixed binary non-linear prob-
lem where the binary variables of the activated antennas are
strongly coupled with the continuous variables of the precod-
ing vectors. Because the precoding vectors are designed for a
given selected antenna subset, problem P0 can be reformulated
in an iterative form as follows:

maximize
A∈A

P1(A), (4)

where P1(A) is the precoding design problem for the candidate
antenna subset A, which is defined as follows

P1(A) : Max
{wk,A}

B̄

K∑
k=1

log2

(
1 +

|hk,Awk,A|2∑
i�=k|hk,Awi,A|2 + σ2

)

(5)

s.t. B̄ log2

(
1 +

|hk,Awk,A|2∑
i�=k|hk,Awi,A|2 + σ2

)
≥ ηk, ∀k,

(5a)∑K

k=1
‖wk,A‖2 ≤ Ptot, (5b)

where B̄ � B(1− τcsi+τpro

T ) and we have used (2) for Rk(A).
If problem P1(A) can be solved optimally, then the optimal

solution of P0 can be obtained via an exhaustive search in (4),
which test all possible antenna subsets. Unfortunately, solving
problem P1(A) is challenging due to the non-concavity of the
objective function and the non-convexity of the first constraint.

In the following, we propose two solutions based on SDR
and SCA methods to tackle the non-convexity of the beam-
forming vectors design in Section III-A. We then describe
the proposed JASPD algorithm and analyze its complexity in
Section III-B.

A. Near Optimal Beamforming Design for Selected Antennas

In this subsection, we design the beamforming vectors to
maximize the system sum rate for a selected antenna subset.
In the following, we propose two methods to solve (5).

1) Semidefinite Relaxation-Based Solution: Semidefinite-
based formulation is an efficient method to design the beam-
forming vectors of wireless systems, which converts quadratic
terms into linear ones by lifting the original variable domain
into a higher-dimensional space. We adopt the semidefinite
method to deal with the signal-to-noise-plus-interference-ratio

(SINR) term in both the objective function and the first
constraint. Define a new set of variables W k = wk,AwH

k,A ∈
CM×M , and denote Hk � hH

k,Ahk,A. It is straightforward to
verify that |hk,Awl,A|2 = hk,Awl,AwH

l,AhH
k,A = Tr(HkW l)

and ‖wk,A‖2 = Tr(W k).
By introducing arbitrary positive variables {xk}Kk=1, we can

reformulate problem (5) as follows:

maximize
W ,x

B̄

log(2)

∑K

k=1
xk (6)

s.t. log
(
1 +

Tr(HkW k)∑
i�=kTr(HkW i) + σ2

)
≥ xk, ∀k, (6a)

xk ≥ ηk log(2)
B̄

, ∀k, (6b)
∑K

k=1
Tr(W k) ≤ Ptot, (6c)

rank(W k) = 1, ∀k,

where we use short-hand the notation W and x for
(W 1, . . . , W K) and (x1, . . . , xK), respectively.

The equivalence between (6) and (5) can be verified as the
equality holds in (6a) at the optimum. It is observed that the
objective is a linear function and constraints (6b) and (6c)
are convex. Thus, the challenge in solving problem (6) lies in
(6a) and the rank-one constraint. While the latter constraint
can be efficiently coped with by using the relaxation method
followed by randomization if needed [32], dealing with the
former constraint is more difficult.

In the next step, we introduce the slack variables {yk}Kk=1

and reformulate constraint (6a) as

log
(
σ2 +

∑K

i=1
Tr(HkW i)

)
≥ xk + yk, (7)

σ2 +
∑

i�=k
Tr(HkW i) ≤ eyk . (8)

Because the function log() is concave, constraint (7) is con-
vex. However, since the function exp(.) is convex, constraint
(8) is unbounded. To overcome this difficulty, we employ
the inner approximation method, which uses the first-order
approximation of eyk at the right hand side of (8). As a result,
the approximated problem of (6) can be formulated as follows:

P2(y0) : maximize
W ,x,y

B̄

log(2)

∑K

k=1
xk (9)

s.t. (6b); (6c); (7); rank(W k) = 1, ∀k,

σ2 +
∑

i�=k
Tr(HkW i) ≤ ey0k(yk − y0k + 1), ∀k,

(9a)

where y � {yk}Kk=1 and y0 is any feasible value of y that
satisfies constraint (8).

