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Abstract—Symbiotic radio (SR) has recently emerged as a
promising technology to boost spectrum efficiency of wireless
communications by allowing reflective communications underly-
ing the active RF communications. In this paper, we leverage
SR to boost physical layer security by using an array of passive
reflecting elements constituting the intelligent reflecting surface
(IRS), which is reconfigurable to induce diverse RF radiation
patterns. In particular, by switching the IRS’s phase shifting
matrices, we can proactively create dynamic channel conditions,
which can be exploited by the transceivers to extract common
channel features and thus used to generate secret keys for
encrypted data transmissions. As such, we firstly present the
design principles for IRS-assisted key generation and verify a
performance improvement in terms of the secret key generation
rate (KGR). Our analysis reveals that the IRS’s random phase
shifting may result in a non-uniform channel distribution that
limits the KGR. Therefore, to maximize the KGR, we propose a
heuristic scheme and also a deep reinforcement learning (DRL)
framework to control the switching of the IRS’s phase shifting
matrices. Simulation results show that the DRL approach for
IRS-assisted key generation can significantly improve the KGR.

I. INTRODUCTION

The concept of symbiotic radio (SR) emphases the depen-
dence and mutual benefits among different radios, which have
diverse transmission capabilities and resources constraints [1].
The design of SR systems aims to improve the overall network
performance by exploiting the complement operations among
different radios. An example of the SR system is the ambient
backscatter communication networks, which allow passive
reflecting devices to transmit private information along with
the active RF communications [2]. The active radios can
also benefit from the passive devices by reconfiguring the
signal reflections in favor of the RF communications [3]. The
benefit becomes more prevalent when the passive devices are
equipped with a large array of reflecting elements, constituting
an intelligent reflecting surface (IRS) [4], [5].

Currently, most of the studies on backscatter-aided or
IRS-assisted SR systems focus on improving the energy- or
spectrum-efficiency for wireless communications, e.g., [1]–[5].
In this paper, we intend to use the passive IRS to enhance
physical-layer security of active RF communications in the
SR system. Though the use of IRS for physical-layer security
is not new, most of the existing works focus on an information-

theoretic view by formulating a secrecy rate maximization
problem, e.g., [6]–[8], which aims at improving the informa-
tion rate between the legitimate transceivers while suppressing
the information rate of the illegitimate eavesdroppers. This
is often achieved by a joint optimization of the transmitter’s
beamforming matrix, the IRS’s phase shifting matrix and the
covariance matrix of artificial noise. However, the optimization
framework typically relies on the channel information of
both legitimate and illegitimate receivers. It also implies a
fully cooperative IRS that is controllable by the legitimate
transceivers or the base stations. Different from these works,
we consider a more practical case in which the communica-
tions between legitimate transceivers are encrypted while the
encryption process is vulnerable to the eavesdropping attack,
which becomes our main problem in this paper.

Encrypted data transmission traditionally relies on a trustful
infrastructure to distribute the secret keys to transceivers
and to meet the security requirements, e.g., authenticity,
confidentiality, integrity, and availability [9]. However, in a
dynamic network, the exchange of secret keys between mobile
devices becomes challenging as it is costly to maintain the
trustful authority for key management. One promising way
for decentralized SKG relies on extracting shared random-
ness in wireless channels between the transceivers. Due to
channel reciprocity, the channel conditions sampled at two
communicating transceivers are expected to be identical in
one coherent time slot, while fluctuating randomly over differ-
ent time slots [10], [11]. Therefore, ideally two transceivers
will perceive the same sequence of channel samples. Most
importantly, the sequence of channel samples can be viewed
as location- or user-dependent RF fingerprint [12], which can
be used to differentiate different receivers and thus to fight
against the eavesdropping attack. By extracting the unique
channel features at individual transceivers, we can encode the
channel features into a bit stream and use it as the secret key
for encrypted data transmission, e.g., [13]–[15].

