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 Abstract— Energy consumption in Wireless Sensor Networks 
(WSN) involving multiple sensor nodes is a crucial parameter in 
many applications like smart healthcare systems, home 
automation, environmental monitoring, and industrial use. Hence, 
an energy-efficient cluster-head (CH) selection strategy is 
imperative in a WSN to improve network performance. So to 
balance the harsh conditions in the network with fast changes in 
the energy dynamics, a novel energy-efficient adaptive fuzzy-based 
CH selection approach is projected. Extensive simulations 
exploited various real-time scenarios, such as varying the optimal 
position of the location of the base station and network energy. 
Additionally, the results showed an improved performance in the 
throughput (46%) and energy consumption (66%), which 
demonstrated the robustness and efficacy of the proposed model 

for the future designs of WSN applications. 

 
Index Terms— Adaptive threshold formulation, Efficient CH selection, Fuzzy Logic, Multi-sensor nodes, WSN 

 

 

I.  INTRODUCTION 

IRELESS Sensor Network (WSN) refers to a highly 

complex system of numerous tiny sensors (node) and a 

base station (BS). This technology has proved to be 

efficient in the design process of the latest productive 

applications and services [1]. Since WSN involves a large 

scale complex network [2] with sensors consuming more 

energy in the process, reducing power has become a 

challenging task.  

Researchers in the last few years have proposed numerous 

energy-saving and power optimization techniques that could 

help in prolonging the lifetime of the battery-limited WSNs 

[3]. A few energy-efficient methods are categorized under 

radio optimization, data reduction, cluster-based routing, 

sleep-wake mechanism, and battery repletion [4]. 

 Cluster-based networks have proved to be the best 

approach for conserving energy in power deprived sensor 

nodes [5][6] because only the head node, called cluster head 

(CH) is allowed to communicate with the sink or BS. Since 
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the CHs are responsible for data collection and aggregation, 

they need to be judiciously elected so that energy balance is 

maintained in the network. Low-energy adaptive clustering 

hierarchy (LEACH) [7][8] is a probabilistic protocol that 

periodically rotates the head position to balance power 

consumption. However, since the election of CH is based on 

probability, a node with less residual energy gets elected, 

which results in the untimely death of the network.  

Artificial intelligence (AI) has emerged as a new disruptive 

technology that supports the decision-making process to 

develop more efficient algorithms [9]. Recent studies indicate 

several classical algorithms apply these techniques to 

communication networks and routing protocols [10]. Machine 

learning (ML) [11], fuzzy logic (FL) [12], neural networks 

(NN) [13], and metaheuristic algorithms such as genetic 

algorithm (GA) [14] approaches were implemented, which 

reinforces the efficiency and performance of routing protocols.  

  Over time, numerous CH election mechanisms have been 

suggested for reducing power consumption and extend a 

network’s lifetime [15]. Therefore the researchers aim to 

select an energy-efficient CH in the most effective way 

possible. Fuzzy logic-based CH selection is one of the best 

practices in handling the energy optimization problem. The 

use of fuzzy logic in the CH selection also requires low 

computation capabilities [10], where the fuzzy descriptors 

consider the parameters for CH selection. 

 LEACH protocol has been modified over time according to 

the requirements of the user application. Residual energy is an 

essential factor in deciding the CH for the next round. 

LEACH-FL [16] is one of the fuzzy-based clustering protocol, 

which considers power level, distance, and node density to 
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elect CHs. From the simulation result, it was clear that the 

battery level acts as an important parameter in CH selection. 

In [17], the authors considered residual energy along with 

concentration and centrality as three fuzzy descriptors for CH 

selection. The CHs are centrally selected and may not be 

appropriate for large scale networks. In [18], the improvement 

of the basic LEACH protocol by using the Fuzzy-based 

approach to minimize power consumption. Three parameters 

are required for cluster formation: expected efficiency, 

nearness to BS, and residual energy. The method only 

discusses network lifetime; however, it does not provide the 

number of successful packet transmissions.  

A cluster-head selection mechanism using fuzzy logic 

(CHEF) was suggested by Kim et al. [19], which takes a 

distributed approach for the CH election. This mechanism 

considers two descriptors: residual energy and proximity 

distance to reduce the collection and calculation overhead, 

thereby prolonging the network lifetime. Lee and Cheng [20] 

found a fuzzy-logic for even distribution of the load. It 

considers an energy prediction-based CH selection that intends 

to extend the lifetime of the network. CH selection in [21] is 

based on fuzzy decision-making. Multiple attributes, including 

residual energy, the number of neighboring nodes, and the 

distance of a node from the BS were considered for extending 

the lifetime of the network. A threshold-based inter-cluster 

and intra-cluster multi-hop communication were used in 

Fuzzy-TOPSIS [22] based on CH selection to decrease energy 

consumption. The model considered residual energy, energy 

consumption rate, node proximity, the distance 

between nodes, and the sink to enhance a network’s lifetime. 

An adaptive immune-inspired optimization technique is 

discussed in [23], that enhances network parameters using a 

multi-criteria decision-making, combines fuzzy with TOPSIS.  

Mehra et al. [24] calculated an eligibility index to select the 

best candidate for the role of CH. The distributed fuzzy model 

used for clustering considers the remnant power level and 

node density. The mean of the eligibility index is multiplied 

by the present value of the threshold used in the LEACH 

protocol. R-LEACH is also an enhancement of LEACH that 

selects the CH considering two crucial parameters: the 

residual energy and the optimal cluster-head count of the 

network [25][26].  The remaining energy of the non-CH nodes 

is checked at each round. The highest energy level node acts 

as a candidate for CH in the next round. 

 FLECH [27] elects CH based on remnant energy, distance 

to BS, and node centrality. The method combines the metric-

based and probabilistic approaches to increase the lifetime. In 

BCSA [28], the network is divided into small sub-networks 

based on the distance from BS. A higher probability of CH 

selection is given to the nodes in the region near to the BS. 

This will lead to the early death of the nodes closer to BS. The 

method was then modified by Mehra in [29] that incorporated 

a Fuzzy system in BCSA for proper CH selection. FBECS 

selects CHs based on residual energy, distance from the sink, 

and density of nodes. Another CH selection protocol using 

residual energy and distance as Fuzzy parameters is CAFL 

[18]. The two parameters are considered to compute the rank 

for CH selection and cluster formation. 

 The threshold values for CH selection in a clustered 

WSN are a fixed value irrespective of the requirement of the 

application. Sensor networks should operate in adverse 

conditions owing to a wide range of applications [30]. For 

instance, sensors that monitor the environment in smart homes 

application require comparatively less energy than used for 

wildlife or agricultural monitoring. Hence, it can be inferred 

that a fixed threshold value will not be suitable for all types of 

environments and applications. Therefore, the proposed 

method attempts to develop a robust generalized protocol in 

which the threshold (T(n)) automatically adapts with the 

energy level. 

 The key points of the article that contribute to achieving a 

robust model include:  

1) Unlike conventional static selection schemes, the 

proposed adaptive fuzzy based technique not only takes 

into account the static residual energy but also tracks the 

change in the energy of the network in successive rounds. 

2) An exponential membership function is formulated based 

on the level of energy (high or low) in the network, which 

tunes the T(n) for the selection of CH. 

3) The proposed model is compared with existing protocols, 

i.e LEACH, R-LEACH, FBECS, BCSA, and CAFL. A 

modified model is formulated and compared called F-

LEACH, where T(n) is modified following the value of k 

only. 

4) The optimal position of BS is finalized by analyzing the 

behavior of the recommended model when the location is 

varied from position (50, 25) to (50, 200). 

5)  For the effectiveness of the model, simulation tests were 

conducted in two different environments WSN #1 and #2. 

6) Network lifetime metrics analysis performed by different 

network energies varied from 25J to 100J. 

7) The network area varied with different node densities to 

analyze the scalability of the model. 

  The rest of the paper is organized as follows: Formulation 

of the problem is described in Section II. Section III presents 

the details of the proposed fuzzy-based modification of 

LEACH. Section IV analyzes and discusses the simulation 

results. Finally, concluding remarks and future scope are 

discussed in Section V. 

