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Abstract
Indoor spread of infectious diseases is well-studied as a common transmission route. For highly infectious diseases, like
Sars-CoV-2, considering poorly or semi ventilated areas outdoors is increasingly important. This is important in communities
with high proportions of infected people, highly infectious variants, or where spread is difficult to manage. This work develops
a simulation framework based on probabilistic distributions of viral particles, decay, and infection. The methodology reduces
the computational cost of generating rapid estimations of a wide variety of scenarios compared to other simulation methods
with high computational cost and more fidelity. Outdoor predictions are provided in example applications for a gathering of
five people with oscillating wind and a public speaking event. The results indicate that infection is sensitive to population
density and outdoor transmission is plausible and likely locations of a virtual super-spreader are identified. Outdoor gatherings
should consider precautions to reduce infection spread.
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List of symbols
α Portion of particles assigned to each size

bin
ν Effective particle velocity
ḃ Breathing rate (breaths/min)
γ Viral density in exhaled particles (#/mL)
μ Fluid viscosity
ρ Density
A Area
a Absorption coefficent

CS Cunningham slip correction factor
dp Particle diameter
h Index for each person
K Particle sink

kBoltz Boltzmann constant
L Total viral load in a person
m Number of particle size layers/bins
N Number of tracked people
R Particle source
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r Viral decay rate in the environment by size
layer

s Aspirate expulsion rate (mL/breath)
Tabs Absolute temperature

u Infectious particle concentration
x, y Cartesian coordinates locations
D Diffusion constant

i,j,l Indices for each spatial location and par-
ticulate size layer

1 Introduction

The recent pandemic has spurred broader interest in particu-
late based transmission of diseases. A recent review of spread
in Wuhan reveals a substantially higher transmission rate
than severe acute respiratory syndrome (SARS) and Middle
East respiratory syndrome (MERS) [1]. Transmission studies
have focused primarily on indoor settings where transmis-
sion rates are known to be significant [2–4]. Indoor settings
represent a significant and known transmission vector for
airborne spread and are thus the focus of many public health
researchers [5–8]. However, community spread is difficult
to trace in many countries, particularly with more infec-
tious strains ([9,10]) and points to outdoor infection as an
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additional possible vector [11]. Such spreading would be
expected to bemore prevalent in dense populations with poor
adherence to infection control measures and are more diffi-
cult to contact trace. A recent study provides a simulation
framework for macro transmission by human-human track-
ing [12], as well as the role of atmospheric conditions on
transmission rates [13]. Previous localized simulations have
focused on particle methods using computationally intensive
methods like discrete element models (DEM) or compu-
tational fluid dynamics (CFD), such studies include for a
single indoor cough [14,15] and computational fluid-particle
dynamics showing dispersion by bulk fluid transport plays a
significant role [16] . The computing infrastructure required
for these studies scales rapidly with the number of parti-
cles and size of the simulation space. Such simulations at
scales relevant in particle number and geometric length for
outdoor environments require significant computing power
and parallelization [17–19]. In contrast, to this computa-
tionally intensive simulation practice, quasi-analytical and
statistical averaging approaches can be employed with less
intensive numerical simulation for rapid estimation. This
computationally simplified approach can give rapid approx-
imate reconstruction of transmission events and insight as to
where to focus more detailed study, when necessary.

An adaptable framework and numerical model for the
airborne infection spread is presented. A base model is
developed for the generation and transport of infectious or
hazardous particles in the environment. This base model is
incorporated into a genetic algorithm to search for likely
source locationswhich aids in recreating transmission events.
This framework provides an aid in further developing health
guidelines as communities transition from avoiding social
interactions to living with altered social interactions and
in reverse engineering spreading events. Rapid simulation
is tuned using epidemiological and infections disease data
for prediction of community based infection transmission
of virus containing aerosols. In addition, more granular
resolution simulations that provide parameter values are
incorporated, such as the distribution of a cough [14], the
size of emitted particles [20], or the half-life of viral parti-
cles [21,22]. This model is applied in outdoor settings where
public health has minimally evaluated thus far. An outdoor
event is simulated and presented as an example, identify-
ing the likely location of a super-spreader using a genetic
algorithm. Spreader localisation is possible and rapid in this
framework due to the low computational cost of the particle
dispersion model.