The key generation rate (KGR) is limited by randomness
in the channel conditions, which depends on the dynamics in
the wireless environment. Therefore, it becomes impractical
for stationary or slow-moving wireless devices. Though lots
of existing works try to improve the KGR, they focus on



the design of more complex transceiver structure or signal
processing algorithms. The authors in [13] and [14] proposed
to use multiple antennas to improve the KGR. The exper-
imental results in [14] show that three-antenna transceivers
can increase the KGR by more than four times over single-
antenna systems. An adaptive SKG scheme is proposed in [15]
to improve the KGR even with slow variations in the channel
samples. Focusing on millimeter wave (mmWave) massive
MIMO system, the authors in [16] allowed the directional
mmWave beam to randomly rotate. This improves the channel
randomness and therefore significantly improves the KGR for
stationary receivers and co-located eavesdroppers. The authors
in [17] proposed to generate secret keys by using reconfig-
urable aperture antennas. By randomly changing the antennas’
load impedances, the signal reflections can create artificial
fading and thus improve the KGR in static environment.

In this paper, we attempt to boost the KGR by using IRS to
introduce artificial randomness into the wireless channels. The
use of IRS for SKG firstly appears in [18], where a closed-
form expression of the minimum secret key capacity is derived
for an IRS-assisted wireless network. The authors in [18] also
optimized the IRS’s optimal phase shifting matrix to maximize
the secret key capacity. A similar idea has been extended
in a recent work [19], where a random switching scheme is
proposed for IRS to disturb the wireless channels. Different
from the random phase shifting schemes in [17] and [19], our
analysis reveals that the SKG can be more efficient by devising
a subtle phase control strategy. Our main contributions lie in
the following aspects. Firstly we present the design principles
for IRS-assisted SKG and verify an increased KGR by the
random phase switching. Most importantly, to maximize the
KGR, we further propose a heuristic scheme and also a
deep reinforcement learning (DRL) framework to optimize the
IRS’s phase switching strategy, which have been verified via
extensive simulation results.

II. SYSTEM MODEL

We consider encrypted data communications between le-
gitimate transceiver in a vulnerable wireless environment.
As shown in Fig. 1, the IRS is deployed in the wireless
environment and can be exploited to prevent eavesdropping
attack against illegitimate receivers, namely, the eavesdrop-
pers, denoted as Eve or E, which can overhear the channels
between the legitimate transceivers, denoted as Alice (or A)
and Bob (or B) in Fig. 1, respectively. The secret keys for
secure communications can be generated from the channel
measurements at Alice and Bob. Assuming that Eve are sep-
arated from Alice and Bob at least one wave-length away, we
can expect that Eve’s channel measurements have a different
pattern or distribution from that of Alice or Bob.

The unique channel features between Alice and Bob can
be extracted and used for SKG, which can follow a similar
time-slotted frame structure as that in [19]. Each time frame
is divided into two parts, i.e., one part is for SKG and the other
part is for encrypted data transmissions. The first part is further
divided into multiple time slots allocated for exchanging the
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Fig. 1: Alice transmits encrypted data to Bob. The N -element IRS
is deployed to prevent eavesdropping attack from Eves.

pilot packets between Alice and Bob. We require that the
length of a time slot should be smaller than the channel
coherent time. Based on channel reciprocity, the channel
measurements of Alice and Bob within one time slot should
be the same with high probability [10], [11]. This is the shared
information between Alice and Bob while unknown to Eve.
To avoid Eve’s eavesdropping by, the channel measurements
of Alice and Bob in each time slot should be fully randomized
such that it becomes very unlikely for Eve to make a correct
guess of the shared information.

To increase the KGR, we leverage the N -element IRS
(or R) to create a dynamic channel condition between Al-
ice and Bob by switching the IRS’s phase shifting matrix
Θ = diag(ejθ1 , ejθ2 , . . . , ejθN ), where θn denotes the phase
shift of individual reflecting element and diag(·) denotes a
diagonal matrix. We assume that each reflecting element can
be switched to B different states, where the constant B denotes
the IRS’s phase resolution. In each state b ∈ {1, 2, . . . , B},
the phase shift is given by θn = πb ∈ [0, 2π]. Therefore, the
IRS’s phase shifting matrix Θ can be chosen from a set UΘ

with the size Q = BN . We have Q = 2N for a simple IRS
implementation by using two-state diodes to control the phase
shifts of individual reflecting elements.

