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Abstract 

 

This paper aims at presenting a new decision framework under an interval-valued 

probabilistic hesitant fuzzy set (IVPHFS) context with fully unknown weight information. At 

first, the weights of the attributes are determined by using the interval-valued probabilistic 

hesitant deviation (IVPHD) method. Later, the DMs' weights are determined by using a recently 

proposed evidence theory-based Bayesian approximation (ETBA) method under the IVPHFS 

context. The preferences are aggregated by using a newly extended generalized Maclaurin 

symmetric mean (GMSM) operator under the IVPHFS context. Further, the alternatives are 

prioritized by using an inter-valued probabilistic hesitant complex proportional assessment 

(IVPHCOPRAS) method. From the proposed framework, the following significances are 

inferred such as; it uses a generalized preference structure that provides ease and flexibility to 

the decision-makers (DMs) during preference elicitation; weights are calculated systematically 

to mitigate inaccuracies and subjective randomness; interrelationship among attributes are 

effectively captured, and alternatives are prioritized from different angles by properly 

considering the nature of the attributes. Finally, the applicability of the framework is validated 

by using green supplier selection for a leading bakery company, and from the comparison, it is 

observed that the framework is useful, practical and systematic for rational decision-making; 
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robust and consistent from sensitivity analysis of weights and Spearman correlation of rank 

values, respectively.  

Keywords: Bayesian approximation; COPRAS method; Deviation method; Evidence 

theory; Hesitant fuzzy set; Maclaurin symmetric mean. 

1. Introduction 

 

Group decision-making (GDM) is a process that involves a group of experts or decision-

makers (DMs) who provide their preferences over a set of alternatives with respect to a set of 

competing and conflicting attributes [1]. Since the process of GDM involves human intervention, 

uncertainty and vagueness are implicit factors [2]. To handle such uncertainties in the process, 

Torra [3] presented a generalized fuzzy set called hesitant fuzzy set (HFS) that allowed DMs to 

enter multiple choices over a specific instance. This concept offers flexibility to DMs by 

generalizing the notion of classical fuzzy set [4]. Armand et al. [5] developed solutions for 

fractional differential equations by using a variation iteration method (VIM) under a fuzzy 

context with Lagrange multipliers. Later, Narayanamoorthy and Mathankumar [6] provided 

novel solutions to a system of linear differential equations by using VIM. Motivated by the 

strength of HFS, many researchers adopted the structure for multi-attribute group decision-

making (MAGDM) problems [7–9]. Moreover, Rodriguez et al. [10] made an interesting 

analysis of HFS, its variants, and its use in MAGDM.  

 

Though HFS is useful and handles uncertainty to some extent, the occurring probability of 

each element is ignored. This causes irrational decision-making, and to circumvent the issue, Xu 

and Zhou [11] put forward a concept called probabilistic hesitant fuzzy set (PHFS), which 



associates an occurring probability value for each hesitant fuzzy element (HFE). Motivated by 

the strength of PHFS to handle uncertainty and associate probability value for each HFE, 

researchers proposed new methods for MAGDM. Li and Wang [12] presented new operational 

laws and aggregation operators under the PHFS context for MAGDM. Yue et al. [13] extended 

the weighted average and ordered weighted average operators for PHFS and applied it for 

strategy selection. Bashir et al. [12] put forward the concept of probabilistic hesitant fuzzy 

preference relation (PHFPR) and presented algorithms for checking and repairing consistency. 

Later, Zhou and Xu [14] presented the variant of PHFPR under uncertain context and analyzed 

consistency measures. Jiang and Ma [15] proposed PHFS-based Frank operators for rational 

evaluation of transformation efficiency. Hao et al. [16] put forward a new variant of PHFS, 

called probabilistic dual HFS, and applied the same for risk evaluation. Finally, Gao et al. [17] 

developed a framework by extending a dynamic reference point under the PHFS context for 

emergency decision-making. 

From the comprehensive analysis made above, it is clear that the PHFS concept is powerful 

and attractive. The main issue with PHFS is that the occurring probability cannot be provided 

with such precision and accuracy, as there is an implicit hesitation in the process. To circumvent 

the issue, Song et al. [18] introduced a new concept called interval-valued PHFS (IVPHFS), 

which associates interval-valued occurring probability to each HFE. As a generalization of [18], 

Krishankumar et al. [19] ameliorated the idea and used it for MAGDM. Readers may kindly 

refer [19] for clarity on the IVPHFS concept and its substantial need for MAGDM.  

Based on the literature analysis, it is clear that the IVPHFS concept has just emerged, and 

its application to the MAGDM problem needs to be explored. The IVPHFS concept is a 

generalized structure that allows DMs to provide a range of values as an occurring probability (in 



the interval fashion) for each HFE. In this way, the hesitation in the process can be managed 

effectively. Following challenges can be encountered from the literature analysis: 

 

1. The attributes' weights must be calculated systematically to avoid inaccuracies in 

decision-making. Zavadskas et al. [20] demonstrated the importance of systematic 

calculation of weights and presented an algorithm for eliminating divergent rating 

values from attributes.  

2. DMs’ weights must be calculated for rational estimation of their reliability in 

preference elicitation. 

3. Preferences must be aggregated by properly understanding the interrelationship 

among attributes, as attributes taken for evaluation are often competing and 

conflicting with each other. 

4. Alternatives must be prioritized rationally by properly capturing the hesitation and 

understanding the nature of attributes. 

Motivated by these challenges and to circumvent them, the following contributions are 

put forward: 

 

1. To properly manage uncertainty in the process of decision-making, the IVPHFS 

concept is put forward. Attributes' weights are calculated in a situation where the 

information about attributes is unknown. The deviation method is extended under the 

IVPHFS context, which can effectively capture the hesitation of the DMs during 

preference elicitation [21]. 



2. Similarly, DMs' weights are calculated systematically to properly determine the 

reliability of each DM [22] under an unknown information context. To do so, the 

ETBA method is extended to the IVPHFS context. 

3. Further, preferences are aggregated in a much sensible way by properly capturing the 

interrelationship among conflicting and competing attributes. GMSM operator is 

extended under the IVPHFS context for this purpose. 

4. Alternatives are prioritized by extending the popular COPRAS method under 

IVPHFS. The COPRAS method can prioritize alternatives from different angles and 

promote a proper understanding of the attributes' nature during prioritization [23]. 

5. Finally, the applicability of the proposed framework is explored by using a green 

supplier selection example. The strengths and weaknesses of the framework are 

realized by comparison with other methods. 

From the discussion made above, the following research questions are framed that are 

effectively answered in this paper: 

1. RQ1: Which preference structure mitigates subjective randomness and provides 

flexibility to DMs by carefully handling uncertainty and vagueness in GDM problems? 

2. RQ2: How to calculate weights of attributes and DMs systematically under unknown 

information context? 

3. RQ3: How to handle/capture the interrelationship among attributes during preference 

aggregation from different DMs? 

4. RQ4: How to make rational prioritization of alternatives and validate the applicability of 

the framework? 



5. RQ5: What are the main advantages of the proposed framework from both theoretical 

and numerical perspectives? 

