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  Introduction 

 Athlete monitoring is now common practice in high-performance sport. Fun-
damentally, athlete monitoring involves quantifying the athlete’s training load 
and their responses to that training. The main reasons for monitoring ath-
letes are that it can provide information to refi ne the training process, increase 
athlete performance readiness and reduce risk of injury and illness. Through 
a systematic approach to athlete monitoring, an improved understanding of 
the complex relationships between training, performance, and injury can be 
obtained. The purpose of this chapter is to examine the training theory that 
underpins athlete monitoring and discuss the key components of an athlete 
monitoring system. Additionally, a discussion of methods used to analyse and 
interpret these data will also be provided.  

  Theoretical basis of athlete monitoring 

 The main aim of athletic training is to provide a stimulus that is e� ective in 
improving physical performance. For positive adaptations to occur, a careful 
balance between training dose and recovery is required ( Matveyev, 1981 ). At 
the simplest level, the performance responses can be explained by the fi tness-
fatigue model. The fi tness-fatigue model is a simple approach to quantify a 
dose-response relationship of training load to fi tness, fatigue, and performance. 
Original work from  Banister et al. (1975 ) used a systems theory to analyse the 
response of physical training from a function (see Equation 2.1) that comprises 
both a fi tness response to improve performance and a fatigue response that 
decreases performance. 

  Modelled Performance = (fi tness from training model) −  K  (fatigue from 
training model) 
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 Equation 2.1 Banister’s original systems theory approach to analyse training. 
K  = The constant that adjusts for the magnitude of the fatigue e� ect rela-
tive to the fi tness e� ect.  

 The fi tness-fatigue model can be used to understand the training-recovery 
cycle to single and/or multiple bouts of exercise.  Figure 2.1A  shows the theo-
retical fi tness and fatigue response to a single training bout, whilst  Figure 2.1B  
shows the modelled responses to a series of bouts (i.e., a training program). 
 Figure 2.1B  clearly shows that during periods of intensifi ed training, where 
increased training loads are undertaken in the absence of appropriate recovery, 
fatigue is increased, having a negative infl uence upon performance. 

 Whilst the training-recovery cycle appears simple, a myriad of complex psy-
chobiological adaptations occur which make it di�  cult to predict the fi tness 
and fatigue e� ects of training for individual athletes. As a result, it is now com-
mon that sport scientists examine these dose-response relationships on a regular 
basis to inform decisions on training content for individual athletes. Further-
more, despite a growing body of applied work in high-performance sport, 
there is still a relatively poor understanding of the most appropriate tools and 
methods that can be used to assess how individuals are coping with training. It 
is most likely that there are no single criterion measures of training load, fi t-
ness, and fatigue that can be applied to all athletes. Therefore, we recommend 
a multi-dimensional athlete monitoring system that is based on the fi tness-
fatigue model. It is important that such a system be developed based on estab-
lished conceptual frameworks and implemented in a manner that accounts for 
the cultural and logistical limitations that are commonly encountered in high-
performance sport (i.e., select input measures feasible to the athlete/sport). 
Regardless of the environment, the essential components of this system should 
include quantifying training load measures for each athlete and their fi tness and 
fatigue responses to that training.  Figure 2.2  provides a simple model demon-
strating the relationships between aspects of training load, fi tness, and fatigue 

   Figure 2.1   The modelled fi tness and fatigue responses to (A) a single bout and (B) a sequence 
of training bouts. 
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Developing athlete monitoring systems 19

that combine to provide an iterative monitoring system that can apply to most 
athletes. For a more detailed discussion of the conceptual framework that 
underpins this simplifi ed model, readers should refer to  Je� ries et al. (2021 ). 

  Fundamental components of an athlete 
monitoring system 

  Training load 

 Training load is the input variable in a training system that coaches and sci-
entists most commonly manipulate to elicit the desired training response. As 
such, quantifying and monitoring training load should form the foundation of 
any athlete monitoring system. The following sections provide an overview of 
various constructs of training load and how they may be integrated into athlete 
monitoring. 