Let hab (or hab) denote the channel (or channel vector)
from device-a to device-b where a, b ∈ {A,B,E,R}. We
assume that each transceiver is equipped with a single antenna.
In the t-th time slot, given the IRS’s phase shifting matrix
Θ(t) ∈ UΘ, the equivalent channels perceived by Alice and
Bob are given as follows:

hB(t) = hAB + hHRBΘ(t)hAR,

hA(t) = hBA + hHRAΘ(t)hBR.
(1)

Note that the pilot packets from Alice to Bob in the t-th time
slot can also be overheard by Eve. Similar to (1), the perceived
channels at Eve are given as follows:

hEA(t) = hAE + hHREΘ(t)hAR,

hEB(t) = hBE + hHREΘ(t)hBR.
(2)

We denote gd(t) = ||hd(t)||2 as the channel gain for
d ∈ {A,B,EA,EB}, which can be easily sampled from the



received signal strength. Note that gd(t) depends on the IRS’s
phase shifting matrix Θ(t) ∈ UΘ. By fast switching Θ(t) in
different time slots, we can create additional randomness in
the channels perceived by Alice, Bob, and Eve. In the ideal
case without measurement errors, the channel measurements at
Alice and Bob are the same. Though Eve can overhear the pilot
packets from Alice and Bob, the channel estimation gEA(t)
(or gEB(t)) will be very different from gB(t) (or gA(t)) unless
Eve is co-located with Alice or Bob.

III. MAXIMIZING KGR FOR IRS-ASSISTED WIRELESS
COMMUNICATIONS

In this part, we aim to maximize KGR by leveraging the
IRS’s phase reconfiguration to create shared randomness for
the channels between Alice and Bob. We firstly present the
general steps for SKG and then propose two phase configura-
tion schemes to maximize the KGR.

A. General Steps for SKG

The secret key is a random bit stream shared between Alice
and Bob and unknown to Eve, which is sampled, quantized,
and encoded from the received signals at Alice and Bob. There
are basically three steps to generate the shared secret keys
based on the channel measurements [14].

1) Collecting Channel Information: A variety of channel
measurements can be exploited as the unique feature for SKG,
including channel impulse response, channel state information
(CSI), and the received signal strength (RSS), i.e., gA(t) and
gB(t), which can be easily extracted at the RF receiver. Note
that the random variations in gA(t) and gB(t) will exhibit
location- or user-dependent features. The deterministic com-
ponents of gA(t) and gB(t), e.g., resulting from large-scale
path loss, can be filtered out to extract the small-scale random
variations. Without abuse of notations, we use gA(t) and gB(t)
to denote the stochastic channel variations after filtering out
the deterministic components. The same convention applies to
Eve’s channel measurements gEA(t) and gEB(t).

2) Quantizing Bit Streams: The channel reciprocity implies
that the channel measurements gA(t) and gB(t) over different
time slots should exhibit a similar dynamic behavior. To extract
the shared features, we can quantize gA(t) and gB(t) into
two sequences of bit streams. Due to fast channel fading,
measurement or quantization errors, bit mismatch is usually
unavoidable in practice, i.e., some bits generated by Alice are
different from that generated by Bob. We expect a higher KGR
for encrypted data communications if more matching bits can
be found in two bit streams. To maximize the bit agreement
ratio, we are required to design a proper quantization scheme
that optimizes the number of quantization levels and the
quantization intervals.

3) Extracting Shared Randomness: One purpose of this
step is to remove the mismatched bits in two bit streams
generated by Alice and Bob. This ensures that they share the
same bit sequence and thus generate the same key for secure
communications. The other purpose is to remove duplicated
bits and ensure randomness in the shared bit sequence. When

the channel coherence time is large, Alice and Bob may
observe consecutive ‘0’s or ‘1’s in their bit sequences. By
keeping the first ‘0’ or ‘1’ only, the shared bit sequence
becomes randomized and unlikely to be guessed or estimated
by the Eves. The authors in [14] achieved this purpose by
allowing Alice and Bob to communicate and compare the start
positions of consecutive ‘0’s or ‘1’s, namely, an excursion.
Specifically, Alice firstly sends Bob a message containing
the start positions of these excursions. Bob then checks its
own bit stream at these positions. When observing the same
excursions, Bob sends back Alice these positions to confirm
the shared excursions. As such, Alice and Bob achieve a
consensus on the excursions’ start positions, which becomes
the shared information for SKG.

