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Abstract
The interior search algorithm (ISA) is an optimization algorithm inspired by
esthetic techniques used for interior design and decoration. The algorithm has
only one parameter, controlled by θ, and uses an evolutionary boundary con-
straint handling (BCH) strategy to keep itself within an admissible solution
space while approaching the optimum. We apply the ISA to find optimal weight
design of truss structures with frequency constraints. Sensitivity of the ISA’s
performance to the θ parameter and the BCH strategy is investigated by con-
sidering different values of θ and BCH techniques. This is the first study in
the literature on the sensitivity of truss optimization problems to various BCH
approaches. Moreover, we also study the impact of different BCH methods on
diversification and intensification. Through extensive numerical simulations,
we identified the best BCH methods that provide consistently better results for
all truss problems studied, and obtained a range of θ that maximizes the ISA’s
performance for all problem classes studied. However, results also recommend
further fine-tuning of parameter settings for specific case studies to obtain the
best results.

K E Y W O R D S

boundary constraint handling, interior search algorithm, metaheuristic algorithms, truss structures

1 INTRODUCTION

Finding the optimal design of structures, and truss structures in particular, is important yet challenging. It is
time-consuming and requires much trial and error to find a credible solution that minimizes the weight of truss structures
while satisfying bounds on design variables, stress, and deflection constraints. Structural optimization has therefore been
the subject of many studies. Over the past decades, many researchers have utilized a variety of algorithms to solve simi-
lar problems, such as retaining wall optimization,1-3 shallow footing optimization,4,5 optimal design of concrete frames,6
and truss structure optimization.7

The quality of the optimized design is directly related to (1) having a robust algorithm and (2) proper handling of
constraints. Much effort has been devoted to the first, where various optimization methods for solving the problems faster
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or addressing large-scale cases have been developed (Gandomi et al,8-10 Sahab et al,11 Yang et al,12 and Kashani et al13).
Most of the complex real-world engineering problems, however, are concerned with a search space confined by equality,
inequality, and boundary constraints. The performance of an optimization algorithm thus depends highly on how these
constraints are handled. Clearly, boundary constraint handling (BCH) is an important step that leads the algorithm to
an appropriate outcome (e.g., see Gandomi et al,14,15 Gandomi and Kashani,16 Trivedi,17 Helwig et al,18 Padhye et al19).
Nevertheless, prior work considering the impact of BCH in this context is scarce.

In this paper, we apply an art-inspired optimization algorithm developed by Gandomi,20 known as the interior search
algorithm (ISA), to find optimal weight design of truss structures with frequency constraints. The ISA mimics esthetic
techniques utilized for interior design and decoration in its attempt to find an optimal solution. Similar to other meta-
heuristic algorithms,21,22 it explores the solution space through two main phases: exploration and exploitation. Previous
studies based on different mathematical and engineering benchmark problems have demonstrated that the ISA is able to
outperform many other well-known optimization algorithms.20

One of the most important features of the ISA is that it can be set by adjusting only one parameter, controlled by 𝜃. We
investigate how 𝜃 can influence optimization results, and also evaluate the efficiency of the most common deterministic
and probabilistic BCH schemes. Comprehensive numerical simulations reveal that both the parameter settings and BCH
schemes play a critical role in determining the algorithm’s performance, and that different parameter values and BCH
schemes yield different optimization results.

The rest of this paper is organized as follows. In Section 2, the optimum design of truss structures is explained by
introducing an objective function that takes natural frequency limitations into account. In Section 3, the ISA and its
main parameter are described. Following this, 13 different BCH approaches are presented in Section 4. Numerical results
obtained for two 2-D and two 3-D truss benchmark cases are discussed in Section 5, and we dedicate the final section to
discuss the results and draw conclusions.

2 OPTIMUM DESIGN OF TRUSS STRUCTURES

Size optimization of truss structures is defined as finding the minimum value for the total weight of the structures, which
satisfies natural frequency related constraints.23 Optimum design of the structures is expressed by the following objective
function:

Minimize W(A) =
NM∑
i=1

𝛾iAili (1)

where W(A) is the weight of the structure, NM is the number of structural elements, and 𝛾 i, li, and Ai are the material
density, length, and cross-sectional area of the ith element, respectively.

It is necessary to satisfy inequality constraints in order to incorporate structural requirements that restrict the final
design, as follows: {

fg ≤ f ∗g , for some natural frequencies g
fh ≥ f ∗h , for some natural frequencies h

(2)

where f g and f h are the gth and hth natural frequencies of the structure, respectively; and f ∗g and f ∗h are the upper and
lower bounds on the natural frequencies of the structure, respectively.

3 METHODS

3.1 Interior search algorithm

The art-inspired ISA, developed by Gandomi,20 is one of the most recent optimization algorithms. It mimics the esthetics
or beauty techniques used for interior design and decoration of a specific space. This algorithm searches the solution
space by taking advantage of the following two main features of interior design:
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1. composition design to provide exploration
2. mirror work to provide exploitation.

The first feature is an interior design process, and proposes a proper composition of elements to create an attractive
environment. The second feature is based on the mathematical model of a kind of fine art named “mirror work”. In
mirror work, designers innovatively employ a certain number of mirrors to create an attractive decoration. Gandomi20

modeled this rule by placing a mirror near the global best to find better views. To that end, the solutions (elements), except
the best solution, are divided into two groups: the composition group and the mirror group. The positions of elements
in the composition group are altered to produce a beautiful design that addresses diversification. Then, elements in the
mirror group are placed between elements in the composition group and the best-selected solution, in order to achieve
an enhanced solution that will eventually provide intensification.

Detailed steps of the ISA are as follows:

1. Initialize the first generation within upper bound UB and lower bound LB, randomly.
2. Determine the best solution for the jth iteration, xj

gb.
3. Divide the remaining elements into two groups, composition and mirror, randomly by a probability of 𝛼. For each

element, if r1 <𝛼, it is assigned to the mirror group; otherwise it is assigned to the composition group. r1 is a random
value between 0 and 1.

4. Change the arrangement of elements in the composition group using the following equation:

xj
i = LBj + (UBj − LBj) × r2 (3)

where xj
i represents the ith element in the jth iteration, and LBj and UBj denote lower and upper bounds of the

composition group in the jth iteration, respectively. r2 is a random number between 0 and 1.
5. Place a mirror between each element in the composition group and the best solution, based on the following equation:

xj
m,i = r3xj−1

i + (1 − r3) × xj
gb (4)

where r3 is a random number between 0 and 1, and xj
gb is the global best solution at iteration j. Thus, the resulting

solution will emerge at a distance of xj
i with respect to the mirror’s location, where

xj
i = 2xj

m,j − xj−1
i (5)

6. Slightly alter the position of the best solution using Equation (6) to further improve its position to the extent possible:

xj
gb = xj−1

gb + rn × 𝜆 (6)

where rn is a vector of normally distributed random numbers with its size equal to x, and 𝜆 is a scale factor set to
0.01× (UB-LB).