 

 

 

2. Preliminaries 

 

Some basic ideas on HFS, PHFS, and IVPHFS are discussed below: 

 

Definition 1 [3]: Consider 𝑀 to be a fixed set and 𝐻 to be an HFS. Then, ℎ is a function that 

produces values in the unit interval. It is given mathematically as, 

𝐻 = (𝑚, ℎ𝐻(𝑚)|𝑚 ∈ 𝑀)                                       (1)       

where ℎ𝐻(𝑚) is a set containing values in the unit interval. 

Definition 2 [11]: Consider 𝑀 to be a fixed set. Then, 𝐻𝑝 is a PHFS given by, 

𝐻𝑝 = (𝑚, ℎ𝐻𝑝
(𝛾𝑖 ,  𝑝𝑖)|𝑚 ∈ 𝑀)         (2)       

where ℎ𝐻𝑝
(𝛾𝑖 ,  𝑝𝑖) is the probabilistic hesitant fuzzy element, 𝑖 is the membership degree of the 

𝑖𝑡ℎ instance, and 𝑝𝑖 is the occurrence probability associated with the hesitant fuzzy element 𝛾𝑖.  

Definition 3 [19]: Consider 𝑀 to be a fixed set. Then, 𝐻𝑖𝑣𝑝  is an IVPHFS given by, 

𝐻𝑖𝑣𝑝 = (𝑚, ℎ𝐻𝑖𝑣𝑝
(𝛾𝑖 , [𝑝𝑖

𝑙 , 𝑝𝑖
𝑢])|𝑚 ∈ 𝑀)        (3)        

where ℎ𝐻𝑖𝑣𝑝
(𝛾𝑖 , [𝑝𝑖

𝑙 , 𝑝𝑖
𝑢]) is the interval-valued probabilistic hesitant fuzzy element (IVPHFE), 𝑖 is 

the membership degree of the 𝑖𝑡ℎ instance and is [𝑝𝑖
𝑙 , 𝑝𝑖

𝑢] the occurring probability in an interval 

fashion which is associated with 𝛾𝑖, 0 ≤ 𝑝𝑖
𝑙 ≤ 1, 0 ≤ 𝑝𝑖

𝑢 ≤ 1 and 𝑝𝑖
𝑙 ≤ 𝑝𝑖

𝑢. 

 

Remark 1: For convenience, ℎ𝐻𝑖𝑣𝑝
(𝛾𝑖 , [𝑝𝑖

𝑙 , 𝑝𝑖
𝑢]) = ℎ(𝛾𝑖 , [𝑝𝑖

𝑙 , 𝑝𝑖
𝑢]) = ℎ𝑖∀𝑖 = 1,2, … , 𝑛 is called 

IVPHFE. Definition 3 mentioned above is the generalization of [17]. 



 

Definition 4 [19]: Let ℎ1 and ℎ2 be two IVPHFEs as defined before. Then, the operations are 

given by, 

ℎ1⨁ℎ2 = (𝛾1 + 𝛾2 − 𝛾1𝛾2, [𝑝1
𝑙𝑝2

𝑙 , 𝑝1
𝑢𝑝2

𝑢])       (4) 

𝜆ℎ2 = (1 − (1 − 𝛾2)
𝜆, [𝑝𝑖

𝑙 , 𝑝𝑖
𝑢])𝜆 > 0        (5) 

ℎ1⨂ℎ2 = (𝛾1𝛾2, [𝑝1
𝑙𝑝2

𝑙 , 𝑝1
𝑢𝑝2

𝑢])         (6) 

ℎ2
𝜆 = (𝛾2

𝜆, [𝑝𝑖
𝑙 , 𝑝𝑖

𝑢])𝜆 > 0         (7) 

3. Proposed Scientific Framework for Decision-Making 

 

3.1 Calculation of Attributes’ Weights 

 

This section put forwards a new extension to the deviation method under the IVPHFS 

context. The main intention of the proposed method is to calculate the attributes' weights when 

the information about attributes is entirely unknown. Popular methods, like the analytical 

hierarchy process (AHP), entropy-based measures pose complex formulation and yield 

unreasonable weight values [24]. To alleviate the issue, the deviation method is extended to the 

IVPHFS context. The deviation method is (i) simple and straightforward, and (ii) can capture the 

hesitation of each DM during preference elicitation. 

Motivated by these strengths, in this section, the IVPHD method is presented. The steps are 

as follows: 

 

Step 1: An evaluation matrix of order 𝑞 × 𝑠 is constructed with IVPHFEs. Here, 𝑞 represents the 

number of DMs and 𝑠 represents the number of attributes. 

 



Step 2: The IVPHFEs are converted to single values by using equation (8). 

ℎ𝑙𝑗
′ = ∑ (

𝛾𝑖(𝑝𝑖
𝑙+𝑝𝑖

𝑢)

2
)#𝑛

𝑖=1           (8)       

where #𝑛 represents the number of instances. 

Step 3: Deviation is calculated for each attribute by using equation (9). 

𝜎𝑗 = √
∑ (ℎ𝑡𝑗

′ −ℎ𝑗
′̅̅ ̅)

2𝑞
𝑡=1

𝑞−1
           (9)              

where 𝑞 represents the number of DMs, 𝜎𝑗 ' represents the mean value of the jth attribute, and j is 

the deviation value of the jth attribute. 

Step 4: The deviation values from step 3 are normalized to calculate the weight of each attribute, 

given equation (10).   

𝑤𝑗 =
𝜎𝑗

∑ 𝜎𝑗𝑗
            (10)       

where 𝑤𝑗 is the weight of the 𝑗𝑡ℎ attribute, which lies between 0 and 1 and ∑ 𝑤𝑗 = 1𝑗 . 

3.2 Calculation of DMs’ Weights 

 

This section presents a novel method for determining the weights of the DMs when the 

information about each DM is entirely unknown. Koksalmis and Kabak [22] made an interesting 

analysis of different methods used for calculating the weights of the DMs and rightly pointed the 

urge for a systematic method to calculate DMs' weights. Though the methods discussed in [20] 

calculate DMs' weights, the issue of uncertainty is not adequately handled.  

 

Motivated by this issue and to circumvent the same, in this paper, the ETBA method is 

extended to IVPHFS. Let 𝐵 = (𝑏1, 𝑏2, … ,  𝑏𝑚) be a set of 𝑚 propositions with basic probability 

assessment P defined as 𝑃(. ): 2𝜂 → [0,1]. Here P=0 and the sum of BPAs yield unity. Though the 



evidence theory or Dempster-Shafer theory (DST) handles uncertainty better, it must be provided 

with all combinations of the propositions, which is practically difficult. To nullify this limitation 

of DST, Voorbraak [25] put forward the idea of Bayes approximation, which is computationally 

attractive and properly distributes P over B. This is unlike assigning a power set of B with P.   

 

Motivated by the efficacy of these two methods, in this paper, we extend ETBA to IVPHFS. 