B. IRS-Assisted SKG

The above procedures perform well for mobile users with
dynamic channel conditions. However, the KGR becomes very
limited for slow-moving or stationary users. This can be
overcome by leveraging IRS to create artificial randomness
into wireless channels. As shown in (1), by fast switching
the IRS’s phase shifting matrix Θ(t), we can proactively
create dynamic channel conditions and thus boost the KGR
even in a stationary environment. To this end, the authors
in [19] proposed the random phase shifting scheme for the
IRS to operate independently from the legitimate transceivers.
However, the random phase shifting scheme may not fully
exploit the potential of IRS for SKG. The reasons can be
explained from the following two aspects.

From an information-theoretic viewpoint, the maximum
KGR is limited by the mutual information between Alice and
Bob. Given the channel measurements gA(t) and gB(t), the
mutual information can be numerically estimated by entropy
following the procedures in [14]. To maximize the mutual
information and therefore the estimated entropy, we need
to exaggerate the randomness in the channel measurements.
Observing from (1), the IRS-assisted channel gains are nonlin-
early related to the IRS’s phase shifting matrix Θ(t), the direct
and reflected channels. This implies that the IRS’s random
phase shifting may lead to non-uniform distributions of the
channel measurements gA(t) and gB(t). This will result in an
reduced entropy estimation and the KGR.

From the IRS’s practical implementation, the feasible set of
phase shifting matrices UΘ can be very large, amounting to a
huge number Q = 2N even for binary phase resolution. This
implies ample redundancy in the IRS’s phase reconfiguration.
That is, lots of different phase shifting matrices may induce
very similar channel gains. This implies that the random
phase shifting scheme may lead to a small bit agreement
ratio or sample inefficiency, i.e., we require more channel
measurements to generate the secret key with a desirable size.

C. Phase Shifting Control Schemes

From the above observation, we conclude that the IRS’s
phase shifting should be able to introduce significant change
to the channel gain each time when the IRS switches its phase



shifting matrix. This motivates us to design new control algo-
rithms for the IRS’s phase shifting, instead of the uniformly
random shifting scheme proposed in [17] and [19].

The most straightforward idea for phase control is to select
a proper phase shifting matrix such that it can induce a
significant change to the channel gains gA(t) and gB(t) in each
time slot. To this end, we divide the key generation process
into two phases. The first phase is for channel training, which
is performed similarly to the random shifting scheme in [19].
This helps the IRS to build a mapping from its phase shifting
matrices Θ(t) to the channel gains gA(t) and gB(t). With this
information, the IRS can optimize its phase shifting matrices
in the second phase to improve the channel’s randomness.

1) Channel Training: The channel training phase is further
divided into T time slots. In each time slot, the IRS can ran-
domly choose a different phase shifting matrix Θ(t) similar to
that in [19], and then the transceivers record the corresponding
channel gains gA(t) and gB(t). After T time slots, the channel
measurements are collected by the IRS controller to build a
mapping from its phase shifting matrices to different channel
gains. Note that we typically have T � BN and therefore the
channel training does not necessarily enumerate all possible
phase shifting matrices. Due to the IRS’s phase shifting, the
channel measurements can be highly fluctuating. Then, we can
divide the channel measurements into M ≥ 2 groups.

2) Uniform Multi-level Quantization: Theoretically, the
number M of quantization levels is limited by the mutual
information between gA(t) and gB(t), which can be approx-
imated by the estimated entropy [14], calculated as ` =∑
gA
p(gA) log2 p(gA), where p(gA) represents the empirical

distribution of the channel measurement gA(t). Then, the
maximum quantization level M will be bounded by M ≤ 2`.
To maximize the mutual information, we expect that the occur-
rence frequencies in each quantization interval are comparable
by controlling the IRS’s phase shifting matrices. Consider-
ing the uniform M -level quantization, the i-th quantization
interval is given by Ii = [gmin + (i − 1)∆g, gmin + i∆g)
for i ∈ {1, 2, . . . ,M}, where ∆g = (gmax − gmin)/M , gmin

and gmax denote the minimum and maximum channel gains,
respectively. Then we can quantize each channel sample to a
certain quantization level and encode it by a bit string.