7. After evaluation of the objective function for the new location of both elements and images, update every location
using the following equation as a minimization problem:

xj
i =

{
xj

i f (xj
i) < f (xj−1

i )
xj−1

i else
(7)

8. Iterate the above mentioned steps until the termination criterion is met.

3.2 Tuning the ISA parameter

In addition to the population size and the number of iterations, the ISA has only one parameter called 𝛼. This parameter is
used to assign solutions to either the composition or the mirror group. An initial study by Gandomi20 showed that its value
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F I G U R E 1 Effects of 𝛼 during iterations

should be approximately 0.25 for unconstrained optimization problems. However, studies on constrained engineering
problems23 demonstrated that it is better to change 𝛼 during the iterations. In these studies, 𝛼 was linearly increased
during the iterations; thus, the search emphasizes exploration by using composition optimization in the early stages and
it gradually switches to mirror search to encourage exploitation in the final iterations.24 In the current study, different
nonlinear strategies have been used to adjust the 𝛼 parameter. For this purpose, the following formulation is used:

𝛼 =
( Iter

Max No.Iter

)𝜃

(8)

where Iter is the current iteration number, Max No.Iter is the maximum number of iterations, and 𝜃 is the parameter to
control the nonlinearity. As 𝛼 is related to 𝜃, different values have been considered for 𝜃 such as 0, 0.25, 0.5, 0.75, 1, 2, 3,
4, and 6 to take various nonlinearities into account during the iterations. The nonlinear behavior of 𝛼 during iterations is
visualized in Figure 1.

3.3 Constraint handling

In most constraint optimization problems, the feasible solution space is explored to find the best design as follows:

Minimize f (x⃗)

subject to
⎧⎪⎨⎪⎩

gj(x⃗) ≥ 0 j = 1, … , J
hk(x⃗) = 0 k = 1, … ,K
xl

i ≤ xi ≤ xu
i i = 1, … ,n

(9)

where gj(x⃗) is the inequality constraint, hk(x⃗) is the equality constraint, and [xl
i, xu

i ] define the boundary constraints. Opti-
mization algorithms were originally designed for solving unconstrained problems. However, there are several methods to
convert a constrained optimization problem into an unconstrained one, such as penalty functions, separation of objectives
and constraints, maintaining feasible solutions, and hybrid approaches.24

The ISA uses a competitive procedure in combination with the following rules based on Becerra et al25:

1. Between two feasible solutions, the better solution is preferred.
2. A feasible solution is preferred to an infeasible one.
3. Between two infeasible solutions, the solution with a lower constraint violation value is preferred.

Here, the constraint violation is calculated using the following equation:

violation(x) =
N∑

i=1

gi(x)
gmax i

(10)
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where N is the number of constraints, gi is the ith constraint, and gmaxi is the largest violation of the constraint gi(x) found
so far.

By the second and third rules, the algorithm will explore feasible solutions gradually, and due to the first rule, the
algorithm will find an optimized feasible solution.

Originally, this algorithm uses evolutionary BCH formulated as follows:

f (zi → xi) =

{
r1 × xl

i + (1 − 𝛼)xb
i if zi < xl

i

r2 × xu
i + (1 − 𝛽)xb

i if zi > xu
i

(11)

where r1 and r2 are random numbers between 0 and 1. For ith design variable, xb
i is the related component of the global

best solution and zi is related to the violated particle (i.e., infeasible solution).

3.4 Population diversity

In order to evaluate the impact of each BCH method on the diversification and intensification of the ISA, population
diversity based on L1 norm is utilized in this study.26 To this end the following equations are used:

x = 1
m

m∑
i=1

xij (12)

Dp
j = 1

m

m∑
i=1

|xij − xj| (13)

Dp = 1
n

n∑
j=1

Dp
j (14)

where each particle is represented as xij, i represents the ith particle, i = 1, … , m, and j is the jth dimension, j = 1,
… , n. x = [x1, … , xj, … , xn], and x represents the mean of the particles’ current positions on each dimension. Dp =
[Dp

1, … ,Dp
j , … , Dp

n] measures the diversity of the particles’ positions based on L1 norm for each dimension and Dp
measures the population diversity of the entire swarm.

4 DIFFERENT BOUND CONSTRAINT HANDLING APPROACHES

For every objective function, design variables vary within a permissible domain defined by bound constraints. Several
strategies have been developed in the literature to guide the search into the valid solution domain. In this section, we
review various methods for boundary handling.

4.1 Absorbing scheme

This method replaces every invalid value of design variables that violate side constraints with the nearest bound values
as follows27:

zi → xi =

{
xl

i if zi < xl
i

xu
i if zi > xu

i

(15)

4.2 Random method

In this method, invalid values of design variables that violate side constraints are updated randomly, as follows, in order
to bring the solution back to the valid search space27:

zi → xi = xl
i + r × (xu

i − xl
i) if zi < xl

i or zi > xu
i (16)
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4.3 Random-all approach

This approach does not adjust design variables individually; instead, every infeasible candidate is replaced by a new
randomly produced solution within the solution space28:

z → x = xl + r × (xu − xl) if zi < xl
i or zi > xu

i (17)

4.4 Conservation scheme

In this method, each design variable violating its side constraints is left unchanged.28

4.5 Infinity scheme

This approach is similar to the conservation method, but leaves the entire solution vector unchanged if it contains an
invalid solution.29

4.6 Periodic method

This method uses a modulo operation to replicate an infinite number of solution spaces to bring the trial vector into the
valid search domain as follows30:

zi → xi = xl
i + (ziMOD(xu

i − xl
i) ) if zi < xl

i or zi > xu
i (18)

4.7 Mirror scheme

The mirror scheme avoids violating the upper and lower limits of variables. When any variable exceeds its upper or lower
bound, it is replaced with a mirror image related to the boundary. In this approach, the main effort is to relieve periodic
method faults and reach a more sophisticated scheme, as follows18:

zi → xi ∶ xl
i + ziMOD(2 ⋅ xu

i − xl
i) (19)

f (zi → xi) =

{
f (x) if xl

i ≤ zi ≤ xu
i

f (2 ⋅ xmax − x) if xu
i ≤ zi ≤ 2xu

i

(20)

where zi is the current violated position of the ith element and xi is the updated variable. Based on this method, the
objective value would be evaluated using Equation (20).

4.8 Evolutionary bound constraint handling (EBCH)

This approach can be used on any optimization algorithm and is capable of effectively improving the algorithm’s
performance. See Section 3.3 for details.

4.9 Exponentially confined (Exp-C) approach

The exponentially confined method brings an invalid solution back into the search space between its previous solution
and violated boundary.31 This probabilistic method follows a distribution that guides the new solution toward the violated
bounds using the following equation:
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zi → xi ∶ xi =

{
zp

i − ln(1 + r(exp(xp
i − xl

i) − 1)) if zi < xl
i

zp
i + ln(1 + r(exp(xu

i − xp
i ) − 1)) if zi ≥ xu

i

(21)

where zp
i is the current position of the ith particle.

4.10 Exponential spread (Exp-S) approach

This method is a variation of the Exp-C scheme that sets probability distribution along the feasible boundaries, but is
biased toward the violated bound.31 Its computation procedure is defined by the following equation:

zi → xi ∶ xi =

{
xu

i − ln(1 + r(exp(xu
i − xl

i) − 1)) if zi < xl
i

xl
i + ln(1 + r(exp(xu

i − xl
i) − 1)) if zi ≥ xu

i

(22)

4.11 Inverse parabolic (IP) constraint-handling methods

In this method, the amount of violation of the boundaries is also taken into account.19 To be more precise, the probability
distribution function may depend on the distance between invalid solutions and the boundaries. Therefore, the probability
would be higher for shorter distances to the boundaries, while being far from the boundaries follows a more uniform
distribution with lower probability. The following equation proposes a simplified procedure for this approach:

y⃗ = x⃗c + d́(x⃗p − x⃗c) (23)

where x⃗c and x⃗p are the invalid and parent solutions, respectively. d́ is calculated by the following equation:

d́ = dv + 𝜉dv tan
(

rtan−1 dr − dv

𝛼dv

)
(24)

where dv is the Euclidian distance between the violated particle and the violated boundary, dr is the distance between the
violated particle and the reference point, and 𝜉 is a pre-defined parameter. In the original study19, this value was proposed
to be 𝜉 ≈ 1.2.

By defining dr, two variations of this method are proposed: (1) an inverse parabolic confined (IP-C) method
that defines a probabilistic distribution function in the space between the parent solution and the violated bound-
ary; and (2) an inverse parabolic spread (IP-S) method that defines a distribution function between the upper and
lower bounds.

4.12 Probabilistic evolutionary bound constraint handling (PEBCH)

PEBCH is a new variation of the IP method, proposed by Gandomi and Kashani,32 which considers a probability
distribution function in the space between the best-found solution and the violated boundary.

4.13 Flyback bound constraint handling

A Flyback mechanism was proposed by He et al33 for handling the bound of a particle swarm optimization algorithm.
Based on this approach, every violated design variable would be reset to the previous position. In this study, the position
of the best solution was also utilized for modifying improper solutions. Thus, every violated design variable is pushed to
the position of the best solution. This method is referred to as Flyback-best in our numerical simulations.

In Equations (16), (17), (21), (22), and (24), the parameter r represents a random number.
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5 TEST PROBLEMS AND OPTIMIZATION RESULTS

The performance of the ISA combined with different BCH schemes was analyzed using four benchmark cases
with multiple frequency constraints. The algorithm was coded in MATLAB. Because of its stochastic behavior, each
experiment was repeated for 50 runs; and the final results were interpreted using the best, worst, and mean opti-
mized weights along with the standard deviation (SD). To adjust the ISA’s main parameter, a parametric study
was done for 𝜃 values in the range of 0, 0.25, 0.5, 0.75, 1, 2, 4, and 6. The population size was 50 for all the
case studies.

5.1 Interpretation of the results based on best, mean, and standard deviation

In this section, numerical results are presented based on the best, mean, and SD results to assess the performance
of the ISA. In the first step, the best results are normalized between the best and the worst solutions found. Obvi-
ously, the lowest normalized value is representative of the best method. In each subsection, a number of tables are
provided to visualize differences between the applied BCH methods. Regarding the tables, it should be noted that, for
each case study, a full comparison between the mean values is initially illustrated; then, the best algorithms whose
performance is close to the normalized best values are selected for a more detailed comparison. Moreover, figura-
tive contrasts of the BCH methods for the best 𝜃 value are depicted using Mean and SD values. 𝜃 = 1 is considered
as a benchmark since it provided the best performance in most cases. In case of inconsistency, results obtained for
the best value of 𝜃 are compared with those obtained for 𝜃 = 1. Convergence curves are presented based on the
most successful solution considering the minimum best and mean values found. Population diversity variations in
each iteration are evaluated and presented to analyze the effects of different BCH methods on diversification and
intensification.

5.1.1 Planar 10-bar truss

The first test problem solved to analyze the performance of the ISA considers a simple 10-bar truss structure. This problem
has been the subject of many studies as a benchmark structural design problem with multiple frequency constraints.34-36

This problem has been solved by considering various values of modulus of elasticity, material density, and added mass.37-39

Material properties, constraints, and side constraints used in this study are presented in Table 1. The configuration of
the truss is shown in Figure 2; a non-structural mass equal to 454 kg is applied to the four highlighted free nodes in
the figure.

The average values of optimized weight obtained over 50 runs are summarized in Table 2, and the normalized best
and mean values are presented in Tables 3 and 4, respectively, to make the comprehension of the obtained results more
sensible. From Table 3, we can see that the lowest cumulative normalized value based on the best-found solutions is
0.595 for the Flyback-best method. Similarly, Table 3 shows that the Aggregate 𝜃 value is minimum at 𝜃 = 4. However, the
minimum aggregate values based on the mean solutions suggest the use of the Flyback BCH method and 𝜃 = 3 (Table 4).
Table 3 shows that the lowest cost value was recorded by the Mirror BCH method and 𝜃 = 3. The lowest mean value was,
however, obtained by the Flyback-best method with 𝜃 = 3. Therefore, after a comparison of the normalized mean values,
we filtered out the following BCH methods with higher cumulative normalized values: Random, Random-all, Infinity,

Property Value (unit)

Modulus of elasticity (E) 6.89× 1010 (N/m2)

Material density (𝜌) 2770 (kg/m3)

Design variable lower bound 0.645× 10−4 (m2)

Design variable upper bound 50× 10−4 (m2)

Frequency constraints f 1 ≥ 7, f 2 ≥ 15, f 3 ≥ 20 (Hz)

T A B L E 1 Design parameters of planar 10-bar truss
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F I G U R E 2 Schematic of the planar 10-bar truss
structure

T A B L E 2 Mean values of the optimized weight obtained for the 10-bar truss problem using different values of θ and constraint
handling methods

𝜽 value

BCH method 0 0.25 0.5 0.75 1 2 3 4 6 Range (%)

Absorbing 566.349 542.753 542.516 541.190 540.655 539.105 540.853 544.308 554.803 5.054

Random 572.832 565.346 563.810 562.044 562.719 554.882 550.694 550.736 550.528 4.051

Random_all 564.585 566.579 567.869 572.264 567.630 566.559 564.775 562.186 560.383 2.120

Conservation 561.306 543.764 542.948 541.400 541.332 540.169 539.927 540.866 541.593 3.960

Infinity 565.915 545.717 542.937 539.820 541.489 551.027 568.085 577.171 576.258 6.919

Periodic 563.376 563.615 563.652 564.908 563.189 557.340 555.919 552.426 550.240 2.666

Mirror 561.648 545.289 544.619 541.834 541.916 540.568 540.216 539.910 540.529 4.026

EBCH 565.790 544.974 542.795 541.703 541.105 539.853 540.048 540.054 542.316 4.804

Exp-C 560.801 545.959 543.653 543.414 543.001 540.626 540.870 540.866 542.677 3.732

Exp-S 567.173 566.395 562.563 562.147 561.217 555.856 552.426 549.447 551.992 3.226

IP-C 565.437 544.155 542.089 541.419 543.266 539.696 541.293 539.468 541.840 4.814

IP-S 562.292 547.352 549.774 549.553 549.772 545.254 544.340 545.609 545.035 3.298

PEBCH 566.679 544.094 542.799 541.318 541.043 539.943 538.890 540.454 540.964 5.157

Flyback 554.331 542.536 540.865 540.432 540.618 539.878 538.746 538.206 539.671 2.996

Flyback-best 557.220 543.225 541.591 540.250 540.053 538.142 538.079 539.191 539.831 3.557

Periodic, Mirror, Exp-S, and IP-S. Results using the remaining BCH methods are visualized in Figure 3. Upon applying
this filter, from Table 2, it can be seen that the total variation of mean values for 𝜃 between 0.75 and 3 are 0.38%, 0.27%,
0.34%, 0.52%, 0.66%, 0.45%, 0.34%, and 0.40% for Absorbing, Conservation, EBCH, EXP-C, IP-C, PEBCH, Flyback, and
Flyback-best methods, respectively. Figure 3 shows that the Flyback-best method with 𝜃 of 3 and 2, and Flyback with
𝜃 = 4 are the most efficient methods.

