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Identifying drug–target interaction (DTI) is the basis for drug development. However, the

method of using biochemical experiments to discover drug-target interactions has low

coverage and high costs. Many computational methods have been developed to predict

potential drug-target interactions based on known drug-target interactions, but the

accuracy of these methods still needs to be improved. In this article, a graph autoencoder

approach for DTI prediction (GADTI) was proposed to discover potential interactions

between drugs and targets using a heterogeneous network, which integrates diverse

drug-related and target-related datasets. Its encoder consists of two components: a

graph convolutional network (GCN) and a random walk with restart (RWR). And the

decoder is DistMult, a matrix factorization model, using embedding vectors from encoder

to discover potential DTIs. The combination of GCN and RWR can provide nodes with

more information through a larger neighborhood, and it can also avoid over-smoothing

and computational complexity caused by multi-layer message passing. Based on the

10-fold cross-validation, we conduct three experiments in different scenarios. The results

show that GADTI is superior to the baseline methods in both the area under the receiver

operator characteristic curve and the area under the precision–recall curve. In addition,

based on the latest Drugbank dataset (V5.1.8), the case study shows that 54.8% of new

approved DTIs are predicted by GADTI.

Keywords: drug-target interaction prediction, network embedding, graph convolutional network, autoencoder,

random walk, heterogeneous network

INTRODUCTION

The drug acts on the target protein, thereby affecting the expression of the target protein to achieve
the therapeutic effect on the disease. Therefore, finding drug-target interactions is the basis of drug
development. The research and development of innovative drugs often requires billions of dollars
and more than a decade of work, and usually ends in failure. Hence, it is an important choice
for pharmaceutical companies to discover potential drug–target interactions (DTIs) by using the
known DTIs. The properties of existing drugs are familiar to people, and their safety is guaranteed.
However, there are some limits in both coverage and throughput of biochemical experiments
to identify new DTIs. Consequently, the prediction of DTIs using computational methods has
attracted extensive attention.
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Early computational methods were mainly based on drug–
drug similarity and target–target similarity, or the features of
drugs and targets. Some of the methods based on similarity first
calculate the similarity between the drug pairs (e.g., chemical
structure similarity) and the similarity between the target pairs
(e.g., protein sequence similarity), and then use the known DTIs
to score the unknown DTI (Cheng et al., 2012; Mei et al., 2013;
Wang et al., 2014). Other similarity-based methods process a
random walk on the network composed of multiple data sources,
such as drug–drug interactions, target–target interactions, and
DTIs to obtain the similarity between nodes to predict new
DTIs (Chen et al., 2012; Seal et al., 2015). In the methods based
on features, both the drugs and the targets are represented as
fixed-length feature vectors, and the known drug–target pairs
are divided into positive and negative categories. Then the DTI
prediction is transformed into a binary classification problem.
Machine learning methods such as support vector machines,
random forests, and conditional random fields can be directly
used for prediction (Nagamine et al., 2009; Lan et al., 2016;
Olayan et al., 2018; Chen et al., 2019; Shi et al., 2019).

In recent years, network embedding methods (Perozzi et al.,
2014) have shown excellent performance in network data analysis
(Cai et al., 2017), and have been introduced into DTI prediction
(Su et al., 2018; Bagherian et al., 2020; Liu et al., 2020). Network
embedding is also known as graph embedding. In network
embedding, nodes such as drugs and targets can all be converted
into low-dimensional vectors that represent their features and
can be directly used for DTI prediction. The main methods of
network embedding include matrix factorization, random walk,
and deep learning.

A multiple similarities collaborative matrix factorization
model (Zheng et al., 2013) was proposed to predict DTI. It
incorporates anatomical therapeutic chemical similarity and
chemical structure similarity of drugs, as well as genomic
sequence similarity, gene ontology (GO) similarity, and protein–
protein interaction (PPI) network similarity of targets. A
combination of these similaritymatrices was used to approximate
the drug feature matrix D and the target feature matrix T,
and then the inner product between D and T was utilized
to approximate the DTI matrix. TriModel (Mohamed et al.,
2019) uses the drug-related knowledge graph to find potential
DTIs. It learns the feature vectors of nodes in the knowledge
graph through tensor decomposition. These vectors are used to
determine whether the drug and the target interact. Meanwhile,
DTINet (Luo et al., 2017) first uses the random walk to obtain
the low-dimensional feature vector of each drug and protein,
projects the drug vector and protein vector into the same space,
and then discovers new interactions through matrix completion.
Encouraged by the DeepWalk (Perozzi et al., 2014) model,
some researchers have combined the random walk with shallow
neural networks (Zong et al., 2017, 2019; Zhu et al., 2018).
These methods first construct a heterogeneous network based
on multiple data sources, and then apply DeepWalk, node2vec
(Grover and Leskovec, 2016), and other algorithms to the
network to obtain the embedding vectors of drug nodes and
target nodes. NeoDTI (Wan et al., 2019) uses a deep learning
method based on neighborhood information aggregation to