It is evident that, for a given y0, the objective and con-
straints of problem (9) are convex except for the rank one
constraint. This suggests to solve (9) by the semi-definite
relaxation (SDR) method [32] which ignores the rank one
constraint and can be solved in an efficient manner by standard
solvers, e.g., CVX. Because ey0(y − y0 + 1) ≤ ey, ∀y0,
the approximated problem (9) always gives a suboptimal
solution of the original problem (6).
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Algorithm 1 Iterative Algorithm to Solve (6)
1: Initialize y0, ε, Xold and error.
2: while error > ε do
3: Solve the SDR of (9) by dropping the rank-one con-

straint to obtain {W �k, x�k, y�k}Kk=1

4: Compute error = B̄
log(2) |

∑K
k=1 x�k −Xold|

5: Update Xold ← B̄
log(2)

∑K
k=1 x�k; y0k ← y�k, ∀k

It is worth noting that the optimal solution of problem (9)
is largely determined by the parameters y0. Thus, it is crucial
to select appropriate values y0 such that the solution of (9) is
close to the optimal solution of (6). As such, we propose an
iterative optimization algorithm to improve the performance of
problem (9), shown in Algorithm 1. The premise behind the
proposed algorithm is to better estimate y0 through iterations.

Proposition 1 (Convergence of Algorithm 1): The sequence
of the objective values generated by Algorithm 1 in solving
the SDR of problem P2(y0) is non-decreasing.

The proof of Proposition 1 is shown in Appendix A.
Although not guaranteeing the global optimum of problem
(6), Proposition 1 justifies the convergence to at least a local
optimum of the proposed iterative algorithm.4

Remark 2 (Initialization of Algorithm 1): The execution of
Algorithm 1 requires the initial values y0k, ∀k. Therefore,
it requires an efficient way to find these initial values before
tackling problem (9). To this end, we start by solving the
feasibility problem below:

Find W

s.t.
Tr(HkW k)
2ηk/B̄ − 1

≥
∑

i�=k
Tr(HkW i) + σ2, ∀k,

∑K

k=1
Tr(W k) ≤ Ptot, (10)

which is convex. Then the initial values are computed as y0k =
log(

∑
i�=kTr(HkW ∗

i ) + σ2), ∀k, where W ∗
k is the solution

of (10).
Remark 3 (Randomization): The solution in (9) is based on

the SDR which sometimes violates the rank-one constraint.
In such cases, Gaussian randomization can be adopted. Details
on Gaussian randomization are available in [32]. Our simula-
tion results show that more than 99% of the times Algorithm 1
can output rank-one solutions.

2) Reformulation Based on Difference of Convex: The
SDR-based reformulation in the previous subsection leverages
the non-convexity of the original problem by working in a
higher dimensional domain, which requires more memory.
In this subsection, we solve (5) based on a difference-
of-convex (DC) reformulation directly on the original variable
domain.

By introducing arbitrary positive variables u � {uk}Kk=1,
we can reformulate problem (5) as follows:

Maximize
w,u

B̄
∑K

k=1
log2(1 + uk) (11)

4The study of the performance gap to the global optimum is postponed to
a future work.

s.t.
|hk,Awk,A|2∑

i�=k|hk,Awi,A|2 + σ2
≥ uk, ∀k, (11a)

uk ≥ η̄k, ∀k, (11b)∑K

k=1
‖wk,A‖2 ≤ Ptot, (11c)

where η̄k � 2ηk/B̄ − 1 and w is a short-hand notation for
(w1,A, . . . , wK,A). The equivalence between (11) and (5) can
be verified since constraint (11a) holds with equality at the
optimum.

As the denominator of the left-hand-side of (11a) is positive,
it can be rewritten as

|hk,Awk,A|2
uk

≥
∑

i�=k
|hk,Awi,A|2 + σ2. (12)

An important observation from (12) is that |hk,Awk,A|2
uk

is a
convex function of wk,A and uk (see Appendix B). Therefore,
(12) has the form of a DC representation, which suggests an
efficient way to solve (11a). In particular, let ŵk,A, ûk be any
feasible solution of (11), we can approximate (12) by using the
first order approximation of the left-hand-side of (12), stated
as

∑
i�=k

wH
k,AHkwi,A + σ2 ≤

wH
k,A

(
Hk+HT

k

)
ŵk,A

ûk

−uk

ŵH
k,AHkŵk,A

û2
k

+
ŵH

k,A
(
Hk −HT

k

)
ŵk,A

ûk
, (13)

which is convex in wk,A and uk, where Hk = hH
k,Ahk,A.

