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Abstract
The hybrid quantum–classical learning scheme provides a prominent way to achieve quantum
advantages on near-term quantum devices. A concrete example toward this goal is the quantum
neural network (QNN), which has been developed to accomplish various supervised learning tasks
such as classification and regression. However, there are two central issues that remain obscure
when QNN is exploited to accomplish classification tasks. First, a quantum classifier that can well
balance the computational cost such as the number of measurements and the learning
performance is unexplored. Second, it is unclear whether quantum classifiers can be applied to
solve certain problems that outperform their classical counterparts. Here we devise a
Grover-search based quantum learning scheme (GBLS) to address the above two issues. Notably,
most existing QNN-based quantum classifiers can be seamlessly embedded into the proposed
scheme. The key insight behind our proposal is reformulating the classification tasks as the search
problem. Numerical simulations exhibit that GBLS can achieve comparable performance with
other quantum classifiers under various noise settings, while the required number of
measurements is dramatically reduced. We further demonstrate a potential quantum advantage of
GBLS over classical classifiers in the measure of query complexity. Our work provides guidance to
develop advanced quantum classifiers on near-term quantum devices and opens up an avenue to
explore potential quantum advantages in various classification tasks.

1. Introduction

The field of machine learning has achieved remarkable success in computer vision, natural language
processing, and data mining [1]. Recently, an increasing interest from the physics community to use
machine learning methods to solve complicated physics problems, e.g. classifying phases of matter and
simulating quantum systems [2–4], has emerged. Besides the revolutionary influence of machine learning
to the physics world, another uprising field that tightly binds machine learning with physics is quantum
machine learning whose goal is to solve specific tasks beyond the reach of classical computers [5].

To better understand how quantum computing facilitates the machine learning tasks, devising quantum
algorithms that have the ability to solve fundamental machine learning problems with quantum advantages
is desirable [5]. For example, the proposed quantum linear systems algorithm (a.k.a., HHL algorithm)
enables the linear equations to be solved with the exponential speedup over its classical counterparts [6]. By
employing HHL algorithm as the subroutine, many quantum machine learning algorithms with exponential
quantum speedup have been proposed, e.g. the quantum principal component analysis [7], quantum
singular value decomposition [8], quantum non-negative matrix factorization [9], and the quantum
regression [10]. However, those proposed quantum algorithms that possess fabulous quantum advantages
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can only be executed on a fault-tolerant quantum computer by using the quantum random access memory
[6], which is still a rather distant dream.

When approaching the noisy intermediate-scale quantum (NISQ) era, it is intrigued to explore whether
there exists any quantum algorithm that can not only solve fundamental learning problems with promised
quantum advantages but can also be efficiently implemented on near-term quantum devices [11]. To
achieve this goal, one of the most likely solutions is the quantum neural network (QNN), which is also
called as variational quantum algorithms [12–14]. Concretely, QNN is composed of a variational quantum
circuit to prepare quantum states and a classical controller to perform optimization tasks [13, 15]. Partial
evidence to support this claim is the theoretical result that the probability distribution generated by the
variational quantum circuit used in QNN can not be efficiently simulated by classical computers [16–18].
Driven by the strong expressive power of quantum circuits and the similar work philosophy between QNN
and the classical deep neural network (DNN), its natural to exploit whether QNN can be realized on
near-term quantum computers to accomplish certain machine learning tasks with better performance over
classical learning algorithms.

A central application of QNN, analogous to DNN, is tackling classification tasks [1]. Many real-world
problems can be categorized into the classifying scenario, e.g. the recognization of hand-written digits, the
characterization of different creatures, and the discrimination of quantum states. For binary classification,
given a dataset

D̂ =
{(

xi, yi

)}N−1

i=0
∈ (RN×M, {0, 1}N), (1)

with N examples and M features in each example, QNN aims to learn a decision rule fθ(·) that correctly
predicts the label of the given dataset D̂, i.e.

min
θ

N−1∑
i=0

𝟙yi �=fθ(xi), (2)

where θ refers to the trainable parameters and 𝟙z is the indicator function that takes the value 1 if the
condition z is satisfied and zero otherwise. Recently, QNNs with varied quantum circuit architectures and
optimization methods have been proposed to accomplish the aforementioned classification tasks. In
particular, the references [19–21] have devised the amplitude encoding based QNN to classify the Iris
dataset and the hand-written digits image dataset; the references [22–24] have developed the kernel-based
QNN to accomplish the synthetic datasets; and the references [25] have proposed the convolution based
QNN to tackle quantum state discrimination tasks. When no confusion can arise, we use the quantum
classifier in the rest of the study to specify QNNs that are used to accomplish classification tasks defined in
equation (2).

Despite the promising heuristic results mentioned above, very few studies have theoretically explored the
power of quantum classifiers. A noticeable theoretical result about quantum classifiers is the trade-off
between the computational cost (i.e. the number of measurements) and the training performance indicated
by [13]. Denote L(θ(t), z) as the loss function employed in quantum classifiers, where θ(t) refers to the
trainable parameters at the tth iteration and z = {zj}N

j=1 is the given dataset with in total N samples. As
shown in figure 1, when the batch gradient descent method is employed to optimize the loss function L, the
updating rule of the trainable parameters follows

θ(t+1) = θ(t) − η

B

B∑
i=1

∇L(θ(t),Bi), (3)

where η is the learning rate, Bi refers to the ith batch with ∪B
i=1Bi = z and Bi ∩ Bj = ∅, and B denotes the

number of batches. Define
R1 = E[‖∇θL(θ(t))‖2]. (4)

as the utility measure that evaluates the distance between the optimized result and the stationary point in
the optimization landscape. The following theorem summarizes the utility bound R1 of quantum classifiers.

Theorem 1 (Modified from theorem 1 of [13]). Quantum classifiers under the depolarization noise setting
output θ(T) ∈ Rd after T iterations with the utility bound

R1 � Õ

(
poly

(
d

T(1 − p)LQ
,

d

BM(1 − p)LQ
,

d

(1 − p)LQ

))
,

where M is the number of measurements to estimate the quantum expectation value, LQ is the circuit depth of
variational quantum circuits, p is the rate of the depolarization noise, and B is the number of batches.
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Figure 1. The protocol of the batch gradient descent method. The left panel corresponds to the setting as B = N, where the N
training examples {xi}N

i=1 are iteratively fed into the variational quantum circuits to acquire the gradients that estimate
{∇L(θ(t) , xi)}N

i=1. The right panel exhibits the implementation of the quantum classifier when B = 1. Specifically, a
superposition state |φ(x)〉 = 1√

N

∑N
i=1 |h(xi)〉F |i〉I is prepared, where h(·) corresponds to the employed encoding method and the

subscripts ‘I’ and ‘F’ refer to the index and feature registers, respectively. Given access to |φ(x)〉, the trainable quantum circuit
UL(θ) is employed to interact with its feature register subscripted with F.