The steps for systematic calculation of DMs’ weights are given below: 

Step 1: Consider 𝑃𝑗
𝑡(𝑏𝑖

𝛾
) = 𝛾𝑖𝑗

𝑡 , 𝑃𝑗
𝑡 (𝑏𝑖

𝑝𝑙

) = (𝑝𝑖𝑗
𝑙 )

𝑡
, and 𝑃𝑗

𝑡 (𝑏𝑖
𝑝𝑢

) = (𝑝𝑖𝑗
𝑢 )

𝑡
. Here i represent the 

number of alternatives, j represents the number of attributes, and l represents the number of 

DMs. 

Step 2: Weighted attributes evidence body is calculated by using equations (11,12). 

𝑃𝑗
𝑡(𝑏𝑖

𝛾
) = 𝑤𝑗𝑃𝑗

𝑡(𝑏𝑖
𝛾
)          (11) 

𝑃𝑗
𝑡(𝐵𝛾) = 1 − ∑ 𝑃𝑗

𝑡(𝑏𝑖
𝛾
)𝑚

𝑖=1          (12) 

Here, it must be noted that the same method is used for 𝑝𝑙 and 𝑝𝑢. 

Step 3: Bayes approximation BA is calculated for different evidence functions by using equation 

(13). 

𝐵𝐴 = {

∑ 𝑃(𝐷)𝐷⊆𝑏𝑖

∑ 𝑃(𝐶)|𝑐|𝐶⊆𝐵
  𝑖𝑓 𝑏𝑖 𝑖𝑠 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛

0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (13)    

where |. | is the cardinality. 

Step 4: Aggregate the evidence of alternatives for each DM by using equation (14), which is a 

combination rule applied attribute-wise. 

𝐵𝐴𝑙(𝑏𝑖
𝛾
) = {

∏ 𝐵𝐴𝑗
𝑙 (𝑏𝑖

𝛾
)𝑠

𝑗=1

∑ ∏ 𝐵𝐴𝑗
𝑙 (𝑏𝑖

𝛾
)𝑠

𝑗=1∩𝑏
𝑖
𝛾
≠0

         𝑖𝑓 𝑏𝑖 ≠ 0

0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (14) 



Apply equation (14) to 𝑝𝑙 and 𝑝𝑢 as well. In equation (14), 𝐵𝐴𝑗
𝑙(𝑏𝑖

𝛾
) is the Bayesian 

approximation value associated with the 𝑖𝑡ℎ alternative over the 𝑗𝑡ℎ attribute from the 𝑙𝑡ℎ DM’s 

perspectives. 𝑏𝑖is the singleton value and ∑ ∏ 𝐵𝐴𝑗
𝑙(𝑏𝑖

𝛾
)𝑠

𝑗=1∩𝑏𝑖
𝛾
≠0  is the total conflict between 

pieces of evidence  

Step 5: The similarity matrix of order 𝑞 × 𝑞 is calculated using equation (15). 

𝑑(𝐵𝐴𝑑𝑚1, 𝐵𝐴𝑑𝑚2) = √∑ (𝐵𝐴𝑖
𝑑𝑚1 − 𝐵𝐴𝑖

𝑑𝑚2)
2𝑚

𝑖=1  ∀𝑑𝑚1, 𝑑𝑚2 ∈ 𝑞       (15) 

𝑠(𝐵𝐴𝑑𝑚1, 𝐵𝐴𝑑𝑚2) = 1 − 𝑑(𝐵𝐴𝑑𝑚1, 𝐵𝐴𝑑𝑚2) ∀𝑑𝑚1, 𝑑𝑚2 ∈ 𝑞    (16) 

where 𝑑(𝐵𝐴𝑑𝑚1,  𝐵𝐴𝑑𝑚2) is the distance between two pieces of evidence from two DMs and 

𝑠(𝐵𝐴𝑑𝑚1,  𝐵𝐴𝑑𝑚2) is the similarity between two pieces of evidence from two DMs. 

 

The similarity between DMs is high if the distance between them is low. The similarity is 

calculated between DMs for, 𝑝𝑙, and 𝑝𝑢 separately. Determine the mean value to form a single 

similarity matrix of order 𝑞 × 𝑞. 

Step 6: By using the single similarity matrix from step 5, calculate support and credit, which is 

given by equations (17,18). 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑙 = ∑ 𝑠(𝐵𝐴𝑑𝑚𝑙, 𝐵𝐴𝑑𝑚(𝑙+1))
𝑞
𝑙=1
𝑙≠𝑙

       (17) 

𝑐𝑟𝑒𝑑𝑖𝑡𝑙 =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑙

∑ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑙𝑙
          (18) 

 

From equation (18), the creditability of each DM is determined, and this provides the relative 

importance/reliability of the DM. The credit value is in the unit interval and∑ 𝑐𝑟𝑒𝑑𝑖𝑡𝑙 = 1𝑙 . 

 



3.3 Aggregation of IVPHFEs 

This section puts forward a new extension to GMSM under IVPHFS. The GMSM 

operator is a generalized version of an MSM operator that can effectively represent other 

operators as special cases. The operator can efficiently capture the interrelationship among other 

attributes, which is lacking in many averages and geometric type operators. The operator also 

considers the relative importance (weight) of each DM and risk appetite value associated with 

each DM. 

Motivated by these advantages, in this paper, the GMSM operator is extended to the 

IVPHFS context. Previously, operators viz., geometric [19], and Muirhead mean [26] are 

extended to IVPHFS, which are special cases of GMSM operator. So, the proposed operator is 

highly generalized and powerful in capturing the interrelationship among attributes. 

Definition 5: IVPHFEs are aggregated using newly proposed interval-valued probabilistic 

hesitant GMSM (IVPHGMSM) operator, which is a mapping from 𝑋𝑛 → 𝑋 and is given by,                                                                                                       

           

 𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑟)(ℎ1, ℎ2, … , ℎ𝑞) =

(

 
 
 
 
 
 
 
 (1 − (∏ (1 − ∏ 𝛾

𝑘𝑗

𝜆𝑔𝑟
𝑔=1 )

𝜔𝑙
𝑞
𝑙=1 ))

1

∑ 𝜆𝑔𝑔

,

[
 
 
 
 
 
 
 

(1 − (∏ (1 − ∏ (𝑝𝑘𝑗
𝑙 )

𝜆𝑔𝑟
𝑔=1 )

𝜔𝑙
𝑞
𝑙=1 ))

1

∑ 𝜆𝜆𝑔𝑔

,

(1 − (∏ (1 − ∏ (𝑝𝑘𝑗
𝑢 )

𝜆𝑔𝑟
𝑔=1 )

𝜔𝑙
𝑞
𝑙=1 ))

1

∑ 𝜆𝜆𝑔𝑔

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 

  (19) 

 



where 𝜆1, 𝜆2,…,𝜆𝑟 is the risk appetite values which can have values from the set {1,2, … , 𝑞}, 𝜔𝑙 

is the weight of the 𝑙𝑡ℎ DM and 𝑟 = ⌈
𝑞

2
⌉ with ⌈. ⌉ being the ceil operator. 

The operator in equation (19) aggregates the HFEs, followed by the lower and upper occurring 

probability values. The risk appetite is defined as the amount of risk pursued, taken, or retained 

by an organization, which is given by ISO 31000 standards. 