By using (13) as an approximation of (11a), problem (11)
can be approximated as

P3(ŵ, û) : Maximize
w,u

B̄
∑K

k=1
log2(1 + uk)

s.t. (11b); (11c); (13). (14)

For given ŵk,A, x̂k, the objective function in (14) is concave
and the constraints are convex, hence it can be solved in
an efficient manner by standard solvers, e.g., CVX. Because
the right-hand-side of (13) is always less than or equal to
wH

k,AHkwk,A
uk

, the approximated problem (14) always gives a
suboptimal solution of the original problem (11).

In order to reduce the performance gap between the
approximated problem (14) and the original problem (11),
we propose Algorithm 2 which consists of solving a sequence
of SCA problems. The premise behind the proposed algo-
rithm is to better select the parameters ŵk,A, ûk through
iterations.

Algorithm 2 Iterative Algorithm to Solve (11)
1: Initialize ŵk,A, ûk, ε, Xold and error.
2: while error > ε do
3: Solve problem P3(ŵk,A, ûk) in (14) to obtain

w�
k, u�

k, ∀k
4: Compute error = |B̄ ∑K

k=1 log2(1 + u�
k)−Xold|

5: Update Xold ← B̄
∑K

k=1 log2(1 + u�
k); ŵk,A ←

w�
k; ûk ← u�

k, ∀k
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Algorithm 3 Exhaustive Search Based Joint Antenna Selection
and Precoding Design

Inputs: H, Ptot, {ηk}Kk=1. Outputs: Copt,Aopt, W opt

1: Construct the super group A = {A | A ⊂ [N ], |A| = M}
2: Initialize Copt = 0
3: for i = 1 : |A| do
4: A = A[i]
5: Apply Algorithm 1 or Algorithm 2 on the current

antenna subset A to obtain the optimal Xold(A) and
W �(A)

6: If Copt < Xold(A)
7: Copt ← Xold(A); Aopt ← A; W opt = W �(A).

Remark 4 (Initialization of Algorithm 2): Finding a feasi-
ble point is always essential in the SCA. Intuitively, one can
think about the feasibility problem of (5), which is stated as

Maximize
{wk,A}

1 (15)

s.t.
1
η̄k
|hk,Awk,A|2 ≥

∑
i�=k

|hk,Awi,A|2 + σ2, ∀k,

(15a)∑K

k=1
‖wk,A‖2 ≤ Ptot. (15b)

However, since both sides of (15a) are convex, this con-
straint is unbounded. Therefore, finding a feasible point by
solving (15) is not efficient. Instead, we adopt (10) as the
means to find initial values ŵ, û. In particular, from the
optimal outputs of Algorithm 3 W �k, ∀k, the solution of the
convex problem (10), we obtain the corresponding feasible
precoding vectors w�k. Then, we assign ŵk = w�k and
ûk = |hk,Aw�k|2�

i�=k|hk,Aw�i|2+σ2 .

B. JASPD Algorithm and Complexity Analysis

Once the precoding vectors have been optimized for each
antenna subset, i.e., problem (5) is solved, we can tackle the
original optimization problem (3) via Algorithm 3.

The proposed JASPD algorithm consists of two loops:
the outer loop tries all valid antenna subsets, and the inner
loop optimizes the precoding vectors iteratively. While the
complexity of the inner loop is relatively reasonable since
(the SDR of) problem (9) (or problem (14)) is convex [36],
the complexity of the outer iteration increases combinatorially
with the number of antennas. In fact, the JASPD has to
examine all

(
N
M

)
candidates for the selected antennas. As an

example, for N = 20, M = 8, there are 125970 possible
antenna subsets to be tested, each of which imposes an inner
loop in Algorithm 1 or Algorithm 2. Although guaranteeing
the maximal achievable rate, the proposed JASPD algorithm
suffers an exponential complexity due to the selection process.
Its high computation time may limit its applicability in practice
and may degrade the effective rate (see (2)). In the next
section, we propose a low-complexity joint design to overcome
the computation burden of the antenna selection process.

