
Fast or Slow: An Autonomous Speed Control
Approach for UAV-assisted IoT Data Collection

Networks
Nam H. Chu, Dinh Thai Hoang, Diep N. Nguyen, Nguyen Van Huynh, and Eryk Dutkiewicz

School of Electrical and Data Engineering, University of Technology Sydney, Australia

Abstract—Unmanned Aerial Vehicles (UAVs) have been emerg-
ing as an effective solution for IoT data collection networks
thanks to their outstanding flexibility, mobility, and low operation
costs. However, due to the limited energy and uncertainty from
the data collection process, speed control is one of the most
important factors to optimize the energy usage efficiency and
performance for UAV collectors. This work aims to develop a
novel autonomous speed control approach to address this issue.
To that end, we first formulate the dynamic speed control task
of a UAV as a Markov decision process taking into account its
energy status and location. In this way, the Q-learning algorithm
can be adopted to obtain the optimal speed control policy for the
UAV. To further improve the system performance, we develop
an highly-effective deep dueling double Q-learning algorithm
utilizing outstanding features of the deep neural networks as well
as advanced dueling architecture to quickly stabilize the learning
process and obtain the optimal policy. Through simulation results,
we show that our proposed solution can achieve up to 40%
greater performance compared with other conventional methods.
Importantly, the simulation results also reveal significant impacts
of UAV’s energy and charging time on the system performance.

Keywords- IoT, UAV, data collection, speed control, deep
Q-learning, MDP, and deep dueling.

I. INTRODUCTION

The development of IoT systems has been explosively
evolving over the past years to support various aspects of our
daily lives. It was forecasted that by 2023, IoT connections
would represent 50% of mobile connections (equivalent to 14.7
billion connections), up from 33% in 2018 [1]. However, the
expansion of the network scale raises numerous challenges for
network operators and service providers. First, the IoT devices
are often distributed sporadically in large areas, making it
inefficient to deploy conventional wireless access points (e.g.,
Wi-Fi access points) to collect data from all IoT devices.
Second, in some cases, it is impossible to collect data from IoT
devices by using conventional access points, e.g., when IoT
devices are attached to the bridges, outside of the buildings,
or even on top of trees. Another approach is using cellular
base stations to collect data from IoT devices. However,
due to the limited energy and communication capability, IoT
nodes cannot transmit data in a long distance. Thus, effective
solutions for IoT data collection networks are in urgent need.

Recently, UAVs have been introduced as a very promising
solution to address the aforementioned challenges. Specifi-
cally, with aerial superiority, UAVs can act as on-demand
access points that can provide good line-of-sight (LoS) paths
for IoT devices, resulting in better communications and quality

of service (QoS) compared to other conventional methods, es-
pecially in latency- and data rate-sensitive IoT applications [2].
Moreover, in remote regions where terrestrial infrastructures
are not available, the deployment of UAVs is much more eco-
nomic than conventional methods, e.g., using high-cost satel-
lite connections or deploying long-range ground broadcasting
stations. More importantly, UAVs can be quickly deployed
for emergency situations where the existing communication
infrastructure is damaged and unable to collect data from IoT
devices [3]. However, there are several challenges which are
impeding the development of UAV’s applications in IoT data
collection networks. First, unlike conventional data collection
methods, e.g., using fixed wireless access points, UAVs have
limited energy supply. Specifically, UAVs are usually equipped
with batteries for operations, and when the UAVs run out of
batteries, they have to go to the charging stations to charge or
replace the batteries. Thus, efficient energy usage is the critical
step to achieve a high performance for the UAV-assisted IoT
data collection networks. Second, UAVs are usually moving
to collect data, while IoT devices are stationarily distributed
in different areas and data generated from them are random
depending on sensing information obtained from surrounding
environments. Thus, controlling UAVs’ operations in different
areas to maximize data collection efficiency is a big challenge
in UAV-assisted IoT data collection networks.

To address the above problems, speed control is an effective
solution to maximize data collection efficiency. Specifically,
due to the fact that different locations may have different
numbers of IoT devices and different amount of sensing data,
the UAVs need to control their speeds over different locations
to maximize data collection efficiency. For example, in some
places where there are many IoT devices, the UAVs may
want to fly at a low speed to increase opportunities to collect
data. In contrast, at other places where less or even no IoT
devices present, the UAVs can increase its flying speed to avoid
missing opportunities from other active places. Furthermore,
it can be observed that flying at a low speed will consume
less energy than flying at a high speed. Thus, by controlling
the UAVs’ speed appropriately, we can not only maximize
opportunities to collect data, but also save more energy, and
thereby improving the overall system performance for UAV-
assisted IoT data collection networks.

In the literature, several studies consider UAVs’ applications
for IoT data collection networks [4]–[6]. In [4], the authors
aimed to find the optimal speed for a UAV to minimize the
overall flight time for the data collection task. However, this

work requires complete information from the IoT devices in
advance and does not consider impacts of energy as well
as charging process for the UAV during its data collection
task. In [5] and [6], the authors proposed a dynamic speed
control algorithm that can adaptively adjust the UAV’s speed
according to the density of ground devices to maximize the
data collection efficiency. However, similar to [4], these works
also assume that the information about data collected from
IoT devices is known in advance and both of them do not
consider impacts of energy consumption and charging process
during the data collection process. It is important to note
that, as UAVs have limited energy, energy charging is an
important process which cannot be ignored. In addition, data
generated from IoT devices depends on not only IoT density,
but also information collected from surrounding environment.
Thus, effective solutions to these problems need to be further
investigated.

In this paper, we introduce an effective framework to opti-
mize the performance for a UAV-assisted IoT data collection
system through dynamically controlling the UAV’s speed. In
particular, we consider a UAV flying over an area with a
predefined trajectory to collect sensing data from IoT devices
distributed in the considered area. To maximize the UAV’s
performance under the uncertainty of the data collection
process and the limited capacity of UAV’s energy storage,
we formulate the UAV’s dynamic speed control task as a
Markov decision process (MDP). In this way, a Q-learning
algorithm can be adopted to help the UAV to find the optimal
speed control policy without requiring information about data
generation statistic from IoT devices and charging time in ad-
vance. Due to the high-complexity of the considered dynamic
optimization problem, we develop an advanced reinforcement
learning algorithm, called Deep Dueling Double Q-Learning
(D3QL) to quickly find the optimal policy for the UAV. The
key idea of this algorithm is based on recent advances of the
deep dueling neural network architecture [7] to separately and
simultaneously estimate the values of states and advantages of
actions. Simulation results show that our proposed algorithm
can achieve much stable and superior performance than those
of conventional approaches (e.g., up to 40% greater perfor-
mance compared with a fixed-speed policy). Furthermore, the
results also demonstrate the efficiency of our proposed solution
in terms of energy and throughput through optimizing flying
speed and serving time. To the best of our knowledge, this is
the first work in the literature studying an autonomous flying
approach taking energy limitation, dynamic of data collection
process, and impact of charging process, into considerations.

II. SYSTEM MODEL

We consider an IoT data collection system assisted by
a UAV, as depicted in Fig. 1. In particular, a set of IoT
nodes are deployed to perform diverse sensing tasks (e.g.,
temperature and humidity) over a considered area which can be
partitioned into N cells. Due to the fact that some sub-areas
may need more attention than others depending on specific
IoT applications and tasks, the IoT devices may be unevenly
distributed over these cells. The UAV acts as a flying data

Fig. 1: System model.

collector that obtains data from the IoT nodes. We assume
that time is slotted (as in [5], [6]). A time slot is divided into
broadcasting and transmission periods. At the beginning of
a time slot, the UAV broadcasts a message to notify ground
devices that it is ready to serve. Upon receiving the message,
IoT nodes in the communication range transmit their data to
the UAV. In each cell, we assume that the OFDMA technique
is employed for the uplink, i.e., from IoT nodes to the UAV,
and the UAV uses another dedicated channel for the downlink,
i.e., from the UAV to IoT devices [8]. The probability of
receiving a data packet in one time slot in cell n is denoted by
pn. Since the numbers of IoT devices in each cell are different
and their applications are diverse, the probabilities of receiving
data vary over these cells. As a result, the UAV may receive
more data when flying on the cell with a high value of pn.
However, these probabilities are highly dynamic and unknown
by the UAV in advance. Therefore, the UAV needs to learn
this information to maximize its data collection efficiency.

In this work, we assume that the UAV follows a predefined
trajectory designed (as in [4]–[6]) to ensure that it can sweep
through all nodes in each round. The UAV can fly with
different speeds in different locations, but the speed in a time
slot is assumed to be constant. In addition, unlike [4]–[6], in
this paper, we consider a practical scenario in which the UAV
is equipped with a limited energy storage with maximum E
energy units. When the energy level is below a predefined
threshold, the UAV will fly to the nearest charging station
to replace the battery. After that, the UAV will return to its
trajectory to continue collecting data from IoT devices. Note
that the charging time is usually unknown by the UAV in
advance and it is dynamic depending on the current location of
the UAV and the charging stations. Thus, in the next sections,
we introduce an advanced reinforcement learning algorithm,
i.e., D3QL, which can quickly obtain the optimal speed control
policy for the UAV given the uncertainty of data collection
process and limited energy of UAV.

III. OPTIMAL SPEED CONTROL FORMULATION

In this section, we adopt an MDP framework to formulate
the dynamic speed control problem for the UAV. This frame-
work can help the UAV to choose the best speed based on its
current location and energy level to maximize its average long-
term reward without requiring information about charging time
and data collection statistic of IoT devices in advance.

A. State Space

The system state is defined based on the current location and
the energy level of the UAV (denoted by e). The location of
UAV can be determined based on two factors, i.e., the current
cell number, i.e., c, and its current location in this cell, i.e., l.
Thus, the state space of the UAV is defined by:

S =
{

(C,L, E) : L ∈ {0, . . . , c, . . . , C};

L ∈ {0, . . . , l, . . . , L}; and E ∈ {0, . . . , e, . . . , E}
}
,

(1)

where C and L are the maximum numbers of cells and
locations in each cell, respectively. E is the UAV’s maxi-
mum energy capacity. In this way, the system state can be
expressed as a tuple s = (c, l, e) ∈ S. In addition, due to
the charging process, we need to define a special state, i.e.,
s = (−1,−1,−1). The system will go to this state only when
the current energy level is under a predefined threshold, i.e.,
when the current state is s = (c, l, 0). Then, after the charging
period, the UAV will come back to the last location before it
goes to the charging station with full energy, i.e., s = (c, l, E).
In this way, our system process will be continuous and without
failing to a terminating state.

B. Action Space

At each time slot, the UAV can choose to fly with a speed a
selected from the set A = {1, . . . , A} where A is the highest
speed level that the UAV can choose from.

C. Reward Function

In this work, we aim to optimize the system performance
through tradeoffs between the data collection efficiency and
energy usage efficiency. The data collection efficiency can be
defined as the number of data packets that the UAV can collect
over a time slot and the UAV working status. For example, in
a considered time slot, if the UAV is working, i.e., flying to
collect data, the UAV will receive a reward Ω. However, if the
UAV is at the charging state, it will receive a reward of zero.
This design reward function is to “push” the UAV spending
more time for collecting data instead of lying on the charging
stations for charging the battery. In addition, we add a cost for
consuming energy if the UAV is flying. Obviously, the energy
consumption per time slot will depend largely on the chosen
speed. Specifically, the higher speed the UAV chooses to fly,
the more energy it consumes. If we denote ma

t as the energy
consumption when the UAV flies at speed a in time slot t, the
immediate reward function for the UAV can be defined by:

rt(st, at) =

{
Ω + w1d

s
t − w2m

a
t , if the UAV is working,

0, otherwise,
(2)

where, dst is the number of data packets the UAV receives
at the current state st. Moreover, w1 and w2 are the weights
to trade-off between the amount of collected data and energy
consumption. In this way, the reward function can capture not
only data collection efficiency, but also the energy consump-
tion efficiency for the UAV.

In this paper, our objective is to find an optimal policy
π∗, i.e., a mapping from the state space to the action space
π∗ : S → A, to maximize the long-term average reward func-
tion defined as follows:

max
π

R(π) = lim
T→∞

1

T

T∑
t=1

E (rt(st, π(st))) , (3)

whereR(π) is the long-term average reward that UAV receives
under the policy π, and rt(st, π(st)) is the immediate reward
under policy π at time t. The optimal policy π∗ will allow the
UAV to make the optimal decision dynamically based on its
current state, i.e., the cell, location, and remain energy.

IV. Q-LEARNING ALGORITHM

To obtain the optimal policy for the UAV under uncertainty
of the data collection and energy charging processes, Q-
learning algorithm [10] is adopted in this work. The main
reason for using this algorithm is due to its outstanding
features. Specifically, this algorithm can help the UAV to
obtain the optimal policy through gradually learning from
surrounding environment (e.g., how often the UAV can obtain
data packets in different areas as well as how long it often
needs to replace the battery) during its service time. To that
end, at the beginning, we assume that the UAV starts following
a policy π from state s, where s ∈ S. Then, the state-value
function of state s under policy π, which specifies how good
to be in this state, can be determined as [11]

Vπ(s) , Eπ
[∞∑
t=0

γtrt(st, at)
∣∣ s0 = s

]
(4)

where rt is the immediate reward achieved by taking action at
at state st, and γ ∈ [0, 1) is the discount factor that represents
the significance of long-term rewards [10]. Next, we define
the action-value function under policy π for action a at state
s, named Q-function, as follows:

Qπ(s, a) , Eπ
[∞∑
t=0

γtrt(st, at)
∣∣ s0 = s, a0 = a

]
. (5)

The Q-learning algorithm maintains a table to learns the
optimal value of Q-function, denoted by Q∗(s, a) through
iteratively updating this table. After the UAV takes action
at at time t, it observes reward rt and next-state st+1.
Then, the Q-function is updated by the temporal difference
(TD), which is the different between target Q-value, i.e.,
Yt = rt(st, at) + γmaxat+1

Qt(st+1, at+1), and the current
estimated Q-value, i.e., Qt(st, ast), as follows:

Qt(st, at)←Qt(st, at) + βt

[
Yt −Qt(st, ast)

]
, (6)

where βt is the learning rate that demonstrates the impact of
new information, i.e., temporal difference. The learning rate
βt can be a constant or adaptively changed during the learning
process. The Q-learning algorithm is proved to be converged
to the optimal policy with probability one if the learning rate
βt satisfies (7) and Q-function is updated by (6) [10].

βt ∈ [0, 1),

∞∑
t=1

βt =∞, and
∞∑
t=1

(βt)
2 <∞. (7)

However, the Q-learning algorithm usually requires a long
time to find the optimal policy for the UAV due to a high dy-
namic of the interacting environment caused by the uncertainty
of data collection and energy charging processes. Therefore, in
the next section, we develop an effective Deep Dueling Double
Q-learning (D3QL) algorithm to address this problem.

V. DEEP DUELING DOUBLE Q-LEARNING

Recently, deep Q-learning algorithms with experience re-
play have been introduced and made a breakthrough in solving
complex problems in practice [12]. Using nonlinear estimators,
expressed by deep neural networks, for approximating the Q-
value, it can achieve results of playing Atari games comparable
to that of humans. To further improve the stability of deep
Q-learning, the authors in [7] introduced a novel dueling
network architecture. In this architecture, the network is spitted
into value and advantage streams to represent the state-value
function Vπ(s) and advantage function Oπ(s, a), respectively.
The advantage function under policy π is defined by

Oπ(s, a) , Qπ(s, a)− Vπ(s). (8)

The value function represents the quality of a given state, and
the advantage function expresses the importance of an action
compared with others. At the output layer of the network, two
streams are combined to estimate the value of Q-function by

Q(s, a;φ, ζ) = V(s;φ) +O(s, a; ζ), (9)

where φ and ζ are parameters of the value stream and
advantage stream, respectively. Because V and O cannot be
recovered from Q, (9) is unidentifiable [7]. This issue is
resolved by subtracting the average of the output from the
advantage stream as follows:

Q(s, a;φ, ζ) = V(s;φ) +
(
O(s, a; ζ)− 1

|O|
∑
a′∈A

O(s, a′; ζ)
)
.

(10)
In this way, the dueling architecture is more stable in estimat-
ing values of Q-function.

However, both Q-learning and deep Q-learning algorithms
might not perform well in stochastic MDP since it usually
overestimates the value of Q-function, i.e., Q(s, a) [13]. This
issue negatively impacts optimal policies and even leads to
sub-optimal policies if they are not uniformly distributed over
the states [14]. Double DQN is thus proposed to address this
issue by using two estimators, one to select an action and
another to calculate the Q-value [13]. Therefore, we develop
the D3QL algorithm which can leverage the advantages of
both deep dueling network architecture and double DQN to
reduce the overestimation of deep Q-learning and improve
the stability of the learning process, and thereby quickly
obtaining the optimal policy for the UAV. The details of the
D3QL algorithm are presented in Algorithm 1. Specifically,
the training phase of D3QL takes T steps. For state st at
step t, the algorithm first chooses an action according to ε-
greedy policy. Then, it observes reward rt and next state st+1

at the end of the time slot. These observations are then stored
in a buffer B. Instead of using only the current information,
i.e., a transition (st, at, rt, st+1), a mini-batch of transitions

Algorithm 1 The D3QL Algorithm

1: Initialize replay buffer B with capacity B.
2: Initialize Q-network Q with random parameters φ and ζ

for the value stream and advantage stream, respectively.
3: Initialize target Q-network Q̂ as a copy of the Q-network

with parameters φ− = φ and ζ− = ζ.
4: for step = 1 to T do
5: Choose a random action at with probability ε , other-

wise select at = arg maxQ∗(st, at;φ, ζ).
6: Perform at, obtain reward rt and next state st+1.
7: Store transition (st, at, rt, st+1) in replay buffer B.
8: Sample random mini-batch of transitions

(sk, ak, rk, sk+1) from B.
9: Combine the value function and the advantage func-

tion by (10).
10: Calculate target Q-value Yt by (11).
11: Perform a gradient descent step with respect to Q-

network parameters on
(
Yk −Q(sk, ak;φ, ζ)

)2
.

12: Every I steps set Q̂ = Q.
13: end for

is sampled uniformly at random, (s, a, r, s′) ∼ U(B), to feed
the neural network. In this way, the algorithm leverages its
experiences and breaks the correlation between consecutive
transitions to reduce the variance of the updates. In this
problem, the input layer has three features representing the
UAV’s state dimension, i.e., cell number, location in cell, and
the energy level.

The overestimations of Q-learning based algorithms can be
large because of a max operator when updating the Q-function
in (6) [13]. In D3QL, we handle this problem by using two
estimators, both are the deep dueling networks. We call them
Q-network and target Q-network, denoted as Q(s, a;φ, ζ) and
Q̂(s, a;φ−, ζ−), respectively. At step t, the target Q-value in
(6) becomes

Yt = rt+γQ̂
(
st+1, argmax

a
Q(st+1, a;φt, ζt);φ

−
t , ζ

−
t

)
. (11)

For short notation, we denote all the parameters of the Q-
network and those of the target Q-network at step t by θt
and θ−t , respectively. The Q-network is trained to minimize
the temporal difference error, i.e., a gap between the target
Q-value Yt and the predict Q-value Q(s, a; θt). Thus, the loss
function of the Q-network at step t is defined as

Lt(θt) = E(s,a,r,s′)∼U(B)

[(
Yt −Q(s, a; θt)

)2]
. (12)

To minimize the loss function in (12), we can use Gradient
Descent (GD) algorithms. In particular, GD solves the problem
by iteratively updating the network’s parameters θ as follows:

θt+1 = θt − ηt∇Lt(θt), (13)

where ηt > 0 is a step size at step t. Due to noises occurring
during the sampling, the step size ηt needs to be decreased
over iterations to ensure the convergence. The gradient of

0 5 10 15 20 25 30 35 40 45 50
Iteration (x103)

4.5

5.0

5.5

6.0

6.5

7.0

A
v
e
ra

g
e
 r

e
w

a
rd

 (
re

w
a
rd

s
/t

im
e
 s

lo
t)

D3QL

Q-learning

Fig. 2: Convergence rate of D3QL and Q-learning.

0 10 20 30 40 50 60 70 80 90 100
Time (time slots)

0

20

40

60

80

100

120

E
n

e
rg

y
 (

u
n

it
s
)

Cell 1

Cell 2

Cell 3

Cell 4

Charging

Fig. 3: UAV’s optimal policy obtained from D3QL.

the loss function in (12) with respect to the neural network’s
weights is calculated as follows:

∇θtL(θt) = E(s,a,r,s′)

[(
Yt −Q(s, a; θt)

)
∇θtQ(s, a; θt)

]
.

(14)
However, GD has to calculate the gradient for all data

points for each update which leads to a high computational
complexity. Therefore, in this work, we adopt Stochastic
Gradient Descent (SGD) to achieve faster learning and guar-
antee convergence [9]. Specifically, in each update, SGD only
calculates the gradient of a mini-batch sampled uniformly
from the memory pool, and thus significantly reducing the
computational complexity of the algorithm. Note that the Q-
network’s parameters θ are updated at every steps, whereas the
target Q-network’s parameters θ− are cloned from θ at every
I steps.

VI. PERFORMANCE EVALUATION

A. Experiment Setup

In the simulation, we consider a UAV-assisted IoT system
covering an area which can be divided into four cells (as
illustrated in Fig. 1). The distance that UAV travels in each
cell is set at 60m. The probabilities of receiving data in each
time slot in these cells correspond to a coordinated vector
p = [p1, p2, p3, p4]. Note that our proposed algorithms do

not require to know p in advance. They can learn these
probabilities through interactions with the environment. In
IoT data collection networks, UAVs’ speeds are usually set
at low speeds (e.g., less than 15 m/s) to be able to collect data
from IoT devices during its fly [5]. Thus, we consider three
speed levels, i.e., 5m/s, 10m/s, and 15m/s, corresponding to
low, medium and high speeds, respectively. The corresponding
energy consumption for these speed are 2, 3, and 4 energy
units per time slot, respectively. The UAV can use up to
120 energy units before it has to fly to the nearest charging
station to replace the battery. The charging time is uncertainty
because it depends on the current location of the UAV and
its nearest charging station. To that end, the charging time is
considered as a random variable with mean z. In the reward
function, the value of Ω, w1, and w2 are set to 15, 1 and 0.5,
respectively. Since this paper does not focus on optimizing the
deep neural network, the hyperparameters for neural networks
are set as typical settings [12], [15]. The discount factor γ for
both reinforcement learning algorithms is 0.9. The learning
rate β of the Q-learning algorithm is set to 0.1. In the ε-
greedy strategy, ε gradually decays from 1 to 0.01. In the
simulation, we first investigate the convergence rate of D3QL
and Q-learning algorithms. We then explore the behavior of
proposed algorithms by varying the charging time to evaluate
its impact to the system performance. This scenario is also to
demonstrate the efficiency of the proposed learning algorithms
when the UAV can automatically learn from the environment
and adapt its optimal policy accordingly. For comparisons, we
use three deterministic policies, which are flying all the time
with the (1) lowest speeds, (2) middle speed, and (3) highest
speed.

B. Simulation Results

The learning process and convergence rate of the two pro-
posed algorithms can be observed in Fig. 2 when the average
charging time z is set to be 10 time slots and the arrival data
probabilities in the cells are p = [0.1, 0.25, 0.6, 0.15]. At the
beginning, when the proposed algorithms start their learning
processes, their average rewards are close to each other, i.e.,
approximately 5.4. However, only after 104 iterations, the
D3QL almost converges and its average reward is more than
15% greater than that of the Q-learning algorithm. This result
clearly demonstrates the efficiency of our proposed DQ3L
algorithm in dealing with high-complexity systems like what
we are considering in this work.

Next, we investigate the optimal policy of UAV obtained
by D3QL in Fig. 3. Each point represents the UAV’s energy
level at the beginning of a time slot, and the slope of the
line reveals which action is taken in a time slot, e.g., the
steeper the slope is, the faster speed is selected. As observed
in Fig. 3, the UAV chooses the low speed in a cell with a
high probability of receiving data and the high speed in a cell
with a low probability of receiving data. In particular, given
the probabilities p = [0.1, 0.25, 0.6, 0.15], the fastest speed
is selected in cell 1, 2, and 4, whereas the slowest one is
chosen in cell 3. More interestingly, the UAV experiences all
the speeds in cell 2. Specifically, the UAV flies at the highest

0 5 10 15 20 25 30 35 40 45 50
Average charging time (time slots)

2

3

4

5

6

7

8

9

A
v
e
ra

g
e
 r

e
w

a
rd

 (
re

w
a
rd

s
/t

im
e
 s

lo
ts

)
D3QL

Q-learning

Lowest speed

Middle speed

Highest speed

0 5 10 15 20 25 30 35 40 45 50
Average charging time (time slots)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
v
e
ra

g
e
 t

h
ro

u
g

h
p

u
t

(p
a
c
k
e
ts

/t
im

e
 s

lo
ts

)

D3QL

Q-learning

Lowest speed

Middle speed

Highest speed

0 5 10 15 20 25 30 35 40 45 50
Average charging time (time slots)

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

A
v
e
ra

g
e
 e

n
e
rg

y
 (

e
n

e
rg

y
/t

im
e
 s

lo
ts

) D3QL

Q-learning

Lowest speed

Middle speed

Highest speed

(a) Average rewards. (b) Average throughput. (c) Average energy.

Fig. 4: Vary charging time.

speed until the energy level decreases to 25 units. After that the
middle speed is selected. When it nearly runs out of battery,
as shown in time slot 91 and 92, the UAV chooses the slowest
speed. This is stemmed from the fact that the UAV wants to
reserve more energy when the current energy level is low,
and this result also clearly shows the impact of energy to the
optimal decision of the UAV.

We then evaluate the performance of the proposed learning
algorithms when the changing time is varied. In Fig. 4, the
policies of both D3QL and Q-learning are obtained after
5× 104 training iterations. It can be observed that, for all the
policies, as the charging time increases, the average reward
and throughput will be decreased as showed in Fig. 4(a) and
(b). The main reason is that given a fixed serving time, the
more time the UAV spends for charging, the less time the UAV
can spend for collecting data. Interestingly, as observed in Fig.
4(a), when the charging time is small, e.g., less than 15 time
slots, the highest speed policy can obtain better reward than
that of the lowest speed policy. However, when the charging
time is large, the highest speed policy obtains the lowest
performance compared with other policies. This is due to
the fact that, when the UAV requires more charging time, its
data collection efficiency is reduced, and thus the UAV needs
to reserve more energy by choosing the lowest-speed policy.
To the end, our proposed learning algorithm, i.e., D3QL can
balance between the data collection and energy consumption
efficiency, and thus it always can achieve the best performance
compared with other approaches.