discover new DTIs. It aggregates neighbor information based on
edge types in heterogeneous networks. Then, the feature vector
of the node is used to reconstruct the original network. There are
also several studies based on drug structure and protein sequence
(Wen et al., 2017; Karimi et al., 2019; Öztürk et al., 2019). Starting
from the chemical structure and protein sequence of compounds,
deep learning methods are then employed to predict drug–target
binding affinity.

Matrix factorization methods can capture the global structure
of the network, but its space complexity increases rapidly
as the network scale increases. Random walk methods are
more efficient because they usually gather only local features.
Deep learning methods are outstanding in DTI prediction
because it can discover hidden features and associations
from multi-source heterogeneous network, and it is easy to
integrate externally associated data of drugs and targets (e.g.,
GO) to improve performance. However, deep learning is
computationally expensive and time-consuming. Among the
deep learningmethods, the graph convolutional network (GCN)-
basedmessage passing (also known as neighborhood information
aggregation) algorithms have recently attracted special attention
due to their flexibility and good performance (Kearnes et al.,
2016; Ying et al., 2018; Wan et al., 2019). The GCN algorithms
usually only consider the neighborhood with a short distance
(e.g., the first-order neighborhood) because large distances
will lead to over-smoothing, which degrades performance and
increases computational complexity. However, the short distance
easily leads to insufficient information about the neighborhood
of the node (Li et al., 2018; Xu et al., 2018).

In this article, we propose a graph autoencoder approach for
DTI prediction using a heterogeneous network (GADTI), which
combines a graph convolutional network, matrix factorization,
and random walk. GADTI first constructs a heterogeneous
network that integrates eight data sources related to drugs
and targets. Then, it runs a graph autoencoder model on the
network to discover new DTIs. The encoder of the graph
autoencoder includes two components: a GCN and a random
walk with restart (RWR). The GCN component aggregates
the first-order neighborhood information of each node and
uses it to subsequently update the feature vector of nodes.
The RWR component propagates the influence of nodes over
the heterogeneous network. Through this, we obtain the
embedding vectors of nodes, which are sent to the decoder.
We use the matrix factorization model DistMult (Yang et al.,
2015) to reconstruct the original heterogeneous network from
the embedding vectors of nodes. Through the combination
of GCN and RWR, GADTI can provide nodes with more
information through a larger neighborhood while avoiding the
over-smoothing and computational complexity caused by multi-
layer message passing. The experimental results demonstrate that
our approach is effective and efficient to predict potential DTIs.

MATERIALS AND METHODS

Dataset
We adopted a dataset used in previous studies (Luo et al.,
2017; Wan et al., 2019). It consists of eight networks, including
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TABLE 1 | Sources of datasets and their statistical information.

(a) Statistical information of nodes

Node Type Count

Drug 708

Targets 1,512

Disease 5,603

Side effect 4,192

(b) Statistical information and source of edges

Edge Count Data Source

drug–target interaction 1,923 DrugBank v3.0 (Knox et al.,

2011)

Drug–drug interaction 10,036 DrugBank v3.0 (Knox et al.,

2011)

Protein–protein 7,363 HPRD Release 9 (Keshava

Prasad et al., 2009)

Drug–disease 199,214 Comparative Toxicogenomics

Database (Davis et al., 2013)

Drug side effect 80,164 SIDER Version 2 (Kuhn et al.,

2010)

Protein–disease 1,596,745 Comparative Toxicogenomics

Database (Davis et al., 2013)

Drug structure similarity * Based on Morgan fingerprints

(Rogers and Hahn, 2010)

Protein sequence similarity * Based on Smith–Waterman

scores (Smith and Waterman,

1981)

Total 1,895,445

*This edge is not counted because all node pairs are connected.

four types of nodes (drugs, targets, diseases, and side effects)
and eight types of edges (drug–drug interaction, DTI, drug–
disease association, drug-side effects association, protein–protein
interaction, protein–disease association, drug chemical structure
similarity, and protein sequence similarity). These data come
from public databases such as DrugBank, HPRD, and SIDER.
The weights of edges in all networks are non-negative.
Furthermore, only the drug chemical structure similarity and the
protein sequence similarity are real-valued, and thus represent
drug–drug chemical structure similarity scores and protein–
protein sequence similarity scores. The others are binary values
indicating whether there is an interaction or association between
nodes. Table 1 lists the sources and statistics of these data.

Spatial-Based Graph Convolutional
Network
Most recent network embedding methods are based on the
GCN, especially spatial-based GCN. These methods define
convolution on graph as neighborhood information aggregation.
They generate embeddings for nodes by aggregating the local
neighborhood of the nodes instead of the entire network, which
is regarded as a message passing mechanism.

A typical spatial-based GCN method includes two phases.
In the initialization phase, it generates an initial vector based

on the features of each node. If all the nodes in the network
have no features, a one-hot vector is assigned to each node and
a neural network is used to generate the initial vector. In the
second phase, the vectors of nodes are updated by a combination
of aggregated neighborhood vectors and the previous vectors of
the nodes. These updates can be done through neural networks
or linear transformations. The embedding vector of a node is
a function of its neighborhood (including the node itself). This
process looks similar to the receptive field of the convolution
kernel in image processing, so it is called GCN. After one
aggregation, the embedding vector of the node contains the
feature information of its first-order neighbors. If we repeat this
aggregation process K times, the embedding vector of the node
can capture the feature information of its K-order neighbors.
In the spatial-based GCN, the information of a node is first
passed to its first-order neighbors, and then propagated to higher-
order neighbors through edges on the network. Therefore, these
methods are also called message passing methods. The process of
graph convolution operation is summarized as follows:

a(n)v = AGGREGATE(n)
({

h(n−1)
u : u ∈ N (v)

})

, h(n)v

= UPDATE(n)
({

h(n−1)
v , a(n)v

})

(1)

where AGGREGATE() and UPDATE ()are functions to
aggregate neighborhood information and update node vectors,

respectively; u, v are nodes; a
(n)
v is the aggregated feature

information of v at the n-th iteration; N (v) indicates the
neighborhood of v; and h(n)v is the embedding vector of v at the n-

th iteration. After the iteration, we obtain h
(K)
v , which represents

the features of v and can be directly used for node-level tasks
such as node similarity calculations, node classification, and
link prediction.

Graph Autoencoder
The graph autoencoder takes the network and the feature vectors
of the node as input to generate a low-dimensional embedding
vector of the node or the entire network.

Unlike traditional autoencoders, the encoder of a graph
autoencoder is usually a GCN and its variants, and the decoder
can be an inner product (Kipf and Welling, 2016; Pan et al.,
2018) or matrix factorization (Zitnik et al., 2018; Lan et al.,
2020). Generative adversarial networks (GANs) (Goodfellow
et al., 2014) and attention mechanisms have also been applied to
graph autoencoders (Ma et al., 2018; Pan et al., 2018; Jin et al.,
2019). For heterogeneous graphs containing multiple edge types,
the encoder aggregates neighbor features one by one according
to the edge type, and then merges them to obtain the embedding
vectors of the nodes (Gligorijevic et al., 2018; Ma et al., 2018;
Zitnik et al., 2018).

GADTI
The data related to drugs and targets are represented in the form
of a network, and the DTI prediction is then transformed into a
link prediction of the network.

Definition 1 Network G = (V ,R), where v ∈ V and r ∈ R are
nodes and edges, respectively.
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FIGURE 1 | Overview of GADTI model architecture.

Given a network G, vd and vt are the drug node and
target node, respectively. Our goal is to determine whether the
unknown edge rdt = (vd, vt) exists, or how likely it is to exist. To
this end, we developed an end-to-end framework GADTI based
on the graph autoencoder to discover new DTIs. This approach
combines a graph convolutional network, matrix factorization,
and random walk. GADTI first integrates multiple data sources
to build a heterogeneous network, and then conducts prediction
through a graph autoencoder model. As shown in Figure 1,
GADTI has two main components:

• An encoder: a GCN followed by an RWR, which produces
embeddings for nodes in G;

• A decoder: a matrix factorization model using these
embeddings to predict DTIs.

Encoder
The encoder consists of a GCN and an RWR. The GCN
is used to aggregate first-order neighbor information to
update node representation. Then, an RWR on the entire
heterogeneous network allows the influence of nodes to
spread far away so that we can obtain the final embedding
vector. This approach can provide more information to nodes

through a larger neighborhood while avoiding the over-
smoothing and computational complexity caused by multi-layer
convolutional networks.

Aggregation by GCN
In this stage, only the first-order neighborhood of the node
is considered. For each node, we first group its first-order
neighbors according to the type of edge. Then, for each neighbor
group, a neighborhood aggregation operation is performed to
aggregate information. Finally, the neighbor information of
different groups is accumulated and concatenated with the
previous embedding vector of the node, and then sent to the
neural network to generate a new embedding vector. The process
of aggregating and updating are defined as follows:

arv =
∑

u∈Nr(v)

1

cvr
σ (W0

r h
0
u + br), h

∗
v

= MEAN
(

{h0v} ∪ {arv : r ∈ R}
)

(2)

where arv refers to the aggregated neighborhood information of
v related to edge type r, h0v ∈ R

d refers to the initial embedding
vector of v, d denotes the dimension of vector, R indicates the set
of edge types, Nr(v) are the neighbors of v related to edge type
r, σ is a non-linear activation function, and W0

r ∈ R
d×d and

br ∈ R
d are edge-type specific parameter matrix and bias terms

used to aggregate neighborhood information, respectively. cvr is a
normalization constant that we choose to be cvr =

∣

∣Nr(v)
∣

∣. MEAN
() is an element-wisemean operator, h∗v is the updated embedding
vector of v.

Figure 2 shows a small example of the network. Drug node
D1 is associated with two diseases and one side effect, as well as
targets two proteins, and interacts with three other drugs. The
bold dotted line indicates the similarity between drugs.

The process of the encoder is provided in Figure 3. Multiple
different single-layer neural networks (SLNs) are used in the
encoder according to edge types. We take the drug node D1
in Figure 2 as an example. Since there are five types of edges
connected to D1, there will be five SLNs to aggregate neighbor
information of corresponding edge types. The mean operator is
chosen as the aggregation function, to perform an element-wise
mean of the vectors in {h0v} ∪ {arv : r ∈ R}. It results in the new
node embedding vector h∗. Relu (x) = max(0, x) is selected as
the element-wise activation function. A projection with learnable
parameters is employed to initialize h0.

Propagation by RWR
The multi-hop neighborhood information aggregation
implemented by multi-layer convolution often leads to
over-smoothing. The aforementioned GCN only considers
the one-hop graph structure, which causes the multi-hop
information of the node to be underutilized. In order to
solve this problem, we introduce an RWR, which spreads
the influence of nodes to other nodes that are not directly
adjacent through a walk on the heterogeneous network. The
introduction of multi-hop information extends the range of
information aggregation from the first-order neighborhood to
the high-order neighborhood, which is equivalent to increasing
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FIGURE 2 | An small example of the heterogeneous network.

the receptive field of convolution, thereby realizing long-range
message passing.

Assuming that the transition matrix of the heterogeneous
network is A and the restart probability is α, the RWR is defined
as follows (Tong et al., 2008):

Appr = α(I − (1− α)A)−1 (3)

where I is the identity matrix, and Appr(u, v) indicates the
influence of node u on node v.

According to Equation (3), we can spread node information
over long distances to get the final node embedding vector:

H1 = α(I − (1− α)A)−1H∗ (4)

where H∗ is the node embedding vector matrix obtained by the
aforementioned convolution operation.

Since the time complexity of Equation (4) is O(n2), when
the network scale is large, it may be expensive. Therefore, we
introduce the iterative form of Equation (4):

Z0 = H∗, Zk+1 = (1− α)AZk + αZ0 (5)

It is easy to prove that lim
K→∞

ZK = α(I − (1− α)A)− 1H∗.

Because all drug node pairs have edges of chemical structure
similarity, there may be two edges between some drug node
pairs. The same is true for target node pairs, and will bring
inconvenience to the random walk. To simplify the problem,
we delete the edges representing the similarity of drug structure
and protein sequence from the heterogeneous network. That is,
the graph convolution operates on a complete heterogeneous
network whereas the random walk is only performed on a sub-
network of the complete network.
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FIGURE 3 | The process of the encoder (taking a drug node as an example).

Decoder
While encoder maps each node in the heterogeneous network
to a real-valued embedding vector, the decoder reconstructs the
original network from the embedding vectors. The decoder is
essentially a scoring function s (u, r, v) :Rd ×R× R

d→ R, used
to score the triplets (u, r, v) so that we can evaluate the probability
of edge r existing between u and v, where u and v are nodes, and
r is a certain type of edge.

In our experiments, we use DistMult (Yang et al., 2015) as
the decoder, which is known to perform well on standard link
prediction benchmarks. The scoring function is:

s (u, r, v) = eu
TMrev (6)

where eu and ev are the embedding vectors of u and v,
respectively. euT is the transpose of eu, and Mr ∈ R

d×d is an
edge-type specific diagonal matrix.

In terms of Equation (6), we can reconstruct the original
networks. Take the reconstruction of a DTI network as

an example:

DTIre = Vdrug
TMDTIVprotein (7)

where Vdrug and Vprotein are the matrices of drug embedding
vectors and target embedding vectors, respectively, and MDTI is
the diagonal matrix used to reconstruct the DTI network.

Training
The loss of network reconstruction is as follows:

Lre =
∑

rǫR

∑

i,j

(

Qij

)2
, Q

= P(Networkroriginal − Networkrreconstruction) (8)

where Networkr
original

and Networkrreconstruction are the original

network with edge type r and the corresponding reconstructed
network, respectively. P is a mask matrix where Pij =1 indicates
that the element in the i-th row and j-th column ofNetworkr

original

appears in the training set, otherwise it does not occur. Q
is a matrix that stores the difference between the predicted
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value and the ground truth in the training set. We further add
the regularization term of the weight coefficient to obtain the
objective function:

Lre =
∑

rǫR

∑

i,j

(

Qij

)2
+ λ

∑

ww
2, Q

= P(Networkroriginal − Networkrreconstruction) (9)

Our optimization goal is to minimize Equation (9), where
∑

w w2 is the sum of the squares of all the weights, and λ is
an adjustment coefficient. In GADTI, there are three trainable
parameters: (1) four matrices for initializing node vectors,
i.e., Wdrug , Wdisease,Wproteinand Wsideeffect ; (2) 12 edge-type-
specific neural network weight matrices W0

r for aggregating
neighborhood information; and (3) 8 edge-type-specific diagonal
matricesMr used to reconstruct the networks.

We adopted the same sampling strategy and dataset division
strategy as Wan et al. (2019). For the DTI network, the sample
pair with an edge connection is regarded as the positive sample,
and the sample pair without a connection is the negative sample.
We randomly collect 10 negative samples for each positive
sample to form the DTI dataset used by the model. Ten-fold
cross-validation (Le et al., 2019) was used for performance
evaluation. In each fold, the DTI dataset is randomly divided into
three independent parts: training set, validation set and test set,
with ratios of 0.855, 0.045, and 0.1 respectively. The training set of
GADTI is composed of the training set of DTIs and other seven
datasets. In each iteration, we update the model parameters on
the training set, and then evaluate the model on the validation
set. If the new model parameters show better performance on
the validation set than before, the test set will be used to test the
generalization ability of the model.

In addition to L2 regularization, early stopping is introduced
to alleviate over-fitting. If the performance of the model on
the validation set does not increase for n iterations, it can be
considered that overfitting has occurred, so the training will stop
early. Adaptive moment estimation algorithm (Adam) (Kingma
and Ba, 2015) is selected to minimize the objective function.
The dimension of embedding vector and the learning rate are
set to 1,000 and 0.001, respectively, according to independent
experiments. Our code runs on PyTorch V1.7 and DGL V0.5.

RESULTS

Performance Evaluation
We used 10-fold cross-validation to test the performance of our
algorithm, and stratified sampling to ensure that the proportion
of samples in each category in the training set and test set were
the same as in the original dataset. The area under the receiver
operator characteristic curve (AUROC) (Le, 2019) and the area
under the precision–recall curve (AUPRC) were chosen to
evaluate the performance of our approach and baseline methods.

The receiver operator characteristics (ROC) curve is suitable
for evaluating the overall performance of the classifier because
it takes both positive and negative samples into consideration
(Le et al., 2020). However, class imbalance often occurs in actual
datasets. For example, in a DTI network, the number of negative

samples is much larger than that of positive samples. In this
case, the ROC curve presents an overly optimistic estimate of the
effect. Conversely, both indicators of the precision–recall (PR)
curve focus on positive samples. In the class imbalance cases,
people are mainly concerned with positive samples, and thus
the PR curve is widely considered to be better than the ROC
curve. We use both AUROC and AUPRC. The larger the value of
AUROC and AUPRC, the better the performance of the method.

Comparison With Baseline Methods
To evaluate the performance of GADTI, we compared it with
four popular computational methods: MSCMF (Zheng et al.,
2013), TL_HGBI (Wang et al., 2014), DTINet (Luo et al., 2017),
and NeoDTI (Wan et al., 2019). These methods all predict
DTIs from a heterogeneous network composed of multiple
datasets. MSCMF uses matrix factorization methods and linear
combinations of matrices to achieve prediction. TL_HGBI first
establishes a three-layer heterogeneous network consisting of
disease, drug, and protein data, and then uses an iterative
strategy for drug repositioning. Meanwhile, DTINet focuses on
learning low-dimensional vector representations of features that
can accurately interpret the topological characteristics of each
node in a heterogeneous network, and then makes predictions
based on these representations through a vector space projection
scheme. NeoDTI is close to the non-random walk version of
GADTI. It first aggregates neighborhood information, and then
reconstructs the network through two bilinear transformations.
We run all fivemethods on the same dataset and implement three
rounds of 10-fold cross-validation to compare their performance.
The hyperparameters used in the baseline methods are the same
as those in NeoDTI.

When the ratio of positive sample to negative sample is 1:10,
the results of GADTI and the baseline methods are shown in
Figures 4, 5. We observe that GADTI has an AUROC value
of 0.9582, which is higher than those of NeoDTI (0.9509),
DTINet (0.9208), TL_HGBI (0.8914), and MSCMF (0.8355).
Meanwhile, in terms of AUPRC, which is more suitable for
the current class imbalance case, GADTI is also better than all
the baseline methods. Our approach slightly outperforms the
second-best method (0.73% in terms of AUROC and 0.79% in
terms of AUPRC).

Some DTI prediction methods based on machine learning
include all unknown DTIs (treated as negative examples) in the
training. To have a better comparison, we did additional test in
this scenario. Experiment shows that GADTI still achieve the
best performance, with an AUROC of 0.9369 and an AUPRC of
0.6205, and it stays ahead by a bigger margin. We notice that
the AUROC values of all methods range from 0.8504 to 0.9369,
but the AUPRC values range from 0.0312 to 0.6205, which is a
large gap. Figure 6 shows the experimental results of the dataset
including all unknown DTIs.

The dataset in section Dataset contains homologous proteins
or structurally similar drugs, which reduces the difficulty
of predicting their interactions. In other words, the good
performance of the DTI prediction method may come from
a simple algorithm rather than a well-designed algorithm.
Therefore, we carried out an additional experiment which is
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FIGURE 4 | Comparison between MSCMF, TL_HGBI, DTINet, NeoDTI, and GADTI in terms of AUROC and AUPRC based on 10-fold cross-validation (#positive:

#negative = 1:10).

FIGURE 5 | The ROC curves and PR curves of different methods (#positive: #negative = 1:10).

FIGURE 6 | Comparison between different methods in terms of AUROC and AUPRC based on 10-fold cross-validation (all unknown pairs were treated as negative

examples).
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FIGURE 7 | Comparison between different methods in terms of AUROC and AUPRC based on 10-fold cross-validation (#positive: #negative = 1:10, DTIs with similar

drugs or targets were removed).

TABLE 2 | Hit numbers of GADTI in different configurations.

m = 10 m = 20 m = 30 m = 40

Configuration A:

#positive: #negative = 1:10

211 406 508 570

Configuration B:

all unknown pairs were treated

as negative examples

291 402 475 523

Configuration C:

#positive: #negative = 1:10, and

DTIs with similar drugs or targets

were removed

149 265 351 422

the same as in Wan et al. (2019): the DTIs with homologous
proteins (similarities > 0.4) or similar drugs (similarities > 0.6)
were removed. Figure 7 shows the experimental results, where
the ratio of positive samples to negative samples is 1:10. GADTI
greatly outperforms the second-best method (2.55% in terms of
AUROC and 4.74% in terms of AUPRC).

Case Study
To evaluate the prediction performance, we downloaded the
latest approved DTI dataset (V5.1.8, 2021-01-03) fromDrugBank
to verify the DTIs predicted by GADTI. We generated a set
DTI_newly, which contained 1,040 new DTIs related to our
original dataset from the latest DTI dataset. For each fold, top
40 potential DTIs were selected for each drug based on their
predicted scores. Because the experiment used three rounds of
10-fold cross-validation, we obtained 30 tables with 708 rows
and 40 columns. Each row represented the potential DTIs of a
drug. The DTIs of each drug were then sorted in descending
order by the number of occurrences. A predicted DTIs set
DTI_prewas generated by selecting the topmDTIs for each drug.
Finally, the number of DTIs (hit number) in the intersection of
DTI_newly and DTI_pre was calculated to verify the reliability of
the prediction. The results are shown in Table 2.

We observe that 54.8% of all new DTIs are predicted by
GADTI in case of m= 40.

DISCUSSION

Finding novel DTI pairs is of great significance for drug
development. However, biochemical experiments are very costly
and time-consuming. Therefore, computational methods have
attracted much attention recently because they can quickly and
cheaply evaluate potential DTIs. Early DTI prediction studies
are mainly divided into two categories: (a) inferring based on
drug similarity and target similarity (Chen et al., 2012; Cheng
et al., 2012; Mei et al., 2013; Wang et al., 2014; Seal et al.,
2015); and (b) binary prediction based on drug feature and
target feature (Nagamine et al., 2009; Lan et al., 2016; Olayan
et al., 2018; Chen et al., 2019; Shi et al., 2019). The GADTI
approach proposed in this paper also utilizes similarity data
and the features of drugs and targets, which are represented
in vectors. However, unlike previous studies, the network
embedding method and the graph autoencoder framework are
introduced to learn the embedding feature vectors of drugs and
targets frommulti-source heterogeneous networks for predicting
unknown DTIs.

We use AUROC and AUPRC to evaluate the performance
of GADTI and the baseline methods. The results show that
GADTI greatly outperforms the other methods in three different
scenarios. Only NeoDTI achieves comparable results under the
situation where the ratio of positive sample to negative sample is
1:10 (Figure 4). This may be because NeoDTI also adopts GCN
for aggregating and updating. In case study, GADTI accurately
predicted 54.8% of the new DTIs (Table 2). We observe that
the hit numbers of configuration B are less than those of
configuration A, in case of m = 20, 30, and 40. However, the gap
decreases with the decrease of m. We can see that in case of m
= 10, the result is just reversed: the hit number of configuration
B is much greater than that of configuration A. A reasonable
inference is that configuration B, all unknown pairs are treated
as negative examples, can make the ranking of potential DTIS
more accurate. As a result of our experiments we conclude that,
compared with baseline methods, GADTI is more reliable and
effective in discovering potential DTIs. Hence, it can be used to
identify new targets for existing drugs.
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The reason why GADTI performs well is that it aggregates
multi-hop neighborhood information and avoids over-
smoothing. First of all, GADTI uses a GCN to aggregate
first-order neighbor information from heterogeneous networks
to update node representation. Then, an RWR is carried out
on the whole network to spread the influence of nodes. The
combination of the GCN and RWR introduces multi-hop
information for node feature updating. It extends the scope of
information aggregation from the first-order neighborhood to
the higher-order neighborhood, which is equivalent to increasing
the receptive field of convolution, thereby realizing long-range
message passing.

Although GADTI has made outstanding achievements in DTI
prediction, it still has room for improvement. For new nodes
of drugs or targets that did not appear during training, GADTI
cannot directly predict their interaction with known nodes, that
is, it needs to restart training to make predictions. In addition,
GADTI cannot predict isolated new nodes that are not associated
with known drugs or target nodes. In future research, we will
introduce node features and improve the model structure to try
to solve these two problems.
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