2 Methodology

The framework is split into three models that interact to
capture system dynamics: (a) source model, (b) particu-

late model, and (c) environment model. These three models
interact as the simulation progresses forward in time. In the
application context of an infectious disease models (a) and
(b) represent people and the viral particles, respectively. Sev-
eral researchers have evaluated people and their propensity to
shed viruses with or without symptoms [5,23,24]. Shedding
is incorporated into the person (source) model and captures
the needed quantity of particulate viral matter ejected into
the environment. Thus, the prevalence of symptoms is not
explicitly considered nor needed in applying this framework
to infectious diseases and it can be used to simulate asymp-
tomatic spreading events.

Much research is focused on evaluating the virus proper-
ties or macro transmission dynamics [1,2,21]. This research
is synthesized into a distribution of virus particle size and
the life of viral particles in the environment. A half-life
model is applied for viral particles computed from data col-
lected by [21]. While detailed particulate simulations are
useful in modelling particulate flow ([25–29]), a binned dis-
tributional weighting model is used to reduce computational
requirements. This greatly reduces the computational time
and memory while capturing a profile of virus spread in
the local area. The environment model allows for inclusion
of ambient and oscillating wind conditions for the selected
scenarios. Two examples are presented: one demonstrating
a simple arrangement and oscillating wind condition, and
an example analysis inspired by a well-documented outdoor
speech.

The change in concentration over time is modeled as a dif-
fusion advection equation with a dispersion term for airflow
induced spread and a source/sink term for particle generation
by infected people. The final concentration is accumulated
over time in an forward-time step initial value problem setup.

du

dt
= ∇ · (D∇u)

︸ ︷︷ ︸

di f f usion

− ∇ · (νu)
︸ ︷︷ ︸

dispersion

+ R − K
︸ ︷︷ ︸

sources/sinks

(1)

du

dt
= (δud + δus + R − K ) (2)

where u is the concentration of viral particles, t is time, D
is the diffusion rate, ν is the particle velocity, R is a par-
ticle generation term, and K is a particle absorption term.
This model contains three main components that are han-
dled individually, then combined to advance the simulation
in time as:

ut+1 = ut + du

dt
Δt (3)

2.1 Sourcemodel

A source (person) model is defined that establishes a set of
individual characteristics for each person, or agent, in the
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environment. For infectious disease spread, this incorporates
the breathing rate, presence of infection, viral shedding, loca-
tion, and emitted particle size distribution. These character-
istics define how the person interacts with the environment.
The individualized parameters allow for the rapid simula-
tion of the unique people in spreading events observed in
practice. Super-emitters are a key type of person to consider
([23,30,31]) and can be included by changing just one param-
eter: shedding rate. Each person is given a unique breathing
rate that captures the breathing or talking rate, which is
known to influence particle generation [32,33]. In addition,
the effects of increased breathing rate induced by exercise
are included through a single parameter change.

For infected and contagious people, the virus shedding
rate is multiplied by the unique breathing rate to indicate
the quantity of viral particles emitted into the environment.
The concentration of infections particles added in the grid
space(s) occupied by an emitting person (source) are com-
puted by dividing the total number of emitted particles in a
time step by the occupied area:

R = γ ḃs

A
Δt (4)

where γ is the density of particles per volume of emitted aspi-
rate, ḃ is the number of breaths per minute, s is the aspirate,
or water volume, emitted per breath, A is the affected area
andΔt is the time step size inminutes. This allows for adjust-
ment of the spatial discretization without compromising the
spatial distribution of particle emissions. The distribution of
aspirate particle sizes is modelled as set of discrete binned
layers.

d = [dp,l ]ml=1 (5)

where dp is a particle diameter, d is the vector of m binned
particle sizes (number of layers), and l is the layer index.
Particle sizes are distributed into layers to account for the
changing transport and generation/decay rates of differing
sizes. Each layer is handled separately in the environment
model.

For non-infected people, absorption of infectious particles
ismodelled by an absorption coefficient on the breathing rate,
multiplied by the concentration in the grid space occupied by
the person, and summed across all particle sizes. The absorp-
tion of infectious particles is summed across all particle size
layers in the area occupied by the person:

Lt,h = Lt−1,h +
∑

l

aḃut−1,l(ih, jh) (6)

where L is the total viral load in a person, a is the individual
absorption coefficient, h is an index for each person, and l
is an index for each particle size layer. If a person’s total

viral load exceeds their individual infection threshold, they
are deemed infected. This allows inclusion of long-duration
exposure accumulation.