 Physical training is typically quantifi ed with reference to the type, frequency, 
duration, and intensity of each exercise bout. Traditionally, training load has 
been described as a measure of  external load  (e.g., work or speed and distance 
covered) ( Impellizzeri, Rampinini, et al., 2005 ). Recently, microtechnologies 
such as global positioning system (GPS) and micro electrical mechanical sys-
tem (MEMS) components have allowed for increasingly detailed information 
on the external loads completed by the athlete ( Malone et al., 2017 ). These 
advances have led to the widespread use of external load measures for quantify-
ing training in both endurance and team sports. Indeed, these devices now pro-
vide detailed information on various aspects of external load such as distance 
travelled above specifi ed speeds, the number of accelerations/decelerations, as 
well as the body loads experienced in three dimensions. With the data avail-
able from the microsensors in these devices, it is also possible to count discrete 
activities such as collisions, tackles, changes of direction, and/or twisting activi-
ties ( Gastin, McLean, et al., 2013 ;  Hulin et al., 2017 ;  Keaney et al., 2016 ). Col-
lectively, these data can provide detailed information to scientists and coaches 
on the loads completed by athletes. However, despite the large amount of 

   Figure 2.2  Conceptual model for developing athlete monitoring systems. 
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information provided, there are cases where the associated cost, time-intensive 
data analysis, and measurement precision issues have limited the e� ective use of 
such devices ( Coutts, 2014 ). 

 Importantly, the external load measures provided from these devices may not 
accurately depict the psychophysiological stress imposed on individual athletes, 
as other factors such as current fi tness level or training environment may play 
a role. Accordingly, it is the relative psychophysiological stress imposed on the 
athlete known as the  internal training load  that provides the signal for adaptation 
( Viru & Viru, 2000 ). The relationship between internal and external training 
load measures and training outcome is shown in  Figure 2.3 . 

 Many researchers have attempted to develop practical methods for quantify-
ing internal training load that incorporates both training duration and individ-
ual training intensity. Historically, heart rate (HR) has been the most common 
method for assessing internal load. However, with intermittent activity – which 
is common to many sports – HR may not refl ect both the aerobic and anaero-
bic contributions to energy provision, or accurately compare stress from di� er-
ent modes of training (e.g., skills training vs. resistance training) ( Coutts et al., 
2009 ). Fortunately, Carl Foster developed the session-RPE method as a global 
rating of session intensity ( Foster et al., 1996 ,  2001 ). The session-RPE method 
of monitoring training load in team players requires each athlete to provide 
a rating of perceived exertion (RPE) for each exercise session along with a 
measure of training time ( Foster et al., 2001 ). To calculate a measure of session 

   Figure 2.3   The relationship between internal and external training load on training 
outcomes. 

  Source : Adapted from  Impellizzeri, Rampinini, et al. (2005 ). 

Michael
Notiz
Please move it to the left corner of the figure title, see 2018 book



Developing athlete monitoring systems 21

intensity, athletes are asked a simple question: ‘How intense was your workout?’ 
(usually within 30 minutes of fi nishing their workout). A single value repre-
senting the magnitude of training load for each session is then calculated by the 
multiplication of training intensity – determined from Borg’s RPE scales ( Borg, 
1998 ) – by the training session duration. Compared to alternative measures of 
internal load (i.e., HR or blood lactate measures) the session-RPE method 
enables coaches to combine training load from di� erent training modalities in 
the same units for an accurate refl ection of total training load. 

 There are now numerous measures of training load that can be used in ath-
lete monitoring. The various constructs of external and internal load should be 
used by scientists and coaches for di� erent purposes. The external load is used 
to prescribe and quantify training the stimulus, and the internal load is used to 
measure how the athletes respond to the training dose. Whilst each of these 
measures helps to understand the training process for athletes, the value of load 
monitoring is increased when these measures are contextualised against each 
other and against the athlete’s fi tness and fatigue responses to training.  