Table 1. The basic information of different quantum classifiers. The notations
T, K, M, N, and d refer to the number of epochs, the batch size (i.e. in our
simulation K = 4), the number of measurements used to estimate quantum
expectation value, the total number of training examples, and the total number
of trainable parameters.

Methods MSE_batch MSE BCE GBLS

Number of batches B N
K N N N

K

Number of measurements O( TMNd
K ) O(TMNd) O(TMNd) O( TMNd

K )

The result of theorem 1 indicates that a larger number of batches B ensures a better utility bound R1,
while the price to pay is increasing the total number of measurements. For example, when B = N, we have
Bi = zi for ∀i ∈ [N] and each sample zj is sequentially fed into variational quantum circuits to acquire
∇L̄(θ, zi) that estimates ∇L(θ, zi). Once the set {∇L(θ, zi)}N

i=1 is collected, the gradients ∇L(θ, z) can be
estimated by 1

N

∑N
i=1 ∇L̄(θ, zi). Suppose that the required number of measurements to estimate the

derivative of the jth parameter θj, i.e. ∇jL(θ, zi) =
∂L(θ,zi)

∂θj
, is M, then the total number of measurements to

acquire 1
N

∑N
i=1 ∇jL̄(θ, zi) is NM. Therefore, the estimation of ∇L(θ, z), which includes d parameters,

requires NMd measurements. Such a cost becomes unaffordable for large N. However, the trade-off between
the utility R1 and the computational efficiency caused by the varied number of batches B is not considered
in previous quantum classifiers, where most of them only focused on the setting B = N. How to design a
quantum classifier that can attain a good utility R1 with a low computational cost is unknown.

Another theoretical issue toward quantum classifiers is that none of the previous results have explored
their potential advantages compared with classical counterparts. This questions the necessity of employing
quantum classifiers because no benefit can be offered. Under the above observations, it is highly desirable to
develop a quantum classifier that can not only achieve a good utility R1 using a low computational cost, but
can also possess certain quantum advantages compared with classical classifiers.

Here we devise a Grover-search based learning scheme (GBLS) to address the above two issues under the
NISQ setting. Our proposal has the following advantages. First, GBLS is a flexible and effective learning
scheme, which enables the optimization of different quantum classifiers with a varied number of batches B.
Note that the choice of the encoding methods and the variational ansatz used in GBLS is very flexible,
which covers a wide range of the proposed quantum classifiers [20–24]. Moreover, the Grover-search based
machinery is only required in the training process, and the prediction of the new input is completed by only
using the optimized variational quantum circuits, which ensures its efficacy. Second, we prove that the
query complexity can be quadratically reduced over its classical counterparts in the optimal setting (see
theorem 2) when it is applied to accomplish specific binary classification tasks. Last, numerical simulation
results demonstrate that GBLS can well accomplish binary classification tasks even when the system noise
and the finite number of quantum measurements are considered (see section 3). Notably, the required
number of measurements of GBLS is dramatically less than other advanced quantum classifiers [22–24]
with competitive performance (see table 1). In other words, GBLS is a powerful protocol that allows
quantum classifiers to achieve a good utility bound R1 with a low computational cost.

The central concept in GBLS is reformulating the classification tasks as the search problem. Note that
although the advantage held by the quantum Grover-search algorithm is evident, how to transform the
classification task into the search problem is inconclusive. Such a reformulation is the main technical
contribution in this study. Recall that Grover-search [26] identifies the target element i∗ in a database of size

3



New J. Phys. 23 (2021) 023020 Y Du et al

Figure 2. The paradigm of GBLS. U defined in equation (9) is composed of unitary operators (i.e. Udata, UL1 , MCZ, and Uinit)
highlighted by the shadowed yellow region. The last cycle employs the unitary operation UE defined in equation (10), highlighted
by the brown region. The qubits interacted with UL1 (or Uinit) form the feature (or data) register RF (or RI ).

K by iteratively applying a predefined oracle Uf = I− 2 |i∗〉 〈i∗| and a diffusion operator Uinit = 2 |ϕ〉 〈ϕ|
− I with |ϕ〉 = 1√

K

∑
i |i〉 to the input state. GBLS, as shown in figure 2, employs a specified variational

quantum circuit UL1 and a multiple controlled qubits gate along the Z axis (MCZ) to replace the oracle Uf.
In particular, the variational quantum circuit conditionally flips a flag qubit (i.e. the black dot behind UL1

highlighted by the pink region) depending on the training data. The flag qubit is then employed as a part of
MCZ gate to guide a Grover-like search algorithm to identify the index of the specified example, i.e. the
status of the flag qubit such as ‘0’ or ‘1’ determines the successful probability to identify the target index.
Through optimizing the trainable parameters of the variational quantum circuits UL1 , GBLS aims to
maximize the successful probability to sample the target index when the corresponding training example is
positive; otherwise, GBLS minimizes the successful probability of sampling the target index. The inherited
property from the Grover-search algorithm allows our proposal to achieve an advantage in terms of query
complexity when the binary classification task involves the searching constraint (see section 2.3 for details).
Besides the computational merit, GBLS is insensitive to noise, guaranteed by the fact that combining a
variational learning approach with Grover-search can preserve a high probability of success in finding the
solution under the NISQ setting [27].

2. Grover-search based learning scheme

The outline of this section is as follows. In subsection 2.1, we first elaborate on the implementation details
of the proposed GLBS as depicted in figure 2. We then explain how to use the trained GLBS to predict the
given new input with O(1) query complexity in subsection 2.2. We last explain how GBLS can solve certain
learning problems with potential advantages in subsection 2.3.

2.1. Implementation
In the preprocessing stage, GBLS employs the dataset D̂ defined in equation (1) to construct an extended
dataset D. Compared with the original dataset D̂, the cardinality of each training example in D is enlarged
to K. For the purpose of applying the Grover-search algorithm to locate the target index i∗ = K − 1, the
construction rule for the kth extended training example Dk for all k ∈ [N] is as follows. The mathematical
representation of Dk is

Dk = [(x(0)
k , y(0)

k ), (x(1)
k , y(1)

k , . . . , (x(K−1)
k , y(K−1)

k )]. (5)

The last pair in Dk corresponds to the kth example of D̂, i.e. (x(K−1)
k , y(K−1)

k ) = (xk, yk). The first K − 1 pairs

{(x(i)
k , y(i)

k )}K−2
i=0 in Dk are uniformly sampled from a subset of D̂, where all labels of this subset, i.e.

{y(i)
k }K−2

i=1 , are opposite to yk. Note that the construction of the subset is efficient. Since yk ∈ {0, 1}, we can

construct two subsets D̂(0) and D̂(1) that only contains examples of D̂ with label ‘0’ and label ‘1’,
respectively, where D̂(0) ∪ D̂(1) = D̂. When yk = 0, the first K − 1 pairs are sampled from D̂(1); otherwise,
when yk = 1, the first K − 1 pairs are sampled from D̂(0).