2.2 Virus model

People labelled contagious are modelled as shedding viral
particles. Viral particles are modelled as a constant per vol-
ume of aspirate. The volume of aspirate emitted by a person is
based on a person’s shedding rate. The higher the shedding
rate, the more aspirate and thus, more viral particles. This
couples virus particle generation rate to the breathing rate of
each person in the person model. Virus quantity is constant
per volume in droplets (larger droplets contain a larger virus
quantity). A distribution of droplet sizes is defined as sev-
eral binned sizes. The distribution of particle sizes is divided
into 4 size range bins for the case studies below, but could be
adjusted as needed. These ranges have different aerodynamic
properties. For each range, a separate particle size layer, l, is
created to track spread for that particle bin. The cumulative
viral load in a voxel is tallied to compute the total viral con-
centration in that voxel. Viral particles decay over time in the
environment due to evaporation, sterilisation processes like
ultraviolet light exposure, and adhesion to surfaces (remov-
ing them from being inhaled). This viral decay is modeled
as an exponential decay with a decay rate, r , which can be
varied by particle size layer, l. A constant numerical value
is computed using experimental data from Van Doremalen
[21] for the example results in Sects. 3.1, 3.2 .

K = ut−1,l e
−rlΔt (7)

2.3 Environment model

Particulate spread is considered in two modes: (1) diffusion
and (2) wind-induced dispersion. Diffusion is modelled as:

δud = ∇ · (D∇u) (8)

where u is the virus concentration and D is diffusion coef-
ficient. Diffusion is discretized into a centered-step finite
difference formulation:

α = D

�x2
; β = D

�y2
(9)

δud = α(ui−1, j,l + ui+1, j,l) − ui, j,l(2α + 2β)

+β(ui, j−1,l + ui, j+1,l) (10)

where β andα are intermediate calculation parameters, x and
y are coordinate locations, and i, j, l are indices for location
and layer.

Diffusion can be modelled from the Stokes-Einstein dif-
fusion model following the recognized applicability of this
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Table 1 Binned particle properties

dp CS D
μm m2/s

0.2 1.9 2.14e-10 [29]

0.5 1.3 6.08e-11 [29]

1 1.2 2.66e-12 [29]

2 1.1 1.16e-12

5 1 4.63e-13

10 1 2.31e-13

method for human breadth [29] and aids in prioritizing
computational simplicity for the overallmodel. For this appli-
cation, the Cunningham slip correction factor, CS , is needed
and applied based on particle size. This gives our diffusion
coefficient for each bin of the particle distribution:

Dl = kBoltzTabsCS

3πμdp,l
(11)

where Tabs is the absolute temperature and μ is the fluid
viscosity.

Following diffusion, awind dispersion effect is calculated.
Dispersion is the spreading of particles, primarily due to drag
forces induced by wind. We define this dispersion as:

δus = ∇ · (νu) (12)

where ν is the effective particle velocity, and

ν = v − vterminal (13)

where v is thewind velocity.Avector field ofwind conditions
is updated at each time step. Any known wind condition can
be used. More computationally intensive and granular mod-
els use a Langevin formulation for aerosol particle transport.
This is quite intensive for tracking a large population of par-
ticles. We reduce the cost of this by pre-computing a solution
for each bin of particle size at terminal velocity using Stokes
flow.

We define the frictional drag force as:

f f = 3πμdp/CS (14)

where CS is the Cunningham correction factor (see Table 1
for values), μ is the dynamic viscosity, and dp is the particle
diameter. The maximum velocity of the particle travelling
with thewind is thewind velocityminus the terminal velocity
and is reached when the acceleration is zero.

The maximum velocity of these spherical particles is
bounded by the fluid (wind) velocity, v, and the physical
properties of the aspirate. We compute the maximum parti-
cle velocity as the fluid velocity less the terminal velocity.

In this case the terminal velocity is used to determine the
maximum drag on the particle.

ν = v − ρpd2pgCS

18μ
(15)

Here we simplify this individual particle tracking to an
average based on a pre-computed solution for each selected
particle size in the binned size distribution.