Fig. 3. Illustration of a DNN with three hidden layers.

IV. ACCELERATING THE OPTIMIZATION: A DEEP

LEARNING-BASED APPROACH

In this section, we exploit recent advances in machine
learning to overcome the major high-complexity limitation of
the selection process by proposing a learning-based antenna
selection and precoding design (L-ASPD) algorithm. The
premise behind the proposed L-ASPD algorithm is to exploit
machine-learning based predictions to help the optimal algo-
rithm to tackle the most difficult and time-consuming part
in the optimization. In particular, the L-ASPD algorithm first
predicts potential subsets of antennas, which are much smaller
than

(
N
M

)
.

We deploy DNN as the learning model to establish under-
laying relations between the system parameters (inputs) and
the selected antenna subset. The DNN consists of three main
parts: one input layer, one output layer and hidden layers,
as depicted in Fig. 3. Based on the labeled data, the DNN
optimizes the learning parameters in order to minimize the
prediction error, e.g., cost function. The L-ASPD algorithm is
implemented via 3 steps: i) offline training data generation, ii)
building the learning model, and iii) real-time prediction.

A. Training Data Generation

Since the communication between the BS and the users is
specified by the channel gains, the transmit power budget and
noise power, they are essential for the learning model. Let
H = [hH

1 , . . . , hH
K ]H ∈ CK×N denote the channel coeffi-

cients from the BS’s antennas to all users. Since the number
of users can be arbitrary between 1 and M (the number of
RF chains), the channel matrix H is first zero-padded to
obtain the standard size H̄ = [HH ,0N×(M−K)]H ∈ CM×N .
Because the DNN accepts only real-value inputs, the original
complex representation of the channel matrix is invalid. One
can stack the real and imaginary parts of H̄ and use them as
the training input to the DNN [29]. However, we observe that
such method is not efficient to our problem because it does
not directly capture inter-user interference - the major limiting
factor in multiuser systems. As the inter-user interference is
determined by the cross-product of the channel vectors of two
users, we choose x = Ptot

σ2 abs(vec(H̄H̄H)) ∈ RM2×1 as the
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TABLE I

STEPS TO GENERATE TRAINING SAMPLES FOR L-ASPD

training input. It is worth noting that the training input x is
robust against the number of users and pathloss, as well as
the BS’s transmit power. Last but not least, x needs to be
normalized before being fed to the DNN, i.e., x = x

max(x) .
Once the input sample is given, we need to define the output,

which is the selected antenna combination that provides the
maximum objective function in (3). For each training input x,
we define an output vector b ∈ {0, 1}(N

M)×1 that consists of all
possible antenna subsets. b[n] = 1 if the n-th subset is selected,
otherwise b[n] = 0. Because we are interested in selecting only
one subset, we have ‖b‖0 = 1. In order to compute b, for
each channel realization H (corresponding to x), we run the
proposed JASPD algorithm to find the best antenna subset A�

and then assign the output element b[n�] = 1 corresponding
to A�. Denote by NS the number of samples used to train
the learning model. The total training input is aggregated
in the input matrix X = [x1, x2, . . . , xNS ], where xt is
the t-th input sample. Similarly, the training output matrix
is B = [b1, . . . , bNS ], where bt is the t-th output sample
corresponding to the input sample xt. The steps for generating
the training samples are listed in Table I. We note that the
JASPD algorithm considered in Table I is used for generating
training samples and is executed off-line. Once the DNN is
well-trained, it is used only for the selected antenna subsets
in the real-time prediction phase.