II. PROBLEM FORMULATION 

Routing data in densely populated networks composed of 

multiple low-resourced sensors has always been difficult 

because the protocols need to save energy for providing good 

performance [14][31]. Clustering in WSN is an efficient 

routing method in which sensor nodes are grouped into small 

clusters [32] where one node called CH in each cluster gathers 

data from member nodes and sends it to the BS [33] as shown 

in Fig. 1. LEACH [8] is a hierarchical routing scheme in 

which the CH is elected for each round based on a 

probabilistic model. The T(n) is formulated so that every node 

has an equal chance of being elected as CH. The protocol has 

two phases; a setup phase where cluster and CH formation 

occurs and a steady-state phase where data are transmitted 

from nodes to BS through CHs. 
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Fig. 1.  Clustered WSN 

 For a network with n nodes and k clusters, the number of 

nodes in each cluster is fixed, which is n/k. The optimal value 

of k can be mathematically determined by considering the 

radio energy model. However, as the network energy is 

depleted, and nodes begin to die over time; some clusters are 

left with few working nodes, whereas some have all nodes 

functioning. This scenario is very likely to occur in clusters 

that are located at a distant place from BS, where nodes take 

extra energy to communicate data as compared to the nodes 

nearer to it. It leads to the untimely death of the network. 

Therefore, the selection of CH in which the optimal value of k 

is considered, which solve the crucial problem [25]. But, the 

value of k needs to adapt based on the energy to maintain a 

balance of functioning nodes across the network. Hence a new 

method is formulated for stochastic CH selection in the 

LEACH protocol with modification through implementing an 

adaptive fuzzy approach. The Fuzzy Interference System, 

shown in Fig. 2, includes three steps: Fuzzification, where 

crisp input values changed into a fuzzy set, Rule Base, which 

defines the IF-THEN rule and Interference Engine, which uses 

the input values and IF-THEN rule to simulate the reasoning 

that yields a fuzzy interference [34]. Finally, defuzzification 

transforms the fuzzy set into a crisp value [34] of the number 

of CHs that the network could bear by residual energy.   

 
Fig. 2.  Network Model with Fuzzy system 

Each node selects a random number between 0 to 1, and if 

the number is less than a T(n), then the node is elected to be 

CH in the next round [30]. The T(n) is given as: 
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 P is the probability of nodes being elected as CH and G is 

the set of nodes that have not been CH in the previous 1/P 

rounds. r represents the rounds of operation. Thus, the role of 

CH is rotated between all nodes with everyone getting a fair 

chance to be CH. 

Although LEACH distributes the network load equally 

among all nodes, some limitations need to be addressed.  

1) The threshold for CH selection is probabilistic and does 

not consider real-time parameter values that affect network 

performance. 

2)  The residual energy of candidate CH is not evaluated, 

which may lead to the early death of the node and 

subsequent network. 

3) Over time, when the residual energy of the network is 

depleted, the number of clusters (k) needs to adapt 

accordingly to extend the lifetime. 

Fig. 3 (a) and (b) show the effect that residual energy has on 

the number of clusters, k, and T(n) in WSN. It is inferred that 

any deviation in supplied power will have a high impact on the 

T(n)  for the CH election. This directly affects the network’s 

lifetime which increases or decreases depending on E0. With a 

gradual decrease in overall network energy, the T(n) needs to 

adapt to provide better network performance. It is a significant 

problem in applications where data need to be sent based on 

different thresholds (monitoring applications) and also when 

source nodes are located far away from the sink. Also, the 

number of clusters in the network is generally a constant value 

that is not feasible in practical cases [35]. The number of 

clusters should vary following network energy. The value k 

takes a higher value when energy is high and gradually 

decreases when energy is low. It is achieved only when the 

value of k is varied concerning the residual energy of the 

network. 

 

    
(a)            (b) 

Fig. 3.  Effect of energy on (a) number of clusters (k)   (b) T(n) 

 Since the exact value of network energy cannot be 

predicted a priori and is application dependent, the routing 

protocol should be made generalized and robust that is best 

suited for a variety of applications, including environmental 

monitoring, habitat monitoring, and animal tracking. Hence a 

fuzzy tuning-based LEACH and R-LEACH routing protocol 

called F-LEACH  and FR-LEACH are discussed in Section III 

which automatically adapts itself according to the available 

network energy.  

III. PROPOSED FUZZY-BASED MODEL 

A. System Model 

The suggested model randomly deploys sensor nodes that 

continuously sense the environment [26].  The nodes send the 

data to CH and forward it to the BS deployed outside the field. 
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The sensors switch between sensing mode and transmitting 

mode as required. When sensors contain data to be 

communicated to the cloud, the node operates in sensing 

mode; otherwise, it switches the radio off and sleeps to 

conserve energy. CHs are responsible for gathering, 

compressing, and sending data to BS. Hence the election of 

CHs should be done judiciously [27]. Basic assumptions are 

made as follows: 

1) All sensor nodes and BS are static. 

2) The network is considered homogenous, with the same 

initial energy supplied to all nodes. The base station, 

however, has limitless energy. 

3) The distance between the sending and receiving nodes 

is computed based on the received signal strength. 

4) The radio model is symmetrical which means the cost 

of transmitting a message from node A to node B is the 

same bi-directionally [36]. 

The radio communication model used to study the behavior 

of the network is described in the Appendix. The value of k 

mathematically calculated is constant and is given as (2) [37].  

22

fs

mp toBS

E n M
k

E d
=                (2) 

However, node death is a continuous process as the network 

energy is consumed. Hence the value of k  must be variable 

[38] to adapt to the changes in network parameters. Fuzzy 

logic can handle uncertainties in the real-time application 

more accurately than a probabilistic model [39][34]. Hence, 

the threshold value for CH in the basic LEACH protocol is 

modified by considering the fuzzy derived k value. A fuzzy 

logic system contains major constituents, namely, 

fuzzification, a fuzzy rule base, inference engine, and 

defuzzification [40].  

B. Fuzzy Model 

The LEACH protocol is modified based on a fuzzy model 

that selects the CH by considering the optimal number of 

clusters in the network which is again dependent on the 

residual energy of the network in each round and is termed 

Fuzzy-LEACH. As the number of clusters is changing in each 

round, hence it is defined as a function of rounds denoted by 

k(r). With each round, the residual energy of the non-CH 

nodes is checked and fed as an input to the fuzzifier to obtain a 

crisp value of k(r) that decides the next CH. Since in LEACH 

protocol, P is defined as k/n, in the proposed fuzzy model, P is 

updated in each round as k(r)/n. The T(n) is accordingly 

modified as: 
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However, nodes with higher residual energy should be a 

potential candidate for CH selection. Hence, if Eresidual is 

termed as the remaining energy level of the node and E0 is the 

initial energy of each node, then the T(n) in (2) is updated in 

FR-LEACH as:  
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The newly formulated T(n) reduces the possibility of low 

energy nodes being selected as CH. Avoiding nodes with low 

residual energy and high energy consumption improves the 

process of CH selection. The number of CHs (k) is adaptively 

updated with a new value of k(r) given as: 

( ) ( )1k r k r k= − +                (5) 

where a change in the number of CHs, Δk, is updated using a 

simple fuzzy rule base and membership values [41]. Selecting 

a proper membership function is an essential issue in the 

implementation of fuzzy logic. Since the number of clusters is 

an important function of network energy, Fuzzy membership 

values are selected as a function of energy E. In the initial 

rounds, when the energy is large, a greater number of clusters 

accumulated. On the other hand, when the energy decreases 

over time, the number of clusters should be adapted 

accordingly. Therefore, the deviation in energy computed 

from the present and the previous round using: 

( ) ( )1E E r E r = − −                (6) 

Non-linear energy consumption is a key issue in a WSN 

that operates on non-renewable batteries [42]. The TSK model 

[43] provides a powerful tool for modeling complex systems. 

The model is used to express highly non-linear functions using 

a simple and smaller number of rules. The fuzzy rule base 

[44][41], according to the TSK model, is represented as: 

R1: If |ΔE| is large then   1Lk C E =          (7) 

R2: If |ΔE| is small then   2Sk C E =            (8) 

where C1 and C2 are a small positive number in the range 

[0,1].  

Membership functions selected from different functions 

such as trapezoidal, triangular, Gaussian, and sigmoid within 

the range [0,1]. Since the energy of the network decays 

exponentially [45], the fuzzy membership function for large 

and small values of deviations in the network energy are 

selected as exponential functions given by:   

( ) | |1 exp E

L E −  = −  and  ( ) | |exp E

S E −  =      (9) 
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Fig. 4.  Fuzzy model based on the applied membership functions 

Fig. 4 shows the behavior of the membership functions (µL 

and µS) of the applied fuzzy model [44] concerning the 

deviation of energy ΔE which highlights the structure of the 

proposed model. Using the centroid defuzzification principle, 

the value of Δk is given as: 
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A crisp value of Δk is obtained from the defuzzification 

process which is used to evaluated k(r).  

The pseudo-code for the recommended modification is 

given in Table I which summarizes the steps involved in the 

CH selection process. 
TABLE I  FR-LEACH ALGORITHM 

N : {n | n is a node of the network},         V : {v | v is n’s vicinity node } 

ERes: Residual energy of the network,       T(n): Threshold for CH selection 

k:  number of CHs,                                   ΔE: Standard deviation of ERes 

begin 

initialize N, k, two positive coefficients (C1, C2); 

         for r=1 to rmax do 

   compute ERes using Eqs. (A.7) and (A.8); 

   calculate ΔE by using Eqs. (6); 

 formulate the fuzzy membership functions µL and µS by using Eqs.  (9); 

/* initialize fuzzy base rule */ 

                   if ΔE is large then  

Δk= µLC1 ΔE; 

                   else           Δk= µSC2 ΔE; 

                   end if 

/* defuzzification */ 

calculate Δk by using Eqs.(10); 

                  update k(r) by using Eqs. (5); 

calculate the new T(n)  by using Eqs. (2); 

/*CH selection*/ 

                 if (node_rand(0,1)>T(n)) then 

CH(r)←n;     

                end if 

/*Cluster formation*/ 

                if (CH(r)==n) 

                                    broadcast (CH_msg , V) 

                                    On receiving JOIN_REQ messages from cluster nodes;  

                else              On receiving CH_msg;  

                                    Send JOIN_REQ messages to the chosen CH; 

                end if 

       end for 

end 

 

 

As compared to the conventional methods, the proposed 

models F-LEACH and FR-LEACH exhibit a slightly higher 

computational burden by using a few more additions, 

multiplications, and divisions. However, the proposed 

algorithms outperform the other algorithms in a significant 

manner in terms of the network lifetime and throughput as 

discussed in the next section. Table II summarizes the 

arithmetic complexity for the calculation of the threshold T(n) 

of the algorithms for one iteration.  
TABLE II COMPUTATIONAL COMPLEXITY 

 Additions/Subtraction Multiplications 

LEACH 1 3 

RLEACH 1 8 

F-LEACH 5 7 

FR-LEACH 5 9 

 

 Once the CHs are selected, each node broadcasts an ADV 

message to introduce itself to the network. The ADV message 

is a spreading code. Each sensor node then joins the CH 

according to the strength of the ADV message signal. The 

node sends a REQ_JOIN message that contains information 

such as node ID and CH ID to the desired CH, which 

completes the cluster formation stage. The CHs count their 

member nodes following the number of REQ_JOIN messages 

and execute a TDMA scheme for data collection. 

IV. PERFORMANCE EVALUATION 

MATLAB simulations were conducted with nodes deployed 

over a region of 100×100 m2. To demonstrate the 

performances of the model in different environments, two 

networks (WSN#1 and WSN#2) were considered. The initial 

energy of nodes is fixed at 0.5J. WSN #1 has 100 nodes with 

total network energy of 50 J and WSN#2 has 200 nodes with 

total network energy of 100 J. Koyi et al. [46] studied the 

impact of BS on network performance and proved that the 

network performance improves when BS is located centrally 

and is worst when placed in the corner by consuming 84% 

more energy. To finalize the optimal position of BS, an 

analysis was done in which the x-axis position was fixed at 50 

and varying the co-ordinates of the y-axis from 25 to 200, as 

shown in Table III. FND indicates the First node dead, HND is 

Half node dead and LND represents the Last node dead.  

 
TABLE III  BASE STATION POSITION ANALYSIS 

BS(50,y) Nodes dead (in rounds) 
Packets to 

BS 

  FND HND LND   

25 2056 3532 4931 510358 

50 2725 3845 4984 544235 

75 2075 3451 4993 518832 

100 1283 2915 4954 437901 

125 573 2057 4300 334308 

150 315 1517 2934 208290 

200 114 380 1337 62851 

 

The proposed model yielded the best result when placed at 

the center of the network field. The result, however, 

deteriorates when BS is moved outside the field. This was 

caused by an increase in the transmission distance that 

increases the energy consumption level. As a result, the 

network will exhaust the supplied energy at a faster rate 

causing the early death of the network. Hence the base station 

is positioned at a point (50, 50). The other network parameters 

used for simulation are listed in Table IV. 

 
TABLE IV SIMULATION PARAMETERS 

Type Parameter Value 

Network Topology 

Number of nodes 

Network Coverage 

BS location 

100,200 

100×100m2 

(50,50) m 

Node Setting Initial node energy 0.25 J, 0.5 J,0.75 J, 1 J 

Radio Model 

Efs 10 pJ/bit/m2 

Eamp 0.0013 pJ/bit/m4 

d0 87 m 

EDA 5 nJ/bit 

Application Packet size(l) 4000 bits 

 

The classical LEACH protocol employs a random selection 

of CH and rotates the role of CHs regularly (between equi-

probable nodes) to balance energy dissipation. The proposed 

FR-LEACH is based on the LEACH architecture, which 

considers network energy to be a vital parameter for deciding 

the next CH. Hence when compared with LEACH and R-

LEACH, our method generated better results in terms of 

lifetime, residual energy, and throughput. 
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i. Network Lifetime: It depicts the total time of network 

operation, i.e. until the death of the last node. 

ii. Residual Energy: This metric represents the average 

remaining network energy during network operation. 

iii. Throughput: It is the most important parameter that 

indicates the average rate of successful data transfer, 

as given by equation (18), where Nrecv is the number 

of packets received over a time period T. 

recvN l
Throughput

T


=              (11) 

One important criterion that should be noted is the number 

of clusters in the network. For the LEACH protocol, there is 

no fixed number of clusters and k takes a random value. For 

R-LEACH, a value of k is obtained analytically and is kept 

fixed throughout network operation. However, for FR-

LEACH, the value of k adapts according to the energy level of 

the network. Fig. 5 (a) shows the variation of k with respect to 

rounds; it is observed that as network energy decreases with 

time, the value of k also decreases as desired.    

For a fair comparison of network performance, the 

deployment of nodes (blue color) is kept constant as shown in 

Fig. 5 (b) with BS at the center (red color). 

  
(a)             (b) 

Fig. 5 (a) Variation of k with respect to rounds (b) Network deployment 

A. WSN#1 (WSN environment with 100 nodes) 

 
(a)             (b) 

Fig 6: (a) Network Lifetime (b) Residual Energy.  

The initial energy of each node is 0.5 J, such that the 

network energy adds up to 50 J. Fig.6 (a) shows the number of 

nodes that remain functional or alive throughout the rounds by 

using a clustering algorithm such as LEACH, R-LEACH, F-

LEACH, and FR-LEACH. It is because of the fact that the 

proposed FR-LEACH results in extending the network 

lifetime to a higher number of rounds. Moreover, FR-LEACH 

performs well in balancing the number of clusters with the 

dissipating energy of the network. As a result, node death 

begins at a later stage and continues at a slower rate until all 

the nodes die. Fig. 6 (b) specifies improved network energy 

consumption in terms of total exhausted power. The proposed 

FR-LEACH could save up to 66% and 20% of energy as 

compared to LEACH and R-LEACH, respectively. Also, a 3% 

increase in a lifetime is observed as compared to F-LEACH. 

The data packets delivered to the base station for various 

clustering methods are shown in Fig. 7 (a). As the network 

lifetime is enhanced due to efficient CH selection, the 

projected scheme delivers more data to the base station with 

less packet drop ratio over a more significant period of time 

[47]. Effective selection of CHs using a fuzzy-based adaptive 

method contributes to maintaining a reliable network that 

transmits data from sensing nodes to BS with minimal loss. 

 With less packet drop, the ratio between actual transmitted 

data to successfully received data is likely to increase. Fig. 7 

(b) shows that the throughput for FR-LEACH increased 

sharply by 46%, 17%, and 13% as compared to LEACH, R-

LEACH, and F-LEACH, respectively.  

 
(a)             (b) 

 Fig. 7 (a) Packets to BS (b) Throughput 

B. WSN#2 (WSN environment with 200 nodes) 

 FR-LEACH performs better even for a more densely 

populated network with 200 nodes. With initial node energy of 

0.5 J, the network energy is 100 J. FR-LEACH avoids random 

selection of CHs, and hence nodes remain alive for a longer 

period. From Fig 8 (a), it is inferred that network lifetime is 

enhanced, and the last node dies at 4972 rounds as compared 

to 4601, 3778, and 2982 rounds for F-LEACH, R-LEACH, 

and LEACH respectively. Similarly, the network energy could 

also be saved as indicated in Fig. 8 (b).  

 
(a)              (b) 

Fig. 8 (a) Network Lifetime (b) Residual Energy 

Network energy dissipates rapidly for LEACH and R-

LEACH, whereas for F-LEACH and FR-LEACH, it is much 

slower. This change is because both protocols only pick CHs 

from nodes with high residual energy. Besides, energy 

consumption in unnecessary clustering is minimized as the 

network adapts to the decreasing energy to form clusters 

accordingly. As a result, the overall residual energy of the 

network is improved, which elongates the network lifetime. 
 

Throughput is an important constraint for deciding the 

effectiveness of the protocol. With a higher number of nodes 

deployed over a region, it is expected that maximum data will 
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be delivered with less packet drop. Fig 9 indicates that FR-

LEACH contributes to the high delivery of data. Since the 

number of clusters plays an important role in the network and 

has been considered to be a crucial parameter for deciding the 

CH, the packet delivery from CHs to BS has increased 

substantially. A sharp rise in the throughput graph is observed 

which is 47%, 30%, and 11% above the LEACH, F-LEACH, 

and R-LEACH levels, respectively. 

  
(a)              (b) 

Fig 9: (a) Packets to BS (b) Throughput 

C. Lifetime Metrics Analysis 

The stability period is the time from the beginning of 

network operators to the death of the first node and is a key 

parameter for applications, where sensor input must be reliable 

[48]. It is the time elapsed until the death of the first node. Fig. 

10 (a) shows the stability period for the proposed FR-LEACH 

for different values of initial energies ranging from 0.25 J to 1 

J. It is observed that with an increase in network energy, better 

stability is achieved with enhanced lifetime. This analysis is 

effective for determining the required supply energy level 

according to the application requirement.  

 
(a)             (b) 

Fig. 10 Lifetime Metrics (a) Stability period (b) Half node alive (rounds) 

 

Once the network starts performing, major energy 

dissipation will occur during the HNA (half node alive) 

lifetime, which is an important aspect of densely deployed 

regions. To analyze the behavior of the proposed model, the 

HNA lifetime of FR-LEACH was compared to LEACH, F-

LEACH, and R-LEACH as shown in Fig.11 (b). It is found 

that the proposed scheme exhausted half of its node population 

with 50% energy remaining, whereas LEACH and R-LEACH 

consumed approximately 70% of energy within the HNA 

lifetime, which can be seen from Fig. 6 (b) and Fig. 8 (b). The 

energy-saving was mainly due to finding the optimal number 

of clusters that the network adjusts with a change in energy.  

D. Comparison with other state-of-art methods 

To demonstrate the effectiveness of the proposed method in 

contrast to other state-of-art methods, the performance 

comparison for lifetime and packets to BS is shown in Fig.11. 

FR-LEACH is compared to FBECS, BCSA, and CAFL, and 

all the system parameters are modified accordingly for a fair 

comparison. 200 nodes are considered for simulation where 

each node is equipped with 1J of energy. The BS is placed 

centrally. It can be observed that FR-LEACH performs better 

since the approach is adaptive and the number of CHS 

changes with respect to energy. On the other hand, the 

percentage of CHs is fixed for other methods at 10%. 

 
(a)              (b) 

Fig 11: (a) Packets to BS (b) Network Lifetime 

E. Scalability 

The scalability of routing protocols is studied to observe the 

impact of network size on network lifetime [49]. The node 

density and area of the network field affects the network 

lifetime. Table V compares different models with fuzzy based 

models in terms of stability period and network lifetime. The 

cross-sectional area is varied between 100, 200, and 400 with 

two different densities of nodes. It is seen that as network 

transmission continues, the percentage of live nodes decreased 

as more nodes exhausted energy. The stability period was 

significantly affected by large scale networks in all scenarios, 

which was due to the increased distance between the nodes 

that led to faster energy consumption. The lifetime of the 

network is enhanced even deployed in a large area with a high 

density of nodes. Hence it is inferred that the proposed fuzzy 

model is used for a wide range of applications with different 

node densities to yield better network performance. 
TABLE V ANALYSIS OF SCALABILITY 

Area Nodes 
Network 

Energy 

LEACH R-LEACH F-LEACH FR-LEACH 

FND LND FND LND FND LND FND LND 

100 
100 50 J 2033 2877 1985 3804 1344 4818 2590 4841 

200 100 J 1978 2982 1339 3779 1349 4601 2681 4972 

200 
100 50 J 1506 3051 499 4208 486 4440 527 4822 

200 100 J 1304 3508 594 3945 611 4451 518 4990 

400 
100 50 J 95 2798 39 4359 47 4460 50 4394 

200 100 J 160 3365 59 4254 54 3625 42 4502 

V. CONCLUSION 

An attempt has been made to resolve the issues of suitable 

CH selection. This work focus on an adaptive robust CH 

selection scheme suited to any environmental application (high 

energy or low energy). The investigation was made through the 

modification of the threshold value of CH selection by 

considering residual energy and an optimal number of clusters. 

Furthermore, the value of k(r) was evaluated using a fuzzy 

model that adapted according to the network energy. During the 

initial stage, when the network started, the energy is at its 

maximum value; hence k is high with a greater number of 
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clusters during this period. However, with time, energy started 

to deplete and, the number of clusters also decreased. This had a 

significant effect on the evaluation of the T(n) for CH selection. 

The proposed methods for F-LEACH and FR-LEACH 

outperformed both the basic protocols in terms of network 

lifetime, average residual energy, packets to BS, and 

throughput. Though FR-LEACH is superior to all the aspects 

of F-LEACH, however, F-LEACH is marginally lower than 

the performance of FR-LEACH with respect to the residual 

energy plot. Most importantly it is visible from Table. II, that 

F-LEACH is computationally less burdened than FR-LEACH 

which is also considered as a criterion in many online 

applications. When compared to other existing fuzzy-based CH 

selection protocols such as FBECS, CAFL, and BCSA, the 

proposed FR-LEACH showed better performance in terms of 

lifetime and packet delivery due to adaptive CH selection. The 

network performances also inspect the scalability aspect of this 

model. It indicates the model provides enhanced performance 

even when the area and node densities are varied. Using the 

fuzzy rule, selecting a CH based on the network’s energy for 

each round helped maintain a balance that improved network 

performance in major attributes. In the future, the model could 

be implemented and tested in a heterogeneous environment.  

VI. APPENDIX 

A. ENERGY MODEL: 
The communication radio model [30] is shown in Fig. A.1, 

demonstrates the energy consumption model for n nodes 

deployed over an M×M region. When the distance d between 

the sending and receiving nodes is less than the threshold 

distance d0, the free-space model is used; otherwise, a multi-

path fading model is adopted. In a symmetrical 

communication channel, the energy consumption in sending l 

bits/packet to a node d meters away written as [50]:  

_ _( ) ( , )Tx Tx elec Tx ampE E l E l d= +               (A.1) 

2

0

4

0

,
(l, )

,

elec fs

Tx

elec amp

E l E l d d d
E d

E l E l d d d

  +   
= 

 +   

           (A.2) 

 
Fig. A.1.  Radio Energy model [30] 

The energy consumed per bit by the receiver or transmitter 

circuit is given as Eelec. Efs and Eamp are the parameters of 

amplification corresponding to the free-space model and the 

multi-path fading model respectively. The threshold distance 

d0 is shown in (4) 

0
fs

amp

E
d

E
=                     (A.3) 

The energy consumed in receiving a packet of l bits is given 

as: 

( )Rx elecE l E l=                  (A.4) 

Assuming perfect data aggregation, the energy dissipated by 

the CH written as [51]: 

( ) 41CH elec DA elec fs toBS
n nE lE lE lE lE d

k k
 = − + + + 
 

     (A.5) 

Where k is the number of clusters in the network and dtoBS is 

the distance between CH to the base station. EDA is the energy 

utilized in processing the data to the base station.  

 In general, the arbitrary-shaped region of a cluster has node 

distribution ρ(x,y) [52] and the expected squared distance 

from nodes to CH estimated as 
max max

2 2 2

toCH

0 0

E[d ] (( ) ( ))

X Y

x y x y dxdy= +  +       (A.6) 

The energy required by a normal sensing node to transmit data 

to CH written as: 
2

node elec fs toCHE lE lE d= +                     (A.7) 

 The overall network energy dissipation calculated as: 

4(2 E )
2

total elec DA mp toBS fs

M
E l n nE kE d E n

k
=  + + +        (A.8) 
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