3) Heuristic Phase Shifting Control: The number of quan-
tization levels is limited by the mutual information while the
channel training sequence can be very large. This implies a
many-to-one mapping from different phase shifting matrices to
a certain quantization level. That is, for the i-th quantization
level, the IRS can determine a subset Ui of phase shifting
matrices Θ(t) that leads to similar channel measurements
falling in the same quantization interval Ii, i.e.,

Ui = {Θ(t) ∈ UΘ : g(t) ∈ Ii}, ∀ i = {1, 2, . . . ,M}.

Given the above multi-level quantization and the grouping
of phase shifting matrices, we can devise the heuristic phase
control algorithm following a two-step procedure. In the first
step, the IRS randomly chooses a subset Ui of phase shifting
matrices following a uniform distribution. This ensures that

the channel measurements have equal occurrence frequencies
in different quantization intervals. As such, we can maximize
the mutual information by using less channel measurements,
and thus increase the sample efficiency or the bit agreement
ratio. In the second step, the IRS can randomly choose the
phase shifting matrix within the set Ui to disturb the two-
way channels between Alice and Bob. The KGR is expected
to increase comparing to the random phase shifting scheme
in [19]. For a special case with binary quantization, we can
simply divide the channel measurements into two groups,
e.g., a high and low RSS groups. Correspondingly, the IRS’s
phase shifting matrices can also be divided into two groups.

4) DRL for Phase Shifting Control: Besides the heuristic
phase control, we also design a DRL algorithm to improve the
sample efficiency by finding a minimal subset of phase shifting
matrices to stir the wireless environment. DRL algorithm
allows the IRS to observe the channel conditions, measure the
channel randomness, and then make decisions on the selection
of phase shifting matrices. This can be formulated into Markov
Decision Process (MDP), denoted by a tuple (S,A,R).

• The system state st ∈ S includes a subset of phase shift-
ing matrices UΘ(t) currently in use, the corresponding
channel measurements and the estimated entropy.

• The action at = [at(1), at(2), . . . , at(M)] ∈ A is
a binary variable, indicating whether a phase shifting
matrix can be used or not by the IRS in the next decision
epoch. If at(m) = 1 (or 0), the m-th phase shifting
matrix will be selected (or removed) in the next decision
epoch. Here M denotes the maximum number of phase
shifting matrices that can be used by the IRS. To ensure
stable learning, we practically have M � 2N for binary
phase resolution. In this case, we can uniformly sample
M phase matrices from the feasible set UΘ. That is, the
size of UΘ(t) in the system state will be limited by M . As
such, we can reduce the sizes of action and state spaces.
We can also assume continuous phase control at the IRS.
This can be optimized directly by the deep deterministic
gradient policy (DDPG) algorithm [20].

• The immediate reward rt ∈ R is evaluated by based
on st and at. It is proportional to the maximum mutual
information that can be achieved by switching the IRS’s
phase shifting matrix Θ ∈ UΘ(t). In particular, we can
randomly generate a large sequence of phase shifting ma-
trices from UΘ(t) and record the corresponding channel
measurements. The reward rt is then numerically evalu-
ated by the entropy of the channel measurements [14].

Based on a system state st ∈ S , the DRL agent refines
its action at ∈ A for the IRS’s phase control, leading to an
immediate reward rt ∈ R.

IV. SIMULATION RESULTS

In this part, we present simulation results to verify the
capability of using IRS for secret key generation in wireless
networks. We compare our algorithm with three benchmarks:
(1) SKG without IRS, (2) IRS with fixed phase matrix, (3)
IRS with random phase matrix as that in [19]. We consider
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Fig. 2: Locations of legitimate transceivers and eves.