B. Building the Learning Model

When the training data is available, it is used to train the
DNN with the learning parameter Θ. For an L-layer DNN,
we have Θ = [θ1, . . . , θL], where θl ∈ RNl×1, 1 ≤ l ≤ L,
is the learning parameters in the l-th layer, and Nl is the
number of nodes in the l-th layer. As the most popular and
efficient candidate for classification problems, we employ a
sigmoid-family tansig(z) = 2(1 + e−2z)−1 − 1 as the
activation function for the hidden layers and the soft-max as
the activation function for the output layer. The learning phase
can be done via the minimization of the prediction error

Δ(Θ)

=
1

NS
‖ − Tr(BT log(fΘ(X)))

−Tr(B̄T log(1−fΘ(X))) ‖2 +
λ

2NS

∑L

l=1
‖ θl ‖2, (16)

Algorithm 4 Proposed L-ASPD Algorithm

Inputs: Θ, H, Ptot, {ηk}Kk=1. Outputs: Copt,Aopt, wopt

1: Construct x = Ptot

σ2 abs(vec(HHH))2; xnorm = x
max(x)

2: Apply xnorm to the learned model Θ to predict KS

3: Initialize Copt = 0
4: for A ∈ KS

5: Apply Algorithm 1 or 2 on the current subset A to
6: obtain the optimal Xold(A) and w�,A
7: if Copt < Xold(A)
8: Copt = Xold(A); Aopt ← A; wopt ← w�,A.

where λ is the regulation parameter, B̄ = 1−B, and fΘ(X)
is the prediction of the output layer.

C. Real-Time Prediction

When the DNN has been well trained, it is ready to
provide real-time and highly accurate predictions. From the
current channel coefficient matrix H , we construct x =
Ptot

σ2 abs(vec(H̄HH̄)), where H̄ = [HH ,0N×(M−K)]H , which
is then normalized to obtain xnorm = x

max(x) . Then xnorm

is used as the input of the trained DNN to output the
prediction vector b̂. It is worth noting that the DNN does
not provide absolute prediction, e.g., 0 or 1, but probabilistic
uncertainties, e.g., −1 ≤ b̂[n] ≤ 1, ∀n. In general, the larger
an element in b̂ is, the higher chance this element is the best
antenna subset. Consequently, the subset An� corresponding
to the largest output prediction, i.e., n� = argmaxn b̂[n],
can be selected. However, the prediction is not always pre-
cise. Therefore, in order to improve the performance of the
L-ASPD algorithm, instead of choosing only one best candi-
date, we select KS subsets, denoted by KS , corresponding to
the KS largest elements in b̂. Then, we apply the precoding
design (Algorithm 1 or 2) on these KS subsets. Intuitively,
larger values of KS will increase the chance for the L-ASPD
algorithm to select the best antenna subset at an expense
of more computation complexity. The steps of the L-ASPD
algorithm are listed in Algorithm 4. Compared with the JASPD
algorithm, the L-ASPD algorithm significantly reduces the
computational time since it tests only KS promising candi-
dates instead of

(
N
M

)
. Consequently, the L-ASPD algorithm is

expected to achieve a better effective sum rate than that of the
JASPD algorithm, especially when KS �

(
N
M

)
.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms via numerical results. The users are uniformly
distributed in an area between 50 and 300 meters from the BS.
We employ the WINNER II line-of-sight pathloss model [33],
which results in a pathloss that is uniformly distributed
between −59.4 dB and −74.6 dB. All wireless channels are
subject to Rayleigh fading. The channel bandwidth B =
1 MHz and the noise spectral density is -140 dBm/Hz. We
adopt the LTE specifications [34] that one c.u. lasts one symbol
duration and is equal to 66.7 μs, and one block duration
comprises 200 c.u.. The BS is assumed to spend 0.2 c.u.
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TABLE II

SIMULATION PARAMETERS

to solve one convex optimization problem [36]. As a result,
it takes 0.2KS c.u. to execute the proposed L-ASPD algorithm,
where KS is the number of predicted subsets. We employ an
DNN with two hidden layers to train the learning model for the
L-ASPD algorithm, each layer consists of 100 nodes.5 SVM
can also be employed for its fast training phase, however,
it results in poorer performance compared to DNN. This
is because SVM results in hyperplanes to discriminate the
data whereas the DNN can discriminate data using more
elaborate functions. The DNN is trained using the scaled
conjugate gradient method. Other simulation parameters are
listed in Table II.

A. Convergence of the Proposed Optimization Algorithms

We first evaluate the convergence performance of the pro-
posed iterative Algorithm 1 and 2 presented in Section III.
The results are obtained from 200 random realizations of
channel fading coefficients and users’ locations. For each
realization, we run both Algorithm 1 and 2 until they converge.
Fig. 4a compares the sum-rate obtained by the two proposed
algorithms as a function of the iteration number. It is clearly
shown that both algorithms converge quickly after less than
10 iterations, which demonstrates the effectiveness of the
proposed iterative algorithms.