  Fitness 

 Measuring changes in fi tness is a fundamental component of an athlete moni-
toring system that can be used to interpret whether the prescribed training has 
been appropriate for individual athletes. Without regular fi tness measures, it is 
di�  cult to accurately determine if athletes are positively responding to training, 
and/or if the athlete’s fi tness status has been adequately developed. Anecdotally, 
it is often questioned after poor performance if the result was due to lack of 
fi tness or other physical capacities. Assessing fi tness has been a di�  cult task for 
applied sport scientists, as most gold-standard assessment procedures require 
expensive laboratory equipment, maximal e� ort exercise, and interruptions to 
the training program. 

 Criteria for a fi tness test that can be included in a monitoring system are 
that it should be valid and reliable, able to accurately refl ect training status, cost 
e� ective, and easy to implement with minimal disruption to normal training. 
Accordingly, studies have aimed to develop non-fatiguing fi tness tests that assess 
physiological responses (i.e., HR, blood lactate, and RPE) to standardised sub-
maximal work ( Buchheit, 2014 ,  2015 ;  Buchheit et al., 2011 ,  2013 ;  Crowcroft 
et al., 2015 ;  Impellizzeri, Mognoni, et al., 2005 ;  Lamberts et al., 2010 ). This 
research has resulted in the development of simple fi eld tests assessing HR 
responses to standard bouts of exercise to monitor athletes’ acute and chronic 
fi tness adaptations to training ( Buchheit, 2014 ). 

 Resting HR, HR response to exercise (HR 
ex
 ), and HR recovery (HRR) 

following exercise are simple measures that can be collected from athletes in the 
training setting – and have been reported to have some utility for assessing ath-
lete fi tness. For example, as HR is closely related to oxygen uptake during con-
tinuous exercise, a lower HR 

ex
  provides a good marker of an athlete’s aerobic 

fi tness level that can be collected from a brief standardised submaximal exercise 
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bout. However, since recent research has shown that lower submaximal HR 
can also be associated with overreaching ( Aubry et al., 2015 ), it is critical that 
HR responses be interpreted in the context of other factors such as the train-
ing load, fatigue status, and non-training stressors. Similarly, short-duration 
measurements of resting heart rate variability (HRV) indices have been shown 
to refl ect parasympathetic modulation and as a useful non-invasive longitudinal 
monitoring tool for athletes ( Buchheit et al., 2014 ;  Plews et al., 2013 ). Previ-
ous studies have related changes in HRV-derived indices to positive or negative 
training adaptations and to refl ect the acute training response ( Bellenger, Fuller, 
et al., 2016 ;  Buchheit et al., 2014 ). However, the interpretation of directional 
changes in HRV-derived measures should also be contextualised with consid-
eration to an athlete’s training history, training intensity distribution, phase of 
the season, and acute psychological state (amongst other factors) ( Buchheit, 
2014 ). The main practical utility of HR measures is that they are non-invasive 
and time e�  cient, are relatively cheap, and can be routinely applied to many 
athletes. However, despite its common implementation in the fi eld, HR moni-
toring is still not accepted as a gold-standard fi tness test. This is likely due to the 
lack of consistency in methods of application and/or interpretation of changes 
in these variables. Nonetheless, despite these limitations, simple HR meas-
ures may provide useful insight into the fi tness-related changes to training – 
especially if they are interpreted in the context of other important aspects such 
as training load and athlete fatigue status.  

  Fatigue 

 Athlete fatigue is a di�  cult concept to defi ne, thus making its precise meas-
urement problematic. Due to its multifactorial genesis, there is no commonly 
agreed-on defi nition of fatigue. However, it is generally accepted that athlete 
fatigue is a psychobiological state associated with an inability to complete a 
physical task that was once achievable within a recent time frame and is usually 
associated with altered perceptions of e� ort, along with feelings of tiredness 
and/or exhaustion. Whilst the physiological and psychological mechanisms 
underlying subjective fatigue are not yet fully understood, there is consen-
sus that measurements of subjective fatigue are an essential aspect of athlete 
monitoring. 

 There are many psychometric tools, commonly termed athlete-reported 
outcome measures (AROMs) that can be used to assess various aspects of sub-
jective fatigue (and other subjective responses), including the Profi le of Mood 
States ( McNair et al., 1971 ), Daily Analysis of Life Demands for Athletes ( Rush-
all, 1990 ), Total Quality of Recovery ( Kenttä & Hassmén, 1998 ), Recovery-
Stress Questionnaire for Athletes ( Kellmann & Kallus, 2016 ), Acute Recovery 
and Stress Scale ( Kellmann & Kölling, 2019 ,  2020 ;  Kölling et al., 2020 ), and 
the Short Recovery and Stress Scale ( Kellmann & Kölling, 2019 ,  2020 ;  Kölling 
et al., 2020 ). Many of the questionnaires used to assess AROMs are extensive 
and take longer than a few minutes to complete, which limits their routine use 

Michael
Durchstreichen



Developing athlete monitoring systems 23

for monitoring athletes. Therefore, short customised questionnaires which can 
be administered on a regular basis have become commonplace ( Taylor et al., 
2012 ). Notably, it has recently been shown that various customised single-item 
AROMs – such as perceptions of fatigue, mood, and soreness – have greater 
sensitivity to acute and chronic training loads than commonly used objective 
measures ( Saw et al., 2016 ). For example, recent studies from professional rugby 
league ( McLean et al., 2010 ), soccer ( Thorpe et al., 2015 ,  2017 ), and Austral-
ian football ( Buchheit et  al., 2013 ) have shown that these custom-designed 
AROMs are sensitive to daily, within-weekly, and seasonal changes in training 
load. However, despite their convenience and the observed relationships with 
training load, it is concerning that most of the commonly used items/tools in 
both research and practice to assess AROMs (including fatigue) have not been 
validated using established clinimetric methods ( Je� ries et al., 2020 ). 

 Whilst longer questionnaires that include multi-dimensional assessment of 
factors surrounding fatigue (and recovery) status of athletes have strong empiri-
cal support, in the practical setting, specifi c single-item questionnaires may 
be attractive as they are time e�  cient and o� er ease of interpretation ( Bowl-
ing, 2005 ). While there appears to be support for the use of short or single-
item questionnaires for assessing subjective fatigue, it remains a concern that 
the popular single-item scales used with athletes have not undergone rigorous 
validation for their psychometric properties ( Je� ries et al., 2020 ). Accordingly, 
future research is still required to develop valid athlete-specifi c monitoring 
tools and also to assess the e�  cacy of using single-item scales compared to the 
validated but longer multi-dimensional tools ( Saw et al., 2017 ).  

  Other components 

 Various biochemical markers have also been suggested as useful components 
of athlete monitoring systems ( Urhausen & Kindermann, 1992 ). Specifi cally, 
markers of muscle damage, hormonal, and immune measures have shown to 
respond to changes in training intensity and dose and have been associated with 
overreaching in a variety of athletes ( Coutts et al., 2007 ;  Halson et al., 2002 ). 
However, due to logistical issues such as drawing blood or obtaining saliva 
samples from athletes, along with the costs and time for analysis, these meas-
ures are not usually suitable for daily monitoring. Nonetheless, these measures 
may be useful for investigating athletes already showing signs or symptoms of 
overtraining. 

 Regular assessments of the neuromuscular system, such as countermovement 
jumps, range of motion, muscle strength imbalances, and clinical assessments, 
have been used to identify injury risk factors and therefore are often incorpo-
rated into athlete monitoring systems. However, whilst a complete review of 
these monitoring tools is beyond the scope of this chapter, we recommend that 
these be included if they are implemented by skilled clinicians who understand 
the noise in these tests and the importance of standardised test procedures. 
The benefi t of using these measures in monitoring is that they can assist in 
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understanding how individual athletes may be coping with training and can 
be used to monitor and manage an individual athlete’s musculoskeletal health.   

