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Abstract: Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present,
the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral
drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as
such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy
provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important
to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small
interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial
role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we
describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs,
and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery.
We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2
infection, the challenges with targeting these therapeutics to local delivery in the lung, and various
inhalation devices used for therapeutic administration. We also discuss currently available animal
models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances
in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to
treat a range of respiratory diseases.

Keywords: COVID-19; nanomedicine; lipid nanoparticles; polymer nanoparticles; glycogen nanopar-
ticles; siRNA; nanoparticle-capsulated drug delivery; inhalation

1. Introduction

According to data by WHO (https://covid19.who.int/), as of 31 January 2022, over
373 million people worldwide have been infected with SARS-CoV-2, and there have been
more than 5.6 million confirmed deaths due to this virus since December 2019. At present,
the response strategy to COVID-19 mainly relies on vaccination. Current COVID-19
vaccines are designed to protect the body from infection through a strong antibody re-
sponse [1,2]. However, a recent UK study examined the serum of COVID-19 patients for
94 days following SARS-CoV-2 infection and reported that antibody levels peaked at 3–4
weeks post infection and then decreased exponentially. Meanwhile, peak antibody titers
positively correlated with the time it took for antibodies to return to baseline levels [3].
Another study also demonstrated that antibody responses were short-lived following
COVID-19 infection [4]. Further, the immune response to available COVID-19 vaccines
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drop at 3 and 6 months after the second dose of vaccination, and antibody levels to the
vaccines negatively correlated with the age of vaccinated individuals [5]. Moreover, vac-
cination is likely to be suboptimal in those with impaired immunity and allergies and be
further compromised by the emergence of variants of concern (VOC). Vaccination may not
provide adequate protection for people with a dysfunctional immune system. Therefore, to
effectively reduce the risk of serious illness and hospitalization, it is necessary to develop
antiviral treatments against COVID-19.

All direct-acting antiviral therapies that are active against SARS-CoV-2 need to be given
early in the disease course, so they need to be administered easily and should be safe [6].
Several drugs are being tested for the treatment of COVID-19, which include antiviral, anti-
malarial, and anticancer agents. Notably, the latest two orally delivered antiviral drugs, the
Pfizer Paxlovid (a protease inhibitor) and Merck molnupiravir (a polymerase inhibitor) have
been proven to be effective in treating SARS-CoV-2 infection [7–9]. Particularly, Paxlovid
might have therapeutic potential in the newly emerging Omicron variant [10], which is
fundamentally different from previous VOC, as it does not appear to use the TMPRSS2
protease co-receptor [11,12] or target the lung as effectively as previous ones [13–17]. As
there is currently no specific treatment for SARS-CoV-2, drugs for the treatment of other
viral infections, such as Remdesivir, Baricitinib, Tocilizumab, and Favipiravir, have been
repurposed and may be used to assist in the treatment of COVID-19 [18]. Some of these
antiviral drugs have already been shown to have limitations in treating SARS-CoV-2, and
the side effects of those antiviral drugs on COVID-19 patients also remain to be explored [19].
Other available therapeutics such as the intravenous (IV) injection of monoclonal antibodies
(mAb) are highly efficacious; however, production is intensive, time-consuming, and
expensive [20]. Moreover, the therapeutic efficacy of mAbs is significantly affected by a
virus with a high mutation rate, and it is difficult to perform organ-targeted therapy [21].
Thus, the therapeutic effects and side effects of these currently available antiviral drugs on
COVID-19 patients remain to be defined [19]. Since many current treatments for COVID-19
patients are repurposed therapeutics for other diseases, investigating approaches that are
targeted and specific to COVID-19 disease is highly valuable. One potential treatment
strategy is RNA interference (RNAi), and a more targeted drug delivery platform involves
nanoparticle (NP) carriers.

RNAi is a conserved biological process induced by non-coding RNAs (ncRNAs) with
the mechanism of inhibiting gene expression by blocking the transcription or translation
of specific genes. This phenomenon was first discovered and proposed in Caenorhabditis
elegans by Fire et al. [22]. Small RNAs that can produce RNAi include small interfer-
ing RNAs (siRNAs), microRNAs (miRNAs), P-element-induced wimpy testis (PIWI)-
interacting RNAs (piRNAs) and endogenous siRNAs (esiRNAs) [23]. As a phenomenon
that has been widely studied, RNAi has been proven to be a potential treatment strategy for
many diseases (viral and bacterial infections, respiratory diseases, cancer, and autoimmune
diseases), including COVID-19 [24–26]. Currently, the most studied non-coding RNAs are
siRNA (exogeneous and double-stranded) and miRNA (endogenous and single-stranded),
which play a vital role in gene regulation [27]. The physical and chemical properties of
siRNA and miRNA are similar, while the mechanisms underlying their mode of action are
different, and their stability and targeted delivery in vivo also have challenges [28]. Studies
have found that both siRNA and miRNA have the potential to be used in treating COVID-
19 [29]. Treatments directly into the lung are relatively stable for miRNAs [27]. Importantly,
siRNA can be also delivered to the lung epithelium of mice via intranasal or intravenous
administration via liposomes [30,31]. This review focuses on summarizing the therapeutic
role of siRNA in COVID-19 disease. Furthermore, siRNA could inhibit viral infection by si-
lencing specific genes that are required for viral entry or utilized for viral replication [32,33].
A variety of siRNAs that target highly conserved regions of SARS-CoV-2 sequence have
been identified [30,34]. Delivery systems for these siRNAs can be divided into viral vectors
and nanoparticles [35,36]. Viral delivery systems, such as adenovirus and lentivirus, are the
most used viruses in research and can successfully deliver siRNA in vivo [37–39]. However,
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several disadvantages of these vectors are known, such as their high immunogenicity [40],
restriction of specific delivery to target cells [41], the need for ex vivo transduction and
reinfusion [42], limited transduction rates for certain cell types [43], potential mutagenicity
of integration sites [44], and complexity and high costs of GMP synthesis [45]. By contrast,
several bioconjugates have been applied to carry siRNAs in vitro and in vivo, including
immune proteins, peptides, aptamer, cholesterol, PEG, cell-penetrating peptides, and NPs.

NPs have been identified as carriers to deliver functional nucleic acid fragments into
the body for specific targeted therapy [36], which has recently become a new medical
field [46–50]. Compared with viral delivery systems, NPs can be designed to have low or
limited immunogenicity. Another advantage of NP carriers is that they can be designed to
ensure that siRNA is protected from ribonuclease (RNase), making it stable and difficult to
degrade by enzymatic degradation. NP carrier systems can be in the form of vesicle-based
NP suspensions after encapsulation [51]. Thus, NPs can be used as a carrier platform
to encapsulate therapeutic drugs and have played an increasingly promising role in the
targeted therapy of diseases [52–54].

So far, siRNA treatment measures have mostly targeted the liver, as this organ rep-
resents an accessible target due to the first-pass metabolism of both siRNA and many
nanoparticles. ONPATTRO™ (patisiran), approved by the US Food and Drug Administra-
tion (FDA) and the European Medicines Agency (EMA), also uses lipid NPs to effectively
deliver siRNAs to hepatocytes for therapeutic effect [55–57]. Since SARS-CoV-2 has been
found mainly in the respiratory tract of COVID-19 patients [58], a logical treatment strategy
is to deliver therapeutics directly to the lung and respiratory tract via topical administra-
tion or administration directly into the airways, avoiding the high first-pass metabolism
of systemically delivered siRNAs by the liver [59]. Therefore, combining the targeting
properties of NPs with the specificity of RNAi could allow for the design of products with
better therapeutic efficacy with lower side effect profiles. Herein, we discuss a variety of
potential nanocarriers, including organic nanoparticles, such as lipid NPs, polymer NPs,
and glycogen NPs, and inorganic nanoparticles, such as gold NPs and magnetic NPs; then,
we summarize the progress of these platforms in siRNA delivery. We also present the
potential of formulating NP-siRNAs that specifically target the lungs or respiratory tract
and evaluate the potential application of various NP-capsulated siRNAs (NP-siRNAs) as
therapeutics for SARS-CoV-2 infection.