VII. SUMMARY

This paper has introduced an effective learning approach
to automatically control the UAV’s speed to maximize perfor-
mance for the UAV-assisted IoT data collection network. First,
to help the UAV to make dynamic speed control decisions
based on its current status, e.g., current energy level and
location, under the uncertainty of data collection and energy
charging processes, the MDP framework has been developed.
Then, the Q-learning has been adopted to find the optimal
speed control policy for the UAV. To overcome the limitations
of Q-learning algorithm, we have then developed the advanced
deep reinforcement learning algorithm, called D3QL. This
algorithm can benefit from the outstanding advantages of

deep dueling network architecture and DQN, thus significantly
improving the UAV’s learning process. Simulation results
then demonstrate the efficiency of our proposed solution, i.e.,
D3QL, as well as reveal some important information about
the impacts of energy and charging processes of UAV on the
system performance.

REFERENCES

[1] Cisco Annual Internet Report (2018-2023) White Paper, [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[2] J. Wang, C. Jiang, Z. Wei, C. Pan, H. Zhang, and Y. Ren, “Joint
UAV Hovering Altitude and Power Control for Space-Air-Ground IoT
Networks,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1741-
1753, Apr. 2019.

[3] C. H. Liu, X. Ma, X. Gao, and J. Tang, “Distributed Energy-Efficient
Multi-UAV Navigation for Long-Term Communication Coverage by Deep
Reinforcement Learning,” IEEE Transactions on Mobile Computing, vol.
19, no. 6, pp. 1274-1285, Jun. 2020.

[4] J. Gong, T. Chang, C. Shen and X. Chen, “Flight Time Minimization of
UAV for Data Collection Over Wireless Sensor Networks,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 9, pp. 1942-1954, Sept.
2018.

[5] Q. Pan, X. Wen, Z. Lu, L. Li, and W. Jing, “Dynamic Speed Control of
Unmanned Aerial Vehicles for Data Collection under Internet of Things,”
Sensors, vol. 18, no. 11, Nov. 2018.

[6] X. Lin, G. Su, B. Chen, H. Wang and M. Dai, “Striking a Balance Be-
tween System Throughput and Energy Efficiency for UAV-IoT Systems,”
IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10519-10533, Dec.
2019.

[7] Z. Wang et al., “Dueling Network Architectures for Deep Reinforcement
Learning.” in Proceedings of The 33rd International Conference on
Machine Learning, 2016, pp. 1995-2003.

[8] Q. Wu and R. Zhang, “Common Throughput Maximization in UAV-
Enabled OFDMA Systems With Delay Consideration,” IEEE Transac-
tions on Communications, vol. 66, no. 12, pp. 6614-6627, Dec. 2018

[9] H. Robbins and S. Monro,“A Stochastic Approximation Method,” Ann.
Math. Stat., vol. 22, no. 3, pp. 400-407, 1951.

[10] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
no. 3-4, pp. 279-292, 1992.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[12] V. Mnih et al., “Human-level Control through Deep Reinforcement
Learning,” Nature, vol. 518, no. 7540, pp. 529-533, Feb. 2015.

[13] H. Hasselt, A. Guez, D. Silver, “Deep Reinforcement Learning with
Double Q-learning.” in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence (AAAI’16), AAAI Press, 2016, pp. 2094-2100.

[14] S. Thrun and A. Schwartz, “Issues in using function approximation for
reinforcement learning.” in Proceedings of the 1993 Connectionist Models
Summer School, Hillsdale, NJ, 1993.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