Convergence rate plots for mean values of the filtered BCH methods when 𝜃 = 2 are compared in Figure 4. We selected
𝜃 = 2 because most of the BCH methods performed better with this value for this case. As can be seen in Figure 4, there is
no considerable difference between convergence trends of different methods. However, PEBCH converged slightly faster
than the other methods.

To achieve a better understanding of the impact of each BCH method on the performance of the algorithm, information
on population diversity is provided in Figures 5 and 6. Figure 5 shows a full comparison of population diversity for all the
methods with 𝜃 = 2, and Figure 6 shows the diversity measures of the filtered methods. We can see in Figure 5 that all
the methods except Random-all started their search with their highest level of diversification and followed a decreasing
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T A B L E 3 Normalized best values for 10-bar 2-D truss

𝜽 value

BCH method 0 0.25 0.5 0.75 1 2 3 4 6
∑

Absorbing 0.531 0.077 0.074 0.089 0.079 0.084 0.127 0.093 0.402 1.556

Random 0.589 0.439 0.650 0.690 0.439 0.555 0.248 0.282 0.230 4.121

Random_all 0.292 0.681 0.497 0.906 0.536 0.532 0.415 0.695 0.443 4.996

Conservation 0.243 0.115 0.052 0.106 0.087 0.044 0.051 0.054 0.037 0.790

Infinity 0.404 0.185 0.219 0.091 0.074 0.281 0.689 0.656 1.000 3.599

Periodic 0.289 0.418 0.458 0.365 0.451 0.273 0.310 0.213 0.325 3.103

Mirror 0.407 0.175 0.079 0.102 0.128 0.043 0.000 0.020 0.073 1.026

EBCH 0.357 0.104 0.033 0.035 0.056 0.082 0.085 0.064 0.135 0.951

Exp-C 0.359 0.118 0.081 0.058 0.095 0.107 0.053 0.051 0.112 1.034

Exp-S 0.550 0.501 0.531 0.622 0.344 0.663 0.540 0.166 0.292 4.210

IP-C 0.473 0.179 0.094 0.071 0.067 0.063 0.053 0.076 0.044 1.121

IP-S 0.581 0.275 0.244 0.329 0.112 0.068 0.166 0.142 0.228 2.145

PEBCH 0.440 0.074 0.069 0.033 0.069 0.046 0.032 0.028 0.086 0.876

Flyback 0.443 0.039 0.054 0.078 0.133 0.088 0.017 0.060 0.055 0.967

Flyback-best 0.148 0.034 0.162 0.059 0.065 0.025 0.023 0.029 0.050 0.595∑
6.105 3.415 3.298 3.632 2.735 2.953 2.810 2.630 3.512 -

T A B L E 4 Normalized mean values for 10-bar 2-D truss

𝜽 value

BCH method 0 0.25 0.5 0.75 1 2 3 4 6
∑

Absorbing 0.723 0.120 0.114 0.080 0.066 0.026 0.071 0.159 0.428 1.786

Random 0.889 0.698 0.658 0.613 0.630 0.430 0.323 0.324 0.318 4.883

Random_all 0.678 0.729 0.762 0.874 0.756 0.729 0.683 0.617 0.571 6.398

Conservation 0.594 0.145 0.125 0.085 0.083 0.053 0.047 0.071 0.090 1.294

Infinity 0.712 0.195 0.124 0.045 0.087 0.331 0.768 1.000 0.977 4.239

Periodic 0.647 0.653 0.654 0.686 0.642 0.493 0.456 0.367 0.311 4.910

Mirror 0.603 0.184 0.167 0.096 0.098 0.064 0.055 0.047 0.063 1.377

EBCH 0.709 0.176 0.121 0.093 0.077 0.045 0.050 0.051 0.108 1.431

Exp-C 0.581 0.202 0.143 0.136 0.126 0.065 0.071 0.071 0.118 1.513

Exp-S 0.744 0.724 0.626 0.616 0.592 0.455 0.367 0.291 0.356 4.771

IP-C 0.700 0.155 0.103 0.085 0.133 0.041 0.082 0.036 0.096 1.431

IP-S 0.619 0.237 0.299 0.294 0.299 0.184 0.160 0.193 0.178 2.463

PEBCH 0.732 0.154 0.121 0.083 0.076 0.048 0.021 0.061 0.074 1.368

Flyback 0.416 0.114 0.071 0.060 0.065 0.046 0.017 0.003 0.041 0.833

Flyback-best 0.490 0.132 0.090 0.056 0.051 0.002 0.000 0.028 0.045 0.892∑
9.837 4.619 4.177 3.901 3.781 3.011 3.172 3.318 3.773
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F I G U R E 3 Comparison of
filtered normalized mean values for
10-bar 2-D truss
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F I G U R E 6 Population diversity of the filtered BCH
methods for the 10-bar truss problem

T A B L E 5 Comparison of optimization results for the 10-bar truss problem
Design
variables

Sedaghati
et al34

Kaveh and
Javadi36

Kaveh and
Zolghadr35

Farshchin
et al40 (TLBO)

Farshchin
et al40 (MC-TLBO)

ISA
(Mirror, 𝜽 = 3)

A1 (cm2) 38.245 35.54 35.944 36.0171 35.8507 34.8912

A2 (cm2) 9.916 9.916 15.53 15.0926 14.8424 15.9940

A3 (cm2) 38.619 35.784 32.285 35.1797 35.5768 37.6089

A4 (cm2) 18.232 14.606 15.385 14.8551 14.9305 15.3634

A5 (cm2) 4.419 0.646 0.648 0.6495 0.645 0.0059

A6 (cm2) 4.194 4.626 4.583 4.6192 4.6249 4.7684

A7 (cm2) 20.097 24.779 23.61 24.2147 23.9816 23.6343

A8 (cm2) 24.097 23.31 23.599 23.8069 24.2358 23.3212

A9 (cm2) 13.89 12.482 13.135 12.9309 12.6977 12.7561

A10 (cm2) 11.4516 12.675 12.357 12.3585 12.3319 12.0052

Weight (kg) 537.01 532.11 532.39 532.136 532.051 532.0444

Mean (kg) NA NA 537.8 535.119 533.232 540.216

SD (kg) NA 2.37 4.02 3.219 2.179 3.599

f 1 6.992 6.999 7.000 7.000 7.000 7.000

f 2 17.599 16.175 16.187 16.178 16.184 15.460

f 3 19.973 19.999 20.000 20.000 20.000 20.000

Constraint 1 NA NA NA NA NA −0.0005

Constraint 2 NA NA NA NA NA −0.4602

Constraint 3 NA NA NA NA NA −0.0007

pattern while concentrating more on intensification. Periodic, Random, and EXP-S focused more on exploration than the
other methods, until the final iterations. Figure 6 demonstrates that among the filtered methods, Absorbing provided the
least diversification in the first 100 iterations, but provided the most diversification in the final 50 iterations. In addition,
we can see in Figure 6 that the search domain space in EBCH, Conservation, and PEBCH is larger than other methods;
this space shrunk as those algorithms approached their final iterations.

Table 5 compares the best solution obtained in this study with data available in the literature. It can be seen that
the best solution obtained using the ISA corresponds to the lowest overall structural weight. However, in terms of mean
values, this algorithm could not outperform the other methods under comparison.
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F I G U R E 7 Schematic of the planar 37-bar truss structure showing the initial layout of the truss

F I G U R E 8 Optimized layout of the planar 37-bar truss structure

T A B L E 6 Design parameters of planar 37-bar truss Property Value (unit)

Modulus of elasticity (E) 2.1× 1011 (N/m2)

Material density (𝜌) 7800 (kg/m3)

Design variable lower bound 1× 10−4 (m2)

Design variable upper bound 10× 10−4 (m2)

Frequency constraints f 1 ≥ 20, f 2 ≥ 40, f 3 ≥ 60 (Hz)

5.1.2 Planar 37-bar truss

The weight minimization of the 37-bar planar truss structure shown in Figure 7, has been previously tackled by Sedaghati
et al,34 Gomes37 and Miguel and Miguel.38 In this problem, the main objective is the optimum design of size as well as the
vertical position of nodes on the upper chord as shown in Figure 8. The essential parameters to describe this case study
are provided in Table 6. A non-structural mass equal to 10 kg is added to all the free nodes on the lower chord. Moreover,
all the elements along the lower chord have a constant cross-sectional area of 4× 10−3 m2.

The average values of optimized weight obtained for this case study are summarized in Table 7. Furthermore, the
normalized best and mean results are presented in Tables 8 and 9, respectively. The lowest best value was obtained by
the PEBCH approach with 𝜃 = 1. The minimum cumulative values based on the normalized best values were obtained
with the Conservation BCH method, and this value is minimum for 𝜃 = 3. Regarding the mean values, it can be seen
in Table 9 that Absorbing with 𝜃 = 2, EBCH with 𝜃 = 2, and Flyback-best with 𝜃 values of 1 and 2 provided the lowest
normalized mean value. Similarly, the least cumulative normalized mean value was obtained with the PEBCH approach
and for 𝜃 = 2. The same set of BCH methods was used as in the previous example to generate Figure 9, which compares
the normalized mean values of the selected methods. It can be seen from Figure 9 that the best BCH methods for the
37-bar truss case were Flyback-best with 𝜃 = 1. Moreover, the other methods performed most efficiently with 𝜃 = 2. We
can also see from Table 7 that the total variations of mean values for 𝜃 between 0.75 and 3 are 0.030%, 0.030%, 0.034%,
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T A B L E 7 Mean values of the optimized weight obtained for the 37-bar truss problem using different values of θ and constraint
handling methods

𝜽 value

BCH method 0 0.25 0.5 0.75 1 2 3 4 6 Range (%)

Absorbing 354.479 352.434 352.349 352.388 352.297 352.282 352.383 352.334 352.482 0.624

Random 379.332 384.521 377.601 377.090 374.519 370.723 370.262 369.419 369.854 4.088

Random_all 364.693 364.371 364.739 364.121 364.463 364.641 365.154 366.036 365.678 0.526

Conservation 354.829 352.459 352.467 352.377 352.372 352.303 352.311 352.410 352.450 0.717

Infinity 375.029 371.631 367.952 365.533 363.668 359.397 359.301 357.826 359.118 4.807

Periodic 381.259 387.520 381.787 378.392 374.766 367.786 365.017 364.228 367.163 6.395

Mirror 383.813 377.552 368.429 363.523 361.547 360.277 362.280 363.995 366.309 6.533

EBCH 354.781 352.391 352.420 352.335 352.292 352.276 352.326 352.395 352.456 0.711

Exp-C 354.649 352.647 352.654 352.482 352.522 352.504 352.580 352.580 352.609 0.615

Exp-S 380.881 380.062 378.067 370.756 365.503 363.123 364.599 364.849 366.051 4.890

IP-C 354.517 352.605 352.491 352.447 352.543 352.465 352.477 352.463 352.600 0.587

IP-S 358.705 362.059 366.185 364.311 361.060 360.538 360.187 359.522 359.847 2.085

PEBCH 354.143 352.351 352.359 352.337 352.424 352.294 352.362 352.380 352.407 0.525

Flyback 355.764 353.726 353.266 353.223 352.917 352.737 352.724 353.528 352.953 0.862

Flyback-best 354.395 352.454 352.327 352.323 352.267 352.280 352.340 353.082 352.441 0.604

T A B L E 8 Normalized best values for 37-bar 2-D truss

𝜽 value

BCH method 0 0.25 0.5 0.75 1 2 3 4 6
∑

Absorbing 0.016 0.002 0.002 0.002 0.004 0.002 0.002 0.004 0.004 0.039

Random 0.618 0.159 0.536 0.489 0.323 0.436 0.437 0.353 0.422 3.773

Random_all 0.312 0.272 0.365 0.308 0.383 0.357 0.349 0.428 0.348 3.122

Conservation 0.015 0.002 0.001 0.001 0.003 0.002 0.003 0.001 0.003 0.033

Infinity 0.368 0.051 0.115 0.125 0.205 0.097 0.095 0.046 0.087 1.189

Periodic 0.885 1.000 0.611 0.914 0.432 0.318 0.189 0.188 0.382 4.920

Mirror 0.536 0.417 0.247 0.070 0.181 0.127 0.177 0.226 0.269 2.252

EBCH 0.018 0.003 0.006 0.002 0.003 0.003 0.002 0.003 0.005 0.044

Exp-C 0.021 0.004 0.009 0.007 0.004 0.004 0.013 0.007 0.008 0.078

Exp-S 0.490 0.460 0.343 0.267 0.244 0.173 0.187 0.242 0.284 2.690

IP-C 0.018 0.006 0.004 0.003 0.011 0.007 0.007 0.005 0.014 0.074

IP-S 0.112 0.163 0.162 0.206 0.157 0.130 0.046 0.164 0.124 1.264

PEBCH 0.027 0.003 0.002 0.001 0.000 0.001 0.002 0.005 0.004 0.043

Flyback 0.063 0.023 0.021 0.017 0.012 0.018 0.015 0.014 0.010 0.193

Flyback-best 0.028 0.003 0.003 0.001 0.002 0.001 0.001 0.003 0.007 0.049∑
3.527 2.568 2.430 2.413 1.964 1.676 1.524 1.689 1.973 -
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T A B L E 9 Normalized mean values for 37-bar 2-D truss

𝜽 value

BCH method 0 0.25 0.5 0.75 1 2 3 4 6
∑

Absorbing 0.063 0.005 0.002 0.003 0.001 0.000 0.003 0.002 0.006 0.086

Random 0.768 0.915 0.719 0.704 0.631 0.524 0.510 0.487 0.499 5.756

Random_all 0.352 0.343 0.354 0.336 0.346 0.351 0.366 0.391 0.380 3.219

Conservation 0.073 0.005 0.006 0.003 0.003 0.001 0.001 0.004 0.005 0.101

Infinity 0.646 0.549 0.445 0.376 0.323 0.202 0.200 0.158 0.194 3.093

Periodic 0.822 1.000 0.837 0.741 0.638 0.440 0.362 0.339 0.423 5.603

Mirror 0.895 0.717 0.458 0.319 0.263 0.227 0.284 0.333 0.398 3.895

EBCH 0.071 0.004 0.004 0.002 0.001 0.000 0.002 0.004 0.005 0.093

Exp-C 0.068 0.011 0.011 0.006 0.007 0.007 0.009 0.009 0.010 0.137

Exp-S 0.812 0.788 0.732 0.524 0.375 0.308 0.350 0.357 0.391 4.637

IP-C 0.064 0.010 0.006 0.005 0.008 0.006 0.006 0.006 0.009 0.119

IP-S 0.183 0.278 0.395 0.342 0.249 0.235 0.225 0.206 0.215 2.326

PEBCH 0.053 0.002 0.003 0.002 0.004 0.001 0.003 0.003 0.004 0.075

Flyback 0.099 0.041 0.028 0.027 0.018 0.013 0.013 0.036 0.019 0.296

Flyback-best 0.060 0.005 0.002 0.002 0.000 0.000 0.002 0.023 0.005 0.099∑
5.028 4.674 4.002 3.393 2.869 2.315 2.334 2.356 2.565 -
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F I G U R E 9 Comparison of filtered normalized mean values for 37-bar 2-D truss

0.028%, 0.027%, 0.037%, 0.228%, and 0.231% for Absorbing, Conservation, EBCH, EXP-C, IP-C, PEBCH, Flyback, and
Flyback-best methods, respectively.

The mean convergence rates of the six selected BCH methods, based on the filtering mentioned above, are compared
in Figure 10. It is apparent that there is no considerable difference between the convergence trends of these BCH methods
for the 37-bar problem.

Population diversity measures for all the BCH methods, as well as the six best methods with 𝜃 = 2, are shown in
Figures 11 and 12, respectively. As seen in Figure 11, Random, Random-all, IP-S, EXP-S, and EXP-C concentrated on
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F I G U R E 10 Convergence rates of different BCH methods
for the 37-bar truss problem

F I G U R E 11 Population diversity
of all the BCH methods for the 37-bar
truss problem

F I G U R E 12 Population diversity of the filtered BCH
methods for the 37-bar truss problem
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diversification rather than intensification during the course of the iterations. We can also see that the search domain
for these methods is wider than for the other methods. The remaining BCH methods presented higher diversification
during the initial iterations and focused on intensification during the later iterations. Figure 12 shows that, similar to
the previous design example, EBCH, Conservation, and PEBCH provide more distance between the two ends of the
search space.

The best solution obtained by the ISA is compared with those from the literature in Table 10. It can be seen that,
overall, the ISA is the best algorithm.

5.1.3 Spatial 52-bar truss

Figures 13 and 14 show the spatial 52-bar truss structure proposed by Lin et al.43 In this problem, the goal is
to optimize the size and the shape of the truss structure. To this end, the structural elements are divided into
eight different groups. Free nodes are allowed to move ±2 m from their original position in both radial and verti-
cal directions to preserve the radial symmetry of the structure. A non-structural mass equal to 50 kg is added to
each free node as shown in Figures 13 and 14. The essential parameters for describing this case study are listed
in Table 11.

The average optimized weights over 50 independent runs are listed in Table 12. The normalized best and mean results
are also presented in Tables 13 and 14, respectively. It can be seen from Table 13 that the Absorbing method with 𝜃 = 2
has the lowest objective value. The minimum cumulative best value was obtained by the Absorbing method and, in terms
of 𝜃, the minimum cumulative best value was obtained with 𝜃 = 0.5. We can see from Table 14 that the minimum cumu-
lative mean value was obtained by EBCH and this cumulative value was minimum for 𝜃 = 3. The lowest mean value was
recorded by PEBCH with 𝜃 = 2. The same methods filtered previously were selected to compare the normalized mean
values, as shown in Figure 15. It appears that EBCH and PEBCH perform better than the other methods with lower mean
values. Moreover, the ISA with different BCH methods performs better when 𝜃 varies between 0.75 and 2. The range
of variations for the objective values when 𝜃 is between 0.75 and 3 are 4.472%, 1.572%, 4.907%, 4.332%, 4.838%, 4.693%,
4.927%, and 5.305% for Absorbing, Conservation, EBCH, EXP-C, IP-C, PEBCH, Flyback, and Flyback-best methods,
respectively.

A convergence rate plot based on the mean values for 𝜃 = 3 is presented for the selected BCH methods in Figure 16,
and in this case, no significant difference between the different methods is observed.

A comparison of the best solution obtained in this study with previous solutions from the literature is provided in
Table 15. We can see that, for this case study, the ISA achieved lower objective values than all methods, with the exception
of Farshchin et al.40

F I G U R E 13 Initial layout of the
spatial 52-bar truss structure
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F I G U R E 14 Top view of the spatial
52-bar truss structure including numbering of
elements and nodes

T A B L E 11 Design parameters of the spatial 52-bar truss Property Value (unit)

Modulus of elasticity (E) 2.1× 1011 (N/m2)

Material density (𝜌) 7800 (kg/m3)

Design variable lower bound 1× 10−4 (m2)

Design variable upper bound 10× 10−4 (m2)

Frequency constraints f 1 ≤ 15.916, f 2 ≥ 28.648 (Hz)

Population diversity variations are depicted in Figures 17 and 18 for all the BCH methods and for filtered meth-
ods with 𝜃 = 3, respectively. We can see from Figure 17 that, similar to the previous case studies, Random-all pushes
the algorithm toward diversification rather than intensification. Although Random, Periodic, Mirror, and IP-S meth-
ods moved from diversification to intensification in the final iterations, their diversification was higher than the other
algorithms. Moreover, in the above mentioned BCH methods as well as the Random-all method, the size of the search
space is larger than the other methods. Figure 18 shows that the filtered BCH methods gradually switch from higher
diversification in the initial steps to higher intensification around the 400th iterations. Between the 400th to 600th
iterations an abrupt increase was observed for all the BCH methods and the diversity decreased gradually after the
600th iterations.
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T A B L E 12 Mean values of the optimized weight obtained for the 52-bar truss problem using different values of θ and
constraint handling methods

𝜽 value

BCH method 0 0.25 0.5 0.75 1 2 3 4 6 Range (%)

Absorbing 267.364 211.298 206.247 206.448 200.789 203.982 209.767 201.246 206.307 33.157

Random 298.498 303.741 274.869 278.168 288.043 303.535 304.480 302.416 301.506 10.773

Random_all 257.453 246.718 244.838 244.605 246.342 253.398 270.636 269.165 269.518 10.642

Conservation 250.714 219.505 206.869 204.993 202.040 203.418 203.868 205.217 206.824 24.091

Infinity 294.715 260.221 241.372 240.298 226.918 229.001 217.362 224.108 224.101 35.587

Periodic 297.440 297.641 292.421 297.143 302.790 283.112 254.172 250.301 249.942 21.144

Mirror 312.848 283.014 275.643 251.986 247.953 229.159 238.759 233.504 247.905 36.520

EBCH 259.544 206.664 206.432 203.132 199.331 200.425 204.043 209.112 206.383 30.207

Exp-C 250.385 214.243 210.286 202.739 202.238 203.552 209.418 210.999 206.848 23.807

Exp-S 323.731 313.632 293.604 293.923 300.480 300.037 290.623 302.385 315.625 11.392

IP-C 259.240 220.538 212.456 204.090 203.438 206.551 203.503 213.280 213.557 27.430

IP-S 279.522 267.307 263.534 256.193 257.478 257.345 246.717 253.812 266.542 13.296

PEBCH 277.442 214.435 205.576 202.926 200.281 199.192 208.541 207.926 217.400 39.283

Flyback 259.128 223.321 216.850 213.167 204.608 203.158 208.847 205.195 210.598 27.550

Flyback-best 275.793 211.441 205.495 203.132 201.534 201.876 205.130 212.225 207.631 36.847

T A B L E 13 Normalized best values for 52-bar 3-D truss

𝜽 value

BCH method 0 0.25 0.5 0.75 1 2 3 4 6
∑

Absorbing 0.017 0.001 0.003 0.007 0.002 0.000 0.012 0.003 0.009 0.054

Random 0.497 0.712 0.146 0.200 0.464 0.469 0.403 0.441 0.564 3.897

Random_all 0.475 0.532 0.275 0.489 0.155 0.364 0.349 0.492 0.696 3.827

Conservation 0.103 0.005 0.007 0.008 0.005 0.005 0.005 0.010 0.010 0.158

Infinity 0.309 0.250 0.173 0.143 0.099 0.145 0.063 0.065 0.059 1.305

Periodic 0.382 0.710 0.390 0.823 1.000 0.271 0.173 0.229 0.219 4.197

Mirror 0.794 0.456 0.100 0.167 0.140 0.174 0.160 0.170 0.096 2.256

EBCH 0.118 0.006 0.003 0.007 0.006 0.002 0.004 0.010 0.019 0.175

Exp-C 0.120 0.025 0.015 0.021 0.013 0.010 0.001 0.004 0.008 0.217

Exp-S 0.828 0.470 0.566 0.630 0.548 0.951 0.881 0.496 0.696 6.065

IP-C 0.118 0.017 0.016 0.004 0.011 0.005 0.007 0.015 0.010 0.205

IP-S 0.241 0.255 0.322 0.317 0.220 0.191 0.130 0.399 0.217 2.292

PEBCH 0.015 0.003 0.014 0.003 0.002 0.005 0.009 0.017 0.015 0.083

Flyback 0.184 0.048 0.035 0.072 0.021 0.014 0.017 0.030 0.038 0.459

Flyback-best 0.074 0.009 0.006 0.006 0.016 0.006 0.007 0.009 0.022 0.155∑
4.276 3.500 2.070 2.896 2.701 2.613 2.219 2.392 2.678 -
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T A B L E 14 Normalized mean values for 52-bar 3-D truss

𝜽 value

BCH method 0 0.25 0.5 0.75 1 2 3 4 6
∑

Absorbing 0.547 0.097 0.057 0.058 0.013 0.038 0.085 0.016 0.057 0.969

Random 0.797 0.839 0.608 0.634 0.713 0.838 0.845 0.829 0.822 6.926

Random_all 0.468 0.382 0.367 0.365 0.379 0.435 0.574 0.562 0.565 4.095

Conservation 0.414 0.163 0.062 0.047 0.023 0.034 0.038 0.048 0.061 0.889

Infinity 0.767 0.490 0.339 0.330 0.223 0.239 0.146 0.200 0.200 2.934

Periodic 0.789 0.791 0.749 0.787 0.832 0.674 0.441 0.410 0.407 5.880

Mirror 0.913 0.673 0.614 0.424 0.392 0.241 0.318 0.276 0.391 4.240

EBCH 0.485 0.060 0.058 0.032 0.001 0.010 0.039 0.080 0.058 0.822

Exp-C 0.411 0.121 0.089 0.028 0.024 0.035 0.082 0.095 0.061 0.947

Exp-S 1.000 0.919 0.758 0.761 0.813 0.810 0.734 0.829 0.935 7.558

IP-C 0.482 0.171 0.106 0.039 0.034 0.059 0.035 0.113 0.115 1.156

IP-S 0.645 0.547 0.517 0.458 0.468 0.467 0.382 0.439 0.541 4.462

PEBCH 0.628 0.122 0.051 0.030 0.009 0.000 0.075 0.070 0.146 1.132

Flyback 0.481 0.194 0.142 0.112 0.043 0.032 0.078 0.048 0.092 1.222

Flyback-best 0.615 0.098 0.051 0.032 0.019 0.022 0.048 0.105 0.068 1.056∑
9.442 5.668 4.566 4.136 3.986 3.933 3.918 4.119 4.519 -

F I G U R E 15 Comparison of the filtered normalized
mean values for the 52-bar truss problem
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F I G U R E 17 Population diversity
of all the BCH methods for 52-bar 3-D
truss

F I G U R E 18 Population diversity of the filtered BCH
methods for 52-bar 3-D truss

5.1.4 Spatial 72-bar truss

The weight minimization problem of the spatial 72-bar truss structure shown in Figure 19 was previously solved by Miguel
and Miguel38 and Kaveh and Ghazaan.44 The truss is designed using 16 groups of structural elements to maintain the
structural symmetry. Four non-structural masses equal to 2268 kg are added to nodes 1–4. Descriptive parameters for this
case study are provided in Table 16.

Average weights and normalized best and mean results are presented in Tables 17, 18, and 19, respectively. Based on
the results, the Conservation method and 𝜃 = 0.5 provided the minimum mean value (about 331.4156). Moreover, we can
see from Table 17 that the Conservation method and 𝜃 = 0. 25 are the most efficient method and best parameter setting,
respectively, based on their lowest cumulative normalized mean values. Similarly, the best-found solution was obtained
by the Flyback-best method and 𝜃 = 0.5 (see Table 18). Figure 20 visually compares mean results using the same selection
strategy adopted for the other design examples. We can see in Figure 20 that 𝜃 = 0.25 provided the best results considering
most of the BCH schemes. Moreover, increasing 𝜃 resulted in increasing the average weights. The mean values for the
selected methods for 𝜃 between 0.25 and 4 vary by about 21.64%, 25.31%, 26.65%, 24.51%, 24.15%, 25.56%, and 27.23% for
Absorbing, Conservation, EBCH, EXP-C, IP-C, PEBCH, Flyback, and Flyback-best, respectively.
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F I G U R E 19 Schematic of the
spatial 72-bar truss structure

Property Value (unit)

Modulus of elasticity (E) 6.895× 1010 (N/m2)

Material density (𝜌) 2767.99 (kg/m3)

Design variable lower bound 6.45× 10−5 (m2)

Design variable upper bound 25× 10−4 (m2)

Frequency constraints f 1 = 4, f 3 ≥ 6 (Hz)

T A B L E 16 Design parameters of the 72-bar 3-D truss

The mean convergence rates of the eight selected BCH methods for 𝜃 = 0.25 are compared in Figure 21. As seen in
this figure, the best convergence was provided by Absorbing, EXP-C, and Flyback-best, in that order. The worst conver-
gence was recorded by EBCH method in the 72-bar truss case. Conservation, PEBCH, and IP-C method were fairly poor
compared to other selected methods in this case study.

We compare the population diversity of the utilized method when 𝜃 = 0.25 in Figures 22 and 23. Figure 22 shows
that the Random-all scheme followed a pattern similar to the previous case studies. Random, Periodic, EXP-S, and
IP-S methods provide stronger diversification than intensification. The remaining methods, as seen in Figure 23,
started with stronger diversification and converged to focus more on intensification. It can also be observed in
Figure 23 that EBCH searched through a wider solution space than the other methods, the Absorbing method pro-
vided more diversification during the final iterations, and PEBCH and IP-C had the most intensification during the
final iterations.

The best solution with the ISA is compared with those from the literature in Table 20. Remarkably, the ISA converged
to the lowest structural weight among all the compared methods. However, the constraints are slightly violated by the
presented solution.
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T A B L E 17 Mean values of the optimized weight obtained for the 72-bar truss problem using different values of θ and constraint
handling methods

𝜽 value

BCH method 0 0.25 0.5 0.75 1 2 3 4 6 Range (%)

Absorbing 397.821 332.523 333.024 335.574 336.824 366.117 395.156 404.482 451.893 35.898

Random 491.845 476.907 482.839 485.128 490.738 525.787 522.050 527.744 539.764 13.180

Random_all 439.423 459.608 477.008 490.559 492.111 511.438 518.522 529.491 555.754 26.474

Conservation 390.225 333.838 331.416 335.912 336.455 363.357 387.149 415.286 459.563 38.667

Infinity 433.142 389.970 395.262 386.514 397.784 417.113 442.260 458.861 483.039 24.973

Periodic 448.163 462.789 469.575 466.416 479.267 506.438 520.271 526.246 529.042 18.047

Mirror 451.992 385.263 382.788 384.580 382.516 398.029 416.333 429.954 461.298 20.596

EBCH 392.317 335.192 333.538 337.471 337.254 365.113 388.231 422.417 466.475 39.856

Exp-C 382.694 341.024 350.518 354.890 358.661 382.684 406.056 424.614 448.302 31.458

Exp-S 512.528 485.332 494.227 484.613 493.109 511.526 518.878 526.840 534.985 10.394

IP-C 393.110 336.306 340.434 342.347 345.990 376.163 397.414 417.534 458.288 36.271

IP-S 400.745 413.162 428.285 444.073 435.713 465.803 474.727 490.137 485.122 22.306

PEBCH 392.358 331.777 333.513 338.000 347.206 356.298 385.218 415.167 460.303 38.739

Flyback 398.750 357.060 359.353 361.700 368.975 392.150 419.959 448.336 487.699 36.587

Flyback-best 399.357 331.533 333.059 334.236 338.707 356.166 398.410 421.800 449.017 35.437

T A B L E 18 Normalized best values for 72-bar 3-D truss

𝜽 value

BCH method 0 0.25 0.5 0.75 1 2 3 4 6
∑

Absorbing 0.151 0.003 0.002 0.002 0.003 0.027 0.082 0.032 0.246 0.547

Random 0.517 0.683 0.604 0.747 0.626 0.852 0.864 0.905 0.764 6.562

Random_all 0.440 0.523 0.582 0.635 0.608 0.848 0.627 1.000 0.974 6.237

Conservation 0.030 0.003 0.001 0.001 0.005 0.013 0.056 0.204 0.314 0.627

Infinity 0.261 0.200 0.046 0.140 0.186 0.262 0.404 0.437 0.553 2.488

Periodic 0.281 0.509 0.554 0.573 0.465 0.780 0.875 0.966 0.830 5.834

Mirror 0.358 0.101 0.122 0.166 0.088 0.119 0.184 0.334 0.518 1.990

EBCH 0.097 0.001 0.001 0.003 0.005 0.042 0.059 0.154 0.313 0.677

Exp-C 0.111 0.008 0.008 0.012 0.033 0.032 0.185 0.153 0.321 0.865

Exp-S 0.700 0.638 0.712 0.756 0.784 0.700 0.679 0.911 0.760 6.641

IP-C 0.089 0.001 0.004 0.006 0.006 0.072 0.072 0.127 0.313 0.689

IP-S 0.217 0.314 0.272 0.331 0.308 0.408 0.489 0.641 0.637 3.618

PEBCH 0.137 0.002 0.003 0.003 0.003 0.022 0.010 0.189 0.352 0.721

Flyback 0.209 0.060 0.072 0.056 0.025 0.144 0.231 0.402 0.647 1.847

Flyback-best 0.175 0.001 0.000 0.003 0.005 0.018 0.127 0.091 0.228 0.647∑
3.772 3.046 2.984 3.437 3.149 4.339 4.944 6.548 7.770 -
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T A B L E 19 Normalized mean values for 72-bar 3-D truss

𝜽 value

BCH method 0 0.25 0.5 0.75 1 2 3 4 6
∑

Absorbing 0.296 0.005 0.007 0.019 0.024 0.155 0.284 0.326 0.537 1.652

Random 0.715 0.649 0.675 0.685 0.710 0.866 0.850 0.875 0.929 6.954

Random_all 0.481 0.571 0.649 0.709 0.716 0.802 0.834 0.883 1.000 6.647

Conservation 0.262 0.011 0.000 0.020 0.022 0.142 0.248 0.374 0.571 1.651

Infinity 0.453 0.261 0.285 0.246 0.296 0.382 0.494 0.568 0.676 3.661

Periodic 0.520 0.586 0.616 0.602 0.659 0.780 0.842 0.868 0.881 6.354

Mirror 0.537 0.240 0.229 0.237 0.228 0.297 0.379 0.439 0.579 3.165

EBCH 0.271 0.017 0.009 0.027 0.026 0.150 0.253 0.406 0.602 1.762

Exp-C 0.229 0.043 0.085 0.105 0.121 0.229 0.333 0.415 0.521 2.080

Exp-S 0.807 0.686 0.726 0.683 0.721 0.803 0.836 0.871 0.907 7.040

IP-C 0.275 0.022 0.040 0.049 0.065 0.199 0.294 0.384 0.566 1.894

IP-S 0.309 0.364 0.432 0.502 0.465 0.599 0.639 0.708 0.685 4.703

PEBCH 0.272 0.002 0.009 0.029 0.070 0.111 0.240 0.373 0.575 1.681

Flyback 0.300 0.114 0.125 0.135 0.167 0.271 0.395 0.521 0.697 2.725

Flyback-best 0.303 0.001 0.007 0.013 0.033 0.110 0.299 0.403 0.524 1.692∑
6.032 3.571 3.894 4.060 4.324 5.897 7.219 8.414 10.249 -
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F I G U R E 20 Comparison of the filtered
normalized mean values for the 72-bar truss
problem

F I G U R E 21 Convergence rates of different BCH methods for
the 72-bar truss problem
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F I G U R E 22 Population diversity
of all the BCH methods for the 72-bar
truss problem

F I G U R E 23 Population diversity of the filtered BCH
methods for 72-bar 3-D truss

6 CONCLUSION AND FUTURE WORK

In this study, different settings and variations of an art-inspired algorithm – the ISA – were applied on four bench-
mark truss optimization problems. In addition to automating the optimum design of truss structures using a robust and
dependable optimization technique, this study also aimed to maximize the performance of ISA by applying and analyzing
different configurations of the algorithm.

Specifically, adjusting the main parameter of the ISA through 𝜃 for different truss problems and investigating the
effect of various BCH approaches on the ISA were the main aims of this study. To explore the performance of all the
variations, the benchmark truss problems were tackled using a combination of different 𝜃 values (0, 0.25, 0.5, 0.75, 1, 2,
3, 4, and 6) and 13 different BCH schemes. We reported the results based on the best, mean and SD for 50 repeated runs
of each combination. Moreover, the impact of different BCH methods on diversification and intensification was assessed
by analyzing their population diversity. To this end, the L1 norm method was utilized to examine population diversity in
each iteration.

The findings of this study clearly demonstrated the sensitivity of optimization results to the parameter 𝜃. Although it
is possible to find a range of 𝜃 that yields satisfactory results, this parameter should be tuned in order to maximize the
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efficiency of the ISA. The sensitivity of truss optimization problems to various BCH approaches was also investigated for
the first time in the literature. This study clearly demonstrated the impact of BCH methods on the optimized design of
truss structures. Methods such as PEBCH, Conservation, EBCH and Absorbing provided consistently better results than
other BCH methods. Moreover, the results confirmed that the best value of 𝜃 ranges between 0.75 and 3, and the optimum
weight changes marginally if 𝜃 remains within this domain.

The benchmark design examples in this study included both 2-D and 3-D truss structures. In order to further verify the
performance of the ISA on more complex structures, our future work will involve the application of the ISA on large-scale
2-D truss structures, such as the planar 200-bar truss46 and spatial 942-bar tower, as well as the spatial 224-bar truss.47,48

Investigation into automatic tuning of the parameter depending on the problem context can be another research topic.
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