 

Property 1: Idempotent 

 

If ℎ𝑖 ∀𝑖 = 1,2, … , 𝑞 = ℎ, then 𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑞)(ℎ1, ℎ2, … , ℎ𝑞) = ℎ. 

Proof: 

𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑟)(ℎ1, ℎ2, … , ℎ𝑞) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 

1 − (∏(1 − ∏𝛾
𝑘𝑗

𝜆𝑔

𝑟

𝑔=1

)

𝜔𝑙
𝑞

𝑙=1

)

)

 
 

1
∑ 𝜆𝑔𝑔

,

[
 
 
 
 
 
 
 
 
 
 

(

 
 

1 − (∏(1 − ∏(𝑝𝑘𝑗
𝑙 )

𝜆𝑔

𝑟

𝑔=1

)

𝜔𝑙
𝑞

𝑙=1

)

)

 
 

1
∑ 𝜆𝑔𝑔

,

(

 
 

1 − (∏(1 − ∏(𝑝𝑘𝑗
𝑢 )

𝜆𝑔

𝑟

𝑔=1

)

𝜔𝑙
𝑞

𝑙=1

)

)

 
 

1
∑ 𝜆𝑔𝑔

]
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



= 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 

1 − (∏(1 − ∏𝛾
𝑘𝑗

𝜆1+𝜆2+⋯+𝜆𝑔

𝑟

𝑔=1

)

𝜔1+𝜔2+⋯+𝜔𝑞
𝑞

𝑙=1

)

)

 
 

1
∑ 𝜆𝑔𝑔

,

[
 
 
 
 
 
 
 
 
 
 

(

 
 

1 − (∏(1 − ∏(𝑝𝑘𝑗
𝑙 )

𝜆1+𝜆2+⋯+𝜆𝑔

𝑟

𝑔=1

)

𝜔1+𝜔2+⋯+𝜔𝑞
𝑞

𝑙=1

)

)

 
 

1
∑ 𝜆𝑔𝑔

,

(

 
 

1 − (∏(1 − ∏(𝑝𝑘𝑗
𝑢 )

𝜆1+𝜆2+⋯+𝜆𝑔

𝑟

𝑔=1

)

𝜔1+𝜔2+⋯+𝜔𝑞
𝑞

𝑙=1

)

)

 
 

1
∑ 𝜆𝑔𝑔

]
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

By expanding the terms, we get, {𝛾, [ 𝑝𝑙 , 𝑝𝑢]} = ℎ∎ 

Property 2: Commutative 

Consider ℎ𝑖
′ ∀𝑖 = 1,2, … , 𝑞 which is any permutation of ℎ𝑖∀𝑖 = 1,2, … , 𝑞, then 

𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑟)(ℎ1, ℎ2, … , ℎ𝑞) = 𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑞)(ℎ1
′ , ℎ2

′ , … , ℎ𝑞
′ ) 

Proof: 

 



𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑟)(ℎ1
′ , ℎ2

′ , … , ℎ𝑞
′ ) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 

1 − (∏(1 − ∏𝛾
𝑘𝑗

′𝜆𝑔

𝑟

𝑔=1

)

𝜔𝑙
𝑞

𝑙=1

)

)

 
 

1
∑ 𝜆𝑔𝑔

,

[
 
 
 
 
 
 
 
 
 
 

(

 
 

1 − (∏(1 − ∏(𝑝𝑘𝑗
′𝑙 )

𝜆𝑔

𝑟

𝑔=1

)

𝜔𝑙
𝑞

𝑙=1

)

)

 
 

1
∑ 𝜆𝑔𝑔

,

(

 
 

1 − (∏(1 − ∏(𝑝𝑘𝑗
′𝑢)

𝜆𝑔

𝑟

𝑔=1

)

𝜔𝑙
𝑞

𝑙=1

)

)

 
 

1
∑ 𝜆𝑔𝑔

]
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Property 3: Monotonicity 

Let ℎ = ℎ𝑡 and ℎ∗ = ℎ𝑡
∗ be two IVPHFSs ∀𝑡 = 1,2, … , 𝑞 with a constraint that ℎ𝑡

∗ ≥ ℎ𝑡. Then, 

𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑟)(ℎ1, ℎ2, … , ℎ𝑞) ≤ 𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑞)(ℎ1
∗ , ℎ2

∗ , … , ℎ𝑞
∗). 

Proof: 

Let ℎ𝑡 = (𝛾𝑖 , [𝑝𝑖
𝑙 , 𝑝𝑖

𝑢]) and ℎ𝑡
∗ = (𝛾𝑖

∗, [𝑝𝑖
∗𝑙 , 𝑝𝑖

∗𝑢])∀𝑖 = 1,2, … , #𝑛 as defined before. Now, 𝛾∗ =

(1 − (∏ (1 − ∏ 𝛾
𝑘𝑗

∗𝜆𝑔𝑟
𝑔=1 )

𝜔𝑙
𝑞
𝑙=1 ))

1

∑ 𝜆𝑔𝑔

, [𝑝∗𝑙 , 𝑝∗𝑢] = [(1 − (∏ (1 −
𝑞
𝑙=1

∏ (𝑝𝑘𝑗
′𝑙 )

𝜆𝑔𝑟
𝑔=1 )

𝜔𝑙

))

1

∑ 𝜆𝑔𝑔

, (1 − (∏ (1 − ∏ (𝑝𝑘𝑗
′𝑢)

𝜆𝑔𝑟
𝑔=1 )

𝜔𝑙
𝑞
𝑙=1 ))

1

∑ 𝜆𝑔𝑔

]. Similarly ℎ𝑡 is defined as 

before. Since ℎ𝑡
∗ ≥ ℎ𝑡, 𝑠(ℎ𝑡) ≤ 𝑠(ℎ𝑡

∗) ∀𝑡 = 1,2, … , 𝑞 or 𝜎(ℎ𝑡) ≥ 𝜎(ℎ𝑡
∗) ∀𝑡 = 1,2, … , 𝑞 and from 

the formulation presented above, ℎ∗ ≥ ℎ. Thus, 𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑟)(ℎ1, ℎ2, … , ℎ𝑞) ≤

𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑞)(ℎ1
∗ , ℎ2

∗ , … , ℎ𝑞
∗)∎ 

Property 4: Bounded 



Let ℎ𝑡 be IVPHFEs ∀𝑡 = 1,2,… , 𝑞 as defined before. Then, ℎ− ≤

𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑟)(ℎ1, ℎ2, … , ℎ𝑞) ≤ ℎ+ with ℎ− = 𝑚𝑖𝑛𝑖(ℎ𝑖) and ℎ+ = 𝑚𝑎𝑥𝑡(ℎ𝑡) ∀𝑡 =

1,2, … 𝑞. 

Proof: 

From the idempotent property and monotonicity property of IVPHFGMSM operator, it can be 

deduced that 𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑟)(ℎ1, ℎ2, … , ℎ𝑞) ≥ 𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑟)(ℎ−, ℎ−, … , ℎ−) and 

𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑟)(ℎ1, ℎ2, … , ℎ𝑙) ≤ 𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑟)(ℎ+, ℎ+, … , ℎ+) yields ℎ− ≤

𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑟)(ℎ1, ℎ2, … , ℎ𝑞) ≤ ℎ+∎ 

 

Theorem 1: The aggregation of IVPHFEs by using an IVPHFGMSM operator yields a result 

that is also an IVPHFE. 

