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Abstract—In this paper, we present a novel unified framework
to protect multi-function wireless systems from jamming attacks.
Examples of such multi-function system include joint radar and
communication (JRC) systems and simultaneous wireless infor-
mation and power transfer (SWIPT) systems. By abstracting the
system functionalities as a joint optimization problem of multiple
queues, we achieve effective resistance against jammers for the
multi-functions simultaneously. We incorporate different anti-
jamming techniques into one framework. Deception mechanism
is adopted to lure the jammer to attack and make its actions
more predictable, and ambient backscatter technology is used to
leverage the jamming signals. Since conventional Markov decision
process (MDP) has only one decision epoch at every time slot, it
cannot be used to model the deception strategy which needs two
decision epochs to leverage the jamming signals. We therefore
formulate the problem using an advanced two-step MDP. After
that, a deep reinforcement learning algorithm with a prioritized
double deep Q-Learning architecture is proposed to learn optimal
strategies in different system states. We show that by jointly
considering the multi-functions of the system with potential
jamming attacks during design phase, significant improvement
can be achieved for both of the system functionalities.

Index Terms—Jamming attack, multi-function wireless sys-
tems, backscatter communication and deception mechanism.

I. INTRODUCTION

Exploitation of radio signals has significantly shifted mod-
ern technology. Traditionally, radio signals have been used
for data transmission, radar object detection and ranging, and
more recently, for other purposes such as wireless power
transfer (WPT) [1], ets. Different spectrum is allocated and
used exclusively for different applications. However, spectrum
resources are becoming more scarce with growing deploy-
ments of wireless-related technologies in various sectors [2].
To overcome these limitations, spectrum sharing has been
proposed to allow different systems and applications to share
the same spectrum. Different approaches and frameworks have
been studied, for example, dynamic spectrum management and
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cognitive radio for different wireless technologies to share the
same frequency resources, joint radar-communications (JRC)
for the two different applications to operate in the same
frequency bands [2], [3], simultaneous wireless information
and power transfer (SWIPT) over the same channel [1], etc. In
the cases of JRC and SWIPT, multi-function wireless systems
are designed 1.

Multi-function wireless systems received considerable at-
tention in the past few years because they allow more ef-
ficient resource allocation and reduce implementation costs.
For instance, a ship-borne JRC system can be implemented
on a battleship to simultaneously detect targets and transmit
data packets on the same waves to allies in the nearby,
making its defence system more robust [7]. Besides, unmanned
aerial vehicle (UAV) base stations are receiving more attention
recently for user offloading in dense zones [8]. Therefore,
JRC design can be adopted in the design of the autonomous
UAV base station to enable simultaneous communication and
target detection [9]. However, the joint optimization problem
of throughput and radar sensing quality maximization should
be designed carefully to meet the system requirements. In
addition, SWIPT systems can be also adopted by similar
devices used in JRC systems. For example, a UAV base station
can use Lidar technology for mapping and geospatial sensing,
and instead of transmitting radar signals, it transfers energy to
some IoT nodes in the field (e.g., sensor nodes). This makes
the optimization problem of data and radar requests in JRC
systems similar to the optimization problem of data and energy
transfer request in SWIPT systems. Hence, by abstracting
these two optimization problems as a joint scheduling problem
of two queues, we can develop a unified framework for multi-
function wireless systems and then instantiate that solution in
the context of each system, i.e., JRC or SWIPT systems.

The benefits of hardware and frequency reuse will only
be possible if the multi-function wireless system can oper-
ate under different environments and circumstances, fulfilling
multiple objectives simultaneously while counteracting de-
liberate interference and jamming attacks. Jamming attacks
on single-function systems, such as wireless communication,
radar and WPT systems have been studied extensively in the
literature [1], [10], but very few research works studied the

1In this paper, we use the term “multi-function wireless systems” to refer
to wireless systems that enable the use of the same spectrum or antenna for
more than one functionality, e.g., data transmission and radar sensing, or data
transmission and wireless power transfer as in [4]–[6].
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2

case of a multi-function wireless systems under hostile jam-
ming attacks. With the increasing demand for multi-function
wireless systems, it is important to study the jamming attack
models and the mitigation strategies. In JRC systems, when
jamming a communication system, the jammer tries to degrade
the signal-to-interference plus noise ratio (SINR) at the data
receiver, while when jamming a radar system, the jammer tries
to degrade the SINR at the radar receiver and prevent it from
correctly decoding echos from targets. Similarly, in SWIPT
systems, the jammer attacks the communication system by
degrading the SINR at the receiver. When attacking the WPT
system, the attacker may “steal” transferred energy and use
that energy later to attack the communication channel or,
prevent the WPT receiver from efficient harvesting of the
transferred energy [11]. An important problem in designing
multi-function wireless systems arises from the fact that the
system needs to satisfy simultaneously multiple utilities. More-
over, a jammer can attack one or multiple functions, making
the system design requirements more challenging as multiple
attack scenarios have to be considered, and static solutions
might not be robust to jointly overcome hostile attacks to
different functions and satisfy the system requirements.

In this work, we address the problem of a multi-function
wireless system under hostile jamming attack. To address the
aforementioned challenges, we propose a novel multi-function
wireless system design that cannot only resist jamming attacks
but also further improve the system performance by smartly
leveraging the jamming signals. In the context of JRC systems,
we first make an abstraction of the data transmission and the
radar sensing functions to be a joint scheduling problem 2.
Specifically, our objective is to find an optimal strategy to
jointly schedule data packets and radar sensing actions re-
quested by applications. To mitigate the jamming attack on
the joint system, we explore the fact that the JRC node can
perform different actions and the jammer cannot have the
same degree of effectiveness on each action. For instance,
the JRC node can use different transmission modes such as
rate adaptation and backscattering on the jamming signals.
However, since the wireless medium is highly dynamic over
time, i.e, channel fading and jammer uncertainty, and due to
the variety of actions that can be performed by the JRC node, it
is hard to design a hand-crafted optimal strategy. Additionally,
in multi-function systems, a node may have multiple functions,
and thus when a jamming attack happens, it may not know
the target of the jammer, e.g., it could be one of the functions
or all of functions. Therefore, by deploying a reinforcement
learning (RL) algorithm, the JRC node can learn the actual
system dynamics, i.e., the jammer’s strategy and the channel
state, and optimally select the best action to perform at each
time slot and hence, minimize the packet loss and increase the
probability of target detection 3.

Part of this work was presented in [12] where only JRC
systems were studied. In this article, we provide a unified
framework for multi-function wireless systems covering JRC

2In SWIPT systems, radar sensing is replaced with power transfer function.
3In SWIPT systems, beside packet loss minimization, it increases harvested

energy by legitimate nodes and minimizes harvested energy by the jammer.

and SWIPT systems. In addition, more advanced techniques
are proposed to model the system with more experiments and
deeper evaluations and analysis. The main contributions of our
paper are as follows:

1) We develop a novel framework for multi-function wire-
less systems where we propose to use the queue manage-
ment concept for radio resource allocation and schedul-
ing. The proposed abstraction helps designing solutions
for both JRC and SWIPT systems at once and smoothly
sharing the development from one system to another one.
Our proposed framework is resilient and robust against a
variety of jamming attacks.

2) We propose an intelligent deception strategy to lure the
jammer and utilize its jamming signals to improve the
system performance. We subsequently develop a highly-
effective reinforcement learning algorithm to help the
system obtain the optimal operation policy without prior
knowledge about the jamming attack or the wireless
channel.

3) We perform intensive simulations to evaluate perfor-
mance metrics of the system under many scenarios and
reveal a number of insights on the joint design of deep
reinforcement learning and queue management concept.
We show that by misleading the jammer through decep-
tion mechanism, we are able to suppress the jammer not
to attack continuously, and thus jointly perform radar
sensing safely and increase data throughput.

The rest of this paper is organised as follows. Section II
reviews related works. Section III and IV describe our system
model and the problem formulation, respectively. In section
V, we present our proposed deep reinforcement learning algo-
rithm. The evaluation results are then presented in section VI.
Section VII concludes the paper and provides several potential
research directions.

II. RELATED WORK

Jamming attacks on wireless communications, radar and
WPT systems have been studied extensively in the liter-
ature [1], [10]. Nevertheless, most of the existing works
investigated these systems separately and only few research
works studied the case of a multi-function wireless system, i.e.,
JRC or SWIPT systems, under hostile attacks. When jamming
the communication system, the jammer is trying to degrade the
SINR at the receiver, while when jamming the radar system,
the jammer is trying to degrade the SINR at the transmitter
and prevent it from correctly decoding echos from existing
targets. However, jamming WPT systems is quite different
because it is difficult to prevent energy harvester (EH) nodes
from harvesting energy, but the jammer still can harvest the
transferred energy and use it later to attack the network. To the
best of our knowledge, most of the present works have only
addressed eavesdropping [13], [14] on multi-function wireless
systems, but deliberate interference has not been well studied
in the literature.

Traditional jamming attacks on wireless communication
networks, radar and WPT systems can be easily launched
against multi-function wireless systems. However, most of the
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3

existing works only focused on physical layer design without
consideration of malicious attacks [1], [2]. An interesting
step towards multi-function wireless systems security in the
presence of jammers was taken in [15], in which the authors
studied a JRC system that uses dual-functional waveform to
support target detection and data transmission in the presence
of a jammer. Since the dual radar-communication system and
the jammer are rivals and have contradictory objectives, the
authors in [15] used a game theory model to formulate the
problem and derived the Nash equilibrium. However, their
solution requires the jamming attack probability in advance,
which might not be practical and can change over time.
Moreover, game theory studies provide only insights on the
system performances for different policy adjustments but do
not provide solutions to improve the resiliency of the system
against jammers with different objectives and capabilities.

In the following, we present a brief overview of existing
works in the literature to cope against communication, radar
and WPT jammers.

A. Jamming Mitigation in Communication Systems

Mitigating deliberate interference in wireless communica-
tions has been extensively studied in the literature and different
techniques have been proposed [10]. Several Rate Adaptation
Algorithms (RAAs) were adopted to mitigate noise jammers.
However, since RAAs cannot distinguish between packet loss
due to fluctuations in channel quality and packet loss due to
deliberate interference, it has been shown in [16] that RAA
turns to become a dangerous vulnerability. A more interesting
and widely deployed method to counteract jamming is spread
spectrum, such as frequency hopping spread spectrum (FHSS)
and direct sequence spread spectrum (DSSS). The key idea
is to enable the sender to spread a narrow-band signal over
a wide-band of frequencies such that the jammer will not
be able to predict it, thus lowering the probability of the
signal being jammed. Many works have used spread spectrum
techniques in combination with deep reinforcement learning
in order to derive an optimal strategy for the transmitter to
increase its overall throughput [17], [18]. However, spread
spectrum techniques assume initial secret agreement on the
spreading codes or frequency hopping pattern between the
transmitter and the receiver. Unfortunately, smart jammers
can use this condition to increase their jamming performance.
Since reactive jammers can sense spectrum before jamming,
they cannot only block the target channels with flexible power,
but can also eavesdrop the public control channels [19].

More recently, new hybrid approaches have been proposed
to mitigate smart and reactive jammers. In [20], authors pro-
posed the use of both RAA and FHSS to counteract jammers.
In this way, the transmitter can avoid being jammed by hop-
ping to other channels, adjusting its transmission rates, or both.
More interestingly, authors in [21] introduced a novel approach
using deep reinforcement learning and ambient backscatter
communication (ABC) technology to mitigate jammers. The
key idea is to use recent advances in ABC and backscatter
modulated jamming signals instead of hiding, thus making the
jamming attack ineffective and power-wasting for the jammer.

On top of this, the authors added deception mechanism in [22].
The deception mechanism consists of sending fake signals at
the beginning of each time slot to mislead the jammer. If the
jammer eats the bait and decides to attack, the transmitter
uses backscatter technology as previously mentioned. Other-
wise, the transmitter can safely transmit data through active
transmission for the remaining of the time slot.

B. Jamming Mitigation in Radar Systems

Jamming radars is a crucial component of any electronic
countermeasure (ECM) system. It has been and still an evolv-
ing aspect of electronic warfare. Even though many researches
in this area are still classified, several works that propose
effective solutions against radar jammers are available in the
literature. Also, recent years have witnessed more works in
this direction because of the advances in vehicular technology
which relies heavily on radars [23]. In [24], authors studied
how to differentiate legitimate target echo from false echos
introduced by a deceptive jammer on a bi-static multiple-input
multiple-output (MIMO) radar system. Deceptive jamming
consists of re-transmitting original signals after a delay-time
which results in an incorrect target range detection and an
increase in false alarm rate. They introduced a range deception
jamming recognition method through digital signal processing
framework and formulated the optimization problem as a
weighted least square (WLS) problem. In [25], authors studied
a simple anti-jamming scenario in which a spot jammer, i.e.,
a jammer that focuses all of its power on a single frequency,
is attacking a radar system. They adopted a reinforcement
learning algorithm to build a system that relies on frequency
hopping technique in order to help the radar intelligently
select an unoccupied channel to transmit in. However, if the
jammer can attack different frequencies simultaneously across
the entire bandwidth, frequency hopping becomes ineffective.

C. Jamming Mitigation in WPT Systems

WPT systems security received more attention compared to
JRC systems. Even though interfering RF energy harvesting
is not an easy attack to perform, the authors in [11] showed
that a jammer can launch a depletion attack on the energy
harvester node, which results in a quick drain in device’s
battery, preventing the node from any further operation in
the network. Moreover, if the transmitting device is using
beamforming, a Beamforming Vector Poisoning attack can be
launched as shown in [26], in which the jammer injects signals
in the same frequency as the legitimate users resulting in a
destructive interference at the receiver. This leads to severe
degradation of harvested energy units and increases packet
loss. Furthermore, the jammer can also harvest the transferred
energy and use it later to attack the network [27]. In [27],
authors proposed a deception mechanism to undermine the
attack ability of the jammer. They formulated the problem
as a throughput maximization problem in a cognitive radio
network (CRN) with WPT and EH nodes. However, they did
not consider maximizing the transferred energy which might
be used for other internal computations by different nodes
in the network beside communication purpose. In addition,
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4

jamming signals can also be harvested by EH nodes in order
to minimize the efficiency of jamming attacks.

In summary, existing works suffer from the following lim-
itations:
• They only focus on one functionality of a multi-function

wireless system, while other functions are not well pro-
tected.

• Jamming attacks are still not considered in the design of
multi-function wireless systems and no unified framework
for these systems exists.

• Most of the existing works consider some prior knowl-
edge about the jamming attacks. However, due to the
uncertainty of wireless environment and the jammer’s
objective, it is hard to obtain this information in real
scenarios.

Motivated by the limitations mentioned above, a deep
reinforcement learning (DRL) based multi-function wireless
system that incorporates a variety of anti-jamming techniques
is proposed in this work to improve the resistance of the
system against reactive jammers. The proposed solution can
defeat jamming attacks and quickly adapt with the environ-
ment dynamic. Our system design can learn the properties
of the jammer, suppress the jamming attacks and achieve
higher performances compared to those of the conventional
anti-jamming solutions.

III. SYSTEM MODEL

A. System Overview

Figure 1 shows an overview of our considered multi-
function (MF) wireless system. The MF system supports data
transmission, referred to as the data transmission mode, and
either radar sensing or power transfer, referred to as the radar
sensing mode and power transfer mode, respectively. The MF
node can choose between two modes to achieve the required
performance level. Either time or frequency based access
architecture possesses advantages and disadvantages that make
each one preferred over the other for some desired applica-
tions. In this work, for the purpose of establishing a robust
and unified framework for multi-function wireless systems, we
consider that the multi-function wireless system is using time
division multiple access (TDMA) method to alternate between
different modes. Time division access methods also provide
low-complexity design, low implementation cost and help to
easily integrate modules sharing same hardware components
(e.g., antenna, power, etc.) which is suitable for multi-function
wireless systems. For instance, Figure 2 illustrates the use of
time division access method in JRC systems, where time is
divided into slots of equal duration T and the scenario of a
pulsed radar where the basic pulse strength is equal to that used
by the data communication system is considered as in [28].
When operating in the radar sensing mode, the JRC node starts
by transmitting a pulse s1 at the beginning of the time slot,
and then waits for an echo es1 to be received in the remaining
time. In data transmission mode, the JRC node continuously
transmits data during its allocated time slot 4.

4In SWIPT systems, time switching architecture can be adopted simi-
larly [1].

Figure 1. System model.

Figure 2. The JRC node can choose between data and radar
transmissions mode.

The MF node receives different requests based on the sup-
ported functionalities. Arriving data packets are stored in the
data queue while radar sensing requests are stored in the radar
activity request (RAR) queue if the MF node is an instance
of JRC system. Similarly, if the MF node is an instance of
SWIPT system, power transfer requests are stored in the power
activity request (PAR) queue as illustrated in Figure 1. When
operating in the radar mode, the MF node is trying to infer
information about nearby targets such as angle and distance,
while when operating in the power transfer mode, the MF
node is transferring energy to the energy harvester (EH) node.
Additionally, due to the shared wireless medium, a jammer
can disrupt the network performance by introducing hostile
interference into the channel upon detection of any type of
transmission, i.e., reactive jamming [10]. This will cause a
severe degradation of the Quality of Service (QoS) to the
multi-function wireless system. Moreover, if the multi-function
wireless system is deployed for autonomous vehicles or robot-
assisted industrial applications, there may cause severe safety
issues [9], [29].
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5

With our proposed abstraction and the proposal of queue
concept, the application of our framework to different multi-
function wireless systems is straightforward. Accordingly, JRC
and SWIPT systems are just instances of a multi-function
wireless system. We apply our solution to JRC system, which
is an instance of the multi-function wireless system, but the
same framework is applicable on SWIPT systems similarly.
The only adaptation needed is the actions, ie., instead of
having actions of radar sensing as in JRC system, there will
be actions of power transfer in SWIPT systems. The rest of
the formulation remains the same which shows the power of
our framework 5. Therefore, to avoid ambiguity between JRC
and SWIPT systems, we continue the rest of the paper with
more emphasis and analysis of the proposed framework on
JRC systems.

We consider that communication and radar circuits are both
co-located on the JRC node, share the same frequency band
and use a time division access method, and thus there is no
need to consider mutual interference between radar and data
signals at the JRC node in our system design [30]. The JRC
node has a stable energy capacity, e.g., in an autonomous
vehicle, and has two functionalities: data transmission and
radar sensing. For the data transmission functionality, we
consider that data arrival follows a Poisson distribution6 with
mean λ. At each time slot, if a new packet arrives (or is
generated) at the JRC node and the data queue is not full, it
will be added to the data queue and can remain in the queue for
a predefined threshold τdata. If the data queue is full, the new
packet will be discarded. Similarly, the radar activity request
(RAR) arrival follows a Bernoulli distribution with parameter
pradar related to deployment settings. For example, if the
system needs to perform radar sensing more frequently, then
pradar is set close to 1. If only few radar sensing operations are
required, then pradar is set close to 0. If an RAR remains in the
RAR queue for a time exceeding a predefined threshold τradar,
then it is removed. We also define w =

∑
wt as the total delay

(sum of the waiting time wt) of all radar sensing requests in
the RAR queue. This parameter, i.e., w, is considered later in
the reward function for data transmission actions.

In the following, we describe the adversarial model against
the presented multi-function wireless system forwarded by our
proposed countermeasures.

B. Channel Model

1) Communication Channel Model: The communication
channel gain gab between two devices a and b is composed of
the large-scale fading lab and the small-scale fading hab. The
large-scale fading is determined by the distance dab between
the two devices a and b. According to Jake’s model [32], the
small-scale fading can be represented as:

h
(t)
ab = γh

(t−1)
ab + ζ(t), (1)

5A practical benefit would be the use of transfer learning to fine tune the
learned model into other systems.

6Our model can be extended for other distribution or correlated arrival
process such as Markovian arrival process (MAP) [31].

where γ (0 ≤ γ ≤ 1) represents the coherent factor and ζ(t)

is a random variable with distribution ζ(t) ∼ CN (0, 1 − γ2).
Hence, the channel gain g(t)

ab at time t can be given as [32];

g
(t)
ab = l

(t)
ab |h

(t)
ab |

2. (2)

The SINR at the receiving gateway is then formulated as:

SINRdata =
gdataPT

gJ,dPJ + ρ2
, (3)

where PT and PJ are the transmission powers of the JRC
node and the jammer, respectively. gdata and gJ,d are the
communication channel gains between the receiving gateway
and JRC node and between the receiving gateway and the
jammer, respectively. ρ2 is the noise power.

2) Radar Channel Model: To be able to detect targets and
their distances correctly and accurately, the JRC node sends
radar pulses and expects to receive reflections of these pulses
such that the SINR at the radar receiver is higher than a
predefined threshold. The power density Pr returned by the
target to the radar is defined as [33]:

Pr =
PtGrσAe
(4π)2R4

, (4)

where Pr symbolizes the signal power returned to the radar
antenna, Pt is the transmit power by the JRC node, Gr denotes
radar antenna gain, σ corresponds to Radar Cross Section
(RCS) of the target, R is the range to target and Ae is the
effective aperture area of the radar antenna. In addition to the
signal power Pr, thermal noise represented by the variance of
additive white Gaussian noise ρ2 and jamming noise PJ are
also received at the JRC node. Then the SINR at the JRC node
receiver is calculated as:

SINRradar =
Pr

PJ + ρ2
. (5)

3) Evaluation Metrics: To evaluate the performance of our
system, we consider the channel capacity and rate estimation
for data transmission and radar sensing, respectively. Similar
to [34], the channel capacity is defined as a function of the
SINR as follows:

Rcom = B log2(1 + SINRdata) (6)

where B is the channel bandwidth. The estimation rate of
information that can be obtained from the reflected signals of
the radar systems is defined as:

Rest =
1

2Tpri
log2(1 + SINRradar) (7)

where Tpri is the pulse repetition interval of the radar system.
We observe from equations (6) and (7) that data rate

and radar estimation rate both increase as the SINR at the
communication receiver and the radar receiver increase, re-
spectively. In addition, for radar systems, the accuracy of
target parameters inference (e.g., range and angle) is highly
influenced by the SINR at the radar receiver. Specifically, the
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6

measuring errors in range and angle are defined respectively
as [35]:

σR =
c

2B
√

2SINRradar
(8)

σA =
θ

kM
√

2SINRradar
(9)

where c is the speed of light, θ is the radar beamwidth in
the angular coordinate of the measurement and km is the
monopulse pattern difference slope. From equations (8) and (9)
we observe that the range and angle errors can be minimized
by maximizing the SINR at the radar receiver. Therefore, we
consider in this work the SINR at the JRC node as the main
performance metric for the radar system which is generic for
both range and angle estimation, i.e., maximizing the SINR
at the JRC node will increase the accuracy of the target
parameters. For the communication system, maximizing the
SINR at the gateway receiver is considered as the performance
metric.

C. Jamming Attack Model

We consider the jammer to be reactive, i.e., only attacks
the channel if it detects some signals from the JRC node
on the channel. This makes the attack highly efficient and
long-lasting. Note that we consider a smart jammer who can
distinguish between data transmission and radar transmission
signals, and thus it can focus its attack on each transmission
mode separately and effectively [36]. When the jamming
signal gets interfered with the reflected target echo during
the jamming attack at the radar receiver, in which case the
probability of target detection depends on either constructive
addition or destructive addition of the two signals, the JRC
node experiences less probability of target detection [33].
The JRC node can try to lower the radar threshold 7 to
increase the target detection probability, which also increases
the probability of false alarm. The continuous adjustment of
radar threshold can heavily affect the quality of inferred target
parameters, e.g, angle and distance.

The jammer can attack the channel with different discrete
jamming powers [37]. Let PJ = {P J0 , P J1 , . . . , P JN} denote
the available jamming power levels with P J0 = 0 and x =
{x0, x1, . . . , xN} be the probability vector of each jamming
power such that

∑N
i=0 xi = 1. At each time slot t, the jammer

picks one jamming power PJ ∈ PJ according to its associated
probability from x. Note that if the jammer chooses P J0 , no
attack on the channel is launched. Moreover, the jammer has
a limited energy supply. In practice, the jammer has the time-
average power constraint defined as follows [20]:

1

T J

TJ∑
t=1

ea(t) ≤ ÊJ , (10)

where T J is the total time period in which the jammer aims
to attack the channel, ea(t) is the amount of energy used by the
jammer to attack at time t and ÊJ is a predefined threshold that

7Radar threshold refers to the minimum SINR value at the radar receiver
to consider the received signals for processing.

specifies the average energy that can be used by the jammer
at period T J . The energy constraint is justified by the fact that
strong jammers can overheat quickly and thus should not jam
at high power continuously during all the time period T J [33].
Also note that if the jammer attack would occur frequently, its
location can be disclosed and the JRC node can easily filter
out the jammer’s fake echo pulses.

D. Anti-Jamming Attack Strategy

To overcome the aforementioned jamming attack, we incor-
porate several techniques into our framework. We first adopt
TDMA scheme which helps exploring the benefits of changes
of the signal type from communication waveforms to radar
waveforms and vice-versa [34]. The changes of the generated
signals by the JRC node will force the jammer to change its
signal’s characteristics to maximize its attack for both cases.
Specifically, when communication signals are emitted during
communication mode, the jammer needs to inject similar
signals in the channel to effectively corrupt the data [38].
Similarly, when radar signals are emitted, the jammer needs
to generate signals that are similar to the radar waveforms in
order to make its attack to be successful [39], e.g., increase
the misdetection rate. Note that since the switching between
sensing and data transmission is only every few milliseconds,
the target objects will rarely be missed from the detection
because of the quiet period.

We then introduce the deception mechanism in the multi-
function wireless system design, which consists of transmitting
fake signals at the beginning of each time slot and enticing
the jammer to attack. Additionally, by implementing an ad-
vanced reinforcement learning (RL) algorithm, the jammer’s
actions become more predictable and can be leveraged through
backscatter communication and RAAs techniques. Specifi-
cally, since the jammer’s actions are more predictable, we
can choose to modulate communication bits on the jamming
signals instead of active transmission 8. Therefore, energy con-
sumption by the JRC node is minimized and data throughput is
maximized. Moreover, we can choose to transmit radar pulses
in time slots where the jamming probability is low, and thereby
maximizing the radar sensing functionality.

Upon detection of degradation in the channel quality, the
JRC node can adopt rate adaptation techniques to continue
transmitting data [20], but with a low data rate. In prac-
tice, if the jammer is detected, then based on the jamming
power PJ , the JRC node can still transmit data through rate
adaptation. Several detection techniques exist in the litera-
ture to estimate the jammer’s state, i.e., current jamming
power level, such as energy detection [40]. We then denote
r = {r0, r1, . . . , ri, . . . , rM} to be the set of the available M
transmission rates supported by the JRC node. For each data
rate ri, the JRC node can successfully transmit a maximum
of dRA packets.

When jamming signals are detected, the JRC node can still
use rate adaptation or transmit its data through backscattering
on the jamming signals. The later can achieve higher data rates

8This refers to standard radio transmission which is different from backscat-
ter transmission.
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7

than that of rate adaptation technique and less Bit Error Rate
(BER) [22]. It has been demonstrated that backscattering on
an RF source (e.g., jammer) can increase data throughput as
the jamming power increases [22], and thus if the JRC node
smartly transmits through backscattering when the jammer is
attacking, a high overall data throughput can be achieved.
Since the jammer usually attacks with high powers, we use
backscatter to modulate on the amplitude of the high-power
noise by adjusting the impedance of the backscatter antenna
(a wave is reflected when it encounters an antenna with two
different impedance) [41]. Specifically, when the input bit to
be transmitted is zero, the JRC node switches to non-reflecting
state. In contrast, when the input bit to be transmitted is one,
it switches to reflecting state [41]. At the receiving node,
to extract the backscattered information, averaging methods
similar to [22], [41] is used to demodulate reflected signals.
The radar signals are desired to have high time resolution for
accurate time of arrival (ToA) estimation. In this case, they
appear to be wideband, so that the jamming signals need to
be full-band jammers. The latter allows the averaging method
to work effectively when backscattered signals are detected 9.

The idea of switching between different transmission tech-
niques is inspired from frequency hopping strategy. Instead of
switching between frequencies, we switch between different
actions (transmission techniques). The effectiveness of this
method is argued by the fact that the attacker cannot expect our
next action, and since the jamming attack cannot have the same
effect on all the set of actions chosen by the JRC node over
time (e.g., the JRC node can achieve higher throughput if using
backscatter technique compared to rate adaptation), we can
improve the system performance by intelligently choosing the
best transmission technique at every time slot. Note the joint
scheduling problem of data and radar queues is highly coupled
and the channel state is dynamic over time. Additionally,
the JRC node needs to accurately predict the next jamming
attack and choose the best action to perform to satisfy both
of the system functions requirements. Therefore, beside the
idea of switching between different transmission techniques,
we develop an RL algorithm to learn an optimal transmission
strategy for the JRC node to execute at every state.

Note that if the jammer attacks the channel with very
dynamic signals that fluctuates in both frequency and power,
then ambient backscatter communication might not work well.
However, in our proposed framework, ambient backscatter is
just one option among others to deal with communication
jamming attack. In case if ambient backscatter does not work,
the JRC node can use rate adaptation to transmit data but with
a lower rate. Another option would be staying idle for some
time slots to deceive the jammer to stop its attack for a while
then start transmitting again. It is important to note that in
our work we use DRL algorithm to learn the best transmitting
strategy in the presence of the jammer. Therefore, the JRC
node can automatically find the best anti-jamming strategy in
cases if one of options is not effective.

9Note that the rate differentiation, where a low-rate data is embedded into
the high-rate jamming signals, can be utilized for the averaging method.

E. Other Considerations

In this paper, time is slotted and at the end of each time
slot, the JRC node observes the environment and evaluates its
previous action. If operating in the data transmission mode, the
JRC node can detect that data packets have been jammed when
not receiving an acknowledge message from the gateway [22].
Otherwise, if the JRC node is operating in the radar sensing
mode, it can detect that it is under a radar jamming attack
by not receiving correct reflected pulse back. Specifically, the
JRC node observes its expected SINR from signals reflected
by the target. If the SINR is less than a predefined threshold,
insufficient information can be obtained from the reflected
pulses, and thus the JRC node considers that it is under a
radar jamming attack [33], [42].

Unlike traditional wireless networks, multi-function wire-
less systems are composed of systems that have different
goals, metrics and operators. Thus, system performance needs
to be optimized jointly with careful attention to evaluation
metrics and units. Communication systems are traditionally
evaluated in terms of throughput and WPT systems can be
evaluated in terms of harvested energy units. However, in
radar systems, several evaluation metrics can be required, e.g,
angle and distance. To allow our study and analysis being
useful for different multi-function wireless systems, we adopt
the radar capacity from [43] in which it is defined in a
binary fashion, i.e., “1” implies that target is present and “0”
implies that target is absent. This helps us to extract important
insights about the system dynamics when integrating DRL in
JRC systems and guides us towards possible improvements.
Additionally, inspired by the theoretical framework proposed
in [34] to jointly analyze the JRC system performances, we
define the following evaluation metrics to assess our proposed
framework:

1) Successful packet transmission ratio: the number of pack-
ets successfully transmitted, i.e., through active trans-
mission, backscattering and rate adaptation, over all the
number of generated packets.

2) Successful RAR ratio: the number of RAR successfully
performed over all the number of RARs generated. This
metric reflects the sensing rate of radar results.

3) Data throughput: the number of packets successfully
transmitted, i.e., through active transmission, backscat-
tering and rate adaptation, per time unit.

4) RAR throughput: the number of RAR successfully per-
formed per time unit (excluding miss detection and false
alarm).

In the following sections, we present our problem formula-
tion and show how the proposed system design can help the
JRC node find the best operation mode at each time slot.

IV. PROBLEM FORMULATION

We develop an advanced two-step version of the MDP
framework to model the jamming mitigation problem in multi-
function wireless systems. Specifically, the MDP is defined by
a tuple < S,A, r > where S is the state space, A is the action
space and r is the immediate reward that the multi-function
node receives after performing action a at state s [44]. In

Page 22 of 31IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

T

Jammer Sensing

Single Epoch:
Observe state at t0 and 

choose action

t0

(a)

Tt0 t1

Jammer Sensing

Epoch 0:
Observe state s’ at t0 
and choose action 

from a’

Epoch 1:
Observe state s’’ at t1

and choose action 
from a’’

(b)

Figure 3. (a) Conventional MDP model, (b) Two-step MDP
model.

conventional MDP model, the multi-function node observes
the environment at the beginning of the time slot and then
chooses an action to perform for the rest of the decision
epoch. This would limit the performance of our system as
the deception mechanism cannot be captured by this form of
MDP. In particular, the reactive jammer does not attack the
channel if it does not detect any signals in the channel, and
consequently the JRC node will never be able to backscatter
on the jamming signals or perform radar sensing safely. To
overcome this limitation, we propose an advanced version of
conventional MDP model as illustrated in Figure 3(b).

Specifically, there will be two decision epochs at each iter-
ation. Since the jammer has a time-average power constraint,
the jammer cannot attack continuously. The JRC node can
make use of that and undermine the jammer’s effectiveness
through deception technique. At the beginning of each time
slot T , i.e., at t0 (Epoch 0), the JRC node can inject data
signals or radar pulses on the channel to mislead the jammer
to perform the attack. Upon detection of these signals on the
air, and based on the objective of the jammer, i.e., attacking
all types of signals, only data signals or only radar signals, the
jammer then decides to attack the channel or to stay idle for
the rest of the time slot T . At the end of the deception period,
which is considered to be longer than the detection time of
the jammer, if the JRC node detects the jammer’s presence
at t1, which marks the beginning of Epoch 1, it can either
use rate adaptation technique to actively transmit data, but
with a low data rate, or it may leverage the jamming signals
by using backscatter technology. In cases that the jammer
does not attack the channel, the JRC node can perform active
transmission or radar sensing with a high chance of success.
If the JRC node does not choose the deception action at t0,

then the action taken at the first decision epoch will continue
until the end of the current time slot T with the jamming risk
remaining.

Note that in our work, the jamming sensing period is
considered to be fixed but it can be optimized in advance be-
fore the learning process of the anti-jamming strategy begins.
Specifically, the JRC node can observe the jammer’s attacks
for a period of time and find an optimal time for this period.
Then our proposed DRL algorithm can be deployed to learn
the optimal ant-jamming strategy. Several works have been
proposed to optimize the sensing time [45], [46], which can
be applied into our model straightforwardly.

1) State Space: The state space of the system is defined as:

S ,
{

(l, c, d, w) : l ∈ {0, 1, 2}; c ∈ {0, 1};

d ∈ {0, . . . , D};w ∈ {1, . . . ,M}
}
,

(11)

where l represents deception action of the JRC node, i.e., l = 1
when the data deception is performed, l = 2 when the radar
deception is performed and l = 0 otherwise. c represents the
state of the channel (presence of jamming signals or not), i.e.,
c = 1 if the channel is under attack and c = 0 otherwise. d
and D represent the number of packets in the data queue and
the maximum data queue size of the JRC node, respectively.
Finally, w represents the total time for the RARs (radar activity
requests) waiting in the RAR queue (radar activity request
queue) with M being the maximum value of w. The system
state is then defined as a composite variable s , (l, c, d, w) ∈
S.

Note that the states of our MDP can be obviously observed
and obtained. Specifically, from equation (11), the first element
of the state tuple l is an internal information of the JRC node
and can be always observed accurately. Similarly, the third
and fourth elements of the tuple, which are the data queue
and radar activity request queue, are also internal information
and always observable. The second element of the system state
space, which is the jammer state, is an external information
for the JRC node but still can be inferred with high accuracy
using several sensing techniques such as energy detection [40].

2) Action Space: The action space is defined by: A ,{
(a′, a′′) : a′ ∈ {0, . . . , 5}, a′′ ∈ {11, . . . , 15}

}
. At the

beginning of each time slot, we have the following actions:

a′ =



0, the JRC node stays idle,
1, the JRC node performs data deception,
2, the JRC node performs radar deception,
3, the JRC node actively transmits data,
4, the JRC node adapts its transmission rate,
5, the JRC node emits radar pulses,

(12)

if a′ = 1 or a′ = 2 is chosen (data deception or radar
deception), then we have the following actions for the rest
of the time slot:
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9

a′′ =



11, the JRC node actively transmits
data, if c = 0,

12, the JRC node adapts its transmission
rate, if c = 1,

13, the JRC node emits radar pulses, if c = 0,

14, the JRC node stays idle,
15, the JRC node backscatters data, if c = 1,

(13)
if a′ = 1 and a′ = 2 are not chosen, we set a′′ = 0.

3) Immediate Reward: We define the reward value as a
function of successful data transmission and successful radar
target detection (excluding miss detection and false alarm).
For instance, if the JRC node chooses not to perform deception
(l = 0) and actively transmits data (a′ = 3), and if the jammer
does not attack the channel (c = 0), then the JRC node will
receive a reward ract.

l = 0

c = 0 c = 1

a’ = 0 a’ = 3 a’ = 4 a’ = 5 a’ = 0 a’ = 3 a’ = 4 a’ = 5

ract0 rRA1 rrdr 0 0 rRA2 0

l = 1 or l = 2

c = 0 c = 1

a’’=11 a’’=13 a’’=14 a’’=12 a’’=14 a’’=15

rrdr2rad 0 rRA2 0 0

Figure 4. Immediate reward function.

Importantly, as shown in Table I, we set an adaptive reward
function for data transmission actions which is dependant on
the total waiting time in the RAR queue, i.e., if RAR queue
is not full, the action related to data transmission receives a
high reward. However, if the RAR queue is full, less reward
is given for data transmission action. This is set to help the
algorithm learn that RARs are very sensitive for delay and
should not be deferred for long time.

Note that having the radar reward rrdr to be an adjustable
hyper-parameter of the model gives a high flexibility for the
system to be deployed in different environments. Moreover,

TABLE I: Utilities for different situations

Reward Notation Value Description
ract

dactive
w

dactive: number of packet success-
fully transmitted with no deception.

rad(< ract)
dad
w

dad: number of packet successfully
transmitted after deception.

rRA1
dRA1

w
dRA1: number of packet success-
fully transmitted with rate adapta-
tion and no deception.

rRA2(< rRA1)
dRA2

w
dRA2: number of packet success-
fully transmitted with rate adapta-
tion after deception.

rrdr dradar dradar : number of radar equivalent
packet.

rrdr2 dradar−1 dradar −1: number of radar equiv-
alent packet after deception.

rb
db
w

db: number of packet successfully
backscattered.

we can perform several tests during the online learning before
deployment to derive the optimal value of rrdr.

4) Optimization Formulation: We then aim to find an
optimal policy π∗ that has the best mapping from the state
space to the action space which maximizes the average long-
term reward. The optimization problem can be formulated as
follows:

max
π

R(π) = lim
Υ→∞

1

Υ

Υ∑
t=1

E(rt(st, π(st))), (14)

where rt(st, π(st)) is the immediate reward under policy π at
time t and R(π) is the long-term average reward of the JRC
node under policy π.

V. OPTIMAL DEFENSE STRATEGY WITH DEEP
REINFORCEMENT LEARNING

In this work, we choose to solve the problem using a model-
free RL algorithm. The main advantage of model-free over
model-based RL algorithms is that it has a constant time
policy for each state, i.e., constant time to compute the optimal
action and no further thinking/computation is required for any
state [47]. Therefore, this characteristic is very efficient for
wireless systems where the time duration is very short for
each state (typically in milliseconds), enabling the agent to
react instantly. Additionally, in model-free RL, we only need
to fine tune the hyper parameters of the network, but in model
based RL, we need also to find the appropriate model which
is hard to derive for many problems [44].

Several DRL algorithms have been proposed with some
algorithms working better in some domains than others [47].
In our problem, since it is hard to collect millions of episodes
for training during deployment, we choose to use a deep Q-
Learning (DQL) based algorithm as it is known for its fast
convergence speed with small training episodes [44]. In the
following, we present the Q-Learning algorithm followed by
the proposed DQL-based solution.
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A. Q-Learning based Approach

Based on the current state, i.e., the jammer state, the
number of requests in the queues and their total delay w,
the multi-function node follows its current policy to take the
best action to maximize the long-term average reward. Q-
Learning learns the action-value function Q(s, a), i.e., how
good to take an action a at a particular state s. In Q-Learning,
a memory table Q[s, a] is built in order to store Q-values
for all possible combinations of states and actions. However,
Q-Learning algorithm suffers from a long learning time to
derive the optimal defense policy and might be trapped in a
local optimum, which cannot be tolerated in security system
where high accuracy and fast adaptation are required. Next,
we develop a deep Q-Learning based algorithm which allows
the multi-function node to obtain an optimal solution quickly
through utilizing advantages of the neural network architecture
and replay memory.

B. Deep Reinforcement Learning based Approach

By incorporating deep Q-Learning into RL, we can approx-
imate the values of Q∗ more efficiently and accelerate the
system convergence speed [48]. First, the deep Q-Learning
Algorithm (DQLA) adopts the experience replay mechanism
in which a memory pool M of capacity N stores a set of
transitions (st, at, rt, st+1) obtained when interacting with the
environment at time t. Then, the DQLA randomly samples
batches from the memory pool to train the deep neural
network. This helps the algorithm to learn from previous
transitions several times and reduce the correlations between
experiences. The second step is to use two neural networks
with the same structure to approximate Q-values. The first
Q-network Q has parameters Θ and refers to the actual
predictions of the Q-values. Since neural networks can overfit
quickly and to avoid destabilizing the learning process [48],
we use the second Q-network Q̂ with parameter Θ− to refer
to the maximum possible values of the next state. Specifically,
the weights in Q̂ are set to be fixed temporally and not
updated for C steps, while the weights in Q are updated at
every iteration. The goal is to increase the stability of the
target Q-value (rj + γmax

aj
Q̂(sj , aj ; Θ−)) when deriving the

temporal difference (TD) error which is calculated by taking
the difference between the target network Q̂ and the current
network Q, i.e.,

δi = (rt + γmax
a∈A
Q̂(st+1, a; Θ−)−Q(st, at; Θ)). (15)

In fact, the experience replay can be further improved by
using the prioritized experience replay (PER) technique [49].
Some experiences might be more important than others but oc-
curs less frequently. Therefore, instead of uniformly sampling
from the replay memory M, in PER we sample experiences
that are more important to learn more efficiently. This can help
to reduce the correlation between states and avoid forgetting
important experiences. The idea is to give higher scores for
experiences that can help to reduce the TD error. The impor-

tance score pi is calculated using the following expression:

pi =
(δi + ε)α∑N
k=1(δk + ε)α

, (16)

where ε is a small value to ensure the edge transitions
can still be visited when their TD error is zero, α is a
constant exponent between zero and one. The denominator
is a normalization term by all priority values N in the replay
memory. Since transitions with high probability will be chosen
frequently, the network might be biased towards experiences
with high priority. This bias is eliminated through importance
sampling which reduces the weights of often seen samples,

i.e., wi =
(

1
N .

1
pi

)β
, where β is an increasing variable from

zero to one. Finally, this weight wi is multiplied by the TD
error as shown in Algorithm 1.

The overestimation of the target Q-values can be further
reduced by adopting double DQN approach [50]. By using
two networks to decouple the action selection from the action
evaluation, where the first network Q is used to derive the
best action to take for the next state and the target network Q̂
is used to calculate the target Q-value of taking that action at
the next state, we can then reformulate (15) as follows:

δi = (rt+γQ̂(st+1, argmax
a∈A

Q(st+1; a; Θ); Θ−)−Q(st, at; Θ)).

(17)
Therefore, by reducing the overestimation of the Q-values, we
can train the network faster and stabilize the learning process.
Algorithm 1 summarizes the resulting algorithm, namely Pri-
oritized Double Deep Q-Learning (PDDQL) algorithm.

VI. PERFORMANCE EVALUATION

A. Simulation Settings

In all the simulations, unless otherwise stated, we set the
data packet arrival to follow the Poisson distribution with mean
λ = 3 and set that of the radar activity requests (RARs) to fol-
low a Bernouli distribution with pradar = 0.5. The data queue
of the JRC node can store up to 50 packets while RAR queue
is set to store up to 5 RARs. The latency thresholds τdata and
τradar are set to 5 and 3 time units, respectively. The jammer
has two transmit power levels, i.e PJ = {0W, 10W} 10. To
emulate the jammer’s energy constraint, we set the jamming
probability to 0.5, i.e., the jammer attacks and stays idle with
equal probabilities. When the jammer is detected, the JRC
node can either backscatter 3 packets on the jamming signals
or use rate adaptation to transmit 1 packet. If the jammer is not
detected, then the JRC node can actively transmit 3 packets or
perform 1 radar sensing operation. If the JRC node chooses
not to perform deception and the jammer does not attack the
channel, it can actively transmit 4 packets, use rate adaptation
to transmit 2 packets or perform 1 radar sensing operation [22],
[36], [41].

10Note that the constraint on the power levels of the jammer can be relaxed
to take values from the continuous space. A common method to extend Q-
learning to work in continuous spaces is the use of actor-critic approach based
on deep deterministic policy gradient (DDPG) [51], which we leave for the
future work.
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Algorithm 1: PDDQL Based Optimal Defense Algo-
rithm
Initialize: replay memory M to capacity N , p1=1,
replay period K, mini-batch k, ∆ = 0, step-size η, α,
β;

Initialize Q with random weights Θ and Q̂ with
weights Θ− = Θ;

for t = 1, 2, . . . to convergence do
With probability ε perform any feasible action at,
otherwise perform at = argmax

a∈A
Q∗(st, a);

Perform action at and get next state st+1;
Store transition (st, at, rt, st+1) in M with
maximal priority pt = maxi<t pi;

if t ≡ 0mod K then
for j = 1 to k do

Sample transition j from M;
Compute importance-sampling weight wj
using (16);

Compute TD error δj using (17);
Update transition priority: pj ← |δj |;
Perform gradient descent and accumulate
weights:
∆ = ∆ + wjδj∇Q(sj−1, aj−1; Θ)

end
Update weights: Θ← Θ + η∆, reset ∆;
Every C steps, reset Θ− = Θ;

end
end

Besides, we set the minimum thresholds for the SINR
at the data receiver and radar receiver to be 10 dB and
15 dB, respectively. Therefore, if the actual SINR is higher
than the corresponding threshold, the executed action is then
considered to be successful and a reward is obtained for the
state-action pair (s, a) 11. The JRC node is operating at the
fc = 5.9GHz frequency band and uses 50MHz bandwidth.
We consider one fixed target located randomly in a [5, 100]
meter range with nonfluctuating radar cross section.

We adopt two baseline algorithms to analyze the perfor-
mances of our proposed reinforcement learning based solu-
tions, namely, Fixed with No Deception (FND) and Fixed With
Deception (FWD):
• FND: This algorithm takes actions based on a fixed

probability vector for two solely actions: active transmis-
sion with the probability of 0.6 and radar sensing with
the probability of 0.4. We set the active transmission
probability to be higher to go inline with our initial
assumptions in the simulation settings, where data arrival
rate is set to be higher than RAR arrival rate.

• FWD: In this algorithm, in addition to the actions of
active transmission and radar sensing, now the algorithm
can also perform data or radar deception at the beginning

11These SINR values are chosen to guarantee an acceptable data and secrecy
rates for data communication and minimize radar false alarm rate. Designing
the optimal values of these thresholds is beyond the scope of our work. Further
details can be found in [13].

of the time slot with the probabilities of 0.4 and 0.3,
respectively. The probabilities of active transmission and
radar sensing actions are now set at 0.1 and 0.2, respec-
tively. With deception implemented and upon detection
of jammer’s presence, the JRC node switches directly to
data transmission with backscattering. If no jammer is
detected, the JRC node continues to perform the desired
action initially intended, i.e., active transmission or radar
sensing.

B. Performance Results

1) Convergence of Deep Reinforcement Learning Ap-
proaches: We first start by showing the convergence speeds
of different RL algorithms in the considered system. As
illustrated in Figure 5(a), the PDDQL algorithm is able to
converge faster to an optimal solution in the first 105 iterations
compared to other RL algorithms, which affirms the outstand-
ing performance of the proposed PDDQL algorithm. The DQL
algorithm is also able to converge to a similar optimal solution
but its convergence speed is slower than that of PDDQL by
a factor of 5. This shows the effectiveness of the introduced
modifications on DQL algorithm, i.e, prioritized experience
replay and double Q-network. However, the Q-Learning algo-
rithm is not able to reach an equivalent performance even after
106 iterations which is due to the slow convergence problem
when the state space is very large. Even though Q-Learning
is proved theoretically to reach an optimal solution [44], the
large state and action spaces of our MDP make it hard to
fine tune the learning parameters to reach the optimal solution
in practise as illustrated in Figure 5(a). As such, since the
proposed PDDQL algorithm can learn a better strategy over a
huge state space, the multi-function node can be resilient to a
variety of jamming attacks.

Figure 5(b) shows the learning time required by each
algorithm to reach its optimal solution. We observe that Q-
Learning is super slow and requires a huge amount of time
with no final convergence. We also observe that PDDQL
does not require too much time to converge even though it
uses double neural networks and prioritized memory. This
is explained by the fact that PDDQL algorithm requires less
number of episodes to converge compared to that of the DQL
algorithm which compensates the learning time required for
each episode and makes PDDQL algorithm the fastest among
other algorithms. Note that since the performance difference
between DQL and PDDQL is related to convergence speed
and not average reward, and thus both of the algorithms
will converge to an equivalent optimal policy, we omit the
DQL algorithm from our following comparisons and use the
PDDQL to represent DRL solutions.

2) Optimal Policy under Different Jamming Strategies:
Next, we analyze how the PDDQL algorithm performs with
two different jamming cases: attacking all types of signals
and attacking only data signals. We show how the system
can adapt its learned policy, i.e., the actions taken at different
states. First, we define 6 root states from our system space S
necessary for our analysis as follows:
• S1 : {l = 1, c = 1}= {Data Deception, Jamming}.
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Figure 5. Convergence rate and learning time of various RL
algorithms.

• S2 : {l = 2, c = 1}= {Radar Deception, Jamming}.
• S3 : {l = 1, c = 0}= {Data Deception, No Jamming}.
• S4 : {l = 2, c = 0}= {Radar Deception, No Jamming}.
• S5 : {l = 0, c = 1}= {No Deception, Jamming}.
• S6 : {l = 0, c = 0}= {No Deception, No Jamming}.

where S1, for example, is the root state for all states with
all possible values for data and radar queue. Specifically, the
JRC node is performing data deception and the jammer is
attacking the channel. Other root states are defined similarly
to cover all possible combinations. Note that these root states
are a combination of the jammer state and the initial action of
the JRC node at the beginning of the time slot. As such, the
frequency of visiting each state is an important metric which
reflects how the JRC node learns to perform deception or not.
By analyzing the decision making process of our system, we
can assert a high level of trustworthiness of the proposed DRL
algorithm.

Figure 6(a) shows the frequency distribution of each action
in different root states, which is defined as the number of
times of taking one action over the total time period. When
the jammer is present and either data deception (S1) or
radar deception (S2) is performed, the JRC node chooses
to backscatter on the jammer’s signals for 85% of the time.
However, if deception is not performed and the jammer
attacks, as in S5, the JRC node chooses to transmit data using
rate adaptation for 86% of the time. It is the best action to
take in this case because the JRC node does not have any

0

0.2

0.4

0.6

S1

S
el

ec
tio

n 
Fr

eq
ue

nc
y 0.8

1

S2
S3

S4
S5

S6
RadarBackscatterRate Adaptation

Active transmission

(a)

0

0.2

0.4

0.6

S1

S
el

ec
tio

n 
Fr

eq
ue

nc
y 0.8

1

S2
S3

S4
S5

S6
RadarBackscatterRate Adaptation

Active transmission

(b)

Figure 6. Selection frequency when: (a) attacking all types of
signals, (b) attacking data signals only.

prior information that the jammer will attack during this time
slot and cannot use backscattering. Moreover, the JRC node
performs radar sensing less than 10% in S5, which indicates
that it is able to learn that when no deception is performed, it
is better not to perform radar sensing as there is a high risk of
being jammed. When deception is performed and the jammer
does not attack the channel, i.e., S3 and S4, the JRC node
dedicates 75% of the time slots for radar sensing action and
only 25% for active transmission. This is explained by the fact
that RARs cannot tolerate delay and should be performed as
soon as they arrive.

We then analyze how the system behaves if the jammer
attacks only data transmission. From Figure 6(b) we can see
that in S3, the JRC node is able to learn that the jammer
is attacking only data transmission, and thus the JRC node is
giving more time slots for active transmission (more than 75%)
compared to 25% in the case where the jammer attacks all
types of signals. Moreover, when radar deception is performed
and no jamming signals are detected in the channel as in S4,
the JRC node is giving 90% of time slots for radar sensing
and this state is now more frequently visited compared to the
scenario when the jammer attacks all types of signals as shown
in Figure 7. The JRC node is able to learn to perform radar
sensing safely after radar deception, but give 10% of the time
in this state to data transmission. We also see from Figure 6(b)
that the JRC node is able to learn that it is safer to perform
radar sensing when not performing deception as the jammer
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is only interested in jamming data signals. In addition, we
observe from Figure 6(b) and Figure 7 that most of radar
sensing actions are done in S4 and S6 and in all other states,
the JRC node tends to perform data transmission. Therefore,
we can conclude that the deep reinforcement learning solution
can enable the JRC node to achieve the effective strategy of
switching between the initial goals of data and radar deception
when facing smart attacks with different objectives.
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Figure 7. State selection frequency for different attack sce-
narios.

3) Performance Evaluation under Different Scenarios:
a) Varying radar reward: First, we fix the jamming

probability at 0.5 and vary rrdr, i.e., the reward value for
taking the action “radar sensing”. This is to observe how our
proposed model performs when the radar sensing has a higher
priority than data transmission and vice versa. Figure 8 is the
result of running the PDDQL algorithm. The Q-Learning and
DQL algorithms also give similar results, but those are omitted
here for brevity.

Figure 8. Ratio of taking different actions when the radar
reward is varied.

Figure 8 presents the action frequency, which indicates
the devoted time to radar and communication operations. We
observe that with negative rewards, most of the actions taken
are related to data transmission (more than 80%) while radar
sensing is performed only 20% of the time. However, when
increasing the reward value rrdr of the radar sensing action,
the system starts giving more time slots for radar sensing.
Unexpectedly, the system does not dedicate more time slots
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Figure 9. Data and RAR ratio versus jamming probability.

for radar sensing when increasing its reward value. This is
due to the fact that we have more data transmission requests
than radar sensing requests, i.e., the queue of RAR becomes
empty quickly. Our proposed model can successfully learn this
without prior knowledge.

b) Varying jamming probability: We then vary the jam-
ming probability and observe the performance of the system
using different algorithms. As shown in Figure 9, as the
jamming probability increases, successful data transmission
increases for all the algorithms except for FND. This is due
to the low proportion of time given for data transmission
in FND algorithm. Interestingly, we can observe that the
performance of PDDQL and FWD are similar. This is due
to the hyperparameters of FWD which use deception strategy
and give most of the time slots for backscattering if jamming
signals are detected.

The performance of radar sensing decreases for all algo-
rithms. This is due to the fact that there is no alternative
solution that can make the JRC node to perform radar sensing
when the spectrum is full of noise introduced by the jammer.
We also observe that the performance of all fixed solutions are
worst than those of the DRL solutions for radar sensing. This
is also due to the hyperparameters settings of fixed solutions
which cannot change over time, showing the importance of
dynamic approaches. Moreover, the gap between the perfor-
mance in data transmission and radar sensing is very high for
FWD, which makes it not useful in practical applications, e.g,
autonomous driving. The Q-Learning based solutions are more
preferred as the gap is reduced and more balance is achievable
between data transmission and radar sensing.
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C. Discussions
We examined in this section the performance of our pro-

posed system design with focus on JRC systems under differ-
ent scenarios and attacks. We highlight that the incorporation
of different techniques: queuing concepts, ambient backscatter
technology, deception strategy and rate adaptation algorithms
can significantly help building a more robust wireless system.
This strategy is straightforwardly applicable to other multi-
function systems. An important takeaway from our results is
that simple anti-jamming techniques, e.g, frequency hopping,
are no more favorable as dedicated attacks can significantly
reduce their effectiveness. Instead, by designing more complex
systems and integrating different techniques jointly with DRL,
we can build more resilient systems.

The proposed DRL algorithms were trained through online
simulation. An important step before deployment is to train
these algorithms on real systems, where the accuracy of
observations and reward shaping plays an important role on the
system performance. During the training phase we can provide
the agent with real target information, e.g, distance and angle,
and jamming power to compute the loss. The reward values
can be then computed based on the accuracy of the estimated
parameters. The reward values related to data transmission can
be exchanged using acknowledge messages from the gateway.
In SWIPT systems, the number of harvested energy units can
be exchanged through communication channel.

Another motivation to design a unified framework for JRC
and SWIPT systems is to minimize training costs. Specifically,
instead of training a model for each system, we train the
model on one system and then use transfer learning to fine
tune the learned model into other systems. The process of
transfer learning significantly reduces the amount of data and
time required for training and hence, is practical and efficient
in real deployment of wireless systems.

VII. CONCLUSION AND FUTURE WORKS

A novel architecture has been proposed to counteract reac-
tive and smart jammers in multi-function wireless systems.
The optimization problem of the system functionalities is
formulated as a joint scheduling problem of multiple queues.
As different techniques are merged together in the proposed
framework, an advanced two-step MDP architecture is pro-
posed to accurately model the system dynamics. A deep
reinforcement learning solution based on prioritized replay
memory and double Q-Learning is then developed to derive
an optimal strategy for the multi-function node. The proposed
abstraction shows interesting results when evaluated on JRC
systems and is straightforwardly applicable for SWIPT sys-
tems. In particular, the framework is shown to be able to
handle a variety of jamming attacks while satisfying the joint
system requirements. With deception strategy and DRL, we
are able to suppress the jammer from attacking continuously
and thus perform radar sensing safely. Moreover, the use of
ambient backscatter technology helps leveraging the jamming
signals significantly.

The in-depth analysis of the system under different scenarios
and variations reveals the proposed deep reinforcement learn-
ing algorithm has a good level of trustworthiness, but more

advanced techniques for deep learning models interpretability
should be considered in future works. Another extension of
this research is more than two functions supported in the
considered wireless systems.
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