  Analysing data 

 Whilst it is essential that athlete monitoring systems are based on established 
conceptual frameworks ( Je� ries et al., 2021 ) and consist of valid and reliable 
measures, the e� ectiveness of the system is dependent on how well the data can 
be used to inform coaching and training decisions. In high-performance sport, 
decisions around manipulating training need to be relayed to the coach within 
a brief period prior to training commencing. Traditionally, a heavy reliance has 
been placed upon identifying trends in monitoring data visually; however, with 
the development of integrated monitoring systems, there is a need for stronger 
evidence to highlight the likelihood of a particular outcome (i.e., injury, illness, 
or change in performance) ( Taylor et al., 2012 ). Therefore, the purpose of the 
following section is to address several key concepts used to develop evidence-
informed monitoring systems to assist in decision-making around a training 
prescription.  

  Contextualising training load 

 Understanding the non-linear individual athlete dose-response relationships 
between training on performance, fi tness, and fatigue is a major challenge 
in athlete monitoring. An increasing number of scientifi c reports use various 
analysis methods of monitoring data to suggest readiness to perform, the likeli-
hood of illness or injury risk, and methods to estimate performance outcomes 
( Crowcroft et al., 2020 ;  Foster et al., 1996 ;  Gabbett, 2016 ; Ryan et al., 2021). 
The following section will aim to describe some of the commonly used meth-
ods to contextualise training load data. 

 The fi tness-fatigue model is a simple approach to quantify a dose-response 
relationship of training load to performance. Although this method has pre-
viously been used to predict performance, fi tness, and fatigue measures, the 
overly simplistic nature of what is a complex non-linear dose-response rela-
tionship in highly trained athletes limits its e�  cacy when applied in prac-
tice. Indeed, large variability in the predicted compared to actual responses 
(i.e., performance, fi tness, and fatigue) from these models has identifi ed limi-
tations in the application of this model in the development of training plans 
for elite athletes ( Hellard et al., 2006 ). This may be due to the many di� erent 
constructs that infl uence performance outcomes which may be oversimpli-
fi ed in these mathematical models. Furthermore, this approach assumes that 
a single measure can quantify sports performance. As such, the application of 
this approach may be limited in sports where performance is dependent upon 
a combination of physical, technical, and tactical skills (as these structures can-
not be integrated into a single measure). Nonetheless, the benefi t of using the 
fi tness-fatigue model is that it provides a theoretical foundation for planning 
future training, and it may assist in reducing training errors. 
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 The acute-to-chronic workload ratio (ACWR) is based on the crude re-
arrangement of the fi tness-fatigue model, where fi tness is comparable to that of 
chronic workload (e.g., 28 days rolling average workload) and fatigue is com-
parable to an acute workload (e.g., 7 days rolling average workload). Although 
initial use of this model was to plan and predict performance, recently this 
simplifi ed approach has been suggested as an approach to predict and/or moni-
tor injury, particularly within team sports ( Gabbett, 2016 ;  Hulin et al., 2016 ). 
Indeed, a large body of evidence has reported that large spikes in acute work-
loads are associated with a substantial increase in injury risk ( Gri�  n et  al., 
2020 ). Unfortunately, however, these associations have been shown to be sta-
tistical artefacts related to the use of the ratio score (i.e., the ratio score which 
rescales the explanatory variable and magnifying its e� ect estimates) ( Impel-
lizzeri et al., 2021 ). Rather than directly applying a metric such as the ACWR 
to guide training load decisions, we recommend that that care be taken with 
overloading athletes, particularly during periods of re-loading after long layo� s 
or during periods of heavy training. 