In order to provide insights on the computation performance
of the proposed algorithms, we show in Fig 4b the sum-rate
versus the simulation time. Both algorithms are carried out
by SeDuMi solver integrated in Matlab 2017b, running on
a personal laptop with the Intel i7-6820HQ CPU and 8GB
RAM. It is observed that Algorithm 2 executes slightly faster
than Algorithm 1, however, achieves a smaller sum-rate. The
performance gain brought by Algorithm 1 results from the
fact that it uses more memory than Algorithm 2, as shown
in Table III. Due to superior performance, we will employ the
proposed Algorithm 1 in the remaining results.

B. Performance-Complexity Trade-Off of the L-ASPD

In this subsection, we examine the efficiency of the pro-
posed L-ASPD algorithm via a performance-complexity gain
trade-off. By confining the search space of the prediction
output, i.e., KS - the number of potential antenna subsets,
we can manage the complexity of the L-ASPD algorithm
since it works only on KS candidates. The complexity gain of

5We heuristically try a different number of hidden layers and find out that
a DNN with two hidden layers is sufficient for our problem.

Fig. 4. Performance comparison of the proposed Algorithm 1 and 2,
Ptot = 37 dBm and K = 4. Both algorithms converge in less than
10 iterations.

TABLE III

NUMBER OF VARIABLES REQUIRED BY ALGORITHM 1
AND 2 FOR DIFFERENT SETUPS FOR N = 8

the L-ASPD algorithm is defined as the relative time saving
compared to the exhaustive search that tests every antenna
subsets, which is calculated as:

θ(KS) =
τ(

(
N
M

)−KS)

τ
(

N
M

) = 1− KS(
N
M

) , (17)

where τ is the computational time spent on the optimization
of the precoding vectors for a selected antenna subset. The
performance gain is defined as the ratio between the sum rate
obtained by the L-ASPD algorithm divided by the optimal
sum rate which is achieved by searching all possible antenna
subsets.

Fig. 5 plots the performance-complexity tradeoff of the
proposed L-ASPD algorithm with M = 4 RF chains and
N = 8 total number of antennas. It is observed that the
L-ASPD algorithm retains more than 96% of the optimal sum
rate (which is obtained by exhaustive search) while saving
more than 95% complexity. Even when spending only 2%
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Fig. 5. Performance-complexity tradeoff of the proposed L-ASPD. M = 4,
N = 8.

Fig. 6. Learning (relative) performance versus the number of training
samples. M = 4, N = 8.

the computational time, the L-ASPD algorithm still achieves
86% of the optimal performance, which confirms the effective-
ness of the proposed L-ASPD algorithm. Compared with the
heuristic solution, the L-ASPD algorithm further reduces more
than 13% the computational time at the 95% performance gain
target.

Fig. 6 plots the relative performance in the real-time predic-
tion of the L-ASPD algorithm versus the number of training
samples. The relative performance is measured as the ratio
of the sum rate of the L-ASPD algorithm divided by the
one obtained by the JASPD algorithm. Each training sample
is generated randomly and captures the randomness in both
channel small-scale fading and user location. In general, hav-
ing more training samples results in better prediction accuracy
since the L-ASPD algorithm learns more about the intrinsic
relation between the selected antennas and the input features.
It is shown that 2× 105 training samples are sufficient for the
L-ASPD algorithm to achieve more than 94% of the optimal
performance.

C. Online Performance Comparison

This subsection demonstrates the effectiveness of the pro-
posed L-ASPD algorithm via performance comparisons with

Fig. 7. Sum rate performance of the proposed algorithms versus the number
of predicted subsets KS . Ptot = 33 dBm, M = 4 and N = 8.

existing solutions in difference scenarios. The first baseline
scheme is proposed in [5], which employs block diagonaliza-
tion to consecutively eliminate antennas that incur the largest
transmit power cost. The second baseline is introduced in [29],
which is a learning-assisted antenna selection for multicasting.
In addition, a Heuristic search is also presented, which applies
the proposed beamforming design but it searches for the
antenna subset heuristically. We note that the comparison
with [27], [28], [30] is not applicable because [27], [28]
consider a single-user system and [30] selects only a single
antenna.