Proof: 

To prove that the aggregated result is an IVPHFE, we need to show that the result obeys 

Definition 3. From property 4, it is inferred that ℎ− ≤ 𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑟)(ℎ1, ℎ2, … , ℎ𝑞) ≤

ℎ+ with ℎ− = 𝑚𝑖𝑛𝑡(ℎ𝑡) and ℎ+ = 𝑚𝑎𝑥𝑡(ℎ𝑡) ∀𝑡 = 1,2, … 𝑞. By generalizing, we get ℎ− = 0 ≤

𝐼𝑉𝑃𝐻𝐺𝑀𝑆𝑀(𝜆1,𝜆2,…,𝜆𝑞)(ℎ1, ℎ2, … , ℎ𝑞) ≤ 1 = ℎ+. Hence, aggregation of IVPHFEs by using 

IVPHFGMSM operator provides an IVPHFE∎ 

 

 

3.4  Proposed IVPHCOPRAS Method 



This section puts forward a new extension to COPRAS under IVPHFS. As mentioned 

earlier, COPRAS is a powerful method, which prioritizes alternatives by properly capturing the 

nature of attributes. Also, it provides ranking from different angles. Zavadskas et al. [27] framed 

the genesis for the COPRAS method and demonstrated its applicability to select suitable 

dwellers for house wall [28]. Vahdani et al. [29], Mondal et al. [30], and Gorabe et al. [31] 

extended the COPRAS method for robot selection in industries. Valipour et al. [32] put forward 

an integrated SWARA-COPRAS method for a real case study in Iran. Zavadskas et al. [33,34] 

proposed a grey-COPRAS method for strategic decision-making. Hajiagha et al. [35] and Wang 

et al. [36]  extended COPRAS to interval-valued intuitionistic fuzzy context for investor 

selection risk mitigation, respectively. Bielinski et al. [37] used the COPRAS method for 

territory conversion that is abandoned. Further, Bausys et al. [38] used the COPRAS method to 

select an apt location for setting natural gas terminal under the neutrosophic fuzzy context. 

Krishankumar et al. [39] proposed a new decision model with double hierarchy hesitant fuzzy 

linguistic information for green supplier selection. Ayrim et al. [40] put forward a new extension 

to COPRAS under a stochastic decision environment and applied it to the cargo transport 

company selection. Roy et al. [41] provided a new extension to COPRAS under a rough set 

context for web-based hotel selection. Stefano et al. [42], Zavadskas et al. [43], and Mardani et 

al. [44] made an interesting review on the COPRAS method and discussed its strengths and 

applicability on different MAGDM problems.  

From the brief literature investigation, it is inferred that (i) COPRAS method is popular 

for solving many MAGDM problems; (ii) IVPHFS-based COPRAS method is not yet explored; 

(iii) nature of attributes are considered during prioritization and (iv) alternatives are prioritized 

from the context of benefit type, cost type, and a linear combination of benefit and cost types. 



Motivated by these inferences, in this paper, we present the systematic procedure for IVPHFS-

based COPRAS ranking method: 

Step 1: Obtain an aggregated matrix of order 𝑚 × 𝑠, where 𝑚 represents the number of 

objects/alternatives and 𝑠 represents the number of attributes from section 3.3. Also, obtain the 

attributes' weight vector of order 1 × 𝑠 from section 3.1 as input for prioritization. 

Step 2: Apply equations (20,21) to calculate the parameters of COPRAS under the IVPHFS 

context. 

𝑇𝑘 = ∑ (∑ 𝑤𝑗𝛾𝑘𝑗
𝑖#𝑏

𝑗=1 + ∑ 1 − (1 − (𝑝𝑘𝑗
𝑖 )

𝑖
)
𝑤𝑗

#𝑏
𝑗=1 + ∑ 1 − (1 − (𝑝𝑘𝑗

𝑢 )
𝑖
)
𝑤𝑗

#𝑏
𝑗=1 )#𝑛

𝑖=1  (20) 

𝑅𝑘 = ∑ (∑ 𝑤𝑗𝛾𝑘𝑗
𝑖#𝑐

𝑗=1 + ∑ 1 − (1 − (𝑝𝑘𝑗
𝑖 )

𝑖
)
𝑤𝑗

#𝑐
𝑗=1 + ∑ 1 − (1 − (𝑝𝑘𝑗

𝑢 )
𝑖
)
𝑤𝑗

#𝑐
𝑗=1 )#𝑛

𝑖=1  (21)  

where #𝑏 represents the number of attributes belonging to the benefit type, #𝑐 represents the 

number of attributes belonging to the cost type and 𝑤𝑗 represents the weight of the 𝑗𝑡ℎ attribute. 

Step 3: Derive the final prioritization order by using equation (22). This equation is a linear 

combination of equations (20,21). 

𝑄𝑘 = 𝜂𝑇𝑘 + (1 − 𝜂)
∑ 𝑅𝑘𝑘

𝑅𝑘(
1

∑ 𝑅𝑘𝑘
)
        (22) 

where  𝑄𝑘 is the final prioritization value for the 𝑘𝑡ℎ alternative, and 𝜂 denotes the strategy value 

adopted by the DM, which is in range 0 to 1. 

Before demonstrating the practical use of the proposed framework, it is worth understanding 

the framework's working model. Fig.1 depicts the working model of the proposed framework. 

Initially, DMs provide two sets of matrices. In the first set,  𝑞 matrices of order 𝑚 × 𝑠 are 



provided. Then, in the second set, one matrix of order 𝑞 × 𝑠 is provided. From this matrix, 

attributes' weights are determined, and the details are given in section 3.1. Later, the first set (𝑞 

matrices of order 𝑚 × 𝑛) is utilized to determine the weights of the DMs, and its details are 

given in section 3.2. By using the DMs’ weight vector of order 1 × 𝑞, 𝑞 matrices of order 𝑚 × 𝑠 

are aggregated into a single matrix of order 𝑚 × 𝑠 (refer section 3.3 for details). By utilizing the 

aggregated matrix of order 𝑚 × 𝑠 and the attributes’ weight vector of order 1× 𝑠, alternatives are 

prioritized to obtain a vector of order 1 × 𝑚 (refer section 3.4 for details). Finally, the strengths 

and weaknesses of the proposed framework are investigated by comparison with other methods 

(kindly refer to section 5 for more information). 

 

 

4. Illustrative example: Green Supplier Selection 

 

This section puts forward an illustrative example of green supplier selection, for a leading 

bakery company, to demonstrate the applicability of the proposed framework. Consider the 

company PXA (name anonymous) in Chennai, which produces top-class cakes, cookies, and 

snacks. PXA gets its raw materials from the suppliers, which are then prepared as a final product 

by using a skilled workforce and high-tech equipment. The company decides on expanding its 

market in the country by renovating some of its work lines. The primary raw material for the 

company is 'milk,' which is dominantly used for preparing snacks and cakes. The company sets 

an annual meeting and identifies an urge for transformation from classical supply chains to green 

supply chains by adhering to ISO 14000 and 14001. This idea eventually brings eco-friendly 

preparation of snacks and cakes. PXA feels that it is substantial to go green for a healthy and 

clean ecosystem, and so, a systematic selection process is adopted. The company initially 



constitutes a panel of three experts/DMs who participate in the systematic decision-making 

process. Let 𝐷 = (𝑑1, 𝑑2, … , 𝑑𝑞) be a set of DMs, who rate a set of green suppliers 𝐺 =

(𝑔1, 𝑔2, … , 𝑔𝑚) over a set of competing/conflicting attributes 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑠). The company 

authorities carefully choose three experts/DMs for effective selection. The DMs analyze different 

green suppliers and based on the Delphi method, and four green suppliers are shortlisted. All 

these green suppliers follow green standards specified by ISO. Also, from the literature analysis, 

many attributes are initially chosen for evaluation, which is finally revised to five attributes. 

They are the quality of material 𝑎1, customer/client service 𝑎2, customer relationship 𝑎3, the 

delivery time of material 𝑎4, and total cost 𝑎5. Based on the voting method, the attributes are 

finalized by the DMs. Attributes 𝑎1, 𝑎2, and 𝑎3 belong to the benefit type and attributes 𝑎4 and 

𝑎5 belong to the cost type. DMs plan to use the IVPHFS environment for rating green suppliers 

over a set of evaluation attributes.  

 

Fig.1 Proposed scientific decision framework.  

 

 



 

 

The systematic procedure for effective selection of green suppliers is given below: 

Step 1: Each DM provides his/her preference information over the green suppliers with respect 

to the evaluation attributes. So, three matrices of order 4x5 are obtained with IVPHFS 

information. 

Table 1 IVPHFS information from each DM 

Green 

supplier

s 

Evaluation attributes 

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 

   𝑑1   

𝑔1 
{
0.24, [0.25,0.52]
0.64, [0.16,0.62]

} {
0.35, [0.26,0.62]
0.26, [0.62,0.74]

} {
0.74, [0.85,0.85]
0.35, [0.23,0.36]

} {
0.16, [0.26,0.73]
0.8, [0.36,0.46]

} {
0.52, [0.2,0.26]
0.36, [0.63,0.63]

} 

𝑔2 
{
0.26, [0.46,0.57]
0.52, [0.26,0.73]

} {
0.25, [0.47,0.47]
0.83, [0.27,0.8]

} {
0.77, [0.36,0.72]
0.26, [0.17,0.53]

} {
0.42, [0.36,0.62]
0.16, [0.36,0.57]

} {
0.68, [0.58,0.69]
0.38, [0.76,0.8]

} 

𝑔3 
{
0.26, [0.40,0.66]
0.27, [0.27,0.45]

} {
0.74, [0.42,0.76]
0.25, [0.16,0.17]

} {
0.26, [0.47,0.47]
0.57, [0.68,0.69]

} {
0.74, [0.42,0.8]
0.35, [0.52,0.64]

} {
0.25, [0.26,0.63]
0.35, [0.26,0.26]

} 

𝑔4 
{
0.64, [0.74,0.75]
0.8, [0.25,0.3]

} {
0.55, [0.2,0.62]
0.16, [0.36,0.62]

} {
0.27, [0.32,0.72]
0.63, [0.74,0.75]

} {
0.63, [0.26,0.62]
0.27, [0.42,0.53]

} {
0.15, [0.61,0.61]
0.36, [0.47,0.67]

} 

   𝑑2   

𝑔1 
{
0.72, [0.27,0.77]
0.38, [0.19,0.72]

} {
0.74, [0.58,0.8]
0.72, [0.28,0.72]

} {
0.8, [0.22,0.55]
0.17, [0.72,0.73]

} {
0.26, [0.36,0.63]
0.73, [0.48,0.55]

} {
0.49, [0.27,0.72]
0.42, [0.19,0.31]

} 

𝑔2 
{
0.26, [0.42,0𝑠. 61]
0.47, [0.27,0.28]

} {
0.8, [0.26,0.47]
0.83, [0.27,0.36]

} {
0.73, [0.15,0.42]
0.18, [0.42,0.73]

} {
0.17, [0.23,0.53]
0.52, [0.33,0.83]

} {
0.82, [0.26,0.72]
0.26, [0.26,0.52]

} 

𝑔3 
{
0.62, [0.17,0.62]
0.46, [0.26,0.62]

} {
0.26, [0.47,0.74]
0.83, [0.16,0.27]

} {
0.33, [0.6,0.63]
0.27, [0.58,0.73]

} {
0.19, [0.14,0.37]
0.46, [0.39,0.72]

} {
0.25, [0.63,0.72]
0.13, [0.47,0.74]

} 

𝑔4 
{
0.28, [0.2,0.36]
0.61, [0.44,0.7]

} {
0.27, [0.32,0.72]
0.46, [0.57,0.82]

} {
0.27, [0.57,0.77]
0.27, [0.23,0.45]

} {
0.64, [0.67,0.69]
0.82, [0.63,0.75]

} {
0.36, [0.27,0.27]
0.72, [0.31,0.74]

} 

   𝑑3   

𝑔1 
{
0.24, [0.36,0.53]
0.56, [0.54,0.79]

} {
0.8, [0.11,0.16]
0.63, [0.57,0.72]

} {
0.27, [0.47,0.72]
0.74, [0.37,0.53]

} {
0.86, [0.63,0.52]
0.27, [0.74,0.83]

} {
0.26, [0.27,0.35]
0.57, [0.26,0.69]

} 

𝑔2 
{
0.57, [0.72,0.74]
0.48, [0.27,0.57]

} {
0.8, [0.16,0.36]
0.46, [0.36,0.62]

} {
0.63, [0.27,0.43]
0.73, [0.27,0.47]

} {
0.74, [0.1,0.62]
0.36, [0.73,0.8]

} {
0.63, [0.1,0.26]
0.4, [0.45,0.66]

} 

𝑔3 
{
0.8, [0.36,0.63]
0.75, [0.16,0.68]

} {
0.73, [0.37,0.57]
0.79, [0.3,0.37]

} {
0.64, [0.72,0.74]
0.55, [0.37,0.75]

} {
0.16, [0.36,0.73]
0.56, [0.67,0.73]

} {
0.74, [0.47,0.7]
0.62, [0.19,0.24]

} 

𝑔4 
{
0.26, [0.63,0.63]
0.26, [0.4,0.66]

} {
0.26, [0.19,0.28]
0.64, [0.26,0.53]

} {
0.46, [0.25,0.75]
0.68, [0.17,0.74]

} {
0.37, [0.56,0.73]
0.7, [0.3,0.55]

} {
0.17, [0.11,0.37]
0.73, [0.21,0.26]

} 

 

Table 1 presents the decision matrices from each DM with IVPHFS information. There 

are four green suppliers rated over five attributes. These matrices are taken as input for 

calculating DMs’ weights. It must be noted that these matrices adopt IVPHFS information, 



which associates probability values in the interval fashion to each element. For the ease of 

understanding, let us consider an entry from Table 1, DM 𝑑1 rates green supplier 𝑔1 based on 

attribute 𝑎1 as 0.24 and 0.64 with their respective occurrence probability in the interval 

[0.25,0.52] and [0.16,0.62]. The values 0.24 and 0.62 are membership values that represent the 

degree of preferences.  

Step 2: An attribute weight calculation matrix is obtained, which is of order 3x5 with IVPHFS 

information. Apply section 3.1 to calculate the weights of the attributes. It is a vector of order 

1 × 𝑠. 

Table 2 provides the preferences of each DM on each attribute, which are used for calculating 

the weights of attributes. The weight values are given by (0.06,0.07,0.08,0.51,0.28) when the 

IVPHFD method is applied.  

Table 2 IVPHFEs for attributes' weights calculation 

DMs Evaluation attributes 

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 

𝑑1 
{

0.8, [0.1,0.33]
0.55, [0.41,0.91]

} {
0.35, [0.05,0.34]
0.72, [0.25,0.27]

} {
0.53, [0.56,0.97]
0.84, [0.13,0.51]

} {
0.75, [0.22,0.48]
0.11, [0.51,0.91]

} {
0.49, [0.43,0.61]
0.97, [0.56,0.92]

} 

𝑑2 
{
0.58, [0.27,0.5]
0.39, [0.53,0.77]

} {
0.37, [0.13,0.42]
0.61, [0.59,0.78]

} {
0.46, [0.58,0.94]
0.04, [0.51,0.93]

} {
0.84, [0.58,1]

0.5, [0.33,0.64]
} {

0.59, [0.48,0.8]
0.29, [0.65,0.82]

} 

𝑑3 
{
0.13, [0.88,1]
0.6, [0.1,0.42]

} {
0.74, [0.14,0.72]
0.31, [0.27,0.89]

} {
0.67, [0.26,0.62]
0.71, [0.05,0.45]

} {
0.49, [0.11,0.47]
0.02, [0.22,0.24]

} {
0.07, [0.06,0.45]
0.4, [0.36,0.4]

} 

 

Table 2 provides preference information related to each attribute by each DM. These are used to 

calculate the weights of attributes. Equations (8,9) are applied to determine the deviation of each 

attribute, which is further normalized using equation (10) to calculate the weights of the 

attributes, and it is given by 0.06, 0.07, 0.08, 0.51, and 0.28, respectively. 



Step 3: Aggregate the matrices from step 1 by using the operator proposed in section 3.3. DMs’ 

weights are obtained from the method proposed in section 3.2. A single matrix of order 4x5 is 

obtained (refer to Table 3). 

By applying equations (11-14), aggregated pieces of evidence are calculated and they are 

given by 𝐵𝐴1(𝑔1) = {0.34, [0.33,0.33]}, 𝐵𝐴1(𝑔2) = {0.34, [0.33,0.33]}, 𝐵𝐴1(𝑔3) =

{0.32, [0.34,0.33]}, 𝐵𝐴1(𝑔4) = {0.34, [0.35,0.35]}; 𝐵𝐴2(𝑔1) = {0.33, [0.32,0.33]}, 𝐵𝐴2(𝑔2) =

{0.33, [0.33,0.32]}, 𝐵𝐴2(𝑔3) = {0.35, [0.33,0.34]}, 𝐵𝐴2(𝑔4) = {0.32, [0.33,0.34]}; 𝐵𝐴3(𝑔1) =

{0.33, [0.33,0.32]}, 𝐵𝐴3(𝑔2) = {0.32, [0.33,0.34]}, 𝐵𝐴3(𝑔3) = {0.37, [0.36,0.34]}, and 

𝐵𝐴3(𝑔4) = {0.31, [0.31,0.31]}. 

By applying equations (15,16), the similarity measure is determined, which is shown 

below. Using the similarity values between DMs, support, and credit are determined by using 

equations (17,18). 

𝑠(𝐵𝐴𝑑𝑚1, 𝐵𝐴𝑑𝑚2) = (
− {0.95, [0.96,1]} {0.99, [0.98,0.97]}

{0.95, [0.96,1]} − {0.94, [0.94,0.97]}

{0.99, [0.98,0.97]} {0.94, [0.94,0.97]} −

) 

The credit value for each DM is given by (0.34,0.33,0.33), which provides the weight value 

of each DM. The IVPHFGMSM operator uses these values for aggregation of preferences with 

𝜆1 = 1 and 𝜆2 = 2, which is shown in Table 3. 

Table 3 Aggregated IVPHFE for decision-making 

Green 

supplier

s 

Evaluation attributes 

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 

𝑔1 
{
0.53, [0.3,0.64]
0.55, [0.39,0.72]

} {
0.7, [0.42,0.65]
0.61, [0.54,0.73]

} {
0.7, [0.67,0.75]
0.56, [0.54,0.59]

} {
0.66, [0.38,0.67]
0.7, [0.59,0.68]

} {
0.45, [0.25,0.54]
0.47, [0.46,0.6]

} 

𝑔2 
{
0.43, [0.58,0.65]
0.49, [0.27,0.6]

} {
0.72, [0.35,0.44]
0.77, [0.31,0.67]

} {
0.72, [0.28,0.58]
0.54, [0.32,0.61]

} {
0.57, [0.27,0.59]
0.4, [0.56,0.76]

} {
0.73, [0.42,0.63]
0.36, [0.6,0.69]

} 

𝑔3 
{
0.66, [0.34,0.64]
0.58, [0.24,0.6]

} {
0.66, [0.42,0.71]
0.74, [0.23,0.29]

} {
0.48, [0.62,0.64]
0.5, [0.58,0.72]

} {
0.55, [0.35,0.7]
0.47, [0.56,0.7]

} {
0.55, [0.5,0.69]
0.47, [0.35,0.55]

} 



𝑔4 
{
0.48, [0.62,0.64]
0.66, [0.38,0.61]

} {
0.41, [0.25,0.61]
0.5, [0.44,0.7]

} {
0.36, [0.43,0.75]
0.59, [0.55,0.69]

} {
0.58, [0.56,0.68]
0.7, [0.5,0.63]

} {
0.26, [0.45,0.47]
0.66, [0.37,0.64]

} 

 

Step 4: Use the aggregated matrix from step 3 and attributes’ weight vector from step 2 to 

prioritize green suppliers by using the method provided in section 3.4. 