2. siRNA Therapy—A Potential and Promising Antiviral Therapeutic

It is well known that siRNAs are derived from long double-stranded RNAs, which are
cleaved into small double-stranded RNA with the same length of ~21 nucleotides through
endonuclease Dicer-mediated cleavage. siRNAs have the potential to act as a highly specific
therapeutic strategy for the treatment of various diseases [46,60,61]. So far, the FDA has
approved four siRNA therapies, including patisiran (for polyneuropathy of hereditary
TTR-mediated amyloidosis) [57], givosiran (for acute hepatic porphyria) [62], lumasiran
(for primary hyperoxaluria type 1) [63], and inclisiran (for primary hypercholesterolemia or
mixed dyslipidemia) [64]. siRNA therapy has made great progress in tumor treatments [65].
siRNA therapeutics for some cancers were developed from animal experiments through
to clinical trials. A study in mice demonstrated that siRNAs were effective in reducing
melanoma growth [66]. Additionally, some siRNAs (such as CALAA-01, Atu027, and
DCR-MYC) have been used in phase I clinical trials in metastatic pancreatic cancer, colon
cancer, and hepatocellular carcinoma [67–71], and siG12D-LODER has been used in phase
II clinical trials in advanced pancreatic cancer [72]. Some studies have also revealed that
siRNAs can be used to combat viral infections, especially COVID-19 [73,74].

2.1. Mechanisms of siRNA Therapy

siRNAs can induce gene silencing in mammalian cells through two distinct pathways;
post-transcriptional gene silencing (PTGS) or transcriptional gene silencing (TGS) (Figure 1).
PTGS primarily occur in the cytoplasm. Firstly, the guide strand of the siRNAs binds to the
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Argonaute-2 protein (Ago-2) of the RNA-inducing silencing complex (RISC), while the other
non-guide strand is cleaved and ejected by the Ago-2 [75]. Subsequently, Ago-2 carries
the guide strand to target mRNA complementary to its sequence, causing the degradation
of the binding site of the target RNA to induce gene expression silencing. Finally, RISC
ejects the guide strand in preparation for the next round of gene silencing [76]. PTGS is
considered the main pathway of siRNA-mediated mRNA silencing [77]. TGS is another
pathway of siRNA-induced gene silencing. It is less well characterized in mammalian
cells and takes place exclusively in the nucleus [78]. Unlike PTGS, in TGS, siRNA binds
to the Ago-1 protein on the RNA-induced transcriptional silencing (RITS) complex [79].
Increasing the methylation and decreasing the acetylation of critical chromatin-associated
proteins, contributes to the production of heterochromatin and induces the epigenetic
silencing of the gene [80]. TGS is potentially more beneficial for the long-term treatment
of chronic infections, whereas the PTGS is likely adequate for acute infections such as
COVID-19.
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2.2. siRNA Therapeutics for SARS-CoV-2, SARS-CoV-1, and MERS-CoV

Among all human coronaviruses (CoV), there are now seven main types that cause
respiratory infections. Four of these are the previously prevalent CoVs (229E, OC43, NL63,
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and HKU1) which cause mild respiratory infections, while the remaining three CoVs
(MERS -CoV, SARS-CoV-1, and SARS-CoV-2) can cause severe viral pneumonia, including
severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and
COVID-19 [81,82].

CoVs are a group of roughly spherical virus particles with a mean diameter of
80–120 nm. Their viral envelope consists of the membrane (M), envelope (E), and spike (S)
proteins, and the nucleocapsid inside the envelope is mainly composed of nucleocapsid (N)
protein [83]. The CoV genome contains a positive-sense single-stranded RNA, which has a
genomic structure of 5′UTR-ORF1ab-S-E-M-N-3′UTR-poly (A) tail. Open reading frames
(ORFs), which are not only necessary during virus replication [84], but also play a role in
the pathogenicity and infectivity of the virus [85], occupy nearly two-thirds of the entire
viral genome and encode the replicase polyprotein (pp1ab). The subsequent reading frames
encode the major structural proteins (S, E, M, and N proteins) [86]. The severity of CoV
disease varies widely. MERS-CoV, SARS-CoV, and SARS-CoV-2 are three major pathogenic
viruses that can cause severe symptoms [87]. SARS-CoV-1 and SARS-CoV-2 share multiple
highly homologous regions. Several B and T cell epitopes are highly conserved between
them, which indicates that vaccines and therapeutic strategies designed to target these
conserved regions could contribute to the prevention of SARS-CoV-1/2 infection to some
extent [88]. In terms of the genetic sequence, the similarity of SARS-CoV-2 to SARS-CoV-1
and MERS-CoV is approximately 79% and 50%, respectively [89]. When codon bias occurs,
one codon can be more efficient than others during translation. Compared to SARS-CoV-1
and MERS-CoV, SARS-CoV-2 is capable of enhanced gene expression due to its higher
codon usage bias [90].

Several factors need to be considered to improve the effectiveness of siRNAs. Firstly,
their binding targets should be highly conserved to decrease the possibility of viral escape
caused by viral evolution [91]. For the treatment of SARS-CoV-2 infection, it is suggested
that siRNA therapeutics that target the highly conserved region of SARS-CoV-2 could
be effective [35]. siRNAs designed against SARS-CoV-2 infection mainly act on coding
regions for cellular invasion factors (e.g., host factors ACE2, TMPRSS2, and spike) and
gene sequences required for viral survival and amplification (e.g., RNA-dependent RNA
polymerases (RdRP)) [24]. Meanwhile, the cell protease furin has been found to activate the
S protein of SARS-CoV-2 through cooperation with TMPRSS2 during virus invasion, which
makes furin another target of siRNAs [92]. The 5′-UTR of the SARS-CoV-2 genome contains
a leader sequence, which could also become an effective target for the development of
siRNA-specific viral therapies [34].

Apart from identifying the target sequence of SARS-CoV-2, it is also necessary to avoid
off-target effects as well as optimize the gene-silencing function of siRNA [93]. During
the design of siRNAs, homology and specificity checks should be performed to avoid off-
target effects. At the same time, it is also necessary to avoid acidification and degradation
of siRNA after it enters the cell to form an endocytic vesicle [73]. In addition, siRNA
formulation (i.e., GC content) also affects the silencing effect. Lower GC % will result in
decreased specificity and weak binding, while higher GC % will hinder the unwinding of
its duplex [94].

Studies show that some siRNAs are effective against SARS-CoV-1 [95–98] and MERS-
CoV in vitro [84,99,100]. A computational model was applied to evaluate the application
and potential effectiveness of RNAi in MERS-CoV and found that five siRNAs and four
miRNAs are potential antiviral agents [99]. Another study designed and evaluated the
functions of six siRNAs with increased specificity. These siRNAs could combine SARS-
CoV-2 mRNA targets, inducing greater inhibition of viral replication and reduced off-target
effects (Table 1) [91]. In addition, bioinformatics-based methods were also used to design
siRNA targeting SARS-CoV-2 RdRp as a therapeutic agent [101]. Chen et al. identified nine
potential siRNA targets in the SARS-CoV-2 genome [102]. They found that an effective
siRNA (5′GUUUAGAGAACAGAUCUACAA3′) has a high affinity to the leader sequence
and a low possibility of off-target effects [103]. Moreover, 11 siRNAs were designed and
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tested for silencing efficiency against the conserved regions of the three viral genes, the spike
(S), nucleocapsid (N), and membrane (M). This revealed that four siRNAs (3329i, 1878i,
1104i, and 2351i) were able to decrease the expression of the S gene, and four other siRNAs
(418i, 881i, 214i, and 1068i) could separately reduce the expression of the N gene, while the
remaining three siRNAs (607i, 344i, and 79i) could decrease the M gene expression [104].
Several researchers have also predicted functional and potential siRNAs as therapeutics
using in silico analysis [105,106] (Table 1).