Fig. 7 shows the achievable sum rate as a function of
KS - the most promising subsets predicted by the proposed
L-ASPD algorithm. In order to reveal the benefit of proposed
beamforming design in Algorithm 1, we also show a curve,
which applies a zero-forcing based power control [35] on the
antenna subsets predicted by Algorithm 4. This curve is named
as Proposed - Zero Forcing in the figures. It is shown that
the proposed L-ASPD algorithm significantly outperforms all
schemes for all observed KS values. In general, having more
predicted subsets KS results in a larger sum rate, which is
in line with the results in Fig. 5. In particular, by searching
over the most five promising subsets, the proposed L-ASPD
algorithm achieves 1 Mbps and 2 Mbps higher than schemes
in [29] and [5], respectively. We note that the sum rate of
the scheme in [5] is independent from KS since it predicts
the best antenna subset. Similarly, the performance curve of
[29] has a step-shape because it uses the active antennas as the
prediction outputs, hence it is only able to confine the original
search space to

(
M+n

M

)
subsets, with 0 ≤ n ≤ N −M .

Fig. 8 plots the sum rate as a function of the transmit power.
The effectiveness of the proposed learning-based method is
shown via the largest sum rate achieved by the L-JAPD
algorithm compared to other schemes. On average, the L-JAPD
algorithm produces 1.5 Mbps and 2 Mbps more than the
solution in [29] and heuristic scheme, respectively, proving
that the DNN has been well trained. Compared to the solution
in [5], the L-ASPD algorithm achieves a relative sum rate gain
of 5 Mbps and 2 Mbps at the transmit power equal to 30 dBm
and 33 dBm, respectively. One interesting observation is that
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Fig. 8. Sume rate performance of the proposed algorithms versus the total
transmit power Ptot. KS = 7 and N = 8 available antennas.

Fig. 9. Effective sum rate comparison for various number of total antennas
N . Ptot = 30 dBm, M = 4, KS = 10.

the Zero-forcing scheme and the solution in [5] approach
the performance of the L-ASPD algorithm when the total
transmit power budget increases. This is because for large
Ptot, the BS has sufficient power budget to fully mitigate
inter-user interference. For small Ptot, the system resource
becomes scarce, therefore completely eliminating inter-user
interference is far from the optimum, which is shown in a big
gap between the L-ASPD algorithm and these two schemes.
In such high-load scenarios, employing the proposed design
is highly beneficial.

Fig. 9 presents the effective sum rate for different total
antennas numbers N . For a fair comparison, the total transmit
power is kept constant at 30 dBm and the total overhead of
channel estimation and computation is taken into account.
For the former, it takes 8 c.u. to obtain the CSI when
the total antenna number is 6, 7, 8, and takes 12 c.u. when
the number of antennas is 9 and 10. Consider the latter,
the L-ASPD algorithm only searches over 10 most promising
candidates, while the JASPD algorithm tries all

(
N
M

)
antenna

subsets. In general, having more antennas results in a better
effective sum rate of all schemes, which confirms the benefit

of antenna selection. Interestingly, the proposed L-ASPD
algorithm achieves the best performance and outperforms the
exhaustive search scheme, especially for large N , which is in
contrast to common understanding that the exhaustive search
achieves the best performance. This is because we take the
computation time into account in the comparison, as shown in
(2). As a result, the exhaustive search scheme spends too much
time in searching for the best subset, particularly with large N ,
resulting in smaller effective rates. As an example for N = 10,
the exhaustive search scheme requires a computation time
which is 21 times more than that of the L-ASPD algorithm.

VI. CONCLUSION

We studied the joint design for antenna selection and
precoding vectors in multi-user multi-antenna systems to fully
exploit the spatial diversity. We first proposed a (near) optimal
joint antenna selection and precoding algorithm to maximize
the system sum rate, subjected to the users’ QoS and lim-
ited transmit power. The proposed joint design successively
optimizes the precoding vectors via two proposed iterative
optimization algorithms based on the semidefinite relaxation
and successive convex approximation methods. In order to
further improve the optimization efficiency, we then devel-
oped a machine learning-based solution to provide appro-
priate and time-stringent antenna predictions. The proposed
learning-based algorithm is robust against the number of
users and their locations, the BS’s transmit power, as well
as the channel fading. We showed via simulation results that
the proposed learning-based solution significantly outperforms
existing selection schemes and the exhaustive search-based
solution.