Uniform Linear Array (ULA) at IRS with N = 16 elements
in the 2D plane as shown in Fig. 2. The vertical distance
between Bob and IRS is set to dv = 3 meters. The distance
between Alice and Bob in simulation is set as dAB = 10
meters. Two eavesdroppers appear on the horizontal line from
Alice to Bob, denoted as Eve1 and Eve2. The path loss is
given by L = (L0) + 10α log10(d), where L0 = 30 dB is the
pass loss one meter away from the transmitter, and the path
loss exponent is α = 5. The small-scale fading of all involved
channels follows a Rayleigh fading model. The noise power
is set to δ2d = −70 dBm. We firstly verify the performance
gain of the DRL algorithm, and then compare it with three
benchmarks. The impacts of IRS’s size and the its deploying
location on the KGR are studied in the simulation.

To verify the DRL algorithm for KGR, we evaluate how
the channel measurements at Alice and Bob change with the
IRS’s phase shifting control. We draw the reward value of
the DRL algorithm in Fig. 3 (a), and show the distribution
of channel measurements by using different SKG schemes
in Fig. 3 (b). Fig. 3 (b) shows that the DRL algorithm can
maximize the KGR by constantly trying to find the optimal
IRS switching strategy. The RSS without using IRS follows
the Rayleigh distribution. The random phase shifting scheme
can approximate the RSS into Gaussian shape distribution,
which leads to an improved KGR. Instead, by using the DRL-
based phase control algorithm, the RSS approximately follow
the uniform distribution, which implies an increased entropy
estimation and therefore a higher KGR.

In Fig. 4, we reveal that an increasing transmit power of
the pilot signal will increase the KGR. Besides, the DRL-
based phase control is much better than the other schemes.
We set the size of IRS as N = 16 and increase transmit
power of Alice and Bob gradually. As shown in Fig. 4,
the KGR increases with the transmit power and converges
to a limiting high value. It is worth noticing that the KGR
obtained by the DRL method is much higher than that of
the other methods. This is because that the KGR is not only
increased by a higher transmit power but also enhanced by the
uniform RSS distribution due to the IRS’s more intelligent
phase control. This implies that the DRL method can fully
exploit the advantages of the IRS’s phase reconfigurability. We
also noticed that the mutual information of Eve is very close to
zero, which can be explained by the channel conditions being
independent from that of Alice and Bob.

0 10000 20000 30000 40000 50000 60000 70000
Episode

4.840

4.845

4.850

4.855

4.860

4.865

Re
wa

rd

N = 16, P = 11 dBm, dAB = 10m 

(a) Reward increasing in DRL

0.00005 0.00000 0.00005 0.00010 0.00015 0.00020

RSS

0

5000

10000

15000

20000

25000

30000

N
um

be
r o

f O
cc

ur
re

nc
es

Without IRS
Random
DRL-based

(b) Increased entropy estimation

Fig. 3: Comparing DRL-based scheme with other SKG schemes.
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Fig. 4: IRS-assisted KGR with different transmit power.

In Fig. 5, we evaluate how the size of IRS effects the SKG.
We expect that a larger size of IRS has better flexibility to stir
the wireless environment and thus result in a higher KGR. To
verify this, we gradually increase the size of IRS and record
the KGR in Fig. 5. We can achieve a high mutual information
by increasing the number of elements, however, the mutual
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Fig. 6: IRS-assisted KGR with different communication distances.

information increases initially and then becomes saturated at
a high level even the size of IRS still increases. This implies
that the optimal size of IRS is limited. In Fig. 6, we evaluate
the influence of the direct link quality on IRS-assisted KGR.
Specifically, we vary the horizontal distance between Alice
and Bob (i.e., dAB) from 2 to 20 meters, and fix the transmit
power of Alice and Bob as P = 8 dBm. Generally, the
quality of the direct link becomes worse off as the distance
between Alice and Bob increases. A worse off SNR at the
receiver implies more mismatch bit streams in SKG, resulting
a reduced KGR. However, for the DRL-based algorithm, we
SKG process can be more robust in non-preferable channel
conditions by exploiting the IRS’s reconfigurability.

V. CONCLUSIONS

In this paper, we propose a DRL approach to boost the
secret key generation problem in an IRS-assisted system.
Different from the conventional random shifting scheme, we
have designed a DRL-based phase control algorithm, which
aims to reshape the RSS distribution at the receivers. The
numerical results reveal that the RSS resulting from the DRL-
based control algorithm approximately follows the uniform
distribution, which can significantly increase the KGR.
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