Although RNAi therapeutics may have a positive influence in fighting COVID-19,
there remain challenges in the safe delivery of siRNA [107]. Therefore, various improve-
ments concerning delivery platforms need to be developed to manage this problem.

Table 1. siRNA therapeutics for SARS-CoV-2, SARS-CoV-1, and MERS-CoV.

Virus Sequence (5′-3′) Region Stage Refs

MERS-CoV UAGAAGAACAGCUAUCACCCU ORF1ab Computational approach

[99]
MERS-CoV AACAUAGAAAGCAGAUAGGUC ORF1ab Computational approach
MERS-CoV UCUAAGAGCUGCAUAAGUGUC ORF1ab Computational approach
MERS-CoV AUCAAGAAAAGCGUUAGAGGA ORF1ab Computational approach
MERS-CoV UUUGUAGUACCAAUGACGCAA ORF1ab Computational approach

MERS-CoV UAAUAGUAAAAAUAGAUUGCU ORF1ab In vitro (HEK-293)

[108]
MERS-CoV AACAUUAAUAGCAUUAUCCAU ORF1ab In vitro (HEK-293)
MERS-CoV UAAGAUAUCAUCUAAAGUGUC ORF1ab In vitro (HEK-293)
MERS-CoV UUAAAACUCAAACUAAUAGCA ORF1ab In vitro (HEK-293)
MERS-CoV UAGUUAAAGAGUUUCUAAGAG ORF1ab In vitro (HEK-293)

MERS-CoV UAAUAGUAAAAAUAGAUUGCU ORF1ab In vitro (Vero cells)
[109]MERS-CoV UAAGAUAUCAUCUAAAGUGUC ORF1ab In vitro (Vero cells)

MERS-CoV AACAUUAAUAGCAUUAUCCAU ORF1ab In vitro (Huh7)

[110]
MERS-CoV UUAAAACUCAAACUAAUAGCA ORF1ab In vitro (Huh7)
MERS-CoV AUUAAAUCUGUUAAUGUUGUU ORF1ab In vitro (Huh7)
MERS-CoV AAAUAGUUAUGAAUAGUUGAG ORF1ab In vitro (Huh7)

SARS-CoV-1 GGGCUAUCAACCUAUAGAU Spike protein (S) In vitro (Vero E6)
[111]SARS-CoV-1 CAAGGCGAUUAGUCAAAUU Spike protein (S) In vitro (Vero E6)

SARS-CoV-1 CGUAACUAAACAGCACAAG 3′-UTR In vitro (Vero E6)

SARS-CoV-1 GCUCCUAAUUACACUCAAC ORF2, spike In vitro (FRhk-4)

[112]
SARS-CoV-1 GGAUGAGGAAGGCAAUUUA ORF1b, nsp-12 In vitro (FRhk-4)
SARS-CoV-1 GGAUAAGUCAGCUCAAUGC ORF1b, nsp-13 In vitro (FRhk-4)
SARS-CoV-1 CUGGCACACUACUUGUCGA ORF1b, nsp-16 In vitro (FRhk-4)

SARS-CoV-1 GCUCCUAAUUACACUCAAC ORF2, spike In vivo (Rhesus macaque)
[113]SARS-CoV-1 GGAUGAGG AAGGCAAUUUA ORF1b, nsp-12 In vivo (Rhesus macaque)

SARS-CoV-1 GUACCCUCUUGAUUGCAUC Replicase 1A In vitro (FRhk-4)
[114]SARS-CoV-1 GAGUCGAAGAGAGGUGUCU Replicase 1A In vitro (FRhk-4)

SARS-CoV-1 GCACUUGUCUACCUUGAUG Replicase 1A In vitro (FRhk-4)

SARS-CoV-1 CACUGAUUCCGUUCGAGAUC S In vitro (FRhk-4)

[115]
SARS-CoV-1 CGUUUCGGAAGAAACAGGUAC E In vitro (FRhk-4)
SARS-CoV-1 UGCUUGCUGCUGUCUACAG M In vitro (FRhk-4)
SARS-CoV-1 GUGGCUUAGCUACUUCGUUG M In vitro (FRhk-4)

SARS-CoV-1 UGAAGGAGUUCCUGAUCUUCU Small envelope protein (E) In vitro (Vero E6)
[116]SARS-CoV-1 AGCUUAAACAACUCCUGGAAC Small envelope protein (E) In vitro (Vero E6)

SARS-CoV-1 GAUAAUGGACCCCAAUCAAAC Membrane protein (M) In vitro (Vero E6)

SARS-CoV-1 CUUACAUAGCUCGCGUCUC Nt 14450 to 14468 In vitro (Vero cells)
[117]SARS-CoV-1 GAAUAUUAGGCGCAGGCUG Nt 15877 to 15895 In vitro (Vero cells)

SARS-CoV-2 UUCGUUUAGAGAACAGAUC 5′-UTR In vitro (Vero E6) [34]

SARS-CoV-2 GUACUUUUUUUGAACUUCUACA Surface glycoprotein In vitro (Vero cells)

[91]

SARS-CoV-2 CAACAAAGAUAGCACUUAA ORF1ab polyprotein In vitro (Vero cells)
SARS-CoV-2 UCAUACCACUUAUGUACAA ORF1ab polyprotein In vitro (Vero cells)
SARS-CoV-2 CCAAAAUCAUAACCCUCAAA ORF3a protein In vitro (Vero cells)
SARS-CoV-2 AAACCUUCUUUUUACGUUUA Envelope protein In vitro (Vero cells)
SARS-CoV-2 CGAACGCUUUCUUAUUACAA Membrane glycoprotein In vitro (Vero cells)
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Table 1. Cont.

Virus Sequence (5′-3′) Region Stage Refs

SARS-CoV-2 AUGAACCACAAAUCAUUACUA S In vitro (human HUVECs and A549 cells)

[104]

SARS-CoV-2 AGAUCAACUUACUCCUACUUG S In vitro (human HUVECs and A549 cells)
SARS-CoV-2 AUAUAAUUCCGCAUCAUUUUC S In vitro (human HUVECs and A549 cells)
SARS-CoV-2 AAGUCAAACAAAUUUACAAAA S In vitro (human HUVECs and A549 cells)
SARS-CoV-2 AAUACACCAAAAGAUCACAUU N In vitro (human HUVECs and A549 cells)
SARS-CoV-2 UAUUGACGCAUACAAAACAUU N In vitro (human HUVECs and A549 cells)
SARS-CoV-2 AAGGAACUGAUUACAAACAUU N In vitro (human HUVECs and A549 cells)
SARS-CoV-2 GUUCCAAUUAACACCAAUAGC N In vitro (human HUVECs and A549 cells)
SARS-CoV-2 AACUAUAAAUUAAACACAGAC M In vitro (human HUVECs and A549 cells)
SARS-CoV-2 AAACUAACAUUCUUCUCAACG M In vitro (human HUVECs and A549 cells)
SARS-CoV-2 CUAUUCCUUACAUGGAUUUGU M In vitro (human HUVECs and A549 cells)