As aforementioned, different quantum classifiers exploit different methods to encode Dk into the
quantum states [12]. For ease of notation, we denote the quantum state corresponding to the kth example

4
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Figure 3. The circuit implementation of the oracle U in equation (9).

Dk as

Udata |0〉 :=
∣∣Φk

〉
F,I

=
1√
K

K−1∑
i=0

|h(xi)〉F|i〉I , (6)

where h(·) is an encoding operation (a possible encoding method is discussed in section 3), and the
subscripts ‘F’ and ‘I’ refer to the feature register RF with NF qubits and the index register RI with NI qubits,
respectively.

We now move on to explain the training procedure of GBLS. Recall that the reference [27] points out
that combining a variational learning approach with Grover-search algorithm produces an additional
quantum advantage than conventional Grover’s algorithm such that the target solution can be located with
a higher success probability. A similar idea is used in GBLS. Namely, the employed variational quantum
circuits UL1 aim to learn a hyperplane that separates the last pair in Dk with its first K − 1 pairs. Denote
UL1 =

∏L
l=1 U(θl), where each layer U(θl) contains O(poly(NF)) parameterized single qubit gates and at

most O(poly(NF)) fixed two-qubit gates with the identical layouts. In the optimal situation, given the initial
state

∣∣Φk
〉

F,I
in equation (6), applying UL1 =

∏L
l=1 U(θl) to the feature register RF yields the following

target state:

(a) If the last pair of the input example Dk refers to the label yk = 0, the target state is

(UL1 ⊗ I)
∣∣Φk(yk = 0)

〉
F,I

=
1√
K

K−1∑
i=0

∣∣∣ψ(0)
i

〉
F
|i〉I ; (7)

(b) Otherwise, when the last pair of the input example Dk refers to yk = 1, the target state is

(UL1 ⊗ I)
∣∣Φk(yk = 1)

〉
F,I

=
1√
K

K−1∑
i=0

∣∣∣ψ(1)
i

〉
F
|i〉I . (8)

We denote
∣∣∣ψ(0)

i

〉
F

(resp.
∣∣∣ψ(1)

i

〉
F
) as the first qubit of the quantum state in the feature register RF being |0〉

(resp. |1〉). As shown in figure 3, once the state (UL1 ⊗ II)
∣∣Φk

〉
F,I

is prepared, GBLS iteratively applies MCZ
gate to the index register controlled by the first qubit of the feature register and the index register, uses Udata

and UL1 to uncompute the feature register, and applies the diffusion operator Uinit to the index register to
complete the first cycle. Denote all quantum operations belong to one cycle as U, i.e.

U :=Uinit ◦ U†
data ◦ (UL1 ⊗ I)† ◦ MCZ ◦ (UL1 ⊗ I) ◦ Udata. (9)

With a slight abuse of notation, we define Uinit = IF ⊗ (2 |ϕ〉 〈ϕ| − II) with |ϕ〉 = 1√
K

∑
i |i〉 in the rest of

the paper. GBLS repeatedly applies U to the initial state |0〉 except for the last cycle, where the applied
unitary operations are replaced by

UE :=Uinit ◦ MCZ ◦ (UL1 ⊗ I) ◦ Udata, (10)

as highlighted by the brown shadow in figure 4. Following the conventional Grover-search, GBLS queries U
and UE with in total O(

√
K) times before taking quantum measurements. This completes the quantum part

of GBLS.
We next analyze how the quantum state evolves for the case yk = 0 and yk = 1, respectively. For the case

of yk = 0, applying UL1 ⊗ II to the input state
∣∣Φk(yk = 0)

〉
F,I

in equation (6) will transform this state to

1/
√

K
∑

i=0

∣∣∣ψ(0)
i

〉
F
|i〉I as described in equation (7). Since the control qubit in the feature register is 0,

5
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Figure 4. The circuit implementation of the oracle UE in equation (10).

applying MCZ gate does not flip the phase of the state. After uncomputing, the result state yields
1/
√

K
∑

i=0|0〉F|i〉I . The positive phase for all computational basis i ∈ [K − 1] implies that applying the

quantum operation Uinit ◦ U†
data ◦ (UL1 ⊗ II)† does not change the state as well, i.e.

(
IF ⊗ (2 |ϕ〉 〈ϕ| − II)

) 1√
K

K−1∑
i=0

|0〉F|i〉I =
1√
K

K−1∑
i=0

|0〉F|i〉I . (11)

In other words, when we measure the index register of the output state, the probability to sample the
computation basis i with i ∈ [K − 1] is uniformly distributed.

For the case of yk = 1, the input state
∣∣Φk(yk = 1)

〉
F,I

in equation (6) will be transformed to

1/
√

K
∑

i=0

∣∣∣ψ(1)
i

〉
F
|i〉I after interacting with unitary UL1 ⊗ II , as described in equation (8). With the control

qubit in the feature register being 1, such a generated quantum state will evolve as Grover-search algorithm
does by iteratively applying MCZ, the uncomputation operation U†

data ◦ (UL1 ⊗ I)†, and Uinit.
Mathematically, the result state after interacting with MCZ yields

Ûf

∣∣Φk(yk = 1)
〉

F,I
= cos γ

∣∣∣ψ(0)
B

〉
F
|B〉I − sin γ

∣∣∣ψ(1)
i∗

〉
F
|i∗〉I , (12)

where Ûf :=MCZ ◦ (UL1 ⊗ I), cos γ =
√

K−1√
K

, |B〉I =
1√

K−1

∑K−2
i=0 |i〉I , and |i∗〉I refers to the computational

basis |K − 1〉. Analogous to the Uf in Grover-search, the trainable and data-driven Ûf used above

conditionally flips the phase of the state |i∗〉. Next, the uncomputing operation U†
data ◦ (UL1 ⊗ I)† and the

diffusion operator Uinit are employed to increase the probability of |i∗〉I . Mathematically, the generated state
after the first cycle yields

U
∣∣Φk(yk = 1)

〉
F,I

= cos 3γ|0〉F|B〉I + sin 3γ|0〉F|i∗〉I , (13)

where U is defined in equation (9). The probability of sampling i∗ is increased to sin2 3γ, which is in
accordance to Grover-search algorithm. This observation leads to the following theorem, whose proof is
given in appendix A.

Theorem 2. For GBLS, under the optimal setting, the probability of sampling the outcome i∗ = K − 1
approaches 1 asymptotically iff the label of the last entry of Dk is yk = 1.