 Undoubtably, the athlete’s training load is one of the most important aspects 
to control when preparing athletes from competition. At present, when mak-
ing decisions about future training, practitioners should avoid using a blind 
metrics-driven approach. Rather, combining information relating the athlete’s 
training history and their responses to that load from a variety of objective and 
subjective sources, along with the other important contextual information from 
performance (e.g., training goals/history), medical (e.g., medical history). and 
coaching (e.g., performance goals) sta�  when making decisions about future 
training is considered best practice.  

  Contextualising the training response 
with monitoring tools 

 The purpose of monitoring an athlete’s training response is to assess if an athlete 
is tolerating the demands of training. Whilst many observational studies have 
shown that monitoring tools are responsive to changes in training load, injury, 
and illness, the magnitude of change from baseline values required to infl uence 
performance outcomes is not yet fully understood. Currently, few studies have 
attempted to determine the ‘meaningful change’ required for a monitoring 
variable to have an impact upon important training outcomes. The following 
section will aim to address some of the considerations around inferring out-
comes from athlete monitoring variables. 

  Smallest meaningful change 

 For any monitoring variable to be practically useful, sport scientists must fi rst 
understand the ‘true’ or meaningful change required for it to be an important 
practical consideration (i.e., level of change in a variable that is beyond its 
normal day-to-day variation). A common method used to determine if each 
athlete monitoring tool is appropriate for implementation is through analysis 
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of the signal-to-noise ratio (SNR) ( Ryan et al., 2019 ). The ‘signal’ could be 
referred to as the typical change observed in response to a training or com-
petition stimulus, whereas the ‘noise’ is determined from the typical error in 
measurement (from test-retest reliability analysis). By using the co-e�  cient 
of variance (CV) of both assessments, the responsiveness of athlete monitor-
ing tools can be established via the signal-to-noise ratio (SNR) analysis ( Ryan 
et al., 2019 ). 

 When quantifying the smallest meaningful change in performance and real 
data relating the monitoring variable to the outcome score are not available, 
an approach based upon Cohen’s e� ect size principle is recommended. The 
measure is calculated as a change in performance outcome that is greater or 
less than 0.2 (small e� ect) multiplied by the between/or individual athlete CV. 
However, as many monitoring variables (e.g., physiological or perceptual meas-
ures) are indirectly related to changes in performance, using a larger fraction 
of CV may be more appropriate (e.g., 0.5, or 1 × CV) ( Buchheit, 2014 ). The 
fraction of the CV selected to identify a meaningful change is highly depend-
ent upon the sport (i.e., the nature of the performance requirements), the type 
of training being completed, and how the monitoring variables are collected. 
For example, the CV of the same subjective wellness questionnaire have ranged 
from ~5% in highly trained swimmers to between 12% and 32% in Australian 
football players ( Crowcroft et  al., 2017 ;   Gastin, Meyer, et  al., 2013 ). These 
fi ndings demonstrate that monitoring tools need to be assessed relevant to the 
sport or the way they are being implemented ( Saw et al., 2017 ). Additionally, 
it is also important to assess the specifi city and sensitivity of measures to the 
likelihood of important outcome measures (i.e., performance, injury, illness, 
etc.) ( Buchheit, 2014 ).  

  Highlighting ‘red fl ags’ with sensitivity and specifi city 

 A simple reporting method used to demonstrate a change in monitoring vari-
ables is through a tra�  c light alert system to identify ‘red fl ags’ (potential risks 
to inhibit training quality, elevated risk of injury or illness) ( Robertson et al., 
2017 ). When managing many athletes, this method may be useful as a ‘lead 
generator’ for sport science or coaching sta�  to start a discussion as to how the 
athlete is tolerating training demands. However, very few scientifi c reports have 
attempted to assess the e�  cacy of an alert system to highlight the increased 
likelihood of an outcome when monitoring the training response. 

