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Abstract: Data are presently being produced at an increased speed in different formats, which
complicates the design, processing, and evaluation of the data. The MapReduce algorithm is a
distributed file system that is used for big data parallel processing. Current implementations of
MapReduce assist in data locality along with robustness. In this study, a linear weighted regression
and energy-aware greedy scheduling (LWR-EGS) method were combined to handle big data. The
LWR-EGS method initially selects tasks for an assignment and then selects the best available machine
to identify an optimal solution. With this objective, first, the problem was modeled as an integer linear
weighted regression program to choose tasks for the assignment. Then, the best available machines
were selected to find the optimal solution. In this manner, the optimization of resources is said to
have taken place. Then, an energy efficiency-aware greedy scheduling algorithm was presented to
select a position for each task to minimize the total energy consumption of the MapReduce job for
big data applications in heterogeneous environments without a significant performance loss. To
evaluate the performance, the LWR-EGS method was compared with two related approaches via
MapReduce. The experimental results showed that the LWR-EGS method effectively reduced the
total energy consumption without producing large scheduling overheads. Moreover, the method
also reduced the execution time when compared to state-of-the-art methods. The LWR-EGS method
reduced the energy consumption, average processing time, and scheduling overhead by 16%, 20%,
and 22%, respectively, compared to existing methods.

Keywords: MapReduce; distributed file system; big data; linear weighted regression; energy-aware
greedy scheduling; heterogeneous environment

1. Introduction

One of the primary insightful ways to store and compute big data is via distributed
and parallel processing. A large number of data are being assembled every day from web
authoring, digital media, scientific instruments, etc. However, this is complicated by limi-
tations, with regard to the software and in the research community, when it comes to the
effectiveness with which the big data are stored, queried, analyzed and forecasted. An im-
portant computational framework for large-scale data processing is known as MapReduce.
Existing applications of MapReduce aid in data locality along with robustness.

Previously, a novel Map Task Data Locality-based Scheduler (MTDLS) was pre-
sented [1] with the prime objective of allocating input data blocks to nodes based on
their processing capabilities. Depending on their computing capabilities in the heteroge-
neous Hadoop Cluster, the map scheduling and reduction tasks were performed to the
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corresponding nodes. The nodes with fast processing capabilities were comparatively
allocated to more tasks than the nodes with slow processing capabilities.

This scheduler has been evaluated using different workloads from the high benchmark
suite. With this process, the scheduler also reduces the job execution time with improved
data locality. Though the job execution time is reduced with improved data locality, the
average processing time is high. Thus, in this work, to reduce the average processing
time, first, tasks were deliberately chosen for the assignment, and then, the best available
machine was selected in an energy-efficient manner. In this way, the average processing
time should be reduced in a large heterogeneous environment, which in turn should
enhance the MapReduce performance.

Several methods have been presented to implement the Apriori algorithm on the
MapReduce framework. The Apriori algorithm performs the frequent item set mining and
association rule learning over databases. However, only a few methods have attained its
performance enhancement. Thus, improved MapReduce-based Apriori algorithms called
Variable Fixed Passes Combined-counting (VFPC) and Elapsed Time-based Dynamic Passes
Combined-counting (ETDPC) were previously proposed [2]. In addition, the number
of passes is reduced by skipping the pruning step in certain passes by designing the
Optimized-VFPC and Optimized-ETDPC algorithms.

A quantitative analysis revealed that despite the increased number of candidates, the
execution time is notably less and is also scalable with an increasing number of nodes. In
addition, the energy consumed during the optimization process is less concentrated [2]. To
address this issue, in this work, an energy efficiency-aware greedy scheduling algorithm is
designed, which focuses not only on the energy being consumed but also on the scheduling
overhead involved.

Distributed parallel methods and mechanisms are frequently used to achieve the per-
formance and scalability requirement for clustering large datasets. In a previous study [3],
a parallel k-means algorithm with the MapReduce programming model was used in doc-
ument clustering to minimize the processing time [4]. Recently, the utilization of big
data has increased due to the fact that it has performed very efficiently in several fields,
including social media and E-commerce transactions. A comprehensive overview of big
data is provided in another study [5], with a brief analysis of the comparative study of
job-scheduling algorithms.

Currently, serverless computing and Functions as a Service (FaaS) have evolved as an
execution pattern wherein the user does not manage the servers. Previously [6], a high-
performance serverless architecture was created to execute MapReduce jobs as the storage
backend, therefore reducing the execution time involved. However, the storage overhead
was high. Thus, to address this issue, a dynamically adaptable block IO(Input/Output)
scheduling scheme was presented [7]. This, in turn, reduced the MapReduce workloads
without compromising the Service Level Agreements (SLA).

The extensive use of new materials and methods results in the generation of a large
data volume. With the inception of the “4Vs”, i.e., volume, velocity, variety and veracity,
which specialize in the complexity involved in big data, good performance is said to be
ensured based on the volume of transactions being handled. In a previous study [8], a fine-
grained parallelization model for Data Warehouse (DW) was designed, which provided
several means of parallelization at both the functionality and elementary levels.

However, the resources required in a heterogeneous environment are higher with the
nature and type of job involved. A Dynamic Grouping Integrated Neighboring Search [9]
provides a means for a balanced resource utilization and also improves the data locality
involved in the heterogeneous environment. In addition, another decision tree classifica-
tion algorithm was introduced [10], which is based on the programming framework of
MapReduce, with the objective of improving accuracy in a big data environment.

Recently, research on big data using MapReduce in a heterogeneous environment has
become increasingly popular. Certain notable issues that still need to be solved are the
type of heterogeneity, enhancing the MapReduce performance, the storage distribution, the
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retrieval performance and the time factor evaluation. As far as the big data retrieval system
is concerned, designing effective algorithms to swiftly and precisely acquire the necessitated
content with a minimum energy consumption has become a salient issue. In addition,
users might desire obtaining different types of information, such as those that consider
their query objectives and necessitate a cross-type of information characterization, with
the minimum job execution time involved. Moreover, due to the scalable nature of data,
is important to determine how to minimize the time cost evaluation in a heterogeneous
environment, in addition to reducing the scheduling overhead.

2. Contribution

To solve the problems described above, we built an optimized linear weighted regres-
sion with MapReduce algorithm to reduce the average processing time for a heterogeneous
environment. Then, an energy efficiency-aware greedy scheduling algorithm was designed
with the objective of reducing the energy that was consumed during the selection of the
best available machine.

The major contributions of this paper include the following:

• Algorithms that support big data in a heterogeneous environment are presented. Any
type of big data can be retrieved based on linear weighted regression with MapReduce
algorithms.

• The intermediate key-value pairs are stored via metadata together with the map tasks
and the reduce tasks and do not straightforwardly process large-sized big data.

• The energy-efficiency-aware greedy scheduling algorithm, together with the MapRe-
duce framework, is designed to parallel store data and process the retrieval for big
data applications in heterogeneous environments.

• This is a proposal of the scheduling model for reducing energy consumption during the
scheduling of the machine by improving the scheduling overhead and also minimizing
the job execution time. Thus, the proposed approach enhances the MapReduce
performance in heterogeneous environments in an energy-aware manner.

The remainder of this paper is organized as follows. Section 2 explains the work
related to the heterogeneous data retrieval and the big data processing methods. Section 3
describes the system model and background description. Section 4 presents the solution
to the problem, the algorithm description and the complexity analysis with a detailed
mathematical model. A performance evaluation is provided in Section 5, which presents
detailed experimental results. The conclusions are provided in Section 6.

3. Related Work

Over the past few years, one of the effective platforms for processing large unstruc-
tured data has been via system logs that implement Extract Transform Load models and
measuring web indexes. Because big data analytics necessitate distributed computing at
a higher rate, specifically involving thousands to millions of machines, one of the most
extensive barriers is the practice of accessing big data processing in small and medium
business establishments.

Even though MapReduce is cost-effective, with a heterogeneous nature, it has evolved
to present a significant limitation when it comes to performance. To address this issue, a
self-adaptive task pruning approach was previously presented [11] to reduce the average
job completion time and to also minimize the Input Output (IO) rate by applying the
k-means clustering algorithm.

In the method, the search intentions of the users are conveyed via semantic means,
and this model has thus become a paramount tool for information retrieval. To assist the
semantic-based multimedia retrieval in a big data environment, an optimized Semantic
Ontology Retrieval (SOR) algorithm was previously presented [12], which utilized big data
processing tools with the purpose of storing and retrieving heterogeneous multimedia
data. For example, a large number of multi-dimensional data have been generated via
geoscience observations. However, it is cumbersome for geoscientists to perform these
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tasks, because the processing of a massive number of data requires a lot of time. In addition,
due to the data-intensive nature, the data analytics require complicated mechanisms and
several tools.

To address the above-mentioned issues, a scientific workflow framework was pro-
posed [13] by leveraging cloud computing, MapReduce and Service-Oriented Architecture
(SOA). With this framework, the data processing time was minimized. In addition, another
MapReduce Task Scheduler using Dynamic Calibration was designed [14] in a heteroge-
neous MapReduce environment.

Thus, heterogeneous architectures have transpired with encouraging results to im-
prove the energy efficiency by providing each user with the chance to run on a core that
equates resource requirements more efficiently compared to the size-fits-all processing
node. In a previous study [15], k-means, K Nearest Neighbor, Support Vector Machine and
Naive Bayes were examined to measure the power efficiency and energy efficiency of the
system. However, guaranteeing the Quality of Service (QoS) with a minimum resource
cost is now one of the new issues in computation-intensive MapReduce computations that
also involve dynamic changes. To address this issue, a new event-driven framework was
developed that aimed to reduce the running cost involved in the MapReduce computa-
tion [16]. In addition, to cope with the increasing size of datasets and minimal analysis
time, Hadoop MapReduce utilized parallel computations on large, distributed clusters that
comprised several machines involved in the design. Furthermore, another study focused
on measuring the data replication factor on the MapReduce job completion time with the
aid of regression analysis, and the total job completion time was exponentially reduced [17].

Due to the challenges involved in big data and analytical methods, a brief critical
analysis was conducted [18]. However, the analysis was not very rigorous. To address
this issue, parallelizing the Back Propagation Neural Network using MapReduce was
performed in another study [19], with the objective of not only improving the efficiency in
terms of precision but also refining the classification results. In addition, the heterogeneous
architecture in big data processing using the MapReduce paradigm was also presented [20].

In [21,22], a power efficiency model was proposed for measuring the power flow
approach based on the S-iteration process and a robust power flow algorithm based on
bulirsch–stoer method. As part of the proposed study, this paper helps to measure the
power efficiency effectively. In [23,24], different platformers are shown to measure energy
efficiency in terms of Cloud sharing environment, software-defined network and 4G/5G
mobile data communication fields in terms of energy consumption and data handling, with
these technologies and challenges addressed in detail. By considering these approaches
evolve the proposed model in different directions by addressing all the challenges.

In summary, although the methods presented above attain a good performance,
difficulties, such as the average processing time and scheduling overhead, prevent these
methods from being widely applied. Our method, namely Linear Weighted Regression
and Energy-aware Greedy Scheduling (LWR-EGS), provides a different approach for
deliberately selecting the tasks for assignment and then selecting the best available machine
(i.e., resource) for them in an energy-efficient manner. The experimental results presented
here indicate the effectiveness of the proposed algorithm.

4. Methodology

This section presents the main contribution of the paper, including the design and
development of the proposed method. This method bridges the gap between choosing tasks
for an assignment and selecting the best available machine, improving the MapReduce
performance, and providing an algorithm suite in MapReduce. In the proposed LWR-
EGS method, we address the limitations of the MapReduce framework that are faced in
a heterogeneous environment and propose a Linear Weighted Regression-based model
for optimal resource scheduling. Furthermore, the main idea and motivation of the LWR-
EGS method are to minimize the average processing time and energy consumption while
selecting the best available machine by implementing them concurrently. The following
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sections formalize all the concepts in detail by starting a system model, followed by a
problem description and an elaborate description of the proposal.

4.1. System Model

To process large-scale datasets in a distributed manner, one of the most prevalent
frameworks is MapReduce. A user’s request for data processing under the MapReduce
framework is referred to as a job J. The job J is expressed as two functions Map M and
Reduce R. The input data for a job J are split into data chunks and are stored in a distributed
manner across the cluster via a distributed file system. A user submits job J, and on the
other hand, the MapReduce framework splits job J into multiple map Mi tasks and reduces
Ri tasks as follows.

Each data chunk from the corresponding user input data relates to one map task that
studies the data chunk and relates the map function to the data chunk. Then, intermediate
data are generated. The intermediate data are represented in the form of key-value K−V
pairs. These key-value

K − V pairs are stored on local disks in machines that process the map tasks. The
set of all the probable keys K of the intermediate data is split into different subsets. Each
of the different subsets coincides with a reduce task. The reduce task R retrieves the
intermediate key-value pairs from all the map tasks and applies to the reduce function. By
doing this, the reduce task R integrates the intermediate data and generates the results.
The above-mentioned representations are provided below:

T = MAPREDUCE (Input)〈k1, v1〉
→ MAP→ 〈k2, v2〉
→ REDUCE→ 〈k3, v3〉

(1)

From Equation (1), the MapReduce of three different key-value pairs is performed.
Here, T indicates a task, k1 indicates a key and v1 indicates a value.

4.2. Problem Description

MapReduce is an abstraction to arrange immense parallel tasks with Hadoop, and it
is an open-source implementation that is a software environment specifically meant for
the distributed processing of enormous data sets over several machines. The main concept
behind the design of MapReduce is to map the given input data set into a group of key
and value pairs and then minimize all the pairs with the same key. The MapReduce is
comprised of a set of maps and reduce tasks. The MapReduce job is split into two processes,
the Map process, and the Reduce process, which perform the map tasks and reduce tasks,
respectively. The Reduce process is said to be initiated once the execution of the Map
process is accomplished. First, the Map process (via script) obtains certain input data and
maps them to the 〈Key, Value〉 pairs. Then, it processes the intermediate data. Finally,
the reduce process (via script) obtains these intermediate data as 〈Key, Value〉 pairs and
reduces the pairs with the same key into a single pair.

The problem is to first deliberately select the tasks for the assignment and then to select
the best available machine (i.e., resource) for them. In this manner, the optimization of the
resources takes place. Second, with the optimized resources assigned to each of them (i.e.,
resources), the overall energy consumption of all the tasks is reduced within the stipulated
time in heterogeneous environments [25]. Here, the resource optimization is based on
prior knowledge about the projected energy consumption and the projected processing
time of each task while executing each machine. In addition, assigning a task to a position
here refers to positioning the data on the machine to which the position belongs and then
running the corresponding script (i.e., either the map process or the reduce process).

4.3. Integer Linear Weighted Regression (ILWR) model

The Integer Linear Weighted Regression model was used to predict the time span of
the map, schedule and reduce phases. The objective was to design an optimized resource
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scheduler that was responsible for deciding which task was to be executed at which
time and on which machine by considering both the central processing unit (CPU) and
the memory. The most common objective of the optimized resource scheduling was to
reduce the job completion time optimally by properly allocating the tasks to the processors
using [26]. With this Integer Linear Weighted Regression (ILWR) model, the tasks were
selected deliberately for assignment, and with this, the best available machine (i.e., resource)
was selected for them. In this manner, resource optimization occurred. Figure 1 shows the
block diagram of the ILWR model.
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The feature sets utilized in the ILWR model are listed below. First, the tasks are
selected for assignment using an ILWR model. Then, the file size Fi, the number of reduces
Ri and the number of machines involved in the processing Mi to denote the ith sample
p with n number of samples are input. The above-mentioned feature sets are expressed
below.

pi =

 Fi
Mi
Ri

, i = 1, 2, . . . , n (2)

From (2), Fi indicates a file size, Mi number of machines and Ri number of reduces.
Next, a matrix P was defined to represent all the training data, and a vector Q was used to
represent the time, which correlated to the sample pi. Then, the matrix P and the vector Q
were represented as given below.

P = [p1, p2, . . . , pi] (3)

Q = [q1, q2, . . . , qi]
Pred (4)

For the prediction of Predphase, the weight for each sample was measured to identify
the most similar tasks. Then, the distance measure was used in the following expression:

D
(

psample, ppred

)
=

√(
Fsample − Fpred

)2
+
(

Msample −Mpred

)2
+
(

Rsample − Rpred

)2
(5)
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In the above Equation (5), psample corresponds to the sample point and ppred corre-
sponds to the prediction point. Their feature values were correspondingly used to measure
the distance between them. With the measured distance, selecting the best available ma-
chine with the objective of optimizing the resource was performed via the integer linear
model used based on [27]. The integer linear model was formulated as given below, where
i represents the ID number of a MAP task and j represents the ID number of a REDUCE
task. In addition, m represents the ID number of a MAP position, and n represents the ID
number of a REDUCE position. Moreover, Tl represents the time limit for completing all
the tasks for an assignment, with TMAP and TREDUCE representing the deadlines for the
completion of all of the MAP tasks and REDUCE tasks, respectively.

Mij =

{
1, i f MAP task i is assigned to MAP position j

−1, Otherwise
(6)

Rmn =

{
1, i f MAP task m is assigned to MAP position n

−1, Otherwise
(7)

From Equations (6) and (7) above, two sets of variables were defined for determin-
ing which position should run which tasks, and these were denoted by Mij and Rmn,
respectively, with the constraints as given below.

Mij = 1, ∀ i ∈ I (8)

Rmn = 1, ∀ m ∈ M (9)

The Equation (8) above ensures that each MAP task is allocated to one and only one
MAP position, and all the tasks are hence said to be allocated. Similarly, Equation (9)
ensures that each REDUCE task is allocated to one and only one REDUCE position, and
all the tasks are hence said to be reduced. After that, the free memory and CPU usage for
every task are measured using the expressions given below.

FCPU(i) =
100−UCPU(i) ∗ CPU(i)

100
(10)

FMEM(i) =
(100−UMEM(i) ∗MEM(i))

100
(11)

From Equations (10) and (11), CPU(i) refers to the processing capacity of the ith task,
MEM(i) refers to the RAM capacity of the ith task, UCPU(i) refers to the percentage of
CPU used for the ith task and UMEM(i) refers to the percentage of memory used for
the ith task. Finally, the prediction phase, Predphase, of the new instance for the optimal
allocation of resources process is used [28] and is expressed as follows:

Predphase = MijRmn[FCPU(i) ∪ FMEM(i)] + D
(

psample, ppred

)
(12)

The proposed model presents an optimal resource scheduler that dynamically dis-
tributes the position and map tasks to a machine that possesses the maximum processing
capacity in the heterogeneous environment, as shown in Algorithm 1.
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Algorithm 1 Proposed algorithm for optimal resource scheduling

Input: Set of input tasks to be assigned
Output: Optimized resource scheduling
1: For each file size Fi, reduces Ri and machines Mi do
2: Calculate the distance D

(
psample, ppred

)
between the sample point and prediction point for

input file size Fi
3: Calculate the deadlines for completion of the MAP task Mij and the REDUCE task Rmn, with
the constraints from (8) and (9)
4: Calculate the free CPU FCPU(i)
5: Calculate the free MEM FMEM(i)
6: Measure the prediction phase Predphase
7: If FCPU(i) and FMEM(i) are available then
8: assign the MAP tasks to Predphase
9: Else
10: FCPU(i) and FMEM(i) are not available, then
11: Go to step (2)
12: End if
13: End for
14: End

The above linear weighted regression with MapReduce algorithm has three main
phases. The first phase is to estimate the training dataset and represent it in the form of a
matrix and vector. The second phase is to estimate the map and reduce tasks and to set
up queues accordingly. The final phase is to select the tasks for assignment via regression
and resource availability while satisfying the available CPU and MEM. In this manner, the
tasks for the assignments are selected optimally.

4.4. Energy-Efficiency-Aware Greedy Scheduling Algorithm

Considering the increasing significance of Hadoop MapReduce, one of the main issues
faced in a heterogeneous environment while selecting the best available machine is saving
energy. In this work, we present an energy-efficiency-aware greedy scheduling algorithm to
choose a position for each task to minimize the total energy consumption of the MapReduce
task for big data applications in heterogeneous environments without causing a significant
performance loss. Figure 2 shows the block diagram of the energy-efficiency-aware greedy
scheduling model.
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The energy efficiency-aware greedy scheduling is illustrated in Figure 2 to select
the best available machine. According to the definition of energy efficiency, the energy
efficiency of a machine is defined by three aspects as follows:

EEProc =
Proc_Per f
EC_Proc

(13)
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EEMDIO =
MDIO

EC_MDIO
(14)

EEMTR =
MTR

EC_MTR
(15)

The three aspects given in Equations (13)–(15) represent the energy efficiency of a
processor EEProc, the energy efficiency of the maximum disk IO rate EEMDIO and the energy
efficiency of the maximum transmission rate EEMTR, respectively. These three aspects
are obtained based on the processor performance Proc_Per f , the disk IO rate MDIO, the
transmission rate MTR to the ratio of the energy consumption of the processor EC_Proc,
the energy consumption of the disk IO EC_MDIO and the energy consumption of the
transmission rate EC_MTR, respectively, of the corresponding machine.

There are dissimilarities between the energy efficiency of a machine and its host server
machine due to virtualization. Therefore, in this work, the machine degradation, with
respect to the energy efficiency of the processing, the disk IO rate and the data transmission
rate, is represented as DProc, DMDIO and DMTR, respectively. Thus, the energy efficiency of
a machine with degradation arising due to virtualization is expressed as follows:

EEProc
′ = EEProc ∗ (1− DProc) (16)

EEMDIO
′ = EEMDIO ∗ (1− DMDIO) (17)

EEMTR
′ = EEMTR ∗ (1− DMTR) (18)

Then, considering the task resource requirements, the machine energy features and
the workload on the host machine, the energy consumption of the task run on a machine is
expressed as follows:

TaskEnergy = EProc + EMDIO + EMTR (19)

APT =
n

∑
i=1

Ti ∗ Time (Task_Scheduled) (20)

TaskEnergy = EE_Proc′ ∗ T_Proc + EEMDIO
′ ∗ T_MIDO + EEProc

′∗T_MTR (21)

where
T_Proc =

N_Proc
Proc_Per f ′

(22)

T_MIDO =
N_MDIO

MDIO′
(23)

T_MTR =
N_MTR

MTR′
(24)

From Equations (22)–(24), T_Proc represents the number of instructions to be pro-
cessed, T_MIDO corresponds to the total number of disk data and T_MTR refers to the
data transfer rate, respectively. From the above three equations, finally, considering the
task resource requirements, the overall task energy is expressed as follows:

Taskenergy =

(
N_Proc

EE_Proc′
+

N_MDIO
EE_MDIO′

+
N_MTR

EE_MTR′

)
(25)

where N_Proc′, N_MDIO′ and N_MTR′ represent the energy efficiency of a machine
regarding several instructions to be processed, the IO rate and the data transfer rate,
respectively. From Equation (25), it is inferred that allocating tasks to machines with higher
energy efficiency is of great significance, which in turn minimizes the energy consumption.
In addition, the workload is of high significance, since a high load results in greater
performance degradation, which increases the energy consumption to complete a task.

The Algorithm 2 takes the machine energy efficiency and task demands into account
and hence ensures an energy-efficient task scheduling. The energy-efficient task scheduling
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is achieved in three phases. In the first phase, the energy efficiency of the processor without
degradation is considered. Because of the heterogeneous environment, not all the machines
possess an equal capacity, and every machine possesses its own processing speed, IO rate
or data transfer rate. Hence, by taking these factors into consideration in the second phase,
the processor energy efficiency with degradation is also considered. Finally, the energy
required for task scheduling is measured. In this way, the tasks are allocated to the best
available machine by considering the energy efficiency of the machine.

Algorithm 2 Proposed algorithm for energy-efficient machine selecting

Input: Set of assigned tasks
Output: Energy-efficient machine selection
1: For each file size Fi, reduces Ri and machines Mi do
2: Obtain the processor energy efficiency EEProc, the disk IO rate energy efficiency EEMDIO and
the transmission energy efficiency EEMTR using (13), (14) and (15), respectively
3: Obtain the processor energy efficiency EEProc, the disk IO rate energy efficiency EEMDIO and
the transmission energy efficiency EEMTR with degradation using (16), (17) and (18), respectively
4: Measure the energy consumption of the task run on a machine using (19) and (21)
5: Measure the overall task energy using (25)
6: End for

5. Experiments and Results and Performance Evaluation Model

In this paper, a low energy consumption resource scheduling method was proposed
for a heterogeneous environment. Therefore, the experiments were specifically designed
to measure the energy consumption along with the storage overhead and the average
running time of the resource scheduling of various tasks. For the experiment platform,
the Hadoop Distributed File System (HDFS) was used to construct the required storage.
Establishing the experimental dataset was an important step. To measure the performance,
the experiments were performed using a Kaggle dataset [29] on big city health data.

This dataset provides the status pertaining to the health of 26 of the nation’s largest
and most urban cities as extracted by 34 health (and six demographics-related) indicators.
These measures denote some of the paramount causes of morbidity and mortality in the
United States and the leading priorities of national, state and local health agencies.

The public health data were obtained from nine different overarching categories,
namely HIV/AIDS, cancer, nutrition/physical activity/obesity, food safety, infectious dis-
ease, maternal and child health, tobacco, injury/violence and behavioral health/substance
abuse. The columns included are the indicator category, year, indicator, gender, race, value,
place, requested methodology, source, methods and notes. To ensure a fair comparison,
the proposed methods were compared with two recent methods, namely MTDLS and
VFPC-ETDPC.

For the comparison, the performance evaluation model was based on the following
three criteria, the energy consumption, the average processing time and storage overhead.

5.1. Energy Consumption Performance Evaluation

Energy consumption was used to evaluate the effectiveness of the LWR-EGS. In the
first experiment, we assessed the energy being consumed whenever the tasks were submit-
ted by a user in a heterogeneous environment. The LWR-EGS method estimates the energy
being consumed by considering certain factors, including the number of instructions being
processed, the IO rate and the data transfer rate. In addition to attaining the goal of saving
energy, it was of great necessity to consider a machine’s energy efficiency. Assigning tasks
to a high-performance machine may enhance the overall resource scheduling optimization,
but at the same time, doing this results in extra energy consumption. Hence, in this work,
the energy efficiency of both the machine and the machine degradation, with respect to the
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energy efficiency of the processing, the disk IO rate and data transmission rate, were also
considered.

EC =
n

∑
i=1

Ti ∗ Taskenergy (26)

The energy consumption was measured using Equation (26) above, which was based
on the tasks submitted by the user for scheduling and the overall task energy. From (25),
EC denotes energy consumption. Taskenergy denotes the energy consumed for each task. Ti
denotes the total number of tasks. The energy consumption was measured in terms of
joules J. A lower energy consumption ensured the efficiency of the method. On the other
hand, a higher energy consumption showed that the resource was not being scheduled
in an optimized manner. Figure 3 illustrates a graphical representation of the energy
consumption using the LWR-EGS, MTDLS and VFPC-ETDPC methods.
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In the simulated experiments, with the same number of tasks and machines, the initial
number of tasks in the training set and those in the test set were both set to twenty-five. The
x-axis in Figure 3 represents the number of tasks in the range of 25 to 250. Here, the task
refers to the different indicator category obtained from a Kaggle dataset. On the other hand,
the y-axis represents the different energy consumption levels obtained at the different
time intervals for the different sets from the indicator categories. When considering the
75 number of tasks, the energy consumption of the LWR-EGS method, MTDLS method
and VFPC-ETDPC method is 105J, 110J and 150J respectively.

A rise in energy consumption was observed with the varying numbers of tasks.
By increasing the number of indicator categories or tasks, the energy being consumed
for resource scheduling also increased. This was because the increase in the task being
submitted by the user increased the number of resources assigned to the corresponding
subsequent task, and therefore, the energy consumption also increased. However, Figure 3
shows a comparatively lower consumption level using the proposed LWR-EGS method.
This occurred because of the application of the energy-efficiency-aware greedy scheduling
model. Here, both the energy efficiency and greedy scheduling model were considered
as two important factors for resource scheduling. Hence, the energy consumption using
the LWR-EGS method was reduced by 11% compared to the MTDLS method and 20%
compared to the VFPC-ETDPC method.
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5.2. Performance Evaluation of the Average Processing Time

The next experiment was performed to demonstrate the effectiveness of the processed
user request (i.e., resource scheduling). After asking the user to provide the request, the
average processing time was measured.

APT =
n

∑
i=1

Ti ∗ Time (Task_Scheduled) (27)

From Equation (27), the average processing time APT was recorded based on the
number of tasks provided by a user for the resource being scheduled Ti and the time
consumed for scheduling Time (Task_Scheduled) the corresponding tasks. A lower average
processing time ensured the efficiency of the method. On the other hand, a higher average
processing time showed that the time consumed for scheduling the resources, on average,
was higher. Figure 4 illustrates a graphical representation of the average processing time
using the LWR-EGS, MTDLS and VFPC-ETDPC methods.
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Figure 4. Comparison of the average processing time.

In Figure 4, the x-axis corresponds to the number of tasks. Here, a task refers to
the indicator category. Different indicator category ranges were obtained at different
time intervals. The average processing time here refers to the time taken to process the
scheduling of the different tasks or jobs. From the figure, it was inferred that number
of tasks was directly proportional to the average processing time. In other words, the
higher the number of tasks for the assignment being provided by the user requests, the
higher the time consumed in processing the subsequent user requests. However, a direct
proportionality was found using the three methods. The average processing time was lower
compared to MTDLS and VFPC-ETDPC, and this was evident from a simple representation.

With the number of tasks set to 25 for the experiment, the average processing time for
the resource being scheduled for a single task was 0.015 ms using LWR-EGS, 0.019 ms using
MTDLS and 0.023 ms using VFPC-ETDPC. In addition, the overall average processing time
using MTDLS and VFPC-ETDPC were observed to be 0.375 ms, 0.475 ms and 0.575 ms,
respectively. Thus, it was inferred that the average processing time using LWR-EGS was
lower than MTDLS and VFPC-ETDPC. This was because of the application of the integer
linear model. By applying the integer linear model, the distance between the sample point
and the predicted points was used to obtain the distance, such that more similar tasks
were first identified considering the CPU and memory constraints. Only after identifying
the tasks were the best available machines identified for scheduling. Hence, the average
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processing time was 12% lower using the LWR-EGS method compared to MTDLS and was
27% lower when compared to VFPC-ETDPC.

5.3. Performance Evaluation of the Scheduling Overhead

Finally, the third set of experiments conducted aimed to measure the effectiveness
and efficiency of the method for the scheduling overhead. The scheduling overhead
corresponds to the overhead incurred while scheduling the resources for the corresponding
user requests that are made.

SO =
n

∑
i=1

Ti ∗MEM [Task_Scheduled] (28)

From Equation (28), the scheduling overhead SO was measured based on the number
of tasks requested by the user for the resource to be scheduled Ti and the memory consumed
for the corresponding task to be scheduled MEM [Task_Scheduled]. The results of the
scheduling overhead are described in Figure 5. The total scheduling overhead for each
number of tasks was measured. The data size, along with the number of machines to
be allocated, was maintained throughout the experiment, and the tasks were added and
removed after each test. The effect of the task scheduling was also measured by changing
the task volume. With a constant task size at a certain threshold, the performance of the
task scheduling improved by increasing the number of tasks as shown in Figure 5. In this
case, when the number of tasks was 25, the overall scheduling overhead using LWR-EGS
was 125 KB. In contrast, by applying MTDLS, the scheduling overhead was 175 KB, and
by applying VFPC-ETDPC, it was 225 KB. Figure 5 illustrates a graphical representation
of the scheduling overhead using the LWR-EGS, MTDLS and VFPC-ETDPC methods.
When considering the 225 number of tasks, the scheduling overhead using MTDLS and
VFPC-ETDPC methods were 390 KB, 410 KB and 365 KB, respectively.

Electronics 2021, 10, 554 14 of 16 
 

 

From Equation (28), the scheduling overhead  was measured based on the 
number of tasks requested by the user for the resource to be scheduled  and the 
memory consumed for the corresponding task to be scheduled  _ ℎ . 
The results of the scheduling overhead are described in Figure 5. The total scheduling 
overhead for each number of tasks was measured. The data size, along with the number 
of machines to be allocated, was maintained throughout the experiment, and the tasks 
were added and removed after each test. The effect of the task scheduling was also 
measured by changing the task volume. With a constant task size at a certain threshold, 
the performance of the task scheduling improved by increasing the number of tasks as 
shown in Figure 5. In this case, when the number of tasks was 25, the overall scheduling 
overhead using LWR-EGS was 125 . In contrast, by applying MTDLS, the scheduling 
overhead was 175 , and by applying VFPC-ETDPC, it was 225 . Figure 5 illus-
trates a graphical representation of the scheduling overhead using the LWR-EGS, 
MTDLS and VFPC-ETDPC methods. When considering the 225 number of tasks, the 
scheduling overhead using MTDLS and VFPC-ETDPC methods were 390 KB, 410 KB and 
365 KB, respectively. 

 
Figure 5. Comparison of the scheduling overhead. 

Based on the data, it was inferred that the scheduling overhead was comparatively 
lower using the LWR-EGS method compared to using MTDLS and VFPC-ETDPC. The 
reason for the enhancement was the application of the integrated linear weighted re-
gression with MapReduce algorithm and the energy efficiency-aware greedy scheduling 
algorithm. By applying these two algorithms, not only was there a deliberate selection of 
the tasks for the assignment, but also the best available machine was then assigned in a 
heterogeneous environment. In addition, when selecting the tasks for the assignment, 
followed by the selection of the best available machine, two factors, namely, the CPU and 
MEM required and available, were also taken into consideration for the optimal resource 
scheduling. The comparative result analysis of the scheduling overhead is reduced by 
14% and 30% using LWR-EGS method compared to existing MTDLS and VFPC-ETDPC 
methods.3 

 
 

6. Conclusions and Future Work 
Here, a low energy consumption resource scheduling method is proposed. This 

method is based on careful analyses of the structure of a MapReduce framework, the 

0

50

100

150

200

250

300

350

400

450

500

25 50 75 100 125 150 175 200 225 250

Sc
he

du
lin

g 
O

ve
rh

ea
d 

(K
B)

Number of tasks

LWR-EGS (current study) MTDLS(Naik et al 2019) VFPC- ETDPC (Singh et al. 2018) 

Figure 5. Comparison of the scheduling overhead.

Based on the data, it was inferred that the scheduling overhead was comparatively
lower using the LWR-EGS method compared to using MTDLS and VFPC-ETDPC. The
reason for the enhancement was the application of the integrated linear weighted regression
with MapReduce algorithm and the energy efficiency-aware greedy scheduling algorithm.
By applying these two algorithms, not only was there a deliberate selection of the tasks for
the assignment, but also the best available machine was then assigned in a heterogeneous
environment. In addition, when selecting the tasks for the assignment, followed by the
selection of the best available machine, two factors, namely, the CPU and MEM required
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and available, were also taken into consideration for the optimal resource scheduling. The
comparative result analysis of the scheduling overhead is reduced by 14% and 30% using
LWR-EGS method compared to existing MTDLS and VFPC-ETDPC methods.3

6. Conclusions and Future Work

Here, a low energy consumption resource scheduling method is proposed. This
method is based on careful analyses of the structure of a MapReduce framework, the
operating mechanism and the energy consumption problems while scheduling tasks in
a heterogeneous environment. By designing an integer linear regression model, with
the addition of MapReduce functionalities, the tasks to be assigned are first selected in
a deliberate manner and the resources are optimally scheduled. Therefore, the indicator
category from the Kaggle dataset is split into various tasks associated with different time
periods, and they are processed separately. Next, by selecting the tasks to be assigned,
the scheduling of the machines or resources is done by applying a greedy scheduling
algorithm. In this way, by designing a resource schedule for all the tasks, the operation
state of the tasks is that storage nodes are efficiently controlled to achieve energy saving.
The development of creating the resource scheduling for heterogeneous big data via the
MapReduce framework and an operation strategy for low energy consumption scheduling
method are described in detail in this paper. The performance of the method was estimated
from the energy consumption, the scheduling overhead, and the average processing time.
The experimental results illustrate that compared with the state-of-the-art methods, the
average processing time was drastically decreased by 20%. In addition, the results also
proved that the scheduling overhead and energy consumption decreased with the LWR-
EGS method compared to the state-of-the-art methods. Some limitations in the proposed
LWR-EGS framework are also worth addressing in the future. (1) The integrated energy-
efficient framework will be further researched considering energy-efficient scheduling,
data distribution and replication dependencies factors. (2) The parts of scheduler and
node management are considered in this paper, but the data distribution and replication
dependencies are not considered.
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