This dispersion requires identifying thewind direction rel-
ative to each voxel. An upwind spatial stepping method is
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required for numerical stability ([34,35]):

n = v

||v|| = vx î + vy ĵ

||v|| = nx î + ny ĵ (16)

νxu =
{

νx (ui, j − ui−1, j ) nx > 0

νx (ui+1, j − ui, j ) nx < 0
(17)

νyu =
{

νy(ui, j − ui, j−1) ny > 0

νy(ui, j+1 − ui, j ) ny < 0
(18)

where n is the unit vector indicating the wind direction for
grid location (i, j)

Stability criteria for simulation considers the criteria for
forward-time center-spaced finite difference, and upwind
method. For theupwind forward-time theCourant-Friedrichs-
Levy stability criteria is needed [35,36]. The condition
indicates that the wave velocity must be slower than the
numerical spread rate of the scheme. Thus, for a given grid
size and wind speed theminimum requisite time-step is com-
puted and used globally:

�t ≤ min
l

(�x2

2D
,
�y2

2D
,

�x

vmax
,

�y

vmax

)

(19)

2.4 Genetic algorithm

A genetic algorithm is used to search the simulation space
to identify the likely viral emission source and location
in a known spreading event. This is constructed by fix-
ing the known parameters of the event and searching over
ranges of uncertain variables. A recent example of an out-
door speech is evaluated to demonstrate the process. This
example is inspired by a known event in Washington, D.C.
where 7 individuals were later reported to become infected
with COVID-19 [37]. The genetic algorithm starts by gen-
erating a sample string where entries are sampled randomly
from the available ranges of uncertain variables, for example:

Λz = {d, μ, ḃ, h(n, x, y), v(Ax , Bx , Ay, By, ωx , ωy)} (20)

The sample string,Λz is used as an input into the base model
in Algorithm 1 for the specified event duration and fixed
parameters. The results of evaluating string Λz must then be
evaluated with a scoring criteria. This scoring criteria must
be defined for the specific scenario of interest. In the case of
identifying the most likely location for a super-spreader with
known infection cases, this criteria takes the form of a global
maximum exposure of all known cases:

L = {Lh}Nh=1 = F(Λz) (21)

Sz =
∑

h

Lh − λσ(L) (22)

Table 2 Literature data on particulate emissions from talking and
breathing gathered from [38]

Mode Concentration Size range
N/cm−3 μm

Breathing 0.098 0.3–20

Talking 1.41 0.3–20

Whisper 0.803 0.3–20

Coughing 0.678 0.3–20

Fig. 1 Wind velocity over time and concentration
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Fig. 2 Virus particle size concentration in the space at T=30 minutes of talking by infectious person A, where layer 1-4 represent particles of
diameter size [1,2,5,10]μm, respectively

where F is the set of functions from Algorithm 1, Lh is
the cumulative viral load in person h, N is the number of
tracked people, σ is the standard deviation operation, λ is the
penalty factor, and Sz is the score for string z. The choice of
λ is common in regularised optimisation problems and rep-
resents the weighting on divergence in the virus load values
in addition to the cumulative total. A value of 0 would recre-
ate a simple global maximising function, whereas a higher
λ would move the results toward an egalitarian result where
each person is forced to have a comparable exposure total.
At the limit of an infinite λ, the standard deviation would be
zero and the viral load on all people would be equivalent.

For both case studies, data are extracted from the existing
body of work on aerosols, exhalation, and inhalation. Parti-
cles emitted during breathing and talking indicate a range of
concentration levels based on activity. Talking is used in case
study results from Table 2.

3 Results

3.1 Case study 1: numerical example

An exemplar simulation is presented to demonstrate the per-
formance of the base framework for particle generation and
transport. A total of five people are spaced around a 5x5m
environment. A single infected and contagious person, per-
son A, is located approximately upwind of people B-E. A
light oscillating wind condition is imposed on the environ-
ment. Person A sheds viral particles and those particles are
distributed around the space. The exposure to viral particles
is tracked for each of the people in the area. Input variables
to this case study are:
Input variables

d = {1, 2, 5, 10}μm
n = {52, 32, 11, 5}%
ρ = 1 g ml−1

Tabs = 273 K

123



Computational Mechanics

Fig. 3 Snapshots of infectious particle distribution for particle size layer 1 (d = 1μm) at .9, 5, 9, 18, 23, and 32 minutes

v = (.5, 1.1 cos(ωyt)) m s−1

Nppl = 5
μ = 1.729e − 5 kg m−1s−1

xroom = 5 m
yroom = 5 m
r = 0.0128

The exposure window is set at 32 minutes. Dirichlet
boundary conditions are used with u = 0 at the edge of
the environment. Aspirate density is set the same as water,
though it can vary from .6 to 1.6 g/ml [39]. Outdoor city

wind velocity is taken from San Francisco based data were
maximum wind speed is taken as 2.8 m/s (10 km/h) [40].
Only low wind flow is considered as high wind conditions
are likely to disperse viral particles more quickly and thus be
of less concern. A small random component is added to the
wind conditions to represent low-flow mixing in an outdoor
environment. The wind direction is nominally in the (1,1)
direction of the plot and oscillates in magnitude only in the
y-direction, with a constant x component (Fig. 1).

After 30 minutes of talking, the distribution of infectious
particles emitted by person A for each of the 4 layers of
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Fig. 4 Concentration over time at each person’s location. Person B was not exposed due to the wind conditions

particle diameter size is shown in Fig. 2. The smaller dis-
tribution of larger particles is aligned with expectations due
to the smaller number of large particles and how far these
particles travel before sinking to the ground.

Examination of the concentration in the environment over
time further highlights the strong effect of wind in carry-
ing small particles. A series of six snapshots of viral particle
concentration of the smallest particle size shows a strong fol-
lowing of the wind trajectory, with initial spread occurring in
roughly the (1,1) direction. When the wind in the y-direction
goes to zero for several minutes, the strong x-direction wind
carries all particles directly from person A toward person
C. As the wind shifts again, the concentration is distributed
again. (Fig. 3)

Tracking exposure for each person is the key interest of
the simulation and thus, a person-level examination of the
concentration over time is presented (Fig. 4). This shows
accurate following of the instantaneous exposure at each
person’s location over time, largely due to wind carrying par-
ticles. Person B, was not exposed due to the wind preventing
direct air travel from person A to person B. Person C has the
highest exposure quantity and duration, as expected from the

wind profile. The results show the concentration of viral par-
ticles increases over time for those downwind of the emitter.
The presence of wind helps to reduce the concentration when
active. Concentration build-up is dependent on the dynamics
of emission rate and wind velocity. With higher wind speed,
particle concentration build-up is reduced. This base model
for viral particle generation dispersion and absorption is used
in examining a real event next.

3.2 Case study 2: outdoor speaking event

The base model in Algorithm 1 is applied in an example
case study to evaluate super-spreading event. The example is
inspired by the outdoor speech announcing at the Rose Gar-
den inWashington, D.C. on 25 September 2020. At this high
profile event several attendees were later discovered to have
contracted COVID-19 from the spreading of the SARS-CoV-
2 virus: one of the main speakers and six attendees seated
toward the front of the audience [37]. While spreading of
this illness could have occurred elsewhere in the events of
the day, this example seeks to investigate the potential for
spread at such outdoor speeches. In this example, transmis-
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Fig. 5 Density of likely virtual source locations for a 30,60,90 min
exposure windows. (Color figure online)

sion occurred during the outdoor portion of such a speaking
event and the likely location of a single source spreader is
the desired information. A genetic algorithm is employed to
compute the likely locations as described in Algorithm 2.

The locations of the 7 initial known cases are fixed in place
based on their seating arrangement and speaker location. The
location of a virtual 8th person is injected into the system.
This virtual 8th person represents the infected and emitting
individual, i.e. the super-spreader. The goal of the simulation
is to find the location of this individual. Thus the location
of the virtual person is allowed to freely vary throughout
the entire space. Wind conditions are also allowed to vary
in the search space. Video footage of the event indicates a
very mild to stagnant breeze with no discernable direction
[41]. Wind conditions in this case study are updated from a
neutral model where occasional wind is experienced for each
scenario. Wind is treated as a periodic event, thus the breeze
is given an input forcing function of:

vx = Ax + Bx cos(ωx t) (23)

vy = Ay + By cos(ωyt) (24)

where A, B, and ω are constants that allow simulation of
a large variety of wind conditions in the local environment.
Video footage of the event suggests the wind in the speaking
area is very light, thus the search space for the wind velocity
is kept below 1 m/s in any direction. The algorithm is set to
search for the maximum cumulative particle exposure across
all particle sizes to the 7 known cases. Parameter values that
differ from the simulation in Sect. 3.1 are:
Input variable sample ranges

Ax = [−.5, .5] m s−1

Bx = [−.5, .5] m s−1

Ay = [−.5, .5] m s−1

By = [−.5, .5] m s−1

ωx = [0, 1]
ωx = [0, 1]
xh=8 = [0, 20] m
yh=8 = [0, 40] m

From the time-dependent exposure levels we can integrate
over each particle layer and the absorption probability to
compute an uptake. When an individual or universal thresh-
old value is determined and available from future medical or
other studies, it can be used in this framework to compute
infectious spread. The locations of the known infections are
indicated with letters A to G. The uncertain parameters in the
model are the wind speed and direction, the location of the
source, and the duration of exposure.