SARS-CoV-2 GUUGGACUGAGACUGACCUUA RdRp In vitro (Vero E6) and in vivo
(K18-hACE2 mice)

[30]SARS-CoV-2 UUAUACCUUCCCAGGUAACAA 5′UTR In vitro (Vero E6) and in vivo
(K18-hACE2 mice)

SARS-CoV-2 UCACCUUAUAAUUCACAGAAU Helicase In vitro (Vero E6) and in vivo
(K18-hACE2 mice)

SARS-CoV-2 GGAAGGAAGUUCUGUUGAA RdRp In vitro (Vero cells) and in vivo
(Syrian hamsters) [118]

SARS-CoV-2 UUUGUAUGCGUCAAUAUGCUU Nucleocapsid
phosphoprotein Computational approach

[119]

SARS-CoV-2 UCAACGUACACUUUGUUUCUG Surface glycoprotein genes Computational approach
SARS-CoV-2 AAAAACUUCACCAAAAGGGCA Surface glycoprotein genes Computational approach
SARS-CoV-2 UUAAAAACUUCACCAAAAGGG Surface glycoprotein genes Computational approach
SARS-CoV-2 UUAAAGCACGGUUUAAUUGUG Surface glycoprotein genes Computational approach
SARS-CoV-2 AACUUCUUGGGUGUUUUUGUC Surface glycoprotein genes Computational approach
SARS-CoV-2 UUUGAUUGUCCAAGUACACAC Surface glycoprotein genes Computational approach
SARS-CoV-2 UAAUUUGACUCCUUUGAGCAC Surface glycoprotein genes Computational approach

SARS-CoV-2 UCCUUCUUUAGAAACUAUACA ORF1ab Computational approach

[102]

SARS-CoV-2 UGGUUUCACUACUUUCUGUUU ORF1ab Computational approach
SARS-CoV-2 UUCACUACUUUCUGUUUUGCU ORF1ab Computational approach
SARS-CoV-2 AUGUCAUCCCUACUAUAACUCAAA ORF1ab Computational approach
SARS-CoV-2 UUAAAAUAUAAUGAAAAUGGA S Computational approach
SARS-CoV-2 CUUGAAGCCCCUUUUCUCUAUCUUU ORF3a Computational approach
SARS-CoV-2 UUGAAUACACCAAAAGAUCACAUU N Computational approach

SARS-CoV-2 AGUAGAAAUACCAUCUUGGAC N Computational approach [120]

SARS-CoV-2 GUUUAGAGAACAGAUCUACAA The leader sequence Computational approach [103]

SARS-CoV-2 UAGUACUACAGAUAGAGACAC RdRp Molecular dynamics (MD) simulation [101]

3. NP Delivery—A Platform Ensuring the Efficacy and Stability of siRNAs

NPs are valuable carriers to deliver functional nucleic acid fragments into the body
for specific targeted therapy. These nanocarrier systems can be used to form vesicle-
based NP suspensions after encapsulation, thereby improving the stability of the small-
molecule drugs contained therein [51]. Thus far, the four siRNA drugs approved by
the FDA applied N-acetylgalactosamine (GalNAc) coupling or lipid NP pathways to
effectively deliver siRNAs to liver cells for their therapeutic effects. NPs can also improve
the therapeutic effects of drugs by changing drug metabolic rates [121]. NPs can be
divided into different types according to their size, shape, and physical/chemical properties.
Advanced nanocarriers include organic NPs (lipid NPs, polymer NPs, and glycogen NPs)
and inorganic NPs (magnetic NPs, gold NPs, carbon-based NPs, ceramic NPs, metal NPs,
and semiconductor NPs) (Figure 2) [122,123].
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3.1. Lipid NPs (LNPs) in siRNA Therapeutics

LNPs belong to the organic nano-system and have hydrophilic parts exposed to the
surrounding aqueous solvent as well as hydrophobic parts facing each other to form a
supramolecular structure [124]. LNPs are particularly attractive for biomedical applications,
owing to their enhanced lipid-specific biocompatibility. Thus, LNPs are widely used in
the field of nanomedicine. In 2018, the FDA and the EMA approved a therapeutic drug
for hereditary transthyretin-mediated amyloidosis (hATTR amyloidosis) based on siRNA
LNPs, ONPATTRO™ (patisiran) [55,56]. In patisiran, the weight ratio of total lipids and
siRNAs is 12.1, and the composition of these LNPs, which could effectively target the
transthyretin of hepatocytes, includes ionizable lipid, phospholipid, cholesterol, and PEG
lipid [125]. To date, LNPs are the most frequently studied in vivo delivery carriers, and
they can silence target genes by encapsulating and delivering specific siRNAs. LNPs can
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also ensure the stability of siRNA in vivo, protecting them from degradation and ensuring
smooth delivery to target cells.

Liposomes, as the earliest generation of lipid particles, are small-molecule artificial
vesicles that are spherical in structure, with diameters of 25–2500 nm. According to their
size, they can be divided into multilamellar (MUV) or unilamellar vesicles (UV). UV can be
divided into LUV (large unilamellar vesicles, 100–1000 nm in diameter) and SUV (small
unilamellar vesicles, 20–100 nm in diameter). Liposomes consist of an amphiphilic bilayer
phospholipid on the outside and an aqueous compartment in the center (Figure 3A) [123].
The bilayer phospholipid can carry hydrophobic therapeutic drugs in the middle, and the
aqueous compartment can carry hydrophilic therapeutic drugs internally [126].
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Compared with classic liposomes, cationic LNPs have a more complex liposome-
like structure and are more suitable for encapsulating various nucleic acids (RNA and
DNA). Cationic LNPs, spherical particles ~50 nm in diameter, are composed of ioniz-
able cationic lipids, cholesterol, phospholipids, and polyethylene glycol-lipids (PEGylated
lipids) (Figure 3B) [127]. Various lipids in LNPs have different characteristics and functions.
Cationic lipids can also ensure the stability of siRNA. Ionizable cationic lipids can be
ionized under acidic conditions (pH < 5), encapsulating siRNA in particles through elec-
trostatic complexation. Subsequently, when the positively charged cationic lipid contacts
the negatively charged cell membrane, it can be endocytosed into the cell and release the
siRNA inside [128,129]. PEGylated lipids are used to control the spacing between NPs,
inhibit LNP aggregation, and prevent them from being recognized by the human immune
system [130]. Neutral lipids promote and stabilize the formation and arrangement of the
phospholipid bilayer structure, while cholesterol has strong membrane fusibility, which
can promote the intracellular uptake and cytoplasmic entry of siRNA [131,132].
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The ratio of polyethylene glycol (PEG) to LNPs can affect the efficacy of siRNAs in
gene silencing [133], while increasing the size of LNPs may help redirect siRNAs in them
to antigen-presenting cells (APCs) [134]. The release of siRNA from LNPs is considered a
rate-limiting factor in the process of gene silencing. Therefore, it is necessary to increase
the release-potential of siRNA to promote gene silencing [135].

siRNA LNPs have the potential to play a vital role in the treatment of many diseases.
Intravenous injection of anti-miRNA145 LNPs in a rat model of pulmonary arterial hy-
pertension (PAH) improved heart function [136]. It was also found that siRNA LNPs can
enter bone cells after intravenous injection to induce the gene silencing of SOST encoding
sclerostin, providing a new possibility for the treatment of osteoporosis [137]. New research
has developed a novel type of siRNA LNP delivery system (LNP-Ihh siRNA). Deleting
cartilage-specific genes (Ihh) to reduce cartilage degeneration is hoped to provide support
for the treatment of cartilage diseases [138].

The delivery of siRNAs by LNPs may also play an important role in the treatment of
tumors and blood diseases. A study applied tripeptide LNP as a carrier and co-wrapped
chemotherapeutic drug paclitaxel (PTX) and VEGF siRNA with sucrose laurate (S) and
folate-PEG2000-DSPE (FA) to construct a new type of nanoparticle (PTX/siRNA/FALS),
which could target tumor cells to improve the efficacy of cancer treatment [139]. Moreover,
LNPs can encapsulate multiplexed siRNA and play a positive role in the treatment of lym-
phoma [140]. Packaging a leukemia-specific fusion transcript, BCR-ABL, and siRNA into
LNPs can also be used to target oncogenes in hematopoietic tissue in vitro and in vivo [141].
In addition, some helper lipids such as DSPC-cholesterol could facilitate the stable delivery
of siRNA by LNPs [142].

Currently, ionizable LNPs are recognized as one of the most advanced non-viral vectors
for efficient nucleic acid delivery [143]. Idris et al. identified three candidate siRNAs from
numerous siRNAs targeting the conserved regions of SARS-CoV-2, and their inhibitory
effect on the virus was as high as 90%. At the same time, two new LNPs that can deliver
siRNAs to the lung have also been developed [30], and after intranasal administration,
cationic LNPs show higher bioavailability [144]. LNPs also have the potential to load
vaccines [131,145–147].

In addition, other types of LNPs have also been used to deliver siRNA, including
solid LNPs (SLNs) [148], nanostructured lipid carriers (NLCs) [149], nonlamellar LNPs
(NLNs) [150], ethosomes [151], and echogenic liposomes [152] (Table 2). These LNPs
could also improve the stability of siRNA and effectively release siRNA after entering
the target cells [127]. Therefore, LNPs have been recognized as the most effective siRNA
delivery system.

Table 2. Lipid nanocarriers loaded with therapeutic siRNAs.

Carrier siRNAs’ Target Cells/Animal Models Refs

Ionizable LNPs LINC01257 siRNA Kasumi-1 cells (human acute myeloid
leukemia cell line) [153]

Ionizable LNPs Irf5 siRNA C57BL/6 Irf5−/− Apoe−/−mice [154]
Ionizable LNPs MRTF-B siRNA Human conjunctival fibroblasts [155]

Ionizable LNPs CTNNB1 Dicer substrate RNA
(DsiRNA) HepG2 and A375.S2 cells [156]

Ionizable LNPs RBPMS siRNA HEK293-GFP stable cells (GFP293) [157]

Ionizable LNPs (CL4H6) STAT3 HIF-1α ICR (♀, 4–10 weeks) mice and
BALB/cAjcl-nu/nu (♂, 4–5 weeks) mice [158]

Ultra-small LNPs MK siRNA Human HCC cell line, HepG2, and male
BALB/c nude mice [159]

Ginger-derived NPs (GDNPs) Dmt1 siRNA Hamp KO mice [160]

SLNs PD-1 J774A.1 murine macrophages and B16-F10
murine melanoma cells [161]

SLNs TNF-α J774A.1 murine macrophages [162]
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Table 2. Cont.

Carrier siRNAs’ Target Cells/Animal Models Refs

SLNs Bcl-2 HeLa (human cervical cancer
adenocarcinoma) cell line [163]

SLNs BACE1 Caco-2 cells (human epithelial colorectal
adenocarcinoma cells) [164]

SLNs MDR1 MCF-7 cells and MCF-7/ADR cells [165]

SLNs KSP

Murine endothelial cell line MS1-VEGF and
human primary umbilical vein endothelial
cell line (HUVEC); human dermal
microvascular endothelial cell (HMEC-1) line

[166]

SLNs Bcl-2 A549 cells (human lung carcinoma) [167]

SLNs MCL1 KB cells (human epithelial carcinoma) and
BALB/c nu/nu mice [168]

SLNs c-Met U-87MG human GBM cells and U-87MG
tumor-bearing mouse [169]

SLNs VEGF PC-3 (human prostate cancer cells) and
MDAMB435 (human breast cancer cells) [170]

Cationic SLNs EphA2 siRNA PC-3 and DU145 (prostate cancer cell lines) [171]
NLCs BCL2 and MRP1 A549 human lung adenocarcinoma cells [149]

NLNs GFP Chinese hamster ovary cells (CHO-GFP) and
human embryonic kidney (HEK293) cells [150]

Ethosomes GAPDH Human adult epidermal keratinocytes and
female BALB/c mice [151]

Echogenic Liposomes CPP Human breast adenocarcinoma cells
(HT-1080) [152]

3.2. Polymer NPs (PNPs) in siRNA Therapeutics

PNPs are small molecular particles with a size of 1–1000 nm and include nanospheres
and nanocapsules. PNPs are used for drug or small RNA delivery and are generally
biodegradable polymers, in which the poly(lactic acid) (PLA), poly(glycolic acid) (PGA),
and poly (lactic-co-glycolide) (PLGA) have been approved by FDA [172]. They are consid-
ered to have good safety and biocompatibility, as well as low levels of immunogenicity and
toxicity [173].

Earlier, fluorescent conjugated PNPs (cPNPs), which were found to deliver gene-
specific siRNA to tobacco BY-2 protoplasts [174], are considered non-toxic and efficient in
the delivery of siRNA [175]. siRNA PNPs can be used to deliver various tumor drugs as
well as siRNAs/miRNAs to assist in cancer treatment [176]. A study developed cationic
core–shell NPs, called P(MDS-co-CES), which may be used to deliver both chemother-
apeutic drugs (paclitaxel) and siRNA to the same cell [177]. The PEGylation of siRNA
reduces the protein adsorption of the PNP–siRNA complex, thereby delivering siRNA more
efficiently [178]. Multifunctional poly (lactide-co-glycolic acid) (PLGA) NPs have also been
developed to deliver tumor antigen and immunosuppressive gene (SOCS1) siRNA to bone-
marrow-derived (BM) dendritic cells (DC) to enhance the effects of immunotherapy [179].
Doxorubicin (DOX) and siRNA could be co-loaded into PNPs containing polyethylenimine
(PEI) and then delivered to the lungs, which could be effective in the treatment of metastatic
lung cancers [180].

Meanwhile, encapsulated siRNA can also be assembled using star polymers, which
have a multi-branched structure and can self-assemble with siRNA to form cationic nano-
sized complexes to enhance cell entry. Star polymer–siRNA can hold the rate of targeted
gene silencing at 50%. Kavallaris et al. applied poly (DMAE-MA) loaded with Luc2 siRNA
to human pancreatic cancer (MiaPaCa-2) and H460 non-small cell lung cancer (NSCLC)
cell lines and found that star polymer–siRNA can inhibit the expression of target genes in
both [181]. In BALB/c nude mice transplanted with human pancreatic cancer cells, star–
POEGMA–siRNA can be delivered to mouse pancreatic cancer cells [182]. Subsequently, in
the BALB/c nude mice model of pancreatic cancer in situ, the use of star polymer loaded
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with TUBB3 (βIII-tubulin) siRNA for treatment can silence the expression of βIII-tubulin
and inhibit the growth and metastasis of pancreatic tumors [183]. In addition, star polymer–
siRNA can also be used to enhance the drug delivery potential in acute lymphoblastic
leukemia (ALL) cells [184].

Interestingly, NPs that integrate lipids and polymers (hybrid lipid–polymer NPs) were
found to combine the biocompatibility of lipids with the structural solidity of polymers and
enhance the binding affinity with siRNA to maintain stable encapsulation of siRNA [185].
Hybrid lipid–polymer NPs with siRNA exhibited excellent gene silencing effects in HeLa
and A549 lung carcinoma cells [186]. Another study also found that applying lipid-assisted
PNPs could efficiently deliver specific siRNA targeting GLUT3 into glioma stem cells and
bulk cancer cells, thereby enhancing the effectiveness of cancer treatment [187].

As carriers, PNPs also play an important role in the delivery of therapeutic drugs
and siRNA for metabolic diseases (such as diabetes) and infectious diseases (such as
reproductive tract and severe lung diseases). Biodegradable PLGA NPs loaded with siRNA
could enter the mucosal epithelial tissue of the reproductive tract to play a therapeutic role
against infectious pathogens [188]. Cationic PNPs composed of β-cyclodextrin (β-CD) and
poly amidoamine can be used as an effective carrier of MMP-9-siRNA and injected into
the wounds of diabetic rats, resulting in the down-regulation of MMP-9 gene expression
and enhancing wound healing ability [189]. Poly lactic-glycolic acid NPs (PLGA NPs)
encapsulating siRNA for administration to the mucosa of the mouse reproductive tract can
effectively improve the survival rate after HSV-2 infection [190]. Additionally, novel hybrid
lipopolymer NPs (hNPs) composed of PLGA and dipalmitoyl phosphatidylcholine (DPPC)
can deliver siRNA to the lungs and have great potential for the treatment of severe lung
diseases [191].

In addition, the efficacy of delivery is related to the strong affinity of endosomes and
the weak affinity of cytoplasm for siRNA [192]. Encapsulating micellar NPs (MNPs) with
palmitic-acid-linked siRNA (siRNA-PA) can enhance the efficacy of siRNA [193]. Among
six complexes, mikto star polymer containing a hydrophobic poly (butyl methacrylate)
block could deliver siRNA more effectively to better induce gene silencing [194]. Fur-
thermore, cationic poly(caprolactone)-based (PCL) NPs could be synthesized and stably
combined with anionic siRNA and delivered effectively [195]. Combination with palmitic
acid could improve the loading efficiency of NPs and the intracellular uptake of siRNAs and
at the same time can increase their intracellular half-life [193]. The poly (butyl methacry-
late) block can ensure a better silencing ability of siRNA in serum-free medium, while
poly(caprolactone) can maintain the stability of siRNAs under physiological conditions and
load and deliver intact siRNAs to the cytoplasm [194,195]. Therefore, the addition of some
cofactors may improve the delivery efficiency and gene silencing effect of siRNA PNPs.

To evaluate the effect of siRNA PNPs against SARS-CoV-2 in vitro and in vivo, Khaitov
et al. identified the most effective siRNA (siR-7) from 15 candidate siRNAs. After adding
locked nucleic acids (LNAs) to enhance its stability, it was assembled with peptide den-
drimer KK-46 (to form siR-7-EM/KK-46 complex). This siR-7-EM/KK-46 complex was
delivered by inhalation, which reduced viral titers and lung inflammation in vitro and
in vivo [118]. Therefore, designing polymer nanocarriers with ACE2 antibodies to wrap
siRNAs with therapeutic potential can accurately target cells with ACE-2 and exert gene-
silencing effects [196].

3.3. Glycogen NPs (GNPs) in siRNA Therapeutics

GNPs are randomly branched dendritic nanopolysaccharides composed of glucose
repeating units connected by linear α-d -(1-4) glycosidic bonds and α-d -(1-6) branched
chains. The glycogen used to prepare GNPs comes from a wide range of sources, from
animal tissues to plants (including rabbit and bovine liver, oysters, and sweet corn) [197].

As a functional biomaterial, glycogen has several obvious advantages, including bio-
compatibility, biodegradability, and high water solubility. These characteristics highlight
the potential of GNPs as drug delivery carriers. The outer surface of GNPs is highly
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branched and has a dense inner core. Because of their high hydrophilicity and biocompati-
bility, they can easily be biochemically modified to produce functional derivatives [198],
such as adhesive GNPs composed of lipoate-conjugated phytoglycogen (L-PG) [199] and
oyster GNPs with poly(N-isopropylacrylamide) (PNIPAM) chains on their surface [200].

GNPs are composed of single-molecule spheres (β-particles) and many smaller parti-
cles (α-particles). The diameter of GNPs is generally about 20–150 nm and can be modified
into various sizes [201]. Cavalieri et al. have found that galacto-GNPs showed a high
affinity for prostate cancer cell membranes and could induce the aggregation of prostate
cancer cells [202]. They also constructed soft GNPs with a diameter of 20 nm which can
deliver siRNAs in human prostate cancer cells more effectively and lead to a 60% gene
silencing effect [203]. The size of glycogen is important for the stability of NPs loaded with
siRNA as well, as GNPs with a smaller size and a higher protein content are more likely to
maintain stability [204].

Gold GNPs were found to deliver siRNA to the lungs in vivo, which can induce a
tumor size reduction of nearly 80% in B6 albino mouse lungs grafted with CMT 167 adeno-
carcinoma cells [205]. Another study applied lipopolysaccharide-amine nanopolymersomes
loaded with specific siRNA (siNoggin), which enhanced the effect of bone differentiation
in vitro [206]. The construction of cationic enzymatically synthesized glycogen (cESG) can
achieve the simultaneous delivery of tetraphenylporphine sulfonate (TPPS) and siRNA,
which can reduce the survival rate of cancer cells (ovarian clear cell cancer cells) [207].
In addition, cells transfected with the polysaccharide derivative DMAPA-Glyp/siRNA
inhibited the activation of nuclear transcription factor-κB (NF-κB) in human retinal pigment
epithelial (hRPE) cells, resulting in the expression of mRNA and protein being reduced,
which can be used for gene therapy for diabetic retinopathy [208]. In addition, GNPs have
the proven potential to be used in drug-assisted tumor treatment [209]. Therefore, the value
of GNPs in COVID-19 needs further exploration.

3.4. Other NP Platforms in siRNA Therapeutics

As well as organic NPs, there are also some inorganic NP platforms, mainly including
gold NPs (Au NPs) and magnetic NPs (Mag NPs) [123,210]. Au NPs are widely used
in diagnosis and treatment and have the potential to be used as drugs and vaccine car-
riers [211]. They can be used for intranasal delivery and can spread to lymph nodes to
activate CD8+ cell-mediated immune responses [211]. It is reported that Au NPs carry-
ing hydrophilic-b-cationic copolymers (HbC-Au NP) could effectively deliver siRNA to
cancer cells [210]. siRNAs are located on the surface of Au NPs by gold–thiol chemistry
or electrostatic interactions [212]. Au NPs could also easily trigger the immune system
through the internalization of APC, thereby presenting outstanding potential in vaccine
development [123]. Another study used antigen-coated Au NPs through the principle of
plasmon resonance to assist in the detection of the N protein of SARS-CoV-2 [213]. Au NPs
could be also used as nanoprobes to detect the S protein of SARS-CoV-2 [214].

Further, Mag NPs with surface hyaluronan can selectively bind to the cell surface
adhesion molecule CD44, which plays an important role in the occurrence and develop-
ment of atherosclerotic plaques, thereby assisting in the magnetic resonance imaging of
plaques [215]. Mag NPs can also be used to assist in the detection of the S protein [216].
In addition, layered double hydroxide (LDH) is considered a biocompatible inorganic NP.
Studies have found that LDH carrying shRNA can protect it from degradation and make it
more easily internalized by cells [217,218]. It has been also found that extracellular vesicles
(EVs) have the potential to transport and load antiviral agents into cells to assist in the
treatment of COVID-19 [219]. Besides, although a few newly synthesized NPs, such as zinc
oxide NPs (ZnO NPs) and titanium dioxide NPs (TiO2 NPs), are weakly cytotoxic to host
cells, they have been recently applied as a powerful disinfectant to combat SARS-CoV-2
due to their potent antiviral activity [220,221].

Despite all of the advances in vaccines and drugs, the global epidemic of COVID-19
continues. The mutation of the target sequences of RNAi could lead to viral escape [222].
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Therefore, designing specific small RNAs for highly conserved viral genome regions
could resist viral infections with high mutation rates, which is considered one of the
advantages of RNAi therapy [223]. Additionally, multiplexing or combining siRNA targets
in a siRNA combination therapeutic could increase protection by providing redundancy,
which means that if one target does mutate, the other target will still provide protection.
This combination treatment approach has been utilized for HIV-1 to address the highly
diverse virus sequences and subtypes globally [224]. Given the rapidly evolving SARS-CoV-
2 genome and resulting resistance to vaccines and some monoclonal antibodies, further
research is needed to explore and optimize RNAi treatment strategies and appropriate NP
carrier platforms against SARS-CoV-2 infection.

4. Challenges of Local Delivery of NP-siRNAs—The Importance of Administration Route

The intravenous route can deliver therapeutic siRNAs directly to the liver via the
circulatory system, so therapeutic siRNA plays an important role in the treatment of
many systemic diseases. Indeed, previous studies on NP carriers have focused on liver
delivery [225]. Currently, all four siRNA drugs approved by the FDA are effectively
delivered to hepatocytes by GalNAc coupling or LNP carriers for therapeutics [57,62–64].
In contrast, local delivery of therapeutic siRNAs to specific organs, such as the lungs, can
be achieved via other routes of administration, such as inhalation. Organ-targeted therapy
for diseases that may cause damage to specific organs or tissues other than the liver, such
as the lungs for COVID-19, is both a potential advantage as well as a challenge for local
delivery [226]. Local administration has many advantages, including the rapid onset of
action, reduced dosage, and limited side effects [226]. Additionally, since siRNAs used
systemically can accumulate in off-target tissues [227], local drug delivery strategies could
avoid the off-target accumulation of siRNAs [228].

The primary consideration in the deposition of particles after entering the respiratory
tract through the mouth or nose mainly depends on their size and density, with deposition
in the lungs occurring through three different ways: impact, sedimentation, and diffu-
sion [229]. As a general rule, aerosols with an aerodynamic diameter >10 µm will deposit
in the nasal cavity and pharynx through impact and cannot enter the lower respiratory
tract. Particles between ~1 and 10 µm will be deposited in the bronchi and bronchioles
through sedimentation, while particles with diameters ranging between 10 and 500 nm will
deposit in the lower bronchioles and alveoli by diffusion [230] (Figure 4).
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Figure 4. Intravenous delivery vs. lung delivery of NP-siRNAs. Intravenous delivery can deliver
therapeutic siRNAs directly to the liver via the circulatory system. Lung delivery can deliver siRNAs
into the respiratory tract through the mouth or nose, and the deposition distance depends mainly on
the size and density of the particles. Aerosols with an aerodynamic diameter >10 µm will deposit
in the nasal cavity and pharynx through impact, and particles with a diameter of <10 nm with high
diffusion velocity are more likely to be deposited in the upper respiratory tract [231,232]. Particles
between ~1 and 10 µm will be deposited in the bronchi and bronchioles through sedimentation;
particles with diameters ranging between 10 and 500 nm will deposit in the lower bronchioles and
alveoli by diffusion. Created with BioRender.com.

The NP carrier platform could provide many benefits for lung mucosal drug deliv-
ery [233]. Several researchers have developed NP-based nasal delivery, aiming to effectively
and safely deliver small nucleic acid fragments with therapeutic or vaccine effects to target
cells [234]. Most animal experiments focus on intranasal instillation [235] and orotracheal
administration [236] to detect the efficacy of NP-siRNAs [236–238] (Table 3).

Table 3. Mouse models used to assess respiratory nanocarrier delivery.

Mouse Models Carriers Drugs Delivery Refs

Female BALB/c mice Solid lipid nanoparticles
(SLNs)

Rhynchophylline (Rhy) Aerosol administration [239]

Female BALB/c mice Dextran nanoparticles SET-M33 (a non-natural
antimicrobial peptide)

Hamilton syringe and
laryngoscope

[240]

Female BALB/c mice Dextran nanogels siRNA Tracheal aspiration [241]
Female BLAB/c mice Nanocluster Ceftazidime Dry powder inhalation [242]

Female CF-1 mice PEGylated human ferritin
nanocages (FTn)

Doxorubicin (DOX) Inhalation [243]

Female CF-1 mice PLGA and PLGA–PEG NP Dexamethasone sodium
phosphate (DP)

Intranasal instillation [244]

Female
C57BL/6OlaHsd mice

PEG–PEI copolymer Dexamethasone (DEX) Aerosol administration [245]

Male CF-1 mice Mucus-penetrating
particles (MPP)

Fluticasone propionate (FP) Intratracheal instillation [246]

Male CD-1 mice Mesoporous silica
nanoparticles (MSNs)

Nanopure water droplets Aerosol nose-only
exposure system

[247]
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Since SARS-CoV-2 infection is acquired through breathing and mainly occurs in the
epithelial cells of the respiratory tract, lipids, polymers, or lipid–polymer hybrids can
be configured as inhalable aerosols for the delivery of therapeutic siRNAs [196]. As
traditional LNPs tend to accumulate in the liver after IV administration, changing the route
of administration from IV to inhalation could prevent NP-siRNAs from accumulating in
the liver and instead specifically localize them in the lungs (Figure 4) [248]. An effective
measure is to combine nanotechnology with inhalation delivery, where NP-siRNAs are
made into dry powders and then delivered to the lung through the nebulization of NP
suspensions for local administration. Indeed, lipo-polymeric NPs (LP NPs) can deliver
siRNA targeting the ABCC3 gene to the lungs via dry powder inhalation [249]. Freeze-dried
pulmonary surfactant (Curosurf®)-coated nanogels could also deliver therapeutic siRNAs
to the lungs via a nebulizer [250,251]. Another nanocarrier made of triphenyl phosphonium
(TPP)-modified generation 4 poly(amidoamine) (PAMAM) dendrimer (G4NH2-TPP) can be
made into inhalation preparations after loading siRNA [252]. Thus, local administration of
siRNA therapeutics to the lungs can effectively combat lung infections, lung cancer, cystic
fibrosis, asthma, and many other diseases of the respiratory system [253].

The most prominent feature of the respiratory tract is that it has several branches.
From the outside to the inside are: the nasal cavity, trachea, bronchi, bronchioles, and
alveoli. Studies have shown that most lung cancer lesions appear in the bronchi and
bronchioles [254], while SARS-CoV-2 infection mainly occurs in pneumocytes and ciliated
cells and can cause alveolar damage [255]. The main challenges of pulmonary delivery
include mucociliary clearance, alveolar macrophages, the mucus barrier, and shear forces in
the nebulizer [256]. The cilia of the lung epithelium can remove particles deposited on it and
cause them to be coughed up from the respiratory tract [257]. Additionally, macrophages
in the alveoli endocytose and degrade particles through phagocytosis [258]. The presence
of mucus in the respiratory system is a factor that seriously affects the transportation of
nanoparticles. Mucus covering the respiratory tract, composed of mucin, acts as a physical
barrier, which reduces the penetration and diffusion of drugs when it increases in viscosity,
preventing the exposure of the respiratory epithelium [257,259]. In addition, pulmonary
surfactant (PS) is another barrier that nanoparticles need to pass through before they reach
lung cells [260]. Moreover, shear forces increase nebulization temperature and degrade
siRNAs [256]. New treatment strategies based on NP-siRNAs provide new possibilities for
the treatment of lung diseases and promote research progress on targeted drug delivery to
the lung and respiratory tract [261]. Therefore, it is necessary to optimize the size of NPs and
apply appropriate excipients to ensure that NP-siRNAs enter target cells more effectively.

In addition to the liver and lung, other potential targets of NP-siRNAs include the
eyes, brain, kidney, spleen, and tumor tissues. In a rat spinal cord injury model, injection of
NP-encapsulated therapeutic siRNA (PLK4-siRNA) into the injured spinal cord improved
motor function to a certain extent [262]. In rats with optic nerve transection, the eye nerves
are protected by the delivery of caspase-2-siRNA by intravitreal administration [263].
Therefore, the current delivery strategies vary for different organs.

5. Methods to Perform Respiratory Delivery of NP-siRNAs

There are three potential methods to deliver NPs directly to the respiratory tract:
intratracheal, intranasal, and orotracheal. Accordingly, inhalation devices are divided into
different types, namely nebulizers, pressurized metered dose inhalers (pMDIs), dry powder
inhalers (DPIs), and nasal sprays. (Figure 5). Traditional pulmonary drug delivery devices,
such as capillary aerosol generators, and recent inhalers, such as Respimat, were mainly
applied to deliver micron-sized particles [264,265]. The onTarget system, which is identified
as a targeted inhalation device, can also be used to target pharmaceutical ingredients to
specific parts of the respiratory tract [266]. An endotracheal aerosolization device (HRH
MAG-4) applied a solid LNP suspension as the drug carrier. After verification, it was found
that the in vitro efficiency was as high as 90%, and the in vivo efficiency in rats was as high
as 80% [267].



Int. J. Mol. Sci. 2022, 23, 2408 17 of 33

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 18 of 34 
 

 

devices, such as capillary aerosol generators, and recent inhalers, such as Respimat, were 
mainly applied to deliver micron-sized particles [264,265]. The onTarget system, which is 
identified as a targeted inhalation device, can also be used to target pharmaceutical ingre-
dients to specific parts of the respiratory tract [266]. An endotracheal aerosolization device 
(HRH MAG-4) applied a solid LNP suspension as the drug carrier. After verification, it 
was found that the in vitro efficiency was as high as 90%, and the in vivo efficiency in rats 
was as high as 80% [267]. 

 
Figure 5. Examples of different inhalation devices. Inhalation devices are divided into nebulizer, 
inhaler (including pMDIs, DPIs, and SMIs), and nasal spray. pMDIs, pressurized metered dose 
inhalers; DPIs, dry powder inhalers; SMIs, soft mist inhalers. Created with BioRender.com. 

Inhalation is the most popular method of targeted lung delivery [260]. There are dis-
tinct advantages and disadvantages to using specific inhaler devices to deliver siRNA. 
Nebulizers are easy to use, requiring only tidal breathing, and enable the delivery of large 
doses, but they are relatively time-consuming (~5 min) [268] compared to other inhalation 
devices; furthermore, the presence of shear forces due to their mechanism of action could 
make them impracticable for the delivery of siRNA since shear stress can degrade nucleic 
acids, which would have an impact on their biological activity [256]. The advantage of 
pMDIs is their flow independence; however, their disadvantages are linked to the breath 
coordination required by the patient for successful delivery. DPIs are the most recently 
developed delivery device. Comparatively, they are easier to use than the pMDIs since 
they are breath-actuated. They also contain no propellants and are small and portable, 
with the only disadvantage being the higher required respiratory rate that makes DPIs 
not ‘user-friendly’ for pediatric and elderly populations [268]. Regardless of the delivery 
devices used, nanocarriers are needed to protect siRNA from physical and chemical deg-
radation. 

6. Methods to Assess Lung Delivery 
Inertial impaction methods are used as the gold standard for in vitro assessment of 

the aerodynamic deposition of inhaled formulations. Data from these methods are regu-
latory requirements to estimate the amount of the drug that is delivered to the lungs [269]. 

Figure 5. Examples of different inhalation devices. Inhalation devices are divided into nebulizer,
inhaler (including pMDIs, DPIs, and SMIs), and nasal spray. pMDIs, pressurized metered dose
inhalers; DPIs, dry powder inhalers; SMIs, soft mist inhalers. Created with BioRender.com.

Inhalation is the most popular method of targeted lung delivery [260]. There are
distinct advantages and disadvantages to using specific inhaler devices to deliver siRNA.
Nebulizers are easy to use, requiring only tidal breathing, and enable the delivery of large
doses, but they are relatively time-consuming (~5 min) [268] compared to other inhalation
devices; furthermore, the presence of shear forces due to their mechanism of action could
make them impracticable for the delivery of siRNA since shear stress can degrade nucleic
acids, which would have an impact on their biological activity [256]. The advantage of
pMDIs is their flow independence; however, their disadvantages are linked to the breath
coordination required by the patient for successful delivery. DPIs are the most recently
developed delivery device. Comparatively, they are easier to use than the pMDIs since
they are breath-actuated. They also contain no propellants and are small and portable, with
the only disadvantage being the higher required respiratory rate that makes DPIs not ‘user-
friendly’ for pediatric and elderly populations [268]. Regardless of the delivery devices
used, nanocarriers are needed to protect siRNA from physical and chemical degradation.

6. Methods to Assess Lung Delivery

Inertial impaction methods are used as the gold standard for in vitro assessment of the
aerodynamic deposition of inhaled formulations. Data from these methods are regulatory
requirements to estimate the amount of the drug that is delivered to the lungs [269]. These
methods classify particles according to the aerodynamic diameter of the entire delivered
dose [270]. An impactor consists of a series of nozzles (circular or slot-shaped) and an
impaction surface [271,272]. Cascade impactors operate on the principle of curvilinear
motion of particles in the aerosol stream. Air is drawn into the impactor using a vacuum
pump, and the air stream flows through the nozzles and toward the impaction surface,
where particles are separated from the air stream by their inertia. Larger particles collect
on the impaction surface, while small particles do not and follow the air stream. Several
types of impactors are used to assess delivery to the lungs, such as the Andersen cascade
impactor (ACI, Figure 6A) used by the United States Pharmacopeia (USP) (Table 4).
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Table 4. USP cascade impactors for orally inhaled device testing.

Impactors Devices Flow Rates # of Stages Particle Size Range

Andersen cascade impactor pMDIs and DPIs
28.3 L/min (60 and

90 L/min using
modifications)

6 or 8

0.4–0.9 microns
(28.3 L/min), 0.3–8.6

(60 L/min), 0.2–8
(90 L/min)

Multi-stage liquid
impinger DPIs 30–100 L/min 4 1.7–13 microns

Twin-stage impinger pMDIs and nebulizers 60 L/min 2 6.4 microns

Fast-screening impactor pMDIs, DPIs, and nasal
spray 30–100 L/min 2 5 and 10 microns

Next-generation
pharmaceutical impactor

pMDIs, DPIs, and
nebulizers 15–100 L/min 7 0.24–14.1 microns

A pre-separator is typically used between the induction port and stage 0 of a cascade
impactor to capture the large, non-inhalable carrier particles in DPI formulations to prevent
impactor over-loading. By analyzing the amount of active drug deposited on various
stages in which the geometrical models are individually built up for the whole dimensions
of the ACI, it is then possible to calculate several essential parameters that define the
overall inhalation formