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Abstract: The COVID-19 pandemic has claimed the lives of millions of people and put a significant
strain on healthcare facilities. To combat this disease, it is necessary to monitor affected patients in a
timely and cost-effective manner. In this work, CXR images were used to identify COVID-19 patients.
We compiled a CXR dataset with equal number of 2313 COVID positive, pneumonia and normal
CXR images and utilized various transfer learning models as base classifiers, including VGG16,
GoogleNet, and Xception. The proposed methodology combines fuzzy ensemble techniques, such as
Majority Voting, Sugeno Integral, and Choquet Fuzzy, and adaptively combines the decision scores
of the transfer learning models to identify coronavirus infection from CXR images. The proposed
fuzzy ensemble methods outperformed each individual transfer learning technique and several
state-of-the-art ensemble techniques in terms of accuracy and prediction. Specifically, VGG16 +
Choquet Fuzzy, GoogleNet + Choquet Fuzzy, and Xception + Choquet Fuzzy achieved accuracies
of 97.04%, 98.48%, and 99.57%, respectively. The results of this work are intended to help medical
practitioners achieve an earlier detection of coronavirus compared to other detection strategies, which
can further save millions of lives and advantageously influence society.

Keywords: chest X-rays; COVID-19; pneumonia; transfer learning; fuzzy ensemble; GoogleNet;
Xception; Majority Voting; Sugeno Integral; Choquet Fuzzy

1. Introduction

Coronavirus is an extremely contagious virus that mostly affects the lungs and is
characterized by symptoms of cough, fever, and exhaustion. The disease has the potential
to spread to the lower respiratory system, where it can potentially cause inflammation and
swelling, resulting in pneumonia [1].

COVID-19 spreads by respiratory droplet production following coughing and patient
contact. As a result, preventative methods, such as wearing masks, social distancing, and
isolating infected people, have been implemented to deal with viral transmission thus
far [2]. COVID-19 has devastated most healthcare systems around the world, causing
economic damage and claiming the lives of numerous individuals. Although vaccines are
being produced and administered around the globe, it will be a very long time before each
human can be vaccinated. As new strains of infection arise, such worldwide vaccination
will be further delayed and will lead to subsequent lockdowns. As a result, there is an even
greater need for the accurate and early identification of COVID-19 to prevent viral spread.

Currently, RT-PCR remains the most utilized detection technique by health profession-
als, which requires samples to be collected from the upper and lower parts of the sputum
and nasal cavity from people suspected of being infected with COVID-19. The RT-PCR test
faces several limitations, such as the manual collection of samples from infected patients,
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reliance on patient consent, and the abilities of doctors, which could also impact the proper
identification of coronavirus. Furthermore, the RT-PCR procedure is time-consuming and
high cost. Because of these problems, multiple tests are necessary for proper assessment [3].
Chest radiography (CXR) is amongst the most widely-used techniques for diagnosing
pneumonia globally [4]. CXR diagnosis offers the advantages of a simple detection pro-
cedure and low cost with low ionizing radiation intensity when compared to CT. CXR
also exposes the patient to less radiation [5,6]. However, proper diagnosis using CXR
images requires professional expertise and skill, thus demanding high-accuracy diagnoses
via transfer learning models. Medical imaging professionals are encouraged to use these
models to achieve fast and accurate results [7]. Due to the COVID-19 pandemic and the
proceeding high demand for health services, the health systems risk collapse owing to
the lack of health professionals and hospital beds. Other concerns are that coronavirus is
highly infectious, and nurses, caretakers and physicians are the most vulnerable. Therefore,
early identification of pneumonia is critical in terms of limiting the dissemination of the
pandemic by isolating affected individuals [8].

CT and CXR images have been utilized as the imaging techniques for COVID-19
diagnosis in the majority of studies. In this regard, the presented study includes numerous
pieces of research on various transfer learning techniques used to detect coronavirus via
CXR imaging.

Nayak et al. [9] suggested a deep learning-based automated approach, named the
ResNet-34 model, for the early detection of COVID-19 infection using CXR images. They
compared the performance of eight pre-trained CNN models for discriminating COVID-19
instances from normal CXR images and achieved an accuracy of 98.33% for the proposed
model. Dilshad et al. [10] introduced and applied a CNN-based MobileNet model on
the Indian CXR dataset, achieving an accuracy of 96.33%. Similarly, a CNN-based binary
classification model (Haque and Abdelgawad et al. [11]), modified VGG-19 model (Bhatt
et al. [12]), and a deep CNN architecture named CVDNet (Ouchicha et al. [13]) have been
proposed to detect coronavirus in patients using CXR images, resulting in accuracies
of98.3%, 97.37%, and 97.20%, respectively. Other recommended models include two novel
models, namely a dilated and depth-wise separable CNN by Li et al. [14], a modified
AlexNet model by Kaur et al. [15], a deep CNN architecture named CoroNet based on
Xception architecture by Khan et al. [16], an SVM-based hybrid differential evolution PSO
model by Dixit et al. [17], and a novel MAnet based two-stage classification technique for
coronavirus detection utilizing CXR images by Xu et al. [18]. Moreover, a computer-aided
diagnostic combined approach based on graph CNN and pre-trained CNN model (Kumar
et al. [19]), a deep Covix-net model (Vinod et al. [20]), new deep hybrid and deep boosted
hybrid learning models (Khan et al. [21]), and a gradient weighted class activation mapping
technique (Panwar et al. [22]) for coronavirus detection exhibited accuracies of 97.60%,
97%, 98.53%, and 95%, respectively. Likewise, a DenseNet-201 architecture reported by
Alhudhaif et al. [23], a PSO-based eXtreme Gradient Boosting model recommended by Dias
Júnior et al. [24], an automatic AI-based system using majority voting ensemble techniques
suggested by Chandra et al. [25], and a bi-level prediction model by Das et al. [26] exhibited
respective accuracies of 94.96%,98.71%, 91.329%, and96.74%to diagnose COVID-19. Other
novel techniques to detect coronavirus include a deep LSTM model (Demir et al. [27]),
Inception-v3 model based on deep CNN associated with Multi-Layered Perceptron model
called CovScanNet (Sait et al. [28]), and a hybrid deep CNN technique with discrete wavelet
transform features (Mostafiz et al. [29]. For COVID-19 detection in patients, Mahmud
et al. [30] recommended a CovXNet model, and Ergen and Zafer et al. [31] suggested a
MobileNetV2 deep CNN model with fuzzy color technique, which achieved an accuracy of
97.4% and 98.25%, respectively. Recently, Dey et al. [32] proposed Choquet fuzzy classifier
ensemble technique and Kundu et al. [33] proposed CNN models based on fuzzy rank and
Gompertz function to detect coronavirus from CXR and CT images, respectively. Rahaman
et al. [34] utilized 15 distinct deep CNN models and Manokaran et al. [35] suggested a
DenseNet201 model based on three-class dataset for identification of COVID-19 patients
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with an accuracy of 89.3% and 94%, respectively. When reviewing the related work, it
was discovered that few researchers concentrated on fuzzy ensemble approaches paired
with transfer learning models. An ensemble approach is a machine learning technique
that integrates many base models to generate a single optimal prediction model. The
outcomes of numerous models are integrated in order to enhance overall performance.
Specifically, ensemble methods integrate numerous machine learning approaches into a
single predictive model to enhance overall performance and predictions while reducing
bias and variance. Furthermore, combining deep transfer learning models with fuzzy
ensemble approaches will assist in increasing the accuracy and robustness of a detection
system. The presented study considered the following.

1. CXR images were used to diagnose coronavirus, and a transfer learning and fuzzy
ensemble fusion model was proposed for COVID-19 detection.

2. At first, we trained the VGG16, GoogleNet, and Xception base classifiers using
deep transfer learning techniques. Using fully connected layers and the softmax layer, we
extracted features and classified CXR images using pre-trained transfer learning models.

3. Then, using Majority Voting, Sugeno Integral, and Choquet fuzzy integral, the data
prediction scores from multiple models were integrated to create the final forecasted labels
that are more accurate than the separate model predictions.

4. For the application of Choquet fuzzy integral with other state-of-the-art models,
such as Majority Voting and Sugeno Integral, we considered the validation accuracy of
each classifier to compute the fuzzy membership values of each classifier. The advantage
of this type of fusion is that it creates the final prediction of each sample using adaptive
weights depending on each sample’s confidence scores.

5. The performance of each pre-trained model, including VGG16, GoogleNet, and
Xception combined individually with Majority Voting, Sugeno Integral, and Choquet
fuzzy ensemble techniques was measured in terms of precision, recall, F1-Score, sensitiv-
ityand specificity.

The goal of this article was to use CXR images to predict coronavirus, aiding healthcare
providers and radiologists in the early detection and isolation of positive coronavirus
patients to halt the virus’ rapid spread in vulnerable countries with limited hospital capacity
and a low patient-to-doctor ratio and to prevent increasing fatality rates.

The remainder of the article is organized as follows. The preliminary models are
provided in Section 2. Section 3 describes the proposed algorithm. Section 4 provides a
brief explanation of the proposed model and comparison analysis. Section 5 presents the
conclusion and future works.

2. Preliminaries

VGG16: VGG16 was proposed by Karen Simonyan et al. [36] in 2014, which was
termed based on its 16 layers. VGG-16 contains different layers, such as three dense layers,
two FL, five max-pooling layers, and 13 convolutional layers.

GoogleNet: With a reported performance of 93.3%, GoogleNet [37] succeeds at the
leading edge of the ImageNet detection and classification problem. The greater utilization
of computer resources in the model is its advantage, in which a construction component
is treated as an “inception module” that reflects the model’s increased width and depth.
This was one of the earliest CNN designs that diverge from the traditional method of just
adding convolution and pooling layers in a sequential manner. Figure 1 illustrates the
GoogleNet architecture, which is composed of nine initialization modules. GoogleNet is
a 22 deep CNN that is a version of Google researchers’ Inception Network that is built
on the Inception architecture. In this case, we utilized the third version of the GoogleNet
model, Inception V3. This version is made up of a hierarchy of sophisticated inception
modules that integrate channel spatial convolution, pooling, and reprojection operations at
different scales in each module. The model shrinks the parameter space by breaking spatial
convolutions with bigger filter sizes n × n into a series of two convolutional operations
with n × 1 and 1 × n filter sizes. The resultant network model is more complicated and
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deeper than AlexNet, although it has fewer features and lower computing complexity
than AlexNet. GoogleNet does not employ fully-connected layers. Instead, the final
convolutional map is subjected to channel-wise average activation values, and global
average pooling values of the 2048 channels are utilized as the input image’s feature vector.
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Xception: The Xception [38] architecture includes a depth-wise separable convolution
layer, convolutional layer, residual connections, and inception module. The design of
Xception, which stands for “extreme inception”, has 36 convolution layers that form the
network’s extractor base. Xception is an extension of Inception architecture by using deeply
separable convolutions for standard Inception modules and, thus, has improved speed
and accuracy compared to Inception, ImageNet, Inception V3, ResNet-101, ResNet-50, and
VGGNet models. The Xception model contains three major sections: entry, middle, and
exit flow. The data first enter the input flow, and then go through the eight-fold middle
flow, and finally the exit flow. Batch normalization is accompanied by all the Convolution
layers. Xception replaced the conventional starting block by expanding it and changing the
various (1 × 1, 5 × 5, 3 × 3) spatial dimensions with a (3 × 3) single dimension preceded
by a (1 × 1) transition to maintain computational burden. Equation(1) and Equation(2)
represent the mathematical modelling of Xception:

f k
l+1(p, q) = ∑x,y f k

l (x, y). ek
l (u, v) (1)

Fk
l+2 = gc

(
Fk

l+2, kl+1

)
(2)

Choquet fuzzy: In this study, aggregation refers to the process of merging each classi-
fier’s performance scores into a single global score. For the said purpose, an aggregation
operator was used. Normally, we consider weighted average as the aggregation operator;
however, in this situation, we employed the Choquet fuzzy integral [39]. This approach
has already been performed in a variety of pattern identification applications due to its
benefit of capturing the unpredictability that exists in the decision values obtained as extra
data via classifier fusion, which is lacking in traditional ensemble approaches. As a result,
fuzzy measures are the extension of aggregation operations on a set of confidence values.
Weighted values are assigned to distinct classifier combinations in these fuzzy measures.
To use the Choquet fuzzy approach, we must first establish the fuzzy measure values that
define the strength of each classifier. We include three different types of interaction in this
section: f {A U B} = f {A}+ f {B} = sum of individual strength of A and B is equal to
{A U B}, f {A U B} ≤ f {A} + f {B} and f {A U B} ≥ f {A} + f {B}; Where A and B
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are two subsets of classifiers and mutually exclusive. f (S) indicates the strength of a set
of classifiers.

After obtaining a complete set of fuzzy measure scores and relevant scores for each
classifier, we can utilize the Choquet fuzzy method to compute the classifiers’ aggre-
gated global score. Let g () generate the fuzzy measure score of a collection of classifiers
D = (d1, d2, d3 . . . .., dn), and P = (p1, p2, p3 . . . .., pn) are the individual classifier perfor-
mance scores in D. Assume Li is a subset of D, such that Li = (d1, d2, d3 . . . .., dn) of D,
where i is in between 1 and n. This indicates that, if i = 1 then L1 = (d1), and if i = 3, then
L3 = (d1, d2, d3). Wealsoassumethat ( p1 ≥ p2 ≥ p3 . . . .. ≥ pn), then the aggregated score
may be computed using the Choquet fuzzy integral, as shown in Equation (3):

Choquetg(p1, p2, p3 . . . .., pn ) = p∗ng(Ln) + (pn−1 − pn)
∗g(Ln−1)+ . . . + (p1 − p2)

∗g(L1) (3)

We compute the value of λ for determination of the fuzzy membership values using
Equation (4):

1+λ= ∏n
i=1(g({di})λ + 1) (4)

By obtaining the roots of the characteristic equation, we can find the value of λ. By
repeating Equation (5), the fuzzy membership value of each classifier combination can be
determined:

g({dl , do})= g({dl}) + g({do})+λg({dl})g({do}) (5)

where 1 ≤ l, o ≤ n.
We have p classifiers that are used to categorize q classes when dealing with classi-

fier combinations. Let xij denote the confidence score of the jth class of the ith classifier.
Choquet integral is now utilized for each j to produce a fuzzy confidence score. In this sce-
nario, g({bi}) represents each classifier’s fuzzy membership scores, which are empirically
determined for j = 1, 2, 3 . . . q, bi = xij, where i = 1, 2, 3 . . . p. In this study, however,
we set the fuzzy measure g({bi}) = wi/w1 + w2 + w3 . . . . + wp, where wi indicates the
validation accuracy of the ith classifier. Even after the values of fuzzy measures have been
set, the Choquet fuzzy integral can modify the weightage of each classifier by considering
the decision scores supplied by the rest of the classifiers. This makes the system dynamic,
as opposed to other assembly techniques that employ the majority voting and sugeno
integral system.

We must first obtain fuzzy measure values for each classifier before we can use the Cho-
quet fuzzy ensemble. The fuzzy measure values indicate the strength of each classifier and
all possible classifiers. Algorithm 1 depicts the key phases of the proposed methodology.

Majority Voting: MV is a basic but effective ensemble learning approach that has
been effectively utilized in a variety of industries. The fundamental concept behind MV is
to use the majority voting rule to aggregate the output results from many data sources [40].
The majority voting rule is divided into three types: (i) unanimous voting, in which all
classifiers must agree on a prediction; (ii) simple majority voting, in which the prediction
must be supported by at least one more than half of the classifiers; and (iii) plurality or
majority voting, in which the highest number of votes is considered for the ensemble
decision whether the sum of those exceeds 50%. In the case of independent classifier
outputs, the majority voting rule combiner always improves prediction performance. The
MV technique works by accumulating the labels associated with each classifier in the input
image. The final label is then assigned to the class with the most labels (votes) among the
classifiers. If two classes receive equal votes, we choose to assign the final label to the class
with the lowest index.

Sugeno Integral: Takagi-Sugeno [41] is a fuzzy inference technique that creates a
systematic strategy for generating fuzzy rules from a given input-output dataset. The
inputs are blurry, but the outcome is clear. Takagi-Sugeno computes the crisp output using
a weighted average. This method is computationally more efficient and may be used in
conjunction with optimization and adaptive approaches.
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3. Methodology

Herein, we present a model that employs the deep transfer learning approach to
classify CXR images as COVID-positive, negative or pneumonia. This approach first
employs pre-trained transfer learning models from VGG16, GoogleNet, and Xception as
feature extractors, then uses classifiers to classify the features. The classifier outputs are
subsequently merged using Majority Voting, Sugeno Integral, and Choquet fuzzy integral,
whereby each classifier’s fuzzy measures are paired with an empirically established ratio.
We used two conventional ensemble techniques (Majority Voting and Sugeno Integral) to
make a comparison of the Choquet fuzzy ensemble approach for COVID-19 patient identi-
fication based on the CXR dataset. We evaluated these models for consistent performance
comparison. Figure 2 depicts the proposed ensemble model.
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Algorithm 1 Detection of COVID-19 +ve and –ve Patients.

Step 1: As input, use CXR images (COVID-positive, negative or pneumonia images)
Step 2: Resize the size of the training pictures to 224 × 224 × 3 pixels
Step 3: Load pre-trained models like VGG16, GoogleNet and Xception. Let the feature maps for
VGG16, GoogleNet and Xception are denoted as FM1, FM2 and FM3 respectively
Step 4: In training phase of VGG16, we use GlobalAveragePooling2D followed by FCL with
dropout 0.5, FCL with ReLU 98 and finally FCL with softmax as output layer
Step 5: In training phase of GoogleNet and Xception, we use FCL with dropout 0.5 followed by
FCL with ReLU 98 and finally FCL with softmax as output layer
Step 6: Create the classifiers CF1, CF2 and CF3 by layering two FC layers on top of feature maps
and a softmax layer.
Step 7: Divide all of the images in the dataset into training and testing sets in proportions of 80%
and 20%, respectively.
Step 8: Using the training dataset, train the classifiers CF1, CF2 and CF3
Step 9: Using the validation set, produce validation accuracies for the w1, w2, w3 feature maps
Step 10: Determine the fuzzy measure values for the kth classifier is wi/w1 + w2 + w3
Step 11: Resize the size of the testing pictures to 224 × 224 × 3 pixels.
Step 12: Based on the testing samples, use the learned classifiers to create prediction scores P.
Step 13: Using fuzzy measures F, apply Choquet Fuzzy to the prediction scores P to get the final
prediction scores.
Step 14: Use final prediction scores to determine if a particular sample is COVID-19 positive,
negative or pneumonia.

2D Global Average Pooling is employed on the spatial dimensions until each spatial
dimension is equal to one. To avoid overfitting, FCL with a dropout of 0.5 is utilized.
FCL combined with ReLU 98 is then utilized to enhance neural networks by accelerating
training. The FCL function with the softmax function is used to normalize the outputs
between 0 and 1.

4. Discussion
4.1. Experimental Setup

The entire experiment was carried out on Google Colaboratory using a Python3 engine,
a GPU as a backend, and a system RAM of 12 GB. TensorFlow 1.x was employed. For
image processing, we loaded the picture as a color image with three RGB channels and
transformed it into a NumPy array. On the CXR dataset, we trained all three transfer
learning models with an identical set of hyperparameters. During the entry procedure, the
images were scaled to 224 × 224 pixels with various dimensions. For training purposes, we
setthe learning rate to 2× 10−4 with 60 epochs, which are small enough to prevent the fitting
problem of the transfer learning models. An Adam optimizer was used as a compilation,
and FCL with ReLU 98 was employed as the activation function for feature extraction.

4.2. Dataset Description

We obtained the COVID-19 CXR image dataset from Kaggle [42], which includes
equal number of COVID positive, pneumonia and normal CXR images. Each class contains
2313 images. The active COVID-19, pneumonia and normal patient CXR images were used
to train the Tensor Flow and Keras deep learning models to detect whether or not a person
has COVID-19. The data were divided into 80% for the training set and 20% for the test
sets, with the identical sets utilized for all models.

4.3. Results and Outcomes

Figures 3 and 4 show the accuracy and loss graphs of the transfer learning models
(VGG16, GoogleNet, and Xception). Specifically, Figure 3 indicates that Xception learns
faster than GoogleNet and VGG16 and excelled in the competition in terms of accuracy.
Early halting and model checkpoints were used to determine the best model and stop
training if there was no substantial gain in accuracy. The ImageNet weights for the
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models were set. In Figure 4, the loss for the above three models is depicted, whereby the
loss rate of VGG16 was initially very high but gradually declined, while the loss rate of
Xception exhibited a smooth descent. For all three models, the loss was <0.1. We compared
the performance of the Choquet fuzzy integral-based ensemble strategy for coronavirus
detection to two traditional ensemble approaches (Majority Voting and Sugeno Integral)
using the current dataset.
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4.4. Performance Analysis

The performance of each model was evaluated in terms of recall, precision, F1-Score,
sensitivity, and specificity, and the results are represented in Table 1. Confusion matrices of
the VGG16, GoogleNet, and Xception-associated fuzzy ensemble techniques are illustrated
in Figures 5–7, respectively. Performance comparisons of various transfer learning models
with the proposed model using CXR images are presented in Table 2. The following
equations were used to calculate the performance metrics:

1. Precision =
True Positive (TP)

True Positive + False Positive (FP)

2. Sensitivity or Recall =
True Positive

True Positive + False Negative (FN)

3. F1− Score =
2 x(Precision x Recall)
(Precision + Recall)
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4. Speci f icity =
True Negative (TN)

True Negative + False Positive

5. Accuracy =
TP + TN

TP + TN + FP + FN
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Table 1. Performance metrics for various transfer learning models associated with fuzzy ensemble techniques.

Models Class Precision (%) Sensitivity
(%)

Specificity
(%) F1-Score (%) Accuracy (%)

VGG16

COVID +ve 0.970 0.978 0.985 0.974

96.68COVID -ve 0.963 0.957 0.982 0.960

Pneumonia 0.967 0.965 0.984 0.966

VGG16 +
Majority Voting

COVID +ve 0.970 0.981 0.985 0.975

96.75COVID -ve 0.963 0.957 0.982 0.960

Pneumonia 0.970 0.965 0.985 0.967

VGG16 +
Sugeno Integral

COVID +ve 0.972 0.974 0.986 0.973

96.90COVID -ve 0.969 0.959 0.985 0.964

Pneumonia 0.966 0.974 0.983 0.970

VGG16 +
Choquet Fuzzy

COVID +ve 0.970 0.978 0.985 0.974

97.04COVID -ve 0.971 0.957 0.986 0.964

Pneumonia 0.970 0.976 0.985 0.973

GoogleNet
COVID +ve 0.978 0.981 0.989 0.979

97.91COVID -ve 0.978 0.974 0.989 0.976

Pneumonia 0.981 0.983 0.990 0.982

GoogleNet +
Majority Voting

COVID +ve 0.978 0.985 0.989 0.982

98.05COVID -ve 0.980 0.976 0.990 0.978

Pneumonia 0.983 0.981 0.991 0.982

GoogleNet +
Sugeno Integral

COVID +ve 0.981 0.983 0.990 0.982

98.27COVID -ve 0.987 0.978 0.994 0.983

Pneumonia 0.981 0.987 0.990 0.984

GoogleNet +
Choquet Fuzzy

COVID +ve 0.983 0.987 0.991 0.985

98.48COVID -ve 0.989 0.978 0.995 0.984

Pneumonia 0.983 0.989 0.991 0.986

Xception

COVID +ve 0.983 0.983 0.991 0.983

98.20COVID -ve 0.987 0.978 0.994 0.983

Pneumonia 0.976 0.985 0.988 0.981

Xception +
Majority Voting

COVID +ve 0.985 0.985 0.992 0.985

98.56COVID -ve 0.985 0.985 0.992 0.985

Pneumonia 0.987 0.987 0.994 0.987

Xception +
Sugeno Integral

COVID +ve 0.991 0.996 0.996 0.994

99.28COVID -ve 0.993 0.989 0.997 0.991

Pneumonia 0.994 0.994 0.997 0.994

Proposed Model
COVID +ve 0.996 0.998 0.998 0.997

99.57COVID -ve 0.998 0.994 0.999 0.996

Pneumonia 0.994 0.996 0.997 0.995
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Table 2. Performance comparisons of various transfer learning models with the suggested model
using CXR images.

Authors Best Methodology Accuracy (%)

Sethy et al. [43] ResNet50+ SVM 95.38%

Narin et al. [44] Deep CNN; ResNet-50 98%

Civit et al. [45] K-Nearest Neighbour 98.09%

Elaziz et al. [46] Convolutional Neural Network 93.2%

Mahmud et al. [30] Neural Search Architecture
Network-Type CNN 97%

Ucar et al. [47] VGG19 96.3%

Martínez et al. [48] SqueezeNet 97%

Vaid et al. [49] VGG16 95%

Khan et al. [21] Deep Boosted Hybrid Learning 98.53%

Karakanis et al. [50] Binary-Classification with CGANs 98.7%

Elpeltagy et al. [51] CNN with pre−trained ResNet50 97.1%

Júnior et al. [24] VGG19 and XGBoost + PSO 98.71%

Rahaman et al. [34] 15 distinct deep CNN models 89.3%

Manokaran et al. [35] DenseNet201 model 94%

Iraji et al. [52] Binary differential-CNN 99.43%

Apostolopoulos et al. [53] MobileNetV2 94.72%

Proposed Model Xception + Choquet Fuzzy 99.57%

5. Conclusions and Future Work

With the growing threat of new coronavirus strains throughout the world, early
diagnosis of COVID-19 is critical especially due to the global scarcity of healthcare fa-
cilities. In this work, we propose a hybrid fuzzy ensemble-based method for detecting
COVID-19-positive patients using CXR images. Ensemble learning can improve the overall
performance by combining the prominent properties of its constituent models, resulting in
better predictions than the individual contributing models. Moreover, ensemble models
can enhance performance by lowering the variance of prediction errors by adding some
bias to compete with base learners. In the proposed work, we used various transfer learning
models, which were separately trained to make independent predictions. The models were
then integrated to forecast a class value, utilizing a novel approach combining Majority
Voting, Sugeno Integral, and Choquet Fuzzy. A publicly accessible database containing
6939 CXR pictures was employed to assess the effectiveness of the proposed method. The
data were divided into training and test sets in proportions of 80% and 20%, respectively.
The proposed method, Xception + Choquet Fuzzy ensemble methods, obtained a better
accuracy of 99.57% compared to other transfer learning models. The suggested method-
ology failed to categorize 0.43% of test data, which may be due to the relatively poor
performance of the individual transfer learning models. As a result, creating or selecting
better individual transfer learning models may help to amend this issue. In addition, only
three basic transfer learning models were applied in the aforementioned ensemble method.
Therefore, adding more classifier techniques might be an additional option to improve
the current method. To demonstrate its robustness across various domains, the proposed
model might be applied to various classification-based image analyses. Such advancements
will aid radiologists to develop a graphical user interface (GUI) for recognizing COVID-19
to keep up with the disease’s various stages of progression and imagistic patterns.
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