 A common analytical approach used to assess if monitoring variables are 
e� ective to identify an outcome (e.g., performance change, injury, or illness), 
is to compare the accuracy of a monitoring cut-o�  value against a binary out-
come (e.g., Did performance improve? – yes or no). These values can then be 
applied to quantify the accuracy and optimal cut-o�  values to inform decision-
makers of the likelihood of an outcome ( Fawcett, 2006 ). For example,  Buch-
heit et al. (2014 ) compared the use of an intra-individual CV and the between-
athlete standard deviation at di� erent cut-o�  values to assess change in HR and 
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RPE following a standard warm-up to changes in running performance. This 
analysis identifi ed that variations in HR outside of the intra-individual CV 
could improve the predictive accuracy in highlighting individual performance 
change. However, developments on this analysis have since shown that the use 
of any single monitoring variable has poor discriminatory ability to highlight 
performance changes ( Crowcroft et al., 2017 ). As such, the need for a multi-
dimensional monitoring system could be required to improve the diagnostic 
accuracy of athlete monitoring systems.   

  Developing multi-dimensional monitoring systems 

 The interpretation of any monitoring variable must be interpreted in the con-
text of the athletes’ training phase and training load. Several studies have identi-
fi ed the importance of contextualising physiological and perceptual measures 
with training load, particularly during intensifi ed training periods ( Aubry 
et al., 2015 ;  Bellenger, Karavirta, et al., 2016 ;  Hug et al., 2014 ). A heuristic 
derived from these studies identifi ed that attenuated performance would see a 
noticeable shift in physiological measures and a large negative change in sub-
jective measures during increased training load. However, the same change 
in the absence of negative subjective measures may indicate positive training 
adaptations and a likely improvement in performance. These fi ndings highlight 
the need to contextualise changes in training load, fi tness, and fatigue measures 
with each other to gain a comprehensive understanding of how athletes are 
responding to training. 

 To overcome some of the limitations in interpreting data from multi-
dimensional monitoring systems (i.e., predicting outcome measures), advanced 
data analytic techniques such as neural networks or machine learning have 
been proposed. Indeed, a case study reported a high prediction accuracy of the 
performance of an elite swimmer using a neural network model using train-
ing monitoring data ( Edelmann-Nusser et  al., 2002 ). However, since these 
modelling techniques require large data sets over extended periods to ‘train’ 
the predictive accuracy, its practical usefulness may be limited. Furthermore, 
due to the ‘black box’ functioning where the outcomes don’t explicitly explain 
causal relationships of each input variable to the outcomes, some have urged 
caution in blindly adopting neural networks to model athlete training responses 
( Hellard et al., 2006 ). Therefore, while the use of advanced modelling tech-
niques may provide an attractive analysis method for predicting performance 
outcomes from athlete monitoring data, the practical utility in the daily train-
ing environment is not yet established.  

  Conclusion and recommendations for practice 

 Athlete monitoring systems are now commonplace in high-performance 
sports. The goal of these systems is to monitor how individual athletes are 
responding to training and help inform decisions about future training. Due 
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to the perceived benefi ts of these systems, many high-performance organisa-
tions make signifi cant fi nancial and human resource investments in this area. 
Whilst there is no criterion structure, an athlete monitoring system should be 
based on sound conceptual framework, should be developed to the resources 
available, and should fi t the culture of organisation. Fundamental measures 
that should be incorporated in these systems include quantifying training load, 
and proxy measures of athlete ‘fi tness’ and ‘fatigue’. Following this, correct 
interpretation of the data requires that all changes be contextualised in rela-
tion to the actual training load completed by the athlete, whilst accounting for 
the magnitude of change required for practical importance in monitoring the 
training response. In practice, the information provided by these measures may 
be used to develop heuristics that can inform coaches and sport science sta�  
on all aspects of an athlete status (i.e., fi tness, injury risk, readiness to perform, 
well-being, etc.). When these systems are implemented e� ectively, important 
feedback can then be provided to athletes and coaches that assist in improving 
the training process and result in enhanced readiness to perform and reduced 
injury risk.  
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