Table 4 Prioritization values from COPRAS method 

Green suppliers COPRAS prioritization parameters 

𝑇𝑘 𝑅𝑘 𝑄𝑘 

𝑔1 (0.52,0.5) 
(3.56,3.57) 

(1.38,1.67) 
(1.18,0.93) 

(2.04,4.62) 

𝑔2 (0.41,0.4) 
(3.3,3.26) 

(1.4,1.67) 
(0.98,1.31) 

(1.94,4.42) 

𝑔3 (0.48,0.4) 
(3.53,3.09) 

(1.55,1.48) 
(1.14,1.06) 

(1.96,3.91) 

𝑔4 (0.43,0.48) 
(3.48,3.51) 

(1.47,1.6) 
(1.05,1.1) 

(1.99,4.57) 

 

Table 4 depicts the parameter values of the COPRAS method under the IVPHFS context 

that are used for prioritization. It can be noted that the aggregated matrix has two instances of 

IVPHFEs for rating green suppliers based on a specific attribute. Values are determined under 

both biased and unbiased weights of attributes. The first part of the 𝑄𝑘 values is determined 

under biased weights, and the second part is determined under unbiased weights. The first row of 

𝑇𝑘 has two instances under a biased context, while the second row of 𝑇𝑘 has two instances under 

unbiased context. A similar idea is followed by 𝑅𝑘 as well. The procedure is followed for other 

green suppliers also. The instances are added respectively to form 𝑄𝑘 under both biased and 

unbiased weight contexts. Table 4 shows the 𝑄𝑘 values at 𝜂 = 0.5. Prioritization order under 

biased weights is given by 𝑔1 ≻ 𝑔4 ≻ 𝑔3 ≻ 𝑔2, and under unbiased weights is given by 𝑔1 ≻

𝑔4 ≻ 𝑔2 ≻ 𝑔3. Later, Step 5 provides details on the sensitivity analysis. 



Step 5: Perform sensitivity analysis over attributes’ weights and strategy values to understand 

their effect on prioritization order. From the analysis of attributes' weights, it is clear that 

prioritization order changes with the change of weight values. However, the top-ranked supplier 

remains unchanged. Similarly, strategy values are varied from 0.1 to 0.9 in equation (22), and 

their effect is realized from Fig. 2. 

 

Fig.2 Sensitivity analysis of strategy values – (a) Biased weights and (b) Unbiased weights 

From Fig.2, it is clear that there is a competition between suppliers 𝑔1, 𝑔2, and 𝑔4 with 

unbiased attributes’ weights and competition between suppliers 𝑔2 and 𝑔3 with biased attributes’ 

weights, and the final prioritization order is given by 𝑔1 ≻ 𝑔4 ≻ 𝑔3 ≽ 𝑔2 for biased weights and 

𝑔1 ≽ 𝑔4 ≽ 𝑔2 ≻ 𝑔3 for unbiased weights. Finally, from the cumulative result of the sensitivity 

analysis of strategy values for both biased and unbiased attributes’ weights, supplier 𝑔1 is 

considered a suitable alternative from the set of suppliers. The proposed framework is robust 

even after adequate changes are made to the attributes' weights and strategy values (first and 

second ranking positions do not change).  



5. Comparative Investigation of Frameworks 

 

This section presents the comparative investigation of different frameworks under the 

IVPHFS and PHFS context to retain the homogeneity in the process. Frameworks proposed by 

Krishankumar et al. [19], Li and Wang [12], and Xu and Zhou [11] are considered for 

investigation. 

Table 5 Prioritization values from proposed and state-of-the-art methods 

Green suppliers Methods 

Proposed [11] [12] [19] 

𝑔1 1 2 1 1 

𝑔2 3 3 4 2 

𝑔3 2 4 3 3 

𝑔4 4 1 2 4 

 

Table 5 presents the prioritization order from different methods. Spearman correlation [45] is 

applied to determine the consistency of the proposed framework. From Fig.3, it is inferred that 

the proposed framework is highly consistent with its close counterpart method [19] and 

moderately consistent with the other two methods. The consistency is affected due to the 

information loss in methods [11] and [12], which is caused during the conversion from IVPHFS 

to PHFS. 



 

Fig.3 Corrplot for consistency analysis - Spearman Correlation 

Table 6 Analysis of different factors - Proposed vs. Others 

Factors Methods 

Proposed [19] [11] [12] 

Input IVPHFS PHFS 

Attributes’ weight Calculated by the 

programming 

model 

Calculated by 

SV method 

Not calculated. Directly provided 

DMs’ weights Calculated by ET-

BA method 

Not calculated. Directly provided 

Aggregation GMSM operator Simple 

weighted 

geometry 

operator 

Weighted 

arithmetic/geometric 

operator 

Prioritized weighted 

arithmetic/geometric 

operator 

Interrelationship 

among attributes 

Captured 

effectively 

Not captured 

Capturing 

uncertainty 

Done effectively with the help of 

IVPHFS information 

Information loss occurs during the conversion process 

Prioritization 

method 

COPRAS VIKOR Aggregation-based 

method 

 

Generalizability Gained from interval probabilities The specific case of IVPHFS 

  

Table 6 provides the investigation of different prioritization methods. From the analysis, we 

infer the following: 

1. IVPHFS information is a generalization of PHFS, which associates interval-valued 

probability for each HFE. This preference style provides flexibility to the DMs during 

preference elicitation. 



2. Unlike state-of-the methods, the proposed framework systematically calculates 

attributes’ weights by effectively utilizing the partial information on each attribute. 

3. Also, DMs’ weights are systematically calculated by properly handling uncertainty. 

4. Preferences are aggregated by effectively capturing the interrelationship among 

attributes. Systematically calculated DMs’ weights are utilized for aggregation of 

preferences. 

5. The proposed framework is consistent with other state-of-the-art methods. Moreover, 

suppliers are prioritized by properly considering the nature of attributes. 

 

 

Some weaknesses of the framework are: 

1. Manual elicitation of probability value is difficult, so a systematic calculation of 

probability values would enhance the flexibility of the preferred style. 

2. Moreover, experts/DMs must be trained for effective elicitation of preferences. 

Some managerial implications are provided below: 

1. The proposed framework is ready-to-use with a flexible preference style. 

2. Organizations can easily make decisions with effective mathematical support and can 

also revert to the decisions in the latter part of the process. 

3. Human intervention is mitigated by systematical calculation of weights. 

4. From the organizations' point of view, it is a supportive tool that could effectively 

contribute to decision-making pertaining to risk management, inventory management, 



etc. On the other hand, from the customers' point of view, it can act as an aiding tool 

by providing suggestions related to purchasing. 

6. Conclusion 

 

In this paper, we aimed at proposing a new decision framework under the IVPHFS context 

with fully unknown weight information. The framework integrates novel methods for weight 

calculation of attributes and DMs, aggregation of preferences, and prioritization of alternatives. 

From the comparative study, it is evident that the proposed framework is robust even after 

adequate changes are made to the weights and strategy values and consistent with state-of-the-art 

methods. Sensitivity analysis (refer to Fig.2) and Spearman correlation (refer to Fig.3) is adopted 

to realize the robustness and consistency of the proposed framework. The close competition 

among alternatives 𝑔1, 𝑔2, and 𝑔4 are brought out for efficient planning and backup 

management. Finally, it is inferred that IVPHFEs (proposed and Ref.[18]) are flexible and 

generalized values, which upon conversion to PHFEs (Refs. [9,10]) causes information loss, and 

it is reflected in Fig.3 by producing lower consistency values. 

As a part of future work, the weaknesses mentioned above will be addressed. Also, the 

IVPHFS preference style will be used for developing new decision frameworks, which will 

address missing data during preference elicitation and provide sensible prioritization of 

alternatives. Finally, plans are made to adopt advanced variational theories [46–49] to decision-

making with generalized preference structures and combine machine learning and recommender 

concepts for solving complex real-time problems.  
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