We leverage the particular property of GBLS, in which the output distribution is varied for different
label of input Dk as shown in theorem 2, to accomplish the binary classification task. Concisely, the output
state of GBLS, i.e. UEUO(

√
K)|0〉F,I , corresponding to yk = 1 will contain the computational basis i = K − 1

with probability near to 1. By contrast, the output state corresponding to yk = 0 will contain all
computational bases i ∈ [K − 1] with the equal probability. Driven by this observation and the mechanism
of the Grover-search algorithm, the loss function of GBLS is

min
θ

L(θ) := sign(1/2 − yk) Tr(Πρ(θ)), (14)

where sign(·) is the sign function, Π = (|1〉 〈1|) ⊗ I⊗ (|i∗〉 〈i∗|) refers to the measurement operator,
ρ(θ) = UEU(θ)O(

√
K) |0〉 〈0| (UEU(θ)O(

√
K))† is the generated quantum state, and U(θ) is defined in

equation (9) (for clearness, we use the explicit form U(θ) instead of U). Intuitively, the minimized L(θ)

6
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Figure 5. The circuit implementation of GBLS for prediction. The same encoding method used in the training process is
adopted to prepare the state |h(x̃)〉. The trained variational quantum circuit U(θ(T )) is applied to |h(x̃)〉 before the measurement.

corresponds to the facts that when yk = 1 (yk = 0), the success probability to sample i∗ as well as attain the
first feature qubit to be ‘1’ (‘0’) is maximized (minimized). GBLS employs a gradient-based method, i.e. the
parameter shift rule [22], to optimize θ. Confer appendix B for the detail.

We would like to address that, GBLS can be used to conduct both the linear and nonlinear classification
tasks depending on the specified quantum classifiers. For example, when GBLS adopts the proposal [23, 24]
to implement Udata and UL1 , it has capability of classifying nonlinear data.

2.2. Prediction
Once the training of GBLS has finished, the trained UL1 can be directly employed to predict the label of the
future instances with O(1) query complexity, where the corresponding circuit implementation is shown in
figure 5. To achieve this, we devise the following prediction method. Denote the new input as (x̃, ỹ). We first
encode x̃ into the quantum state with the identical encoding method used in the training procedure, i.e.∣∣∣ψ̃〉

F
= |h(x̃)〉. Applying the trained UL1 to

∣∣∣ψ̃〉
F

yields

UL1 |ψ〉F = α̃
∣∣∣ψ̃(0)

〉
F
+ β̃

∣∣∣ψ̃(1)
〉

F
, (15)

where |α̃|2 + |β̃|2 = 1.
Denote the probability of the outcome ‘1’ after measuring the first feature qubit of the state in

equation (15) as p1 = |β̃|2 and let the threshold be 1/2. The new input data x̃ will be identified as label ‘0’,
if p1 < 1/2; otherwise, it will be given label ‘1’.

2.3. Potential advantage of GBLS
Here we design a binary classification task to explore the potential advantage of GBLS in terms of query
complexity. Consider the classification task that requires not only to find a decision rule in equation (2) but
also to output the index j satisfying a pre-determined black-box function. Note that the identification of a
target index is a common functionality in the context of database searching in the medical system, economy,
and online shopping. For example, given a medical database, it is natural to expect that the trained classifier
can predict whether a patient is ill or healthy based on her/his symptoms, and can identify a healthy patient
with additional properties, e.g. the gender of the patient is female, which can be modeled by a black box
function.

The mathematical formulation of this classification task is as follows. Given the data Dk in equation (5),
denoted the black box as q(·), the task yields(

min
θ

K−1∑
i=0

𝟙yi �=fθ(xi)

)
∧
(
{j|q(j) = 1, yj = 1}

)
, (16)

where the function q(·) is a Boolean function with the input set {j : ∀ yj ∈ Dk, yj = 1}. Taking GBLS
implemented in the previous subsections as an example, q(·) has the following form, ∀j = {0, . . . , K − 1}

q(j) =

⎧⎨
⎩1, if j = K − 1;

0, otherwise.
. (17)

Furthermore, q(·) could be implemented by the MCZ gate, which conditionally flips the phase of the

computational basis corresponding to j∗ :=K − 1 if the state is
∣∣∣ψ(1)

j

〉
F
|j∗〉I given in equation (8). In this

way, the Grover-like search structure used in GBLS promises that the probability to sample j∗ will be
maximized. We remark that GBLS can be effectively generalize to implement other forms of q(·) via
modifying the MCZ gate. When the size of the dataset loaded by GBLS is K, a well-trained GBLS can locate
the target index with O(

√
K) query complexity, guaranteed by the result of theorem 2. However, given

7
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Figure 6. The synthetic dataset and performance of different quantum classifiers under the ideal setting. The left panel illustrates
the synthetic dataset used in the numerical simulations. The legend ‘positive’ (or ‘negative’) refers that the label of the data is 1
(or 0). The right panel demonstrates the training and test accuracy of different quantum classifiers. The labels ‘GBLS’, ‘BCE’,
‘MSE’ refer to the proposed GBLS, the quantum kernel classifier with BCE loss, and the quantum kernel classifier with the mean
square error loss (B = N) [23, 24], respectively. The vertical sticks reflect the variance of the test accuracy at each iteration.

access to the well-trained classifier fθ(·), both classical algorithms and previous quantum classifiers need at
least O(K) query complexity to find j∗. The reduced query complexity of GBLS implies a potential quantum
advantage to accomplish classification tasks.

3. Numerical experiments

We now apply GBLS to classify a nonlinear synthetic dataset D̂ to evaluate its performance. The
construction of D̂ follows the proposal [23]. Consider a synthetic dataset D̂ = {xi, yi}N−1

i=0 with N = 200,
where xi = (ω(i)

1 ,ω(i)
2 ) ∈ R2, ω(i)

1 ,ω(i)
2 ∈ (0, 2π). Let g(·) be a specific embedding function with∣∣∣g(ω(i)

1 ,ω(i)
2 )

〉
∈ C

4 for all i ∈ {0, . . . , N − 1}. The label of xi is assigned as yi = 1 if

〈
g(ω(i)

1 ,ω(i)
2 )

∣∣∣V†ΠV
∣∣∣g(ω(i)

1 ,ω(i)
2 )

〉
� 0.5 +Δ,

where V ∈ SU(4) is a unitary operator, Π = I⊗ |0〉 〈0| is the measurement operator, and the gap Δ is set as
0.2. The label of xi is assigned as yi = 0 if〈

g(ω(i)
1 ,ω(i)

2 )
∣∣∣V†ΠV

∣∣∣g(ω(i)
1 ,ω(i)

2 )
〉
� 0.5 −Δ.

We illustrate the synthetic dataset D̂ in the left panel of figure 6.
At the data preprocessing stage, we split the dataset D̂ into the training datasets D̂train with size

Ntrain = 100 and the test dataset D̂test with Ntest = 100. In the training process, we follow the construction
rule of GBLS to build the extended training dataset Dtrain by using D̂train. We set K = 4 in the following
analysis, where the training example Dk ⊂ Dtrain can be encoded into a quantum state by using four qubits
with NI = NF = 2 (see appendix C for the detailed implementation of GBLS). Note that, at each epoch, we
shuffle Dtrain and rebuild the extended dataset D̂train. An epoch means that an entire dataset is passed
forward through the quantum learning model, e.g. when the dataset contains 1000 training examples, and
only two examples are fed into the quantum learning model each time, then it will take 500 iterations to
complete 1 epoch.

The numerical simulations are implemented on Python in conjunction with the PennyLane, Qiskit, and
pyQuil libraries [28–30]. The hyper-parameters setting used in our experiment is as follows. The block of
UE in figure 4 is employed once for the case K = 4, according to the Grover’s theorem O(

√
K). The layer

number of variational quantum circuits, i.e. UL1 =
∏L

l=1 U(θl), is set as L = 2. The number of epochs used
in classical optimization is 20. For comparison, we also apply the quantum kernel classifier proposed by [23,
24] with two different loss functions, i.e. the mean squared error (MES) loss, and the binary cross entropy
(BCE) loss, to learn the synthetic dataset D̂. The selection of the quantum kernel classifiers as the reference
is based on the fact that this method has achieved state-of-the-art performance to classify nonlinear data
[23].

Ideal setting. We first evaluate performance of different quantum classifiers under the ideal setting,
where the quantum system is noiseless and the number of measurements is infinite. The right panel of
figure 6 illustrates the averaged training and testing accuracies versus the number of epochs. In particular,
our proposal achieves comparable performance with the quantum kernel classifier with the BCE loss, where
both the train and test accuracies converge to 99% within 2 epochs. Moreover, these two methods

8
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Table 2. Performance of different quantum classifiers under the depolarization noise at
the 20-th epoch. The labels ‘MSE_batch’, ‘MSE’, ‘BCE’, and ‘GBLS’ follow the same
meanings as explained in table 1. The value ‘a ± b’ refers that the averaged accuracy is a
and its variance is b.

Methods MSE_batch MSE BCE GBLS

p = 0.05 (train) 0.929 ± 0.037 0.978 ± 0.013 0.956 ± 0.024 0.935 ± 0.024
p = 0.25 (train) 0.846 ± 0.072 0.936 ± 0.032 0.918 ± 0.031 0.881 ± 0.025
p = 0.05 (test) 0.943 ± 0.032 0.975 ± 0.006 0.860 ± 0.089 0.945 ± 0.021
p = 0.25 (test) 0.862 ± 0.095 0.934 ± 0.009 0.791 ± 0.056 0.879 ± 0.040

outperform the quantum kernel classifier with the MSE loss (B = N), whose test accuracy can only reach
95% after 10 epochs. The variance of these three quantum classifiers after 10 epochs becomes small, which
implies that all of them hold stable performance under the ideal setting.

Depolarization noise setting. We next investigate performance of GBLS and the referenced quantum
kernel classifiers under the realistic setting, where the quantum system noise is considered and the number
of measurements is finite. Specifically, we employ the depolarization channel to model the system noise, i.e.
given a quantum state ρ ∈ Cd×d, the quantum depolarization channel Ep that acts on this state is defined as

Ep(ρ) = (1 − p)ρ+ pπd,

where p is the depolarization rate, and πd is the maximally mixed state with πd = Id/d. Meanwhile, to
explore the trade-off between the computational cost (i.e. the total number of measurements) and the
utility R1 indicated by theorem 1, we also compare performance between GBLS and a modified quantum
kernel classifier with the MSE loss, which supports to use the batch gradient descent method with B = N/4
to optimize parameters (please refer to appendix C for implementation details). Table 1 summarizes the
basic information about GBLS and the referenced quantum classifiers. See appendix D about the
derivation of the required number of measurements for GBLS and the quantum kernel classifier with the
BCE loss.

The hyper-parameters settings applied to GBLS and other quantum classifiers are as follows. The
depolarization rate is set as p = 0.05 and p = 0.25, respectively. The number of measurements is set as 10 to
approximate the quantum expectation result. The parameter shift rule is used to estimate the analytic
gradients [22, 31]. For each classifier, we repeat the numerical simulations with five times to collect the
statistical information. Confer appendix C for other settings such as learning rates and random
seeds.

The simulation results of GBLS and the referenced quantum classifiers are illustrated in figure 7.
Specifically, when p = 0.05, GBLS and the other three referenced quantum classifiers achieve comparable
performance after 10 epochs. Moreover, the quantum kernel classifier with the MSE loss (B = N/4
possesses a lower the convergence rate and a larger variance than the rest three classifiers. When p = 0.25,
there exists a relatively large gap between the quantum kernel classifiers with the MSE_bactch method and
the rest three quantum classifiers in the measure of the convergence rate. Such a difference reflects the
importance to use GBLS to investigate classification tasks under the varied number of batches. We
summarize the averaged training and test accuracies of GBLS and other quantum classifiers at the last epoch
in table 2. Even though the measurement error and quantum gate noise are considered, GBLS can still attain
stable performance, since its variance is very small (i.e. at most 0.04). This observation suggests the
applicability of our proposal on NISQ machines.

We would like to emphasize the main issue considered in this study: whether there exists a quantum
classifier that can attain a good utility bound R1 by using a few number of measurements. The numerical
simulation results of GBLS provide a positive response toward this issue. Recall the setting given in table 1
and the results in figure 7. Although the required number of measurements for GBLS is reduced by K = 4
times compared with quantum classifiers with the BCE loss and the MSE loss (B = N), they achieve
comparable performance. This result implies a huge separation of the computational efficacy between GBLS
and previous quantum classifiers with B = N when N is large.

Noise model from real quantum hardware. We further compare performance of GBLS and the
referenced quantum classifiers under a noise model extracted from real quantum hardware, i.e.
IBMQ_ourense, provided by the Qiskit and PennyLane python libraries [28, 29]. Notably, for all classifiers,
the gate noise is only imposed on the trainable quantum circuits UL instead of the whole circuits, since the
implementation of multi-controlled gates (e.g. CCZ) used in GBLS will introduce a huge amount of noise
and destroy the optimization of GBLS (see appendix C for details). Meanwhile, the measurement noise is
applied to all quantum classifiers. Due to the relatively poor performance of the quantum kernel classifier

9
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Figure 7. The performance of different quantum classifiers with finite measurements under the varied depolarization rates. The
labels ‘GBLS’, ‘BCE’, ‘MSE’, and ‘MSE_batch’ refer to the proposed Grover-based quantum classifier, the quantum kernel
classifier with the BCE loss, the quantum kernel classifier with the mean square error loss and the number of batches being
B = N, and the quantum kernel classifier with the mean square error loss and the number of batches being B = N/4. The upper
panel and the lower panel demonstrate the train and test accuracies of GLBS and the quantum kernel classifier with BCE loss
when the depolarization rate is set as p = 0.05 and p = 0.25, respectively. The vertical sticks reflect the variance of the train and
test accuracy at each iteration.

Figure 8. Simulation results of different quantum classifiers under the realistic noise setting. The labels ‘GBLS’, ‘BCE’, and ‘MSE’
have the same meaning as explained in figure 7. The noise model, which is extracted from a real quantum hardware, is applied to
the trainable unitary UL(θ) of these three classifiers.

with the MSE loss and B = N/4, here we only focus the comparison among GBLS and quantum kernel
classifiers with the BCE loss and the MSE loss (B = N). Note that all hyper-parameters settings are identical
to those used in the above numerical simulations.

The simulation results are exhibited in figure 8. Specifically, the three classifiers achieve comparable
performance. Such results indicate that the efficacy of GBLS, since the required number of measurements
for GBLS is reduced by four times compared with the rest two quantum classifiers.

4. Discussion and conclusion

In this study, we have proposed a GBLS for classification. Different from previous proposals, GBLS supports
the optimization of a wide range of quantum classifiers with a varied number of batches. This property
allows us to explore the trade-off between the computational efficiency and the utility bound R1. Moreover,
we demonstrate that GBLS possesses a potential advantage to tackle certain classification tasks in the
measure of query complexity. Numerical experiments showed that GBLS can achieve comparable
performance with other advanced quantum classifiers by using a fewer number of measurements. We
believe that our work will provide immediate and practical applications for near-term quantum devices.
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Appendix A. Proof of theorem 1

Proof of theorem 1.
To achieve theorem 1, we separately discuss the situations in which the label of the last entry in Dk is

yk = 1 and yk = 0, respectively.
For the case yk = 1. Suppose that the label of the last entry in Dk is yk = 1. Followed from equation (13),
after the first cycle, the generated state of GBLS is

U|0〉F,I ≡ Uc1

∣∣Φk(yk = 1)
〉

F,I
= |0〉F ⊗

(
cos 3γ|B〉I + sin 3γ|i∗〉I

)
,

where sin γ = 1√
K

. This result indicates that the probability to sample the target index i∗ is increased from

sin2 γ to sin2 3γ, which is same with Grover-search.
Then, by induction as the proof of Grover-search does [32], the generated state of GBLS after applying U

to |0〉F,I with  times yields

∏
i=1

Ui|0〉F,I = |0〉F ⊗ (cos((2+ 1)γ)|B〉I + sin((2+ 1)γ)|i∗〉I). (A.1)

Note that, GBLS requires that the employed quantum operation at the last cycle is UE as defined in
equation (10) instead of U. Mathematically, the generated state is

UE

∏
i=1

Ui|0〉F,I = Uinit ◦ MCZ ◦ (UL1 ⊗ I) ◦ Udata|0〉F ⊗ (cos((2+ 1)γ)|B〉I + sin((2+ 1)γ)|i∗〉I)

= Uinit ◦ MCZ
(

cos((2+ 1)γ)
∣∣∣ψ(0)

B

〉
F
|B〉I + sin((2+ 1)γ)

∣∣∣ψ(1)
B

〉
F
|i∗〉I)

)
= Uinit

(
cos((2+ 1)γ)

∣∣∣ψ(0)
B

〉
F
|B〉I − sin((2+ 1)γ)

∣∣∣ψ(1)
B

〉
F
|i∗〉I)

)
=

(
cos((2+ 3)γ)

∣∣∣ψ(0)
B

〉
F
|B〉I + sin((2+ 3)γ)

∣∣∣ψ(1)
B

〉
F
|i∗〉I)

)
, (A.2)

where the first equality uses equation (A.1), the second equality exploits equation (13) to engineer the
feature register, the third equality employs MCZ to flip the phase the state |i∗〉 whose first qubit in the
feature register is |1〉, and last equality comes from the application of the diffusion operator
Uinit = IF ⊗ (2 |ϕ〉 〈ϕ| − II) with |ϕ〉 = 1√

K

∑
i |i〉 to the index register.

The result of equation (A.2) indicates that, under the optimal setting, the probability to sample i∗ is
close to 1 when  ∼ O(

√
K), since sin γ ≈ γ = 1/

√
K and then sin ((2+ 3)γ) ≈ 1.

For the case yk = 0. We then demonstrate that, when the label of the last entry in Dk is yk = 0, even if
applying U =

∏
i=1 and UE to |0〉F,I with  ∼ O(

√
K), the probability to sample i∗ is 1/K. Followed from

equation (11), after the first cycle, the generated state of GBLS is

Uc1

∣∣Φk(yk = 0)
〉

F,I
=

1√
K

K−1∑
i=0

|0〉F|i〉I ,

where sin γ = 1√
K

. Due to Uc1

∣∣Φk(yk = 0)
〉

F,I
= U|0〉F,I , after applying U to the state |0〉, the probability to

sample any index is identical. By induction, applying the corresponding U to the state |0〉F,I with  times
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Figure B1. The implementation of the lth layer U(θl). Suppose that the lth layer U(θl) interacts with NF qubits. Three trainable
parameterized gates, RZ, RY and RZ , are firstly applied to each qubit, followed by NF − 1 CNOT gates.

yields
∏

i=1

Ui|0〉F,I =
1√
K

K−1∑
i=0

|0〉F|i〉I , (A.3)

where given any positive integer , the probability to sample |i∗〉I is 1/K.
As with the case of yk = 1, at the last cycle, we apply the unitary UE to the state

∏
i=1 Ui|0〉F,I , and the

generated state is

UE

∏
i=1

Ui|0〉F,I = Uinit ◦ MCZ ◦ (UL1 ⊗ I) ◦ Udata
1√
K

K−1∑
i=0

|0〉F|i〉I

= Uinit

(
1√
K

K−1∑
i=0

(∣∣∣ψ(0)
B

〉
F
|B〉I +

∣∣∣ψ(0)
i∗

〉
F
|i∗〉I

))

=
1√
K

K−1∑
i=0

(∣∣∣ψ(0)
B

〉
F
|B〉I +

∣∣∣ψ(0)
i∗

〉
F
|i∗〉I

)
, (A.4)

where the first equality uses the explicit form of UE and equation (A.3), and the second equality is

guaranteed by equation (12) (note that the only difference is replacing
∣∣∣ψ(1)

i∗

〉
F

with
∣∣∣ψ(0)

i∗

〉
F

based on the

setting yk = 0), and the last equality exploits the explicit form of Uinit.
The result of equation (A.4) reflects that, under the optimal setting, the probability to sample i∗ can

never be increased when yk = 0. Therefore, we can conclude that, under the optimal setting, the probability
to sampling the outcome i∗ approaches 1 asymptotically if and only if the label of the last entry of Dk is
yk = 1. �

Appendix B. Variational quantum circuits and the optimizing method

In this section, we first introduce the variational quantum circuits UL1 (θ) used in GBLS. We then elaborate
the optimization method, i.e. the parameter shift rule, that is employed to train UL1 (θ).

Variational quantum circuits, which is also called parameterized quantum circuit, are composed of
trainable single qubit gates and two qubits gates (e.g. CNOT or CZ). As a promising scheme for NISQ
devices, variational quantum circuits have been extensively investigated for accomplishing the generative
and discriminative [15, 20, 33–35] tasks via variational hybrid quantum–classical algorithms [36]. One
typical variational quantum circuits is called the multiple-layer parameterized quantum circuits (MPQC),
where the arrangement of quantum gates in each layer is identical [33]. Denote the operation formed by the
lth layer as U(θl). The generated quantum state from MPQC yields

|Ψ〉 =
L∏

l=1

U(θl)|0〉⊗NF ,

where L is the total number of layers. GBLS employs MPQC to construct UL1 , i.e.

UL1 (θ) =
L∏

l=1

U(θl), (B.1)
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Figure B2. The implementation of GBLS used in numerical simulations. The upper left panel illustrates the circuit
implementation of the encoding unitary Udata corresponding to the feature map g(xi). The lower panel demonstrates the
implementation of GBLS given the input Dk = {xi, xj, xk, xl}, where the implementation of the controlled-g(xi) quantum
operation is shown in the upper right panel.

and the circuit arrangement for the lth layer U(θl) is shown in figure B1. When the number of layers is L,
the total number of trainable parameters for GBLS is 2NFL.

The updating rule of GBLS at the kth iteration follows

θ(k+1) = θ(k) − η
L(θ(k),Dk)

∂θ
, (B.2)

where η is the learning rate and Dk is the kth training example. By expanding the explicit form of
L(θ(k),Dk) given in equation (14), the gradients of L(θ(k),Dk) can be rewritten as

∂L(θ(k),Dk)

∂θ
= sign(1/2 − yk)

∂ Tr(Πρ(θ(k)))

∂θ
, (B.3)

where yk refers to the label of the last entry in Dk, sign(·) is the sign function, Π is the measurement
operator, and

ρ(θ(k)) = UEU(θ(k))O(
√

K) |0〉 〈0| (UEU(θ(k))O(
√

K))†.

GBLS adopts the parameter shift rule proposed by [22] to attain the gradient ∂ Tr(Πρ(θ(k)))
∂θ . Concisely, the

parameter shift rule iteratively computes each entry of the gradient. Without loss of generality, here we

explain how to compute ∂ Tr(Πρ(θ(k)))
∂θj

for j ∈ [2NFL]. Define θ(k)
± as

θ(k)
± =

[
θ(k)

0 , . . . , θ(k)
j−1, θ(k)

j ± π

2
, θ(k)

j+1, . . . , θ(k)
2NF L−1

]
, (B.4)

where only the jth parameter is rotated by ± π
2 . Then the mathematical representation of the gradient for

the jth entry is
∂ Tr(Πρ(θ(k)))

∂θj
=

Tr(Πρ(θ(k)
+ )) − Tr(Πρ(θ(k)

− ))

2
. (B.5)

In conjunction with equations (B.2), (B.3) and (B.5), the updating rule of GBLS at the tth iteration for
the jth entry is

θ(k+1)
j = θ(k)

j − η
Tr(Πρ(θ(k)

+ )) − Tr(Πρ(θ(k)
− ))

2
sign

(
1

2
− yk

)
. (B.6)

Appendix C. More details of numerical simulations

In this section, we provide more details about the numerical simulations. Specifically, we first explain how
to construct the employed synthetic dataset. We then elaborate on the implementation of GBLS and
referenced classifiers, and their hyper-parameters settings. We next analyze the required circuit depth to
implement these quantum classifiers. Last, we introduce the construction of the modified dataset used in
the MSE_batch method.
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The construction of the synthetic dataset. Given the training example xi = (ω(i)
1 ,ω(i)

2 ) ∈ R
2 for all

i ∈ [N − 1], the embedding function g(ω(i)
1 ,ω(i)

2 ) : R2 → C4 that is used to encode xi into the quantum
states is formulated as

g(ω(i)
1 ,ω(i)

2 ) =
(

RY (φ(ω(i)
1 ,ω(i)

2 )) ⊗ RY (φ(ω(i)
1 ,ω(i)

2 ))
)
|0〉⊗2, (C.1)

where φ(ω(i)
1 ,ω(i)

2 ) = (ω(i)
1 − ω(i)

2 )2 is a specified mapping function. The above formulation implies that g(xi)
can be converted to a sequence of quantum operations, where its implementation is illustrated in the upper
left panel of figure B2. To simultaneously encode multiple training examples into the quantum states, we
should implement g(xi) as a controlled version, where the implementation is shown in the upper right
panel of figure B2.

The random unitary V ∈ SU(4) used in the numerical simulations is formulated as
V = RY(ψ1) ⊗ RY(ψ2), where ψ1 and ψ1 are uniformly sampled from [0, 2π).

The details of GBLS, the referenced classifiers, and hyper-parameters setting. The implementation of
GBLS is shown the lower panel of figure B2. In particular, the data encoding unitary Udata is composed of a
set of controlled-g(xi) quantum operations. The MPQC introduced in appendix B is employed to build
UL1 (θ), where each layer U(θl) is composed of RY gates and CZ gates and the layer number is L = 2.

The basic components of the referenced quantum classifiers are identical to those used in GBLS. In
particular, for all employed quantum kernel classifiers, the implementation of variational quantum circuits
UL1 (θ) are the same with GBLS, where the layer number is L = 2 and each layer is composed of RY gates
and CZ gates as shown in figure B2. The implementation of the encoding unitary Udata depends on the
batch size B. For the quantum kernel classifiers with the BCE loss and MSE loss (B = N), following
equation (C.1), the encoding unitary is

Udata = RY (φ(ω(i)
1 ,ω(i)

2 )) ⊗ RY (φ(ω(i)
1 ,ω(i)

2 )). (C.2)

For the quantum kernel classifier with the MSE loss (B = N/4), the implementation of the encoding
unitary Udata is the same with GBLS as shown in figure B2.

The detailed hyper-parameters settings for GBLS and the referenced classifiers are as follows. The
learning rate for GBLS, the quantum kernel classifier with the BCE loss, the quantum kernel classifier with
the MSE loss (B = N and B = N/4) is identical, which is set as η = 1.0. Moreover, when we explore the
statistical performance of different quantum classifiers under the noise setting, the random seeds are set as
{i}R

i=1 with R being the total number of repetitions.
The analysis of the quantum circuit depth. Here we analyze the required circuit depth to implement

quantum kernel classifiers used in numerical simulations. As explained in the above subsection, the
quantum kernel classifiers with B = N can be efficiently realized, since the data encoding unitary Udata and
the variational quantum circuits only involve single and two qubits gates. In particular, the circuit depth to
construct the unitary Udata in equation (C.2) is 1. Moreover, the circuit depth to construct UL(θ) as shown
in figure B2 is 4. In total, when the number of batches B equals to N, the required depth for the quantum
kernel classifier with the BCE or MSE loss is 5.

Compared with the setting B = N, the implementation of the quantum kernel classifier with B = N/4
and GBLS requires a relatively deep circuits. The substantial reason is that the fabrication of the data
encoding unitary Udata involves multi-controlled qubits gates as shown in figure B2 (highlighted by the
brown region). Specifically, when we decompose the CC–RY gate into single-qubit and two-qubit gates, the
required circuit depth is 27. Therefore, following figure B2, the circuit depth to implement Udata is 113.
Considering that the circuit depth to implement UL1 is 4, the total circuit depth to implement the quantum
kernel classifier with B = N/4 is 117. As shown in figure B2, the quantum circuit in GBLS is composed of
Udata, UL1 , and Uinit. The implementation of Udata and UL1 is identical to the quantum kernel classifier
with B = N/4. Moreover, based on Grover-search algorithm, the circuit depth to implement Uinit is 15,
which includes 4 Hadamard gates and 1 CCZ gate. Therefore, the total circuit depth to implement GBLS is
132.

We remark that the circuit depth of the quantum kernel classifier with B = N/4 and GBLS is dominated
by the implementation of Udata, which exploits multi-controlled qubits gates to load different training
examples in superposition. Such an observation implies that efficient encoding methods can dramatically
reduce the required circuit depth to construct these quantum classifiers. A possible solution is proposed by
[37], which constructs a target multi-qubits gate by optimizing a variational quantum circuit which consists
of tunable single-qubit gates and fixed two qubits gates.

The modified training dataset for the MSE_batch method. We note that naively employing the original
training dataset D̂ to optimize the quantum kernel classifier with the MSE_batch loss is infeasible. Let us
illustrate a simple example. Suppose the input state is 1√

2

∑2
i=1

∣∣g(x(i))
〉

F
|i〉I with the batch size 2, where the
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subscript ‘I’ (‘F’) refers to the index (feature) register. When the trainable quantum circuits UL(θ) ⊗ II and
the measurement operator are applied to this state, the output corresponds to the averaged predictions of
the examples {x(i))}2

i=1. Such a setting is ill-posed once the labels x(1) and x(i) of are opposite, e.g. the former
is 0 and the latter is 1, since a wrong prediction (the former is 1 and the latter is 0) also leads to the averaged
truth label 0.5.

To conquer the above issue, we build a modified dataset instead of D̂ to optimize the quantum kernel
classifier with the MSE_batch loss. Specifically, we shuffle the given dataset D̂ and ensure that for the
modified dataset, the training examples in each batch Bi for ∀i ∈ [B] must possess the same label. In doing
so, the averaged truth label can either be 0 and 1 without any confusion.

Appendix D. The computational complexity of GBLS and the quantum kernel
classifier with the BCE loss

We now separately derive the required number of measurements, or equivalently, the computational
complexity, for GBLS and the quantum kernel classifier with the BCE loss at each epoch. For both methods,
the hyper-parameters setting is supposed to be identical, i.e. the size of the dataset D̂ is N, the layer number
of MPQC UL1 is L, the number of qubits to load data features is NF, the total number of trainable
parameters θ is NFL, and the number of measurements applied to estimate the quantum expectation value
is M.

We say one query when the variational quantum circuit used in the quantum classifier takes the encoded
data and then be measured by the measurement operator once. Following the training mechanism of the
quantum classifier, its query complexity amounts to counting the total number of measurements to the
variational quantum circuits to acquire the gradients in one epoch.

We now derive the required number of measurements of the quantum kernel classifier with the BCE loss
in one epoch. Given the dataset D̂, the BCE loss yields

LBCE = − 1

N

N−1∑
i=0

yi log(p(yi)) + (1 − yi) log(1 − p(yi)), (D.1)

where yi is the label of the ith example and p(yi) is the predicted probability of the label yi, or equivalently,
the output of the quantum circuit used in the quantum kernel classifier

p(yi) = Tr(Πρ(θ)), (D.2)

where ρ(θ) = UL1 (θ) |g(xi)〉 〈g(xi)|UL1 (θ)†, UL1(θ) refers to variational quantum circuits defined in
equation (B.1), |g(xi)〉 represents the encoded quantum state defined in equation (C.1), and Π is the
measurement operator. Following the parameter shift rule, the derivative of BCE loss satisfies

∂LBCE

∂θj
=

1

N

N−1∑
i=0

(
1 − yi

1 − p(yi)
− yi

p(yi)

)
Tr(Πρ(θ+)) − Tr(Πρ(θ−))

2
, (D.3)

where θ± is defined in equation (B.4). The above equation implies that to acquire the gradients of the BCE
loss, it necessitates to feed the training example one by one to the quantum kernel classifier to estimate
p(yi), and then conduct the classical post-processing to compute the coefficient 1−yi

1−p(yi)
− yi

p(yi)
. In other

words, the number of batches for this quantum classifier can only be B = N. Since the estimation of p(yi),
Tr(Πρ(θ+)), and Tr(Πρ(θ−)) are completed by using M measurements, the derivative ∂LBCE/∂θj can be
estimated by using 3NM measurements. Considering that there are in total NFL trainable parameters, the
total number of measurements at each epoch for the quantum kernel classifier with the BCE loss is
3NMNFL.

Unlike the quantum kernel classifier with the BCE loss, GBLS uses a simple loss function L defined in
equation (14), which allows us to efficiently acquire the gradient ∂L/∂θj by leveraging the superposition
property. Recall equation (B.6). The gradient of GBLS satisfies

∂L(θ,Dk)

∂θj
=

Tr(Πρ(θ(k)
+ )) − Tr(Πρ(θ(k)

− ))

2
sign

(
1

2
− yk

)
,

where yk refers to the label of the last pair in the extended training example Dk. The above equation
indicates that the gradient for Dk, which contains K training examples in D̂, can be estimated by using 2M
measurements, where the first (last) M measurements aim to approximate Tr(Πρ(θ(k)

− )) (Tr(Πρ(θ(k)
+ ))).

Therefore, the total number of measurements to collect { ∂L(θ,Dk)
∂θj

} for all possible Dk is 2MB = 2MN/K.
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Considering that there are in total NFL trainable parameters, the query complexity at each epoch for GBLS
is 2NFLMN/K. Note that when K → N, the required number of measurements of GBLS can be dramatically
reduced.

To ease of understanding, let us illustrate an intuitive example. Define two extended training examples,
where the first one includes all positive examples in D and one negative example, and the second one
includes all negative examples in D and one positive example. Since these two extended examples cover the
whole dataset D, when GBLS uses these two examples to update θ, it completes one epoch. Celebrated by
the simple form of L, the number of measurements to estimate the gradients for the jth entry θj given these
two extended examples is O(1). Considering there are in total O(NFL) trainable parameters, the total
number of measurements at each epoch for GBLS is O(LNF).
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