The genetic algorithm framework produces random sets of
variables from the uncertain parameters and computes a score
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Fig. 6 Highest scoring string after each iteration for 30 min (left) and 90 min (right) exposure windows. Each iteration represents 105 new strings
evaluated

that maximises the exposure to the known locations. The
highest scoring sets of parameters are kept. New guesses are
produced both randomly and from the highest scoring sets.
The results for 30, 60, and 90 minute exposure intervals are
produced. The contours indicate the highest scoring super-
spreader locations (as in Fig. 5). As the colors get warmer
and contours increase, the score increases.

These results indicate if a super-spreader infected the
known cases during the outdoor speech, then the spreaders
would likely be located on or behind stage or near the center
of the audience just behind the first two rows. The highest
scoring locations for 30 and 60 minute exposure windows is
the center of the audience just behind the later found infec-
tions. This matches intuition as the maximum wind velocity
was limited to a low level, the ability for particles to spread
to the known cases in a short to moderate time is limited. For
the 60minute exposure window a growing high scoring loca-
tion is behind stage. This location represents sampled strings
with a wind condition that points toward the audience. For
the 90 minute exposure window, the behind stage and edge
of the event space have growing high scoring results. This
shows consistency with known health recommendations to
reduce interaction duration as the spread of viral particles
(and inhaled concentration) increases with exposure time
allowing the source emitter to be further away and increase
the exposure area.

The genetic algorithm is monotonic in the score improve-
ment, indicating it is operating correctly and will converge
to maximise the cost function (Fig. 6).

The results are consistent with previous work: particles
tend to travel with the wind and a build-up of viral con-
centration is a dynamic balance of emission rate, catchment,
decay of particle virality, and environmental conditions.High
emitters would generate higher quantities of particle build-
up, this is of particular note with the increasing awareness of
super-spreaders [42,43]. This indicates a need for a particle

catchment apparatus (like a face mask) either on the emit-
ter or protection on others to reduce inhalation. This result
applies whether this model is used for infections diseases, air
pollution, or noxious gasses in the range of simulated particle
sizes.

This model is useful for rapid simulation of different envi-
ronments and distribution of emitters and non-emitters. The
simulation is rapid in computation with Case Study 2 requir-
ing only 0.034 seconds per string for a 90 minute exposure
window and 0.025 seconds for a 30 minute exposure win-
dow when implemented in MATLAB R2019a on a standard
office laptop (Intel i5 1.7 GHz, 16 GB RAM). Thus, the
results in this framework can be produced in minutes to
narrow the search space for higher fidelity simulations for
detailed particle interactions. This useful tool can be used to
tune viral particle emission, absorption, and decay parame-
ters as more data become available. Currently, these values
are under-studied for SARS-CoV-2. The values used in this
manuscript are from recently published works that attempt
to quantify these difficult experimental quantities. For exam-
ple, high fidelity and computationally expensive simulations
that demonstrate the use of masks in reducing particle emis-
sion can be directly used in rapid simulation of scenarios
with people in the environment with this model. The par-
ticle emission parameter for those with masks on can be
updated and a new scenario computed to evaluate the dis-
persion of particles with the new condition as these specific
quantities are better understood. This framework can also
be adapted to environmental emissions or other particulate
dispersions.

4 Conclusions

A framework was developed to aid in the rapid simulation of
viral particle spreading events. A base model that incorpo-
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rates analytical and experimental data to estimate diffusion
and dispersion in low-wind environments for aerosolized par-
ticles. This model is embedded into a genetic algorithm to
search for a super-spreader at a spreading event. This model
can be used for pollution or infectious disease estimation
in rapid simulation of particle dispersion. This model can
also be used to fit results to new and developing data on
infectious particles or to rapidly simulate different scenarios
using existing data. Computational cost of new arrangements
scales with wind velocity, environment size, and the number
of bins in the discretization of particle sizes, but not with the
number of particles. This de-coupling from the individual
particles provides a substantial reduction in the computation
time and great flexibility in utilization.

Future work

Additional data on target particle properties in air and emis-
sion/absorption parameters is needed for more accurate
estimation. Additional data on super-spreaders and particle
decay rate are needed for more refined estimates.
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