Based on the outcome of this work, several research
directions can be considered. The first problem is how to
improve the training phase efficiency, which is especially
important when the number of available antennas is very
large. In such a case, a low-complexity precoding design, e.g.,
zero-forcing, can be used to quickly obtain sufficient training
samples. The second problem lies in dealing with the network
dynamics, which requires the learning model to frequently and
timely adapted. Transfer leaning and reinforcement learning
are promising solutions in this case to avoid retraining the
whole network.

APPENDIX A
PROOF OF PROPOSITION 1

Denote
(
W (t)

� , x
(t)
� , y

(t)
�

)
as the optimal solution of

P2(y(t)
0 ) at iteration t. We will show that if y

(t)
�k < y

(t)
0k , ∀k,

then by using y
(t+1)
0k = y

(t)
�k in the (t+1)-th iteration, we will

have
∑

k x
(t+1)
�k >

∑
k x

(t)
�k , where {x(t+1)

�k }Kk=1 is the solution
at iteration t+1. Indeed, by choosing a relatively large initial
value y

(1)
0 , we always have y

(1)
�k < y

(1)
0k , ∀k.

Denote f(y; a) = ea(y−a+1) as the first order approxima-
tion of the ey function at a. At iteration t+1, we have y

(t+1)
0k =

y
(t)
�k , ∀k. Therefore, f(y; y(t)

�k ) is used in the right-hand side of
constraint (9a) at the (t+1)-th iteration. Consider a candidate
(y(t+1)

1 , . . . , y
(t+1)
K ) for any y

(t+1)
k ∈ (ŷk, y

(t)
�k ), where ŷk =

y
(t)
�k − 1 + ey

(t)
0k −y

(t)
�k (y(t)

�k − y
(t)
0k + 1). Because function exp()
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is convex and y
(t+1)
k < y

(t)
�k , then we have f(y(t+1)

k ; y(t)
�k ) >

f(y(t)
�k ; y(t)

0k ), ∀k. Therefore, there exits W
(t+1)
k and x

(t+1)
k >

x
(t)
�k which satisfies constraints (7) and (9a). Consider a new

set {W (t+1)
k , x

(t+1)
k , y

(t+1)
k }Kk=1. This set satisfies all the

constraints of problem P2(y(t)
� ), and therefore is a feasible

solution of the optimization problem. As the result, the optimal
objective at iteration (t + 1), B̄

log(2)

∑
k x

(t+1)
�k , must satisfy

B̄
log(2)

∑
k x

(t+1)
�k ≥ B̄

log(2)

∑
k x

(t+1)
k > B̄

log(2)

∑
k x

(t)
�k , which

completes the proof of Proposition 1.

APPENDIX B
CONVEXITY OF FUNCTION xT Ax

y

To prove the convexity of F (x, y) = xT Ax
y for any positive

semi-definite matrix A, we need to show that the Hessian
matrix of F (x, y) is positive semidefinite. Indeed, the Hessian
matrix of F (x, y) is

HF =

⎡
⎢⎢⎣

A + AT

y
− (A + AT )x

y2

−xT (A + AT )
y2

2xT Ax

y3

⎤
⎥⎥⎦ .

For arbitrary vector c = [aT b]T , where a ∈ RN×1, consider
a function

cT HF c

=
aT (A + AT )a

y
− aT (A + AT )xb

y2

−xT (A + AT )ab

y2
+

2xT Axb2

y3

(∗)
=

aT(A+AT )a
y

−2
aT (A+AT )xb

y2
+

xT (A+AT )xb2

y3

=
aT Ãa− 2aT Ãx̃ + x̃T Ãx̃

y
, (18)

where Ã � AT + A, x̃ � xb/y and (∗) results from the
fact that A is symmetric and aT Ãx̃ = x̃T Ãa. It is obvious
that the RHS of (18) is always non-negative for y > 0 and
positive semi-definite matrix Ã, which concludes the positive
semi-definite of the Hessian matrix of F (x, y).
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