
“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

1

Federated Deep Reinforcement Learning for
Traffic Monitoring in SDN-Based IoT Networks

Tri Gia Nguyen, Senior Member, IEEE, Trung V. Phan, Member, IEEE, Dinh Thai Hoang, Member, IEEE,
Tu N. Nguyen, Senior Member, IEEE, and Chakchai So-In, Senior Member, IEEE

Abstract—This paper proposes a novel traffic monitoring
framework, namely, DeepMonitor, for SDN-based IoT networks
to provide fine-grained traffic analysis capability for different
IoT traffic types at the network edges. Specifically, we first
develop an intelligent flow rule match-field control system, called
DeepMonitor agent, for SDN-based IoT edge nodes, taking dif-
ferent granularity-level requirements and their maximum flow-
table capacity into consideration. We then formulate the control
optimization problem for each edge node employing the Markov
decision process (MDP). Next, we develop a double deep Q-
network (DDQN) algorithm to quickly achieve the optimal flow
rule match-field policy. Moreover, we propose a federated DDQN-
based traffic monitoring mechanism to significantly improve the
learning performance of the edge nodes. The results obtained
through extensive emulations show that by applying the Deep-
Monitor, the flow-table overflow problem at the edge nodes can
be completely bypassed. The average number of match-fields in a
flow rule achieved by DeepMonitor is increased by approximately
37% (for medium and diverse granularity-level requirements)
and 41.9% (for high granularity-level requirement) compared to
that of an existing solution, i.e., FlowStat. Finally, by adopting
DeepMonitor, the DDoS attack detection performance of an
intrusion detection system can be enhanced by up to 22.83%
compared with that of FlowStat.

Index Terms—Traffic Monitoring, Internet of Things, Markov
Decision Process, Software-Defined Networking, Deep Reinforce-
ment Learning, Federated Learning.

I. INTRODUCTION

The Internet of Things (IoT) is an emerging technology that
aims to connect billions of smart devices in a heterogeneous
fashion worldwide [2]. As a result, the IoT is expected to
lead to the interconnection of ubiquitous terminal devices in
numerous emerging applications [3], e.g., home automation,
health care, smart cities, and the automotive industry. However,
the nature of such open large-scale communication introduces
new security vulnerabilities [4] that have recently attracted

Tri Gia Nguyen is with FPT University, Danang 50509, Vietnam. E-mail:
tri@ieee.org

Trung V. Phan is with Technische Universität Chemnitz, Chair of Communi-
cation Networks, 09126 Chemnitz, Germany. E-mail: trung.phan-van@etit.tu-
chemnitz.de

Dinh Thai Hoang is with the School of Electrical and Data Engineering,
University of Technology Sydney, Australia. E-mail: hoang.dinh@uts.edu.au

Tu N. Nguyen is with the Department of Computer Science, Kennesaw State
University, Marietta, GA 30060, USA. E-mail: tu.nguyen@kennesaw.edu

Chakchai So-In is with Applied Network Technology Laboratory, Depart-
ment of Computer Science, Faculty of Science, Khon Kaen University, Khon
Kaen 40002, Thailand. E-mail: chakso@kku.ac.th

Corresponding author: Chakchai So-In (chakso@kku.ac.th).
A part of this study was presented at 9th International Conference on Com-

putational Data and Social Networks (CSoNet), Dallas, TX, USA, December
11–13, 2020 [1].

users with criminal intentions, e.g., cyberattacks on IoT de-
vices increased by 300% in 2019 according to [5]. In many
cases, attackers do not directly target the IoT devices but
leverage them to attack other victims, e.g., a Mirai botnet [6]
utilized malware-infected IoT devices to launch a distributed
denial-of-service attack to a remote website. As a result, IoT
device insecurity has become a top concern and top driver
of cyberattack traffic on the Internet in 2019 [7]. Therefore,
due to IoT systems’ heterogeneity and scalability [4], which
expose a wide-range attack surface, IoT security issues [8],
e.g., authentication, encryption, access control, network, and
application security, should be taken into consideration.

A. Motivations

According to [4], [8], cyberattack detection is considered
one of the most challenging tasks to effectively defend against
IoT cybercrimes due to the difficulties in extracting and
analyzing digital information in IoT networks [9], especially at
the network edges, which are close to IoT devices [10]. In par-
ticular, heterogeneous and large-scale IoT systems have many
different types of IoT terminals, e.g., sensors, monitors and
alarms, which simultaneously generate various kinds of traffic
to the network edge nodes, constituting a highly dynamic
traffic load into IoT networks. In addition, conventional intru-
sion detection systems (IDS) for IoT networks, i.e., signature-
based and anomaly-based IDSs, are ineffective because of
IoT devices’ heterogeneous nature [11]. Consequently, it has
become challenging to collect traffic information from IoT
networks and then extract and analyze the gathered data [4],
[8]. Therefore, it is crucial to acquire a traffic measurement
mechanism that can dynamically provide a fine-grained traffic
analysis capability to assist security applications in effectively
detecting anomalies in IoT networks.

Recently, Software-Defined Networking (SDN) has been
introduced as a breakthrough technology in Telco industries
with outstanding advantages with respect to dynamics and
flexibility in network control and management [12]. SDN in-
troduces a new networking design and management approach
that separates the control and data planes. Specifically, the
SDN controller has a global view over the network and makes
decisions while the SDN switches handle data forwarding.
Alternatively, communication between two planes is accom-
plished via southbound interfaces, e.g., the OpenFlow [13]
protocol. The OpenFlow protocol enables an SDN switch to
efficiently perform data forwarding using flow-tables, where
flow rules are dynamically added/removed/modified by control

2

messages from the SDN control plane. Notably, a flow rule is
defined as a stream of packets having the same matching crite-
ria in their match-fields, e.g., MAC addresses and IP addresses,
and a flow rule is constructed by a combination of counters,
match-fields1, and instructions [13] (as illustrated in Fig. 1).
By adopting the SDN architecture, a wide range of network
control and management tasks, e.g., network monitoring [14],
have been achieved.

According to [15], the integration of SDN with IoT systems
has enabled new features and abilities to fulfill the require-
ments of IoT in an efficient, scalable, seamless, and cost-
effective manner, which conventional network technologies
fail to achieve. In particular, SDN integration is considered
at four IoT networking aspects, i.e., edge, access, core, and
data center. First, the limitations in IoT data aggregation, flow
monitoring, and admission control can be solved appropriately
for SDN-based edge networking. Next, the requirements at
the access networking in information access, wireless access
networking, and rule-caching are effectively fulfilled with the
adoption of SDN. For core networking, the SDN improves the
security of networks, the performance of packet classification
and routing. Moreover, the SDN can dynamically perform
traffic engineering tasks and online resource sharing for virtual
machines at data centers where cloud-based IoT applications
operate. Finally, the SDN is considered a prominent solution
for resolving latency-related issues, e.g., congestion control
in smart factories [16], quality of experience control for 3D
video streaming [17], and multichannel reassignment tasks in
IoT networks [18].

One of the essential purposes of integrating SDN into IoT
networks is to collect traffic flow information [11], [15], e.g.,
flow rule statistics that can be used for security analysis
[14], from the data plane devices. For instance, the authors
in [19] developed an adaptive statistics collection algorithm,
namely, PayLess, that renders detailed traffic information at
runtime without requiring substantial control overhead by
controlling the number of flow rule statistic messages between
the control plane and the data plane. In [20], a flow rule
assignment mechanism, namely, FlowStat, was introduced to
select a specific SDN switch in the data plane to install an
exact-match flow rule (which contains all possible match-
fields) to obtain detailed statistics for a particular flow rule.
Meanwhile, flow rules at switches that are not chosen carry
only the source and destination IP address in the match-
fields to circumvent the overflow problem, thereby enabling
higher data plane forwarding performance while still providing
accurate flow rule information. In OpenMeasure [21], the
authors introduced an efficient flow rule measurement solution
in SDN that performs adaptive measurements by applying an
online learning algorithm and is constrained by the available
ternary content addressable memory (TCAM). Moreover, the
authors proposed two lightweight heuristic algorithms for flow
rule assignments to increase flow measurement accuracy. As a
result, the switches’ flow rules are dynamically updated, and
the most informative flows are measured at runtime.

1A flow rule can contain a large number of match-fields (e.g., more than
40 fields [13]), which are determined by the control plane.

Moreover, with the aim of achieving significant network
control performance by utilizing the advantages of SDN in
IoT networks, several SDN-based traffic flow aggregation2

solutions [23]–[25] were proposed to efficiently control traf-
fic flows for different traffic engineering tasks in the data
plane. For example, considering the QoS provision ability,
the authors in [23] introduced an admission control scheme
with flow aggregation in SDN-based networks. Specifically,
network calculus is utilized to optimize the admission control
process by selecting individual flows that are then merged
into a single aggregate flow. The amount of bandwidth and
buffer at an the SDN switch is dynamically determined by
a proposed analytical technique to meet traffic flow QoS
requirements. The obtained results show that the proposed
approach enhances bandwidth and buffer utilization in the
SDN switches. Similarly, a scheme, called FlowMan [24] was
proposed to ensure high QoS metrics, i.e., high throughput
and low delay, in heterogeneous flow management in an SDN-
based IoT environment using a generalized Nash bargaining
game theory. Precisely, the first part of the FlowMan scheme
is to select the optimal incoming flow rate using the bisection
approach and then to aggregate these flows, while the second
part performs the optimal mappings of traffic flows to the
appropriate switches. FlowMan can effectively reduce network
delay and increase network throughput in the presence of het-
erogeneous flows. In addition, Mauboubi et al. [25] proposed
an intelligent SDN-based traffic (de)aggregation solution that
divides the TCAM of a switch into two parts. The first part
optimally aggregates incoming flows, and the second part
deaggregates important flows into more informative flows. As
a result, this approach minimizes the overhead of analyzing
obtained per-flow statistics at the control plane.

The aforementioned studies focus on either methods [19]–
[21] to install and measure informative flows, e.g., exact-
match flow rules that contain all possible match-fields, or
flow aggregation techniques [23]–[25] to reduce the number
of flow rules by using fewer match-fields in a flow rule.
However, the existing approaches [19]–[21], [23]–[25] are
ineffective to implement in heterogeneous and large-scale
IoT networks due to highly dynamic traffic behavior. For
example, by aggregating individual flows into a few flows,
the network visibility is significantly decreased, making the
control plane unable to track and monitor network traffic flows
for security or forensic analysis. Furthermore, the TCAM of
an SDN switch can quickly reach its limit when placing many
exact-match flow rules in flow-tables at a time, leading to
a flow-table overflow problem that degrades the forwarding
performance of the switch [22]. Thus, a dynamic solution
that can simultaneously provide significant traffic analysis
capability while avoiding the overflow problem’s flow-tables
in SDN-based IoT networks is urgently needed.

Recently, deep reinforcement learning (DRL) techniques
[26], [27] have emerged as a highly effective tool to address
many dynamic optimization problems in the areas of commu-
nications and networking [28], e.g., jamming attack defense

2Flow aggregation is to merge individual flows into one flow by first
removing all related flows and then installing a new flow with a general
match-field formation [22] for all removed flows.

3

in wireless networks [29], radio frequency energy harvesting
optimization [30], dynamic routing in SDN-based IoT net-
works [31], efficient Deep Transfer Learning [32], and risk
assessment for private sensor IoT devices [33]. In the context
of SDN-based network traffic control, the study that is most
closely related to this paper is our recent work [34]. In [34],
we proposed an approach that utilizes a supervised learning
algorithm to anticipate the flow-table overflow problem. Then,
relying on the predicted overflow result, a DRL algorithm
makes decisions to maximize the average number of match-
fields in a flow rule in the SDN data plane. However, one
of the main drawbacks of this solution is that the supervised
algorithm is more likely to make incorrect predictions in a
heterogeneous and dynamic traffic environment. Moreover, the
supervised algorithm is not updated to adapt its prediction
performance to the current network traffic behavior at runtime.
As a result, the DRL algorithm has difficulty performing the
correct policies based on inaccurate inputs, leading to a very
slow convergence in the learning process. In this paper, the
DRL technique controls the match-fields in flow rules with
the flow-table overflow issue as one of the main constraints.
If the flow-tables of an SDN switch reach the flow rule limit,
then the switch buffer quickly becomes full. Afterward, all
incoming packets are directly forwarded to the control plane
[13], making the SDN controller become a bottleneck and
possibly suspended, e.g., saturation attack targeting the SDN
control plane [35]. To address this issue, in this work, we
propose to severely punish the DRL-based control agent in
its reinforcement learning process whenever the flow-tables of
the switch reach the maximum flow rule capacity, allowing
the learning algorithm to proactively avoid the flow-table
overflow. More importantly, in this work, we consider the issue
of collaborative machine learning of complex models among
distributed agents, which was not discussed and addressed
in [34]. Then, we propose a federated deep reinforcement
learning algorithm to improve participating agents’ learning
performance in a decentralized manner.

B. Our Proposal and Contributions

In this paper, we propose a novel traffic monitoring frame-
work, namely DeepMonitor, developed from the federated
deep reinforcement learning approach to maximize the traffic
flow statistic details (or the traffic granularity degree here-
after) for different traffic groups (e.g., sensors, monitors and
alarms) at the edge layer of an SDN-based IoT network. In
particular, we first develop a flow rule match-field control
system, called a DeepMonitor agent, at each SDN-based IoT
edge node constrained by its maximum flow-table capacity
and granularity level requirements of traffic types. To address
the dynamics of the flow rule match-field control system, we
develop a Markov decision process (MDP) framework. This
framework enables the DeepMonitor agent to make decisions
in a real-time manner based on its current status, i.e., the
traffic granularity degree of all traffic groups derived from the
edge device. Then, we develop a deep reinforcement learning
algorithm, i.e., DDQN, that enables the DeepMonitor agent to
quickly reach the optimal policy without demanding further

information from the environment in advance. Concerning
the IoT system’s heterogeneity and scalability, there is a
tremendous amount of traffic data generated from various IoT
devices; hence, each DeepMonitor agent at an edge node may
not be able to learn all information. Furthermore, sensitive data
can be endangered, e.g., industrial deployments, if the data
set is shared among DDQN agents. Additionally, significant
effort is required to transfer shared data sets for training
among agents considering communication costs. Therefore,
we develop a highly effective federated deep reinforcement
learning technique to improve the learning performance of
the DDQN algorithm at DeepMonitor agents, which can
significantly reduce the training time and quickly achieve the
optimal policy for the whole system.

As a proof-of-concept, we evaluate the DeepMonitor frame-
work in an SDN emulation environment, and the results
show that the proposed framework can achieve remarkable
improvements in terms of not only providing a fine-grained
monitoring capability for all IoT traffic groups but also pro-
tecting edge devices from the overflow problem. In particular,
the average number of match-fields in a flow rule is increased3

by approximately 37% (for medium and diverse required
traffic granularity settings) and by 41.9% (for high required
traffic granularity setting) compared to that of the FlowStat
solution [20]. This improvement significantly outperforms
that of the typical flow matching strategy of ONOS (Open
Network Operating System) [36]. Moreover, the federated
DDQN solution can reduce the learning loss by up to 66%
and improve the learning rate by up to 40% compared to
those of the centralized mechanism. Finally, we evaluate the
monitoring capability of the DeepMonitor framework when
a DDoS attack occurs in the network. The emulation results
obtained by employing the federated DDQN algorithm show
that the DeepMonitor framework can effectively support the
intrusion detection system to improve the attack detection
performance by 22.83% compared to that of FlowStat.

The major contributions of this paper can be summarized
as follows:

• To maximize the traffic granularity degree for all IoT
traffic groups while protecting the SDN-based IoT edge
nodes from the flow-table overflow problem, we develop
a flow rule match-field control system for each edge node
and then formulate its objective function utilizing the
MDP model.

• To quickly obtain the optimal policy of the considered
MDP system without requiring information about traffic
behavior of IoT devices in advance, we develop a DDQN-
based flow rule match-field control algorithm. The pro-
posed algorithm can learn the match-field determination
process by interacting with the flow-tables of SDN-
based edge devices, thereby maximizing the average long-
term traffic granularity degree of all traffic groups and
providing the maximum traffic granularity degree.

• To improve the learning performance of the DDQN
algorithm at DeepMonitor agents, we propose a federated

3Note that the more match-fields a flow rule contains, the more specific
information that flow rule can provide [34].

4

Fig. 1. Typical packet forwarding logic in an SDN-based IoT network.

deep reinforcement learning-based IoT traffic monitoring
mechanism to reduce the DDQN training time while
quickly obtaining the optimal policy.

• Finally, extensive experiments are conducted to demon-
strate the efficiency and capability of the DeepMonitor
framework compared to other solutions in a ubiquitous
IoT environment. The obtained results show that by
applying the optimal flow rule match-field control policy,
the traffic granularity degree is significantly enhanced
while completely avoiding the flow-table overflow, lead-
ing to a remarkable DDoS attack detection performance.

This paper is organized as follows. Section II presents the
DeepMonitor framework and describes the flow rule match-
field control system at the edges in detail. Then, Section
III formulates the control optimization problem, and Section
IV-B introduces the DDQN algorithm. Next, Section V pro-
vides details about the proposed federated deep reinforcement
learning-based solution. Finally, a performance evaluation is
presented in Section VI, and conclusions are outlined in
Section VII.

II. DEEPMONITOR FRAMEWORK

In this section, we first study how IoT traffic is delivered
with the synthesis of SDN; then, the main attributes of the
DeepMonitor framework are discussed in detail.

A. Typical SDN Packet Forwarding Process

As exhibited in Fig. 1, the typical packet forwarding process
at an SDN-based IoT edge device can be briefly explained as
follows:
• Step 1: An incoming packet arrives at the SDN-based IoT

edge device.
• Step 2: The matched flow rule search process in flow-

tables is accomplished by comparing the packet header
information4 to match-fields in every flow rule. If the
header information is matched to all match-fields of a

4The header of a packet regularly includes information, e.g., MAC, IP
addresses and TCP/UDP port numbers.

flow rule, then a matched flow rule has been found5, and
the process proceeds to Step 5.

• Step 3: If there is no matched flow rule, a table-miss
event occurs for the arrived packet, and the edge forms
a packet in message and sends the message to its corre-
sponding SDN controller for further supervision.

• Step 4: The SDN controller performs its traffic forwarding
schemes and installs a new flow rule into the edge with
a suitable selection of match-fields and instructions.

• Step 5: The incoming packet is supervised by Instructions
in the matched flow rule, e.g., forward the packet to a
specific edge port or drop the packet.

In summary, in a flow rule, the match-field determination is
critical to the SDN packet forwarding and flow rule matching
at the edge devices. Precisely, the packet forwarding can be
performed only through a course of actions, either (1)(2)(5)
or (1)(2)(drop) or (1)(2)(3)(4)(5), as presented in Fig. 1. For
example, an incoming packet that does not match any flow
rules in the flow-tables of an SDN switch and follows all five
steps results in an extra delay in the packet forwarding between
users/clients. Therefore, flow rule match-field control problems
should be carefully considered [20], [37]. In addition, the
traffic granularity or the traffic flow statistic details collected
by the control plane [38] are principally determined by the
total number of match-fields that a flow rule contains at the
edge device, and the more match-fields a flow rule contains,
the more detailed flow information or the higher degree of
traffic granularity it provides [34]. Therefore, to adjust the
traffic granularity degree, the determination of the match-
fields in a flow rule should be properly controlled. In other
words, a flow rule match-field control system should be
implemented to achieve a dynamic traffic granularity level and
to obtain efficient traffic monitoring capability in SDN-based
IoT networks.

B. DeepMonitor Framework

As stated in [39], SDN can be deployed at different network-
ing levels, i.e., edge (or access), core, and cloud networks,
thereby covering IoT traffic control and management from
devices up to cloud services. Therefore, we propose a traffic
monitoring framework, namely, DeepMonitor, consisting of
four main components, i.e., SDN-based IoT edge nodes,
DeepMonitor agents, SDN controllers, and an aggregation
server, that are located in different levels of SDN-based IoT
infrastructures, as shown in Fig. 2. In particular, DeepMonitor
agents are integrated with the SDN-based IoT edges that are
connected to the SDN control plane via southbound interfaces.
By means of this approach, the SDN controllers can implement
traffic control and management policies at the edge nodes. In
our approach, to perform a change of the flow rule match-
field strategy at an edge node, the integrated DeepMonitor
agent sends a request to the associated SDN controller, and a
control message is then sent to the edge node to implement the
policy at its flow-tables. In addition, for the federated learning

5For ease of comprehension, we study this simple matching strategy in this
paper; more complex matching methods can be found in [13], e.g., multiple
flow-tables searching.

5

Fig. 2. DeepMonitor framework in SDN-based IoT networks.

Fig. 3. Overall workflow of the DeepMonitor framework.

process, the data exchange between DeepMonitor agents and
the aggregation server is transmitted over the SDN-based core
network. Notably, the federated learning data exchange is
handled as normal traffic forwarding in the SDN-based core
and cloud networks, e.g., IoT devices send and receive data
from their cloud-based applications.

With respect to the operation of the DeepMonitor frame-
work, as shown in Fig. 3, there are two separate processes:

• Flow rule match-field control at the edge: This process
is performed at an SDN-based IoT edge supervised by
a DeepMonitor agent and an associated SDN controller.
Specifically, IoT traffic statistics from the edge are col-
lected and analyzed by the DeepMonitor agent. After-
wards, the agent forms a flow rule match-field change
policy and sends it to the SDN controller to implement
the policy at the edge device’s flow-tables. The same
process is repeated after a certain period, referred to as
a local learning iteration in the remainder of the paper,
to evaluate the policy’s effectiveness and to identify the

optimal policy. This process is referred to as reinforce-
ment learning, and in this study, we develop the DDQN
algorithm to learn the flow rule match-field control.

• Federated deep reinforcement learning for agents: To im-
prove the learning performance of the DDQN algorithm at
DeepMonitor agents, a federated learning algorithm is de-
veloped. Specifically, the DDQN algorithm at each agent
is first trained by its collected data set for a predetermined
time period due to the online learning process. Then,
for the next federated learning round, the agent uploads
its local parameter update to the aggregation server and
receives the global parameter disperse. This learning loop
is repeated until the DDQN algorithm converges. More
details are provided in Section V.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first study details of a flow rule match-
field control system for each SDN-based IoT edge node
utilizing the MDP framework. The optimization problem is
then discussed and formulated.

A. System Model

As discussed previously, it is crucial to accurately and
dynamically determine the correct collection of match-fields
in traffic flows of various IoT devices to acquire efficient
traffic monitoring capability in SDN-based IoT networks. Ac-
cordingly, we develop a flow rule match-field control system,
referred to as DeepMonitor agent, residing in an edge device
and consisting of a statistics collector, a control agent, a
database, and a flow rule match-field policy maker, as shown
in Fig. 4. The control agent supervises the operation of flow
rule match-field determination in flow-tables at an SDN-based
IoT edge i. Notably, we design the control mechanism for
single edge node i. Hence, if there are many IoT edges that
need to be supervised, it is feasible to initiate DeepMonitor
agents at these edges to obtain sufficient traffic granularity at
all monitoring points.

6

TABLE I
IMPORTANT NOTATION

Notation Definition
N Number of IoT traffic types passing through the edge i
Θ= Required granularity level or number of match-fields in a flow rule
M<0G Maximum number of match-fields in a flow rule
G<0G Maximum number of flow rules in the flow-tables of an edge device
\= Actual current granularity of the particular traffic group n
w= Importance of the particular traffic group n
FC Total number of flow rules in the edge at time step t
f= Total number of flow rules of a particular traffic group n

S,A, R State space, action space, and immediate reward function
sC , aC A state and an action taken by the control agent at time step t
X A collection of all match-field combinations
ΔR= Difference between the gained and required values of a particular traffic group n
W Discount factor

&=4C , &̂=4C Primary Q-network and target Q-network
E, N Replay memory pool and memory buffer size
4C An experience in E

q, q<0G An episode and maximum number of episodes in the training phase
\q , \−

q
Weight parameters of &=4C and &̂=4C at episode q

C Number of time steps after which the target network is replaced by the primary network
T Number of time steps in an episode
m Number of participating DeepMonitor agents
T Number of federated learning rounds
D Set of local data sets

w0
�

Initial global parameters
[Learning rate of the federated learning

wg+1
8

, wg+1
�

Local update and global update at the learning round i

Fig. 4. Reinforcement learning-based model of DeepMonitor agent.

According to a recent survey [40], IoT traffic is hetero-
geneous from a macro perspective but group-specific from
the local network perspective. Concretely, IoT devices serving
different applications can be individually connected in separate
virtual local area networks (VLANs), which can be supervised
at the edge of the IoT networks, i.e., the SDN-based IoT
edge i, because VLAN ID is one of the match-fields in a
flow rule. Generally, we first assume that there exist N IoT
traffic types passing through edge i. For each traffic group, the
required granularity for monitoring purposes, i.e., the number
of match-fields in a flow rule, is denoted by Θ= (= ∈ N),
where 0 < Θ= ≤ M<0G and M<0G is the maximum number
of match-fields in a flow rule. Specifically, the control agent
must maintain at least a certain amount of information, i.e.,
a significant number of match-fields in a flow rule, to ensure
the operation of the network monitoring application. Initially,

the control agent implements a policy to move the flow rule
match-field strategy of specific traffic groups into the edge via
the SDN controller. To perform a flow rule match-field scheme
change, the SDN controller sends 5 ;>F <>3 messages to the
edge to delete all existing flow rules related to the traffic group
and to install flow rules with the new match-field combination
in the flow-tables of the edge. Afterwards, on the basis of
the collected statistical data, the control agent estimates the
effectiveness of the executed policy, i.e., the traffic granularity
degree of all traffic groups in the edge, in comparison to
the Θ= value (first constraint in (1)) and the limit of flow-
tables of the edge device (second constraint in (1)), denoted
as G<0G . These processes are repeated to explore new policies
and observations. Accordingly, we can formulate the objective
function of the control system as follows:

max
C

N∑
==1

w=\=, s.t.


0 < Θ= ≤ \= ≤M<0G , ∀= ∈ N ,
0 ≤ FC < G<0G ,∑N
==1 w= = 1,

(1)

where \= and w= are the actual current granularity and the
importance of the particular traffic group n, respectively; and
FC represents the total number of flow rules in the edge at
time step t. Specifically, the value of \= is calculated as

\= =

∑ 5=
5 =1M 5

5=
, (2)

where 5= (5= ≤ G<0G) is the total number of flow rules of
traffic group n at the flow-tables of the edge and M 5 is the
number of match-fields in a flow rule f.

Theoretically, by trying to perform more changes in the
match-fields of flow rules at the edge’s flow-tables, the control

7

agent might get closer to its objectives. Nevertheless, it be-
comes challenging to discover an optimal flow rule match-field
policy in SDN-based IoT networks due to the heterogeneity
and scalability [15], [41].

B. Problem Formulation

To maximize the granularity degree of the traffic of all
N traffic groups at the SDN-based IoT edge, we develop
an MDP framework [42] with the DeepMonitor system, as
exhibited in Fig. 4. This framework enables the DeepMonitor
system to dynamically implement optimal actions based on its
observations to maximize its average long-term reward. The
MDP is defined by a tuple < S,A,R >, where S signifies the
state space, A expresses the action space, and R represents
the immediate reward function.

State Space: As aforementioned, from the perspective of
each local network, there exist N traffic groups transferring
traffic through the edge [40]. In this paper, we aim to maximize
the total traffic granularity levels of all groups. Then, the state
space of the edge can be defined as follows:

S , {((\1, 51), ..., (\=, 5=), ..., (\N , 5N))}, (3)

where \= (\= ≤ M<0G) and 5= (5= ≤ G<0G) represent the
actual current granularity levels and the total number of
flow rules of the traffic group n, respectively. The reason
for selecting 5= is that a higher number of flow rules en-
tails a greater number of match-fields in a flow rule of
the traffic group. Thus, the state of the system is s =
((\1, 51), ..., (\=, 5=), ..., (\N , 5N)).

Action Space: Recall the objective function in (1); one of
the prerequisites is to always keep all \= values greater than or
equal to their corresponding Θ= values. Thus, the control agent
should quickly take actions whenever \= does not satisfy this
requirement. However, the main objective is to maximize the
total actual traffic granularity; hence, the control agent should
perform actions even in the case that all \= values meet the
prerequisites. Moreover, the strategy is to implement actions
for only the traffic group with the lowest \= value at a time
step because changing the flow rule match-field strategies of all
groups simultaneously can lead to a significant variation in the
flow-tables of the edge and more latency for communications
due to table-miss events by the new match-field combinations
that generate packet in messages to the control plane [35].
X = {G1, G2, ..., G: } depicts a collection of all match-

field combinations, e.g., G: = <“matchTcpUdpPorts”,
“matchIpv4Address”,...> defined in the Reactive Forwarding
application of the ONOS [36]. Therefore, the action space
for changing the flow rule match-field tactic in the edge is
determined by

A , {0 : 0 ∈ X} . (4)

Note that if the chosen action is the same as the current action
of the selected traffic group, the control agent goes into sleep
mode and waits for the next state observation.

Immediate Reward Function: Whenever, by performing an
action, the total number of flow rules FC in the edge reaches the
limit G<0G , which can lead to either forwarding performance

degradation of the edge [22] or a packet in flood to the
SDN controller [35], the control agent should be immensely
punished. By contrast, the more match-fields in a flow rule of
a group, the higher the granularity degree the group provides.
In addition, if there exists a group gaining \= < Θ=, a small
punishment is applied to penalize the immediate reward of the
control agent; the punishment is calculated as the difference
between the gained \= and required Θ= values, ΔR= =Θ=−\=,
for group n. Accordingly, we establish the immediate reward
function for the control agent as the total gained granularity
values minus the total punishments for groups not meeting
their requirements, which is represented as follows:

R(B, 0) =


∑N
==1 w=\=, if \= ≥ Θ=, ∀= ∈ N and FC < G<0G ,∑N
==1 w= (\= −ΔR=), if \= < Θ= and FC < G<0G ,
−M<0G , if FC = G<0G ,

(5)

where FC is the current total number of flow rules in the edge
and M<0G is the maximum number of match-fields in a flow
rule.

C. Optimization Formulation

We formulate an optimization problem to achieve the op-
timal policy, referred to as c∗ (B), that maximizes the control
system’s average long-term reward, i.e., the traffic granularity
degree of all groups at the edge. Thus, the optimization
problem is defined as

max
c

ℜ(c) =
∞∑
C=1
E(R(BC , c(BC))),

s.t.


R ∈ R, BC ∈ S, c(BC) ∈ A,
0 < Θ= ≤ \= ≤M<0G , ∀= ∈ N ,
FC < G<0G ,∑N
==1 w= = 1.0,

(6)

where ℜ(c) and R(BC , c(BC)) represent the average reward
function and the immediate reward function obtained by the
control agent under policy c at time step t, respectively.

IV. EFFICIENT TRAFFIC MONITORING WITH DOUBLE
DEEP Q-NETWORK

AT THE EDGE LAYER IN SDN-BASED IOT NETWORKS

In this section, we first illustrate the application of the Q-
learning algorithm to solve the optimization problem in (6).
However, due to a prolonged learning convergence perfor-
mance of the Q-learning, we then introduce a deep reinforce-
ment learning technique to obtain the optimal policy quickly.

A. Q-Learning Based Flow Rule Match-Field Control

In this section, we first propose the Q-learning algorithm
to solve the optimization problem in (6). In particular, the
Q-learning algorithm [42] utilizes a Q-table to store all state-
action pairs in the considered environment. The Q-learning
control agent is able to learn from its decisions at each time
step or iteration, and the learning algorithm can converge to
the optimal control policy c∗ (B) after a certain number of
time steps [42]. Specifically, the expected return for the control

8

Algorithm 1 Q-Learning-Based Flow Rule Match-Field Con-
trol Algorithm

1: Inputs: For a state-action pair (s,a) ∀B ∈ S, 0 ∈ A,
arbitrarily initialize a Q-table entry; initialize values of
U, W, n , and) (terminal condition in an episode).

2: for episode q ∈ {1,2, ..., q<0G} do
3: for C ∈ {1,2, ...,)} do
4: Given current state BC .
5: Perform action 0C according to the n policy.
6: Obtain a new state BC+1 and calculate an immediate

reward R.
7: Update the Q-table entry for Q(BC ,0C) by

&C+1 (BC , 0C) =&C (BC , 0C) +U[R(BC , 0C)
+Wmax

0
&C (BC+1, 0C+1) −&C (BC , 0C)], (7)

8: Update BC ←− BC+1.
9: Go to the next episode if C =) .

10: end for
11: end for
12: Outputs c∗ (B) = argmax0&∗ (B, 0).

agent of state s under policy c is represented as oc (B) :S −→
R, which is determined as follows:

oc (B) = Ec

[∞∑
C=0
WR(BC , 0C) |BC = B

]
= Ec [R(BC , 0C) +Woc (BC+1) |BC = B] ,∀B ∈ S,

(8)

where W ∈[0, 1] is a discount factor that represents the
importance of the long-term reward [42]. To find the optimal
policy c∗ (B), the optimal action at a given state can be obtained
using the following optimal value function:

o∗ (B) =max
0
{Ec [R(BC , 0C) +Woc (BC+1) |BC = B]} ,∀B ∈ S. (9)

Thus, for all state-action (s,a) pairs, the optimal Q-functions
are

&∗ (B, 0) , R(BC , 0C) +WEc [oc (BC+1)] ,∀B ∈ S. (10)

Then, the optimal value function o∗ (B) can be referred to as
o∗ (B) =max0 {&∗ (B, 0)}. By performing different actions a on
the controlled environment, the optimal Q-function value for
all state-action (s,a) pairs can be achieved. Concretely, the Q-
function is updated in each iteration by

&C+1 (BC , 0C) =&C (BC , 0C) +U[R(BC , 0C)
+Wmax

0
&C (BC+1, 0C+1) −&C (BC , 0C)], (11)

where BC ∈ S, 0C ∈ A, &C (BC , 0C) is the Q-value for a state-
action pair (BC , 0C), R(BC , 0C) represents the immediate reward
derived from the gateway at time step t, W ∈[0, 1] is the
discount factor and U ∈[0,1] is the learning rate. Furthermore,
to relieve the exploration and exploitation that have an im-
mediate influence on the convergence rate of any learning
algorithm, the n-greedy mechanism [42] is employed. In the
learning period, the Q-learning control agent initializes a Q-
table to store all state-action pairs and subsequently updates it

by applying (11). Accordingly, the agent can obtain a trained
Q-table.

Algorithm 1 presents the implementation details of the
Q-learning based flow rule match-field control algorithm.
According to [43], the Q-learning algorithm can obtain the
optimal policy in a sufficient period of learning in the case that
the state space and action space are well-bounded. However,
the MDP model under consideration has billions of states
based on combinations among N traffic groups, as illustrated
in (3), leading to a very slow convergence rate [43]. To address
this issue, in the following, we develop a DDQN-based flow
rule match-field control algorithm to obtain the optimal policy
for the control agent quickly, thereby efficiently producing the
maximum granularity level for IoT traffic monitoring tasks.

B. Double Deep Q-Network-Based Flow Rule Match-Field
Control

In this section, we propose the DDQN algorithm [27] to
solve the slow convergence problem discussed earlier. Specif-
ically, the DDQN algorithm utilizes a deep neural network as
a nonlinear function approximator. In the DDQN algorithm,
an action is chosen according to a primary neural network
&=4C , and a target neural network &̂=4C is applied to evaluate
the target Q-value of the implemented action, as exhibited
in Fig. 5. According to the outcomes in [26], the control
agent performance can vary significantly whenever a nonlinear
function approximator is applied because a small variation in
Q-values can immensely influence the policy in the learning
period. Accordingly, in the DeepMonitor control system, the
data distribution and the relationships between the current
and the target Q-values can be diversified. To address this
weakness, we implement an experience replay scheme and a
target Q-network.

Experience replay mechanism: We define a replay memory
pool E to store the control agent’s experience at each time
step, 4C = [BC , 0C ,R(BC , 0C), BC+1], over many episodes, and
E = {41, ..., 4C }. Through the learning process, the collected
samples of experience from E or a minibatch of experiences
* (") is selected at random to update the neural networks.
This strategy can achieve high data efficiency because the
neural networks can be trained several times by the same ex-
perience. Furthermore, the randomizing method eliminates the
correlations between the observed samples, thereby reducing
the variance of the neural network updates.

Target Q-network: The Q-values are corrected, leading to
uncertainties in the value calculations during the learning
period, which destabilizes the learning algorithm. Hereafter,
to improve the stability of the learning algorithm with neural
networks, a separate network &̂=4C (target Q-network) is ap-
plied to produce the target Q-values for the primary Q-network
&=4C . More accurately, &=4C is cloned, and &̂=4C is replaced by
the cloned &=4C after � time steps. This modification addresses
divergence, thereby stabilizing the learning algorithm.

Algorithm 2 presents the details of the learning DDQN algo-
rithm applied for the DeepMonitor control agent. In particular,
for an episode, the control agent takes an action following the
n-greedy policy and then observes a new state and calculates

9

Fig. 5. Double deep Q-network-based model of a DeepMonitor agent at the edge.

Algorithm 2 Double Deep Q-Network-Based Flow Rule
Match-Field Control Algorithm

1: Initialize replay memory E with buffer size N.
2: Initialize the primary Q-network &=4C with arbitrary

weights \.
3: Initialize the target Q-network &̂=4C with arbitrary weights
\− = \.

4: � is the target Q-network replacement frequency, and)
is the terminal step in an episode.

5: for episode q ∈ {1,2, ..., q<0G} do
6: for C ∈ {1,2, ...,)} do
7: Select a random action 0C with probability n ;

otherwise, (with probability 1 − n) select 0C =

argmax0∈A&∗ (BC , 0C ;\).
8: Perform action 0C at the edge, observe a new state

BC+1 and calculate an immediate reward R(BC , 0C).
9: Store experience 4C = (BC , 0C ,R(BC , 0C), BC+1) in E and

replace BC by BC+1.
10: Sample random minibatch of experience

(B 9 , 0 9 ,R(B 9 , 0 9), B 9+1) from E, and for
all 4 9 ∈ * ("), calculate H 9 = R(B 9 , 0 9) +
W&̂=4C

(
B 9+1,argmax0 9+1∈A&=4C (B 9+1, 0 9+1;\q);\−q

)
.

11: Execute a gradient descent step on(
H 9 −&=4C (B 9 , 0 9 ;\q)

)2 with respect to \q .
12: Replace &̂=4C ←&=4C every � time steps.
13: Go to next episode if C =) .
14: end for
15: end for

an immediate reward. Then, the experience is stored in the E
for training in the next episodes. During the learning process,
the control agent takes a minibatch of experience at random
to update the &=4C by minimizing the following loss function.

!q (\q) = E4 9 ∈* (") [(R(B 9 , 0 9)
+W&̂=4C (B 9+1,argmax

0 9+1
&=4C (B 9+1, 0 9+1;\q);\−q)

−&=4C (B 9 , 0 9 ;\q))2],

(12)

Fig. 6. Overall workflow of the federated deep reinforcement learning
solution.

where W is the discount factor, \q is the weight parameters of
&=4C , and \−

q
is the weight parameters of &̂=4C .

A primary innovation in [26] is to freeze the parameters
of &̂=4C for � time steps while updating &=4C via stochastic
gradient descent, which enhances the stability of the algorithm.
Likewise, we differentiate the loss function in (12) with respect
to the weight parameters of &=4C and &̂=4C ; then, we can derive
the gradient update as follows:

∇\q!q (\q) = E4 9 ∈* (") [(R(B 9 , 0 9)
+W&̂=4C (B 9+1,argmax

0 9+1
&=4C (B 9+1, 0 9+1;\q);\−q)

−&=4C (B 9 , 0 9 ;\q))∇\q&=4C (B 9 , 0 9 ;\q)] .
(13)

Instead of calculating the expectation in (13), the loss function
in (12) can be minimized by the stochastic gradient descent
algorithm [44]. Furthermore, the learning of the DDQN al-
gorithm continues by updating the neural network parameters
using prior experience in an online manner.

10

V. FEDERATED DEEP REINFORCEMENT LEARNING-BASED
IOT TRAFFIC MONITORING

As stated in [26], [27], DDQN training from scratch usually
requires a large amount of data and considerable computing
resources to find the optimal policy efficiently. In addition,
sensitive data can be endangered, e.g., industrial deployments,
if the data set is shared among DDQN agents, and significant
effort is required to transfer shared data sets among agents
due to the communication costs [45]. Furthermore, if there is
a newly deployed edge in the IoT network, it can significantly
benefit from knowledge transferred from other edge nodes.
Therefore, we propose a federated deep reinforcement learning
solution to enhance the learning performance of the DDQN al-
gorithm at DeepMonitor agents. Specifically, federated agents
collaboratively learn a shared predictive model without sharing
the training data set through many learning rounds.

A. Federated Deep Reinforcement Learning-Based IoT Traffic
Monitoring Algorithm

The workflow of the federated deep reinforcement learning
is shown in Fig. 6. In each learning round, the aggregation
server sends a global model (global update) to all DeepMonitor
agents, and in the first learning round, the initial global
parameters F0

�
of the DDQN algorithm, e.g., the number of

epochs of parallel training and neural network weights (\−

and \ from Algorithm 2), are dispersed together. When each
DeepMonitor agent receives the updated global model, it trains
this model (local model training) based on its local obtained
experience. After a period of time, the agent uploads the new
trained model (local update) to the aggregation server and then
obtains an updated global model for the next learning round.
This process is repeated until the global loss function from the
local updates is minimized [45].

Algorithm 3 Federated Deep Reinforcement Learning-Based
IoT Traffic Monitoring Algorithm

1: m is the number of participating DeepMonitor agents.
2: T is the number of federated learning rounds.
3: w0

�
is the initial global parameters, and the learning rate

is [.
4: Aggregation Server disperses w0

�
to m agents.

5: for g ∈ {1,2, ...,T } do
6: for 8 ∈ {1,2, ...,<} do
7: Agent i computes its local update.
8: Set wg+1

8
= wg

8
−[∇L8 (wg

8
).

9: Send wg+1
8

to Aggregation Server.
10: end for
11: Aggregation Server receives wg+1

8
from each agent i.

12: Update global model using

wg+1
� =

∑<
8=1�8w

g+1
8

D . (14)

13: Disperse wg+1
�

to all agents.
14: end for

The proposed federated deep reinforcement learning scheme
for traffic monitoring is formally described as follows. We con-
sider a traffic monitoring system consisting of an aggregation

server and m DeepMonitor agents with a set of local data
sets D = {�1, �2, ..., �8 , ..., �<}. Each �8 contains a set of
experiences 4C (see Experience replay mechanism in Section
IV-B). For a DeepMonitor agent i in round g in the federated
learning process, the aim is to find the objective parameter wg

8

that minimizes the loss function

L8 (wg
8) = !8 (\8), (15)

where !8 (\8) is the loss function derived from (12), \8 is the
current weight parameters of the &=4C , and the local problem
at agent i is defined as

wg
8 = argmin

wg
8

L8
(
wg
8

)
. (16)

Then, the global loss function is formulated as

L(wg
�) =

∑<
8=1�8L8 (wg

8
)

D , (17)

where D =
∑<
8=1�8 and the learning problem is now to find

w∗ = argmin
wg
�

L(wg
�). (18)

Due to the complexity of the local problem in (16), we
adopt a gradient descent algorithm [46] to obtain the solution.
Specifically, for round g > 0, each DeepMonitor agent i
calculates the parameters wg+1

8
using the update rule as follows

wg+1
8 = wg

8 −[∇L8 (wg
8), (19)

where [≥ 0 represents the learning rate. Then, the global
parameters wg+1

�
are updated at the aggregation server as

wg+1
� =

∑<
8=1�8w

g+1
8

D . (20)

The updated global parameters wg+1
�

are used for the next
round of training at the DeepMonitor agents. Algorithm 3
provides details of the proposed federated deep reinforcement
learning-based solution used in the DeepMonitor framework.

B. Convergence Analysis

To evaluate the convergence performance of Algorithm 3,
we can make the following assumptions considering the loss
function, which is similar to [47].

Assumption 1. For all participants i:
1) L8 (w) is convex;
2) L8 (w) is L-smooth; that is, L8 (w

′) ≤ L8 (w) +∇L8 (w) ·
(w′ −w) + !2 ‖ w′ −w ‖2.

According to [47], Assumption 1 assures the utility of linear
regression and the rules of updates in federated learning;
hence, we have the following lemma.

Lemma 1. L(w) is convex and L-smooth.

Proof. Straightforwardly from Assumption 1, in line with the
definition of convex, L(w) is the finite-sum formation of
L8 (w), and it is a triangle inequality. �

Theorem 1. Given that L(w) is L-smooth and `-strong, let
`g = 1/! and w∗ = argminwL(w), where w∗ is the optimal
solution; therefore, we have

11

‖ wg −w∗ ‖≤
(
1− `

!

) g ‖ w1−w∗ ‖, (21)

where $ (s) = !
`

log(‖w1−w∗ ‖
s
) is referred to as the gradient

dispersion, which represents how the parameters w� are
dispersed to each participant.

Proof. Please see Appendix A. �

We can derive the convergence in expectation as follows[
L(wg) −L(w∗)

]
≤ sg

[
Δg

(
L(w∗)

)]
. (22)

Therefore, L(w) is proved to be bounded as Δg
(
L(w∗)

)
=

L(w1) −L(w∗). In other words, our proposed federated learn-
ing approach can converge after a certain number of learning
rounds.

C. Computational Complexity Analysis

In this study, we implement a deep reinforcement learning
algorithm, i.e., DDQN, that applies deep neural networks to
solve our optimization problem at each SDN-based IoT edge
device. Nevertheless, substantial CPU and GPU resources are
generally needed to operate deep learning-based algorithms,
especially for complex problems with many constraints that
usually require multiple hidden neural network layers. There-
fore, the computational complexity should be considered to
guarantee the practical deployment of the proposed algorithms.
Specifically, the computational complexity of Algorithm 1 is
bounded by O

(
q<0GT(|S|2 × |A|)

)
. According to [48], the

computational complexity of a deep neural network at each
time step in the training process is calculated as O(S8=N;
+

∑Z−1
;=1 N;N;+1), where Z , S8= and N; represent the num-

ber of training layers, the input layer size, and the num-
ber of neurons in the l-th layer, respectively. Moreover, for
T time steps in each training episode and q<0G episodes
until convergence, the total computational complexity of a
deep neural network in the training phase is expressed as
O(q<0GT(S8=N; +

∑Z−1
;=1 N;N;+1)). In addition, with a replay

memory buffer size N, the computational complexity of a
classic DDQN algorithm is formulated as O(2|S|2 × |A| +
log2N) [27], [48]. Thus, the total computational complexity of
Algorithm 2 is O

(
q<0GT(S8=N; +

∑Z−1
;=1 N;N;+1) + 2|S|2× |A|

+ log2N
)
. For each learning round in Algorithm 3, an agent i

computes its local update on a data set �8 with computational
complexity O

(
|�8 |(S8=N; +

∑Z−1
;=1 N;N;+1) + 2|�8 |2 + log2N

)
.

Hence, the total computational complexity of Algorithm 3 is
O

(
T (m|w8 |(|�8 |(S8=N; +

∑Z−1
;=1 N;N;+1) + 2|�8 |2 + log2N) +

|w� |)
)
.

Recently, the authors in [49] proposed a novel method,
namely, network compression, which can reduce the CPU and
storage requirements of neural networks by a factor of 10.
In addition, the obtained results show that the deep learning
algorithms can be efficiently deployed on standard platforms
from Intel, Qualcomm, and NVidia, without requiring special
hardware or software. In this work, Algorithm 2 and Algorithm
3 follow common settings for deep neural networks [26], [27],
as discussed previously; therefore, our proposed DeepMonitor
framework can easily be implemented in practice.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

In this work, a federated deep reinforcement learning
scheme for traffic monitoring is developed to improve the
learning performance of DeepMonitor agents in a decen-
tralized manner. Therefore, for the DeepMonitor framework
evaluation, we utilize MaxiNet to emulate a distributed SDN-
based IoT network consisting of three hierarchical enterprises.
Each network contains six access OvSes (Open vSwitch)
running as SDN-based IoT edge devices and several container-
based hosts (24 hosts/OvS) as IoT devices, and it is under
the control of an ONOS SDN controller (v.1.3) [36]. The
emulation runs on three machines with Intel(R) Core(TM) i7-
7700 CPUs with a clock speed of 3.60 GHz, 64 GB RAM
memory, and NVIDIA GeForce GTX 1080 Ti. The aggregation
server is on a separate physical machine connected to three
enterprise networks.

B. Parameter Setting

Concerning the configurations of the DDQN algorithm,
we apply the common settings of neural networks [26]. In
particular, two fully connected hidden layers are implemented
with input and output layers (see Fig. 5), the size of the
output layer is 10 (which indicates 10 flow rule match-field
strategies), and the activation function is rectified linear unit
(ReLU). The mini-batch size is 32, the replay memory E
holds a size N of 10000, and the target Q-network replacement
frequency � is 1000 iterations. In the learning process of the
Q-learning and DDQN algorithms, the n-greedy algorithm is
employed with an initial value of 1.0 and final value of 0.1
[26], [50], the duration of a local learning iteration t is 10
seconds, and the maximum number of iterations in an episode
) is 100. For the configurations of the federated DDQN,
the number of participants m is 18, the learning rate [is
0.6, and the number of federated learning rounds T is 200.
Furthermore, we conduct experiments utilizing TensorFlow
Federated [51] to evaluate the DeepMonitor system under
various parameter settings, as mentioned above.

Similar to [22], the number of flow rules that an OvS can
handle in an emulation environment is set to 3000, and if
there are more incoming packets that request new flow rule
installations, e.g., a DoS/DDoS attack, while the buffer is fully
occupied, the OvS’s operation can become suspended after a
short time period. Hence, we set G<0G = 3000. Note that we
perform experiments with 10 different flow rule match-field
combinations and 11 standard match-fields provided by the
ONOS controller [36], so |X| = 10 and M<0G = 11.

Although various IoT traffic groups exist, we previously
discussed the traffic groups from the perspective of local
networks [40] in Section III; thus, we can generalize three
common traffic groups:
• Sensor traffic: IoT sensor devices produce traffic in a

certain period with a low number of packets per flow.
• Monitor traffic: This traffic group is regularly recognized

as real-time IoT applications, which can be distinguished
by a small number of flows and a considerable number
of packets per flow.

12

• Alarm traffic: This traffic group is not plainly defined
because alarm IoT devices generate traffic flows only
when an unusual event occurs. Consequently, we assume
that this traffic group has moderate values of both the
number of flows and packets per flow.

Moreover, Hping3 tool [52] is installed at the container-based
hosts to randomly generate TCP/UDP traffic flows according
to the characteristics of these traffic groups, thereby generating
a highly dynamic traffic load in the emulation.

The above classification indicates that N = {B4=B>A,
<>=8C>A, 0;0A<}, and experiments are performed with three
settings of required granularity levels, as follows:
• Medium: ΘB4=B>A = Θ<>=8C>A = Θ0;0A< = 5.0.
• Diverse: ΘB4=B>A = 3.0, Θ<>=8C>A = 6.0, Θ0;0A< = 9.0.
• High: ΘB4=B>A = Θ<>=8C>A = Θ0;0A< = 9.0.

In addition, the importance of individual traffic groups is set
equally, i.e., wB4=B>A = w<>=8C>A = w0;0A< = 1/3.

C. Benchmark Solutions

Regarding the provision of traffic monitoring capability
in SDN-based IoT networks, the DeepMonitor framework’s
performance is evaluated by comparison with a recent solution,
i.e., FlowStat [20], and the typical flow matching by ONOS
[36]. In FlowStat, the authors present a flow-rule placement
solution to select an SDN switch in the traffic flow path
to place an exact-match flow rule that contains all available
match-fields. Meanwhile, the source IP address and destination
IP address are included in the match-fields of the flow rules
at switches that are not selected. Accordingly, by observing at
an SDN switch, the FlowStat forms two types of match-field
combinations in flow rules, i.e., exact-match and (source IP
address, destination IP address). For ease of understanding,
we assume that the SDN controller randomly selects and
installs these two match-field combinations in the match-fields
of the flow rules in an SDN-based IoT edge. The default flow
matching strategy provided by ONOS contains six match-fields
in a flow rule, i.e., source and destination MAC addresses,
source and destination IP addresses, and source and destination
layer-4 ports. In contrast to these existing approaches, each
DeepMonitor agent considers the current state of an SDN-
based IoT edge on the basis of six parameters (as shown in (3))
with our settings above, and it can flexibly switch between 10
match-field combinations to maximize the traffic granularity
while avoiding the overflow at the flow-tables of the edge.

D. Performance Analysis

1) Convergence of reinforcement learning algorithms: We
first present the learning process of reinforcement learning al-
gorithms at a particular DeepMonitor agent (Agent1) applying
the standalone6 Q-learning, the standalone DDQN, and our
proposed federated DDQN. As illustrated in Fig. 7, the average
immediate reward value for every 1,000 iterations is calculated
during the training period of Agent1 that supervises edge
OvS1. Clearly, the convergence performance of the federated

6The learning algorithm is trained with data sets collected by the Agent1.

DDQN is better than that of the standalone DDQN and signif-
icantly better than that of the standalone Q-learning algorithm.
In particular, with the Medium setting, the federated DDQN
algorithm requires only 30,000 iterations to obtain the average
reward value of 8.0; meanwhile, it requires approximately
120,000 iterations to achieve the same performance in the
case of the standalone DDQN. Moreover, the federated DDQN
algorithm needs only around 40,000 and 50,000 iterations to
achieve that average value in the Diverse and High settings,
respectively. A higher required degree of traffic granularity
demands actions that provide a higher number of match-
fields in a flow rule. As a result, this scenario leads to a
higher probability of overflowing the edge (i.e., more flow
rules installed) and to a severer punishment for the control
agent w.r.t. the immediate reward. Both the federated and the
standalone DDQN algorithms converge and achieve a similar
average reward at the end of training.

On the contrary, as shown in Fig. 7, the standalone Q-
learning algorithm could not achieve the optimal policy com-
pared to that obtained by the federated and the standalone
DDQN algorithms for all settings. The MDP model under
consideration has billions of states (as can be observed in (3));
thus, after two hundred thousand iterations, the Q-learning
algorithm cannot attain results as good as those obtained by the
DDQN algorithms. Especially in the case of the High setting
(see Fig. 7 (c)), the Q-learning-based control agent is more
likely to overflow the edge (the maximum number of flow
rules is reached but the edge remains operational) to achieve
the higher required granularity level, producing a lower range
of the average immediate reward value compared with that in
the Medium and Diverse settings.

In summary, by applying the federated DDQN algorithm,
a DeepMonitor agent can quickly obtain the optimal flow
rule match-field control policy to provide the maximum traffic
granularity degree for all traffic groups, in comparison with the
standalone DDQN and Q-learning.

2) Federated deep reinforcement learning performance:
Next, we evaluate the learning performance of the DDQN
algorithm at DeepMonitor agents by comparing the pro-
posed federated learning-based solution with the traditional
approach, i.e., a centralized DDQN (the algorithm is trained by
data sets collected from all agents). Fig. 8 (a) shows the aver-
age value of the loss function in (12) obtained for every 1,000
iterations (or a federated learning round) with the high required
granularity setting. Specifically, the federated DDQN solution
reduces the learning loss by approximately 66% on average
in the first 70 learning rounds and then achieves the same
loss values as the centralized DDQN approach. In terms of
the learning convergence, Fig. 8 (b) shows the average reward
obtained from the learning algorithm by two different learning
approaches. In particular, the federated DDQN algorithm can
reduce the number of iterations required to obtain the optimal
policy by 20,000 iterations (approximately 40%) compared to
that of the centralized DDQN. This improvement results from
the individual training with local data sets at agents and the
global model update in the federated learning-based method.
In other words, this enhancement indicates that our proposed
federated learning solution in the DeepMonitor framework can

13

20 40 60 80 100 120 140 160 180 200

Iterations (x10
3
)

0

5

10

15

A
v

er
ag

e
re

w
ar

d
Standalone Q-learning

Standalone DDQN

Federated DDQN

(a)

20 40 60 80 100 120 140 160 180 200

Iterations (x10
3
)

0

5

10

15

A
v

er
ag

e
re

w
ar

d

Standalone Q-learning

Standalone DDQN

Federated DDQN

(b)

20 40 60 80 100 120 140 160 180 200

Iterations (x10
3
)

0

5

10

15

A
v

er
ag

e
re

w
ar

d

Standalone Q-learning

Standalone DDQN

Federated DDQN

(c)

Fig. 7. Average reward of DeepMonitor Agent1 during the training phase. (a) Medium, (b) Diverse and (c) High required granularity levels.

20 40 60 80 100 120 140 160 180 200

Rounds

0

0.005

0.01

0.015

A
v

er
ag

e
lo

ss
 v

al
u

e

Centralized DDQN

Federated DDQN

(a)

20 40 60 80 100 120 140 160 180 200

Iterations (x10
3
)

0

5

10

15

A
v

er
ag

e
re

w
ar

d

Centralized DDQN

Federated DDQN

(b)

Fig. 8. (a) Average loss value and (b) average immediate reward derived from the learning algorithm by two different learning approaches.

efficiently improve the learning performance of the DDQN
algorithm at the agents considering the learning stability and
convergence with much lower learning loss.

3) Reliable provision performance of traffic granularity:
Next, we evaluate our proposed solution by considering the
degree of traffic granularity between three traffic groups in the
testing phase at DeepMonitor Agent1 (the federated DDQN
algorithm already converges). As demonstrated in Fig. 9 (a),
(b) and (c), all traffic groups applying the federated DDQN-
based solution outperform those of FlowStat and of typical
flow matching by ONOS considering the average number of
match-fields in a flow rule (extracted every 10 iterations).
Specifically, for the Medium and Diverse settings, the feder-
ated DDQN-based solution allows flow rules in the flow-tables
of the edge to carry a considerable number of match-fields that
is approximately 37% higher than that of FlowStat, and these
levels fully satisfy the prerequisites (red dashed lines). This
is because the federated DDQN-based control agent is likely
to change between many flow rule match-field combinations,
which can provide a higher number of match-fields while
preventing the flow-table overflow problem. Meanwhile, the
FlowStat mechanism performs changes in only two flow rule
match-field schemes, as mentioned earlier, leading to a lower
average number match-fields in a flow rule during the testing.

For the High case, due to a very high precondition of
granularity (Θ=9.0), the federated DDQN-based control agent
tries to maximize the actual granularity for all traffic groups
equally. Therefore, it cannot guarantee that the requirements
are satisfied all the time because of highly dynamic traffic

behavior, but overall, it maintains a significant total degree of
the gained granularity, which is increased by roughly 41.9%
compared with that obtained by FlowStat. For the typical
flow matching by ONOS, the flow-tables of the OvS become
overflowed after a few iterations due to the highly dynamic
incoming traffic, thereby suspending the operation of the OvS
and being unable to provide the traffic flow statistics mea-
surement. To sum up, the DeepMonitor outperforms FlowStat
and typical flow matching by ONOS in providing fine-grained
traffic monitoring capability for all IoT traffic groups.

4) Flow-table overflow avoidance at the edges: As afore-
mentioned, the flow-table overflow avoidance ability is con-
sidered an essential criterion of the DeepMonitor framework.
Thus, we observe the flow-table overflow events caused by
three different solutions during the testing phase under the
High setting. Through the ONOS terminal, an error message,
i.e., 5 ;>F <>3 5 08;43 [13], stemming from any of the SDN-
based IoT edges indicates a table-full event at the edge.
The obtained results show that no overflow problems are
observed at all edges when applying the federated DDQN-
based control agent because the federated DDQN algorithm
can effectively find the optimal flow rule match-field policy
depending on the current state of an edge concerning the
actual traffic granularity of different traffic groups. Similarly,
by randomly changing between the two flow rule match-
field policies mentioned earlier, FlowStat can avoid flow-table
overflows at all edges. Meanwhile, the default behavior of
the ONOS controller makes the edges become overflowed
after a few iterations if the incoming packet rate is 300

14

2 4 6 8 10 12 14 16 18 20

Iterations (x10)

0

5

10

15

20

25

A
v
er

ag
 n

u
m

b
er

 o
f

m
at

ch
 f

ie
ld

s
in

 a
 f

lo
w

 r
u
le FlowStat - Sensor

FlowStat - Monitor

FlowStat - Alarm

Typical Flow Matching by ONOS - Sensor

Typical Flow Matching by ONOS - Monitor

Typical Flow Matching by ONOS - Alarm

Federated DDQN - Sensor

Federated DDQN - Monitor

Federated DDQN - Alarm

(a) Medium

2 4 6 8 10 12 14 16 18 20

Iterations (x10)

0

5

10

15

20

25

A
v
er

ag
 n

u
m

b
er

 o
f

m
at

ch
 f

ie
ld

s
in

 a
 f

lo
w

 r
u
le FlowStat - Sensor

FlowStat - Monitor

FlowStat - Alarm

Typical Flow Matching by ONOS - Sensor

Typical Flow Matching by ONOS - Monitor

Typical Flow Matching by ONOS - Alarm

Federated DDQN - Sensor

Federated DDQN - Monitor

Federated DDQN - Alarm

(b) Diverse

2 4 6 8 10 12 14 16 18 20

Iterations (x10)

0

5

10

15

20

25

A
v
er

ag
 n

u
m

b
er

 o
f

m
at

ch
 f

ie
ld

s
in

 a
 f

lo
w

 r
u
le FlowStat - Sensor

FlowStat - Monitor

FlowStat - Alarm

Typical Flow Matching by ONOS - Sensor

Typical Flow Matching by ONOS - Monitor

Typical Flow Matching by ONOS - Alarm

Federated DDQN - Sensor

Federated DDQN - Monitor

Federated DDQN - Alarm

(c) High

Fig. 9. Average number of match-fields in a flow rule of DeepMonitor Agent1 during the testing phase with different required granularity levels.

unique packets/second for more than 10 seconds, and the edge
operation is suspended if this packet rate continues for a longer
time (see Fig. 9). Consequently, the federated DDQN-based
solution can completely circumvent the flow-table overflow at
the SDN-based IoT edges and is superior to the standard flow
matching by ONOS.

5) Impact on network performance: As discussed earlier
in Section III, changes in the flow rule match-field strategies
can have an additional impact on the network controller and
forwarding performance, i.e., a higher number of packet in
messages and significant packet forwarding latency; hence,
we observe these two metrics to evaluate the impact on the
network performance produced by different mechanisms with
different settings of Θ.

Fig. 10 presents the average number of packet in messages
arriving at the ONOS controller for three different required
granularity levels, i.e., Medium, Diverse and High, extracted
every 10 iterations from the OvS1 during the testing period.
Concretely, for all three Θ settings, the federated DDQN-
based control agent can maintain an acceptable packet in
rate that is slightly higher than that in FlowStat; however, it
maximizes the actual traffic granularity levels of three groups
(illustrated in Fig. 9). The reason is that the federated DDQN
algorithm implements the optimal policy that meets the Θ

requirements and simultaneously maintains a fair number of
packet in messages arriving at the ONOS controller, thereby
obtaining a rational number of installed flow rules at the flow-
tables of OvS1. By contrast, in the case of the typical flow
matching by ONOS, there are no packet in messages sent to
the control plane after a few iterations due to the overflow of
the flow-tables at the OvS1, as discussed earlier, which then
suspends the switch’s operation, leading to a massive decrease
in the number of packet in messages for all Θ settings.

With respect to the average latency of packets between
hosts, the results are measured for hosts within OvS1 and
hosts between OvS1 and OvS18. As shown in Fig. 11 (a), the
federated DDQN and the FlowStat solutions obtain a similar
end-to-end delay between hosts in both scenarios. Specifically,
for FlowStat, the change between only two flow rule match-
field strategies, i.e., exact-match and (source IP address and
destination IP address), reduces the communication time be-
tween hosts, on average, because the match-field combination
containing only source IP and destination IP addresses does

not require substantial time to perform the matching process,
leading to less delay for incoming packets. As discussed
earlier, the federated DDQN-based control agent maximizes
all traffic groups’ actual granularity by putting more match-
fields in a flow rule, thereby causing a lower delay than that
of FlowStat. Notably, the typical ONOS flow rule match-
field approach causes the flow-table overflow problem and
OvS operation suspension; therefore, the latency between hosts
cannot be correctly measured.

In conclusion, the DeepMonitor framework can provide
good network performance in terms of the packet in rate at
the SDN control plane and the communication latency between
hosts/IoT devices.

6) Case study on DDoS attack detection: To show the
improvements in the traffic analysis capability provided by the
DeepMonitor framework, we evaluate the anomaly detection
performance of the IDS application based on Self-Organizing
Map7 [53] for a common DDoS attack, i.e., TCP SYN flood8.
To evaluate the attack detection performance, we employ the
following fitness function:

���>(=,�A�A +,�2 �2 +,�04−�0 , (23)

where �A denotes the detection rate, �2 is the accuracy, �0 is
the false alarm rate and ,�A ,,�2 and ,�0 represent weight
values that are equally set to 1/3. Note that a detection system
generally aims to minimize the false alarm rate; thus, it is
represented by 4−�0 , as shown in (23).

In case the network is under a DDoS attack, the flow-tables
of the SDN-based IoT edge will be flooded very quickly if
the controller applies a flow rule match-field scheme with
a high number of match-fields [22], eventually leading to a
packet in flooding attack to the controller [35] and likely
suspension of the control plane operation, i.e., to overload
the Reactive Forwarding application in the ONOS controller
[36]. Similarly, in our experiments with a centralized SDN
controller for each network, if no DDoS mitigation solutions

7The IDS application utilizes the Self-Organizing Map algorithm, which
recognizes the traffic behavior patterns by means of a 6-tuple, as in [53],
namely, the average number of packets per flow, average number of bytes per
flow, average duration per flow, percentage of pair-flows, growth of single-
flows and growth of different ports.

8Attackers attempt to send TCP segments as fast as possible with many
spoofed source IP addresses and TCP ports to the Web servers, resulting in a
huge amount of new flow rules in the SDN-based IoT edge in a short period.

15

2 4 6 8 10 12 14 16 18 20

Iterations (x10)

0

500

1000

1500

2000

2500

3000

3500
A

v
er

ag
e

n
u

m
b

er
 o

f
p

ac
k

et
_

in
 m

es
sa

g
es FlowStat

Typical Flow Matching by ONOS

Federated DDQN

(a) Medium

2 4 6 8 10 12 14 16 18 20

Iterations (x10)

0

500

1000

1500

2000

2500

3000

3500

A
v

er
ag

e
n

u
m

b
er

 o
f

p
ac

k
et

_
in

 m
es

sa
g

es FlowStat

Typical Flow Matching by ONOS

Federated DDQN

(b) Diverse

2 4 6 8 10 12 14 16 18 20

Iterations (x10)

0

500

1000

1500

2000

2500

3000

3500

A
v

er
ag

e
n

u
m

b
er

 o
f

p
ac

k
et

_
in

 m
es

sa
g

es FlowStat

Typical Flow Matching by ONOS

Federated DDQN

(c) High

Fig. 10. Average number of packet in messages arriving at the ONOS controller from Agent1 with different required granularity levels.

Within OvS1 Between OvS1 and OvS18
0

5

10

15

20

25

30

35

40

M
il

is
ec

o
n

d
s

FlowStat

Federated DDQN - Medium

Federated DDQN - Diverse

Federated DDQN - High

(a)

Detection Rate Accuracy FAR Fitness Function
0

10

20

30

40

50

60

70

80

90

100

R
at

io
 (

%
)

FlowStat

Federated DDQN - Medium

Federated DDQN - Diverse

Federated DDQN - High

(b)

Fig. 11. (a) Latency between hosts in the data plane. (b) TCP SYN DDoS attack detection results.

are deployed, the ONOS controller starts receiving errors and
exceptions [22], [35] promptly due to the enormous number
of arriving packet in messages.

Because the operation of the ONOS controller is suspended
quickly if the typical flow matching by ONOS is applied, mak-
ing the IDS application unable to collect traffic information
from the SDN controller (via REST APIs [36]) and to detect
attacks, no anomaly detection results are obtained. By contrast,
as shown in Fig. 11 (b), the FlowStat and the federated DDQN-
based solutions, frequently change between different flow
rule match-field strategies according to the current network
situation and can provide more detailed information, i.e.,
network traffic flow statistics. Additionally, the two solutions
can protect the SDN controller from a packet in flooding
attack, thereby enabling the IDS application to recognize
the attack presence. As discussed previously, because of the
higher degree of granularity or statistical information, the
federated DDQN-based solutions facilitate the IDS application
to achieve DDoS attack detection performance that is 22.83%,
on average, (derived from (23)) better than that in the case
of FlowStat, as demonstrated in Fig. 11. In conclusion, by
employing the DeepMonitor framework, the network control
plane can provide efficient traffic monitoring capability to
other applications, e.g., cyberattack detection, in SDN-based
IoT networks.

VII. CONCLUSION

In this paper, we developed the DeepMonitor framework
as an efficient traffic monitoring solution in SDN-based IoT

networks, employing the advances of SDN and federated
deep reinforcement learning. In particular, we introduced
the DDQN-based flow rule match-field control algorithm
for supervising a particular IoT edge to achieve efficient
traffic monitoring performance, which is constrained by the
required granularity levels of different traffic groups and by
the maximum flow-table capacity of the edge device. Then,
we proposed the federated deep reinforcement learning-based
IoT traffic monitoring mechanism to improve the learning per-
formance of the above DDQN algorithm. The results obtained
from extensive experiments demonstrated that the proposed
monitoring framework can provide a reliable traffic granularity
level for all groups and significantly mitigate the flow-table
overflow issue at the SDN-based IoT edges. This performance
is increased by approximately 37% (for medium and diverse
required granularity settings) and by 41.9% (for high required
granularity setting) in comparison with that of FlowStat and far
exceeds that achieved by the typical ONOS flow matching. In
addition, the federated DDQN solution can reduce the learning
loss by up to 66% and reduce the number of learning iterations
required to achieve the optimal policy by 40% compared to
the centralized mechanism in the case of the high granularity
requirement. Moreover, for a case study on DDoS attack
detection, the achieved results show that by applying the
federated DDQN algorithm, the DeepMonitor framework can
assist the IDS application to significantly improve the overall
attack detection performance by 22.83% compared with the
FlowStat solution.

16

APPENDIX A
PROOF OF THEOREM 1

First, we prove the `-strong convexity of L(w). Given
∀w,w′ ∈ R, V ∈ [0,1], and we assume that G := w +w′ , H :=
Vw+ (1+ V)w′ , and ∃V1, V2 ∈ (0,1). According to the Taylor
formula, we have

L(w) = L(H) +∇L(H) (w− H) + 1
2
(w− H)∇2L(r1) (w− H),

(24)
and

L(w′) = L(H) +∇L(H) (w′ − H) + 1
2
(w′ − H)∇2L(r2) (w

′ − H),
(25)

where r1 := H + V1 (w− H) and r2 := H + V2 (w
′ − H). Then, we

can incorporate the two above equations as follows:

VL(w) + (1− V)L(w′) = L(H) + 1
2
V(1− V) (w−w

′)2

×
[
(1− V)∇2L(r1) + V∇2L(r2)

]
.

(26)

Recall the definition of strong convexity; there is a constant
`∗ satisfying

1
2
(w−w

′)
[
(1− V)∇2L(r1) + V∇2L(r2)

]
≥ `∗ ‖ w−w

′ ‖ .
(27)

Then, we can rewrite (26) as follows:

VL(w) + (1− V)L(w′) = L(H) + 1
2
V(1− V) (w−w

′)2

×
[
(1− V)∇2L(r1) + V∇2L(r2)

]
≥ L(H) + `∗V(1− V) ‖ w−w

′ ‖2,
(28)

where `∗ = `

2 . Then, inserting H := Vw + (1 + V)w′ into (28)
proves the `-strong convexity of L(w).

Applying the `-strong convexity of L(w), we have

∇L(w) (w−w∗) ≥ L(w) −L(w∗) +
`

2
‖ w−w∗ ‖2 . (29)

Then, we can obtain the following:

‖ wg+1−w∗ ‖2 =‖ wg −[∇L(wg) −w∗ ‖2

=‖ wg −w∗ ‖2 −2[∇L(wg) (wg −w∗)
+[2 ‖ ∇L(wg) ‖2

≤‖ wg −w∗ ‖2 −2[
(
L(w) −L(w∗)

+ `
2
‖ wg −w∗ ‖2

)
+[2 ‖ ∇L(wg) ‖2 .

(30)

By smoothing L(w), we can obtain the gradient bound as
follows:

L(w∗) ≤ L
(
w− 1

!
∇L(w)

)
≤ L(w)− ‖ ∇L(w) ‖2

+ 1
2!
‖ ∇L(w) ‖2≤ L(w) − 1

2!
‖ ∇L(w) ‖2 .

(31)

Finally, by incorporating (30), (31) is reconstructed as

‖ wg+1−w∗ ‖2 =‖ wg −[∇L(wg) −w∗ ‖2

≤‖ wg −w∗ ‖2 −[` ‖ wg −w∗ ‖2

+2[([!−1) (L(w) −L(w∗))

≤
(
1− `

!

)
‖ wg −w∗ ‖2≤

(
1− `

!

)
‖ Δ∗w ‖2 .

(32)

The proof of Theorem 1 is completed.

ACKNOWLEDGMENT

This research was supported by a grant from the National
Science and Technology Development Agency (NSTDA), the
Coordinating Center for Thai Government Science and Tech-
nology Scholarship Students (CSTS), Khon Kaen University,
Thailand Science Research and Innovation (TSRI), and Na-
tional Research Council of Thailand (NRCT) via International
Research Network Program (IRN61W0006).

REFERENCES

[1] T. G. Nguyen, T. V. Phan, D. T. Hoang, T. N. Nguyen, and C. So-In,
“Efficient sdn-based traffic monitoring in iot networks with double deep
q-network,” in International Conference on Computational Data and
Social Networks, pp. 26–38, Springer, 2020.

[2] T. Qiu, N. Chen, K. Li, M. Atiquzzaman, and W. Zhao, “How can
heterogeneous internet of things build our future: A survey,” IEEE
Communications Surveys Tutorials, vol. 20, pp. 2011–2027, Thirdquarter
2018.

[3] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: Architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, vol. 4,
pp. 1125–1142, Oct. 2017.

[4] I. Butun, P. Österberg, and H. Song, “Security of the internet of things:
Vulnerabilities, attacks, and countermeasures,” IEEE Communications
Surveys Tutorials, vol. 22, no. 1, pp. 616–644, Firstquarter 2020.

[5] Z. Doffman, “Cyberattacks on iot devices surge 300% in 2019, ‘mea-
sured in billions’, report claims.” https://www.forbes.com, Oct. 2020.

[6] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, pp. 80–84, Jul. 2017.

[7] M. Michael, “Attack landscape h1 2019: Iot, smb traffic abound.” https:
//blog.f-secure.com, Oct. 2020.

[8] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on security and
privacy issues in internet-of-things,” IEEE Internet of Things Journal,
vol. 4, pp. 1250–1258, Oct. 2017.

[9] M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, and E. K.
Markakis, “A survey on the internet of things (iot) forensics: Challenges,
approaches, and open issues,” IEEE Communications Surveys Tutorials,
vol. 22, no. 2, pp. 1191–1221, Secondquarter 2020.

[10] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu,
“Edge computing in industrial internet of things: Architecture, advances
and challenges,” IEEE Communications Surveys Tutorials, pp. 1–1,
Fourthquarter 2020.

[11] A. Molina Zarca, J. B. Bernabe, R. Trapero, D. Rivera, J. Villalobos,
A. Skarmeta, S. Bianchi, A. Zafeiropoulos, and P. Gouvas, “Security
management architecture for nfv/sdn-aware iot systems,” IEEE Internet
of Things Journal, vol. 6, no. 5, pp. 8005–8020, Oct. 2019.

[12] B. A. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future
of programmable networks,” IEEE Communications Surveys Tutorials,
vol. 16, pp. 1617–1634, Thirdquarter 2014.

[13] O. N. Foundation, “Openflow switch specification version 1.5.1.”
https://www.opennetworking.org/wp-content/uploads/2014/10/
openflow-switch-v1.5.1.pdf, May 2021.

[14] P. Tsai, C. Tsai, C. Hsu, and C. Yang, “Network monitoring in software-
defined networking: A review,” IEEE Systems Journal, vol. 12, no. 4,
pp. 3958–3969, Dec. 2018.

[15] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking
for internet of things: A survey,” IEEE Internet of Things Journal, vol. 4,
no. 6, pp. 1994–2008, Dec. 2017.

17

[16] V. Balasubramanian, M. Aloqaily, and M. Reisslein, “An sdn architec-
ture for time sensitive industrial iot,” Computer Networks, vol. 186,
p. 107739, 2021.

[17] P. Zhou, Y. Xie, B. Niu, L. Pu, Z. Xu, H. Jiang, and H. Huang, “Qoe-
aware 3d video streaming via deep reinforcement learning in software
defined networking enabled mobile edge computing,” IEEE Transactions
on Network Science and Engineering, pp. 1–1, 2020.

[18] T. Wu, P. Zhou, B. Wang, A. Li, X. Tang, Z. Xu, K. Chen, and
X. Ding, “Joint traffic control and multi-channel reassignment for core
backbone network in sdn-iot: A multi-agent deep reinforcement learning
approach,” IEEE Transactions on Network Science and Engineering,
pp. 1–1, 2020.

[19] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless:
A low cost network monitoring framework for software defined net-
works,” in 2014 IEEE Network Operations and Management Symposium
(NOMS), pp. 1–9, May 2014.

[20] S. Bera, S. Misra, and A. Jamalipour, “Flowstat: Adaptive flow-rule
placement for per-flow statistics in sdn,” IEEE Journal on Selected Areas
in Communications, vol. 37, no. 3, pp. 530–539, Mar. 2019.

[21] C. Liu, A. Malboubi, and C. Chuah, “Openmeasure: Adaptive flow
measurement and inference with online learning in sdn,” in 2016
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pp. 47–52, Apr. 2016.

[22] T. V. Phan, S. T. Islam, T. G. Nguyen, and T. Bauschert, “Q-data:
Enhanced traffic flow monitoring in software-defined networks applying
q-learning,” in 2019 15th International Conference on Network and
Service Management (CNSM), pp. 1–9, Dec. 2019.

[23] J. Huang, Y. He, Q. Duan, Q. Yang, and W. Wang, “Admission control
with flow aggregation for qos provisioning in software-defined network,”
in 2014 IEEE Global Communications Conference, pp. 1182–1186, Dec.
2014.

[24] A. Mondal and S. Misra, “Flowman: Qos-aware dynamic data flow
management in software-defined networks,” IEEE Journal on Selected
Areas in Communications, vol. 38, no. 7, pp. 1366–1373, Jul. 2020.

[25] M. Malboubi, L. Wang, C. Chuah, and P. Sharma, “Intelligent sdn based
traffic (de)aggregation and measurement paradigm (istamp),” in IEEE
INFOCOM 2014 - IEEE Conference on Computer Communications,
pp. 934–942, May 2014.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[27] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double q-learning,” in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, AAAI’16, p. 2094–2100, AAAI Press, Feb. 2016.

[28] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang,
and D. I. Kim, “Applications of deep reinforcement learning in com-
munications and networking: A survey,” IEEE Communications Surveys
Tutorials, vol. 21, no. 4, pp. 3133–3174, Fourthquarter 2019.

[29] N. Van Huynh, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz, ““jam
me if you can:” defeating jammer with deep dueling neural network
architecture and ambient backscattering augmented communications,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 11,
pp. 2603–2620, Nov. 2019.

[30] N. Van Huynh, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, D. Niyato,
and P. Wang, “Optimal and low-complexity dynamic spectrum access for
rf-powered ambient backscatter system with online reinforcement learn-
ing,” IEEE Transactions on Communications, vol. 67, no. 8, pp. 5736–
5752, Aug. 2019.

[31] Z. Ding, L. Shen, H. Chen, F. Yan, and N. Ansari, “Energy-
efficient relay-selection-based dynamic routing algorithm for iot-oriented
software-defined wsns,” IEEE Internet of Things Journal, vol. 7, no. 9,
pp. 9050–9065, 2020.

[32] T. V. Phan, S. Sultana, T. G. Nguyen, and T. Bauschert, “Q-transfer: A
novel framework for efficient deep transfer learning in networking,” in
2020 International Conference on Artificial Intelligence in Information
and Communication (ICAIIC), pp. 146–151, 2020.

[33] Y. Huang, X. Guan, H. Chen, Y. Liang, S. Yuan, and T. Ohtsuki, “Risk
assessment of private information inference for motion sensor embedded
iot devices,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 4, no. 3, pp. 265–275, 2020.

[34] T. V. Phan, T. G. Nguyen, N. N. Dao, T. T. Huong, N. H. Thanh, and
T. Bauschert, “Deepguard: Efficient anomaly detection in sdn with fine-
grained traffic flow monitoring,” IEEE Transactions on Network and
Service Management, vol. 17, no. 3, pp. 1349–1362, Sept. 2020.

[35] H. Wang, L. Xu, and G. Gu, “Floodguard: A dos attack prevention exten-
sion in software-defined networks,” in 2015 45th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks, pp. 239–
250, Jun. 2015.

[36] ONOS, “Description of the onos controller.” www.onosproject.org, May
2021.

[37] X. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Rules placement
problem in openflow networks: A survey,” IEEE Communications Sur-
veys Tutorials, vol. 18, no. 2, pp. 1273–1286, 2016.

[38] B. A. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future
of programmable networks,” IEEE Communications Surveys Tutorials,
vol. 16, no. 3, pp. 1617–1634, Thirdquarter 2014.

[39] I. Farris, T. Taleb, Y. Khettab, and J. Song, “A survey on emerging sdn
and nfv security mechanisms for iot systems,” IEEE Communications
Surveys Tutorials, vol. 21, no. 1, pp. 812–837, Firstquarter 2019.

[40] F. Alam, R. Mehmood, I. Katib, N. N. Albogami, and A. Albeshri,
“Data fusion and iot for smart ubiquitous environments: A survey,” IEEE
Access, vol. 5, pp. 9533–9554, Apr. 2017.

[41] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “Research
challenges for traffic engineering in software defined networks,” IEEE
Network, vol. 30, pp. 52–58, May 2016.

[42] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge, MA, USA: MIT Press, 1st ed., 1998.

[43] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning.,” in ICLR, Jan. 2016.

[44] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT
Press, 2016.

[45] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys Tutorials,
vol. 22, no. 3, pp. 2031–2063, Thirdquarter 2020.

[46] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” in NIPS Workshop on Private Multi-Party Machine Learning,
Oct. 2016.

[47] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, Jun. 2019.

[48] H. Yang, Z. Xiong, J. Zhao, D. Niyato, L. Xiao, and Q. Wu, “Deep
reinforcement learning based intelligent reflecting surface for secure
wireless communications,” IEEE Transactions on Wireless Communi-
cations, Sept. 2020.

[49] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems -
Volume 1, NIPS’15, (Cambridge, MA, USA), p. 1135–1143, MIT Press,
Dec. 2015.

[50] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, pp. 279–292, May 1992.

[51] TensorFlow, “Tensorflow federated: Machine learning on decentralized
data.” https://www.tensorflow.org/federated, Oct. 2020.

[52] Hping3, “Description of the hping3 tool.” www.hping.org, May 2021.
[53] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack

detection using nox/openflow,” in IEEE Local Computer Network Con-
ference, pp. 408–415, Oct. 2010.

	IEEE 2021 Copyright SSStatement
	2-s2.0-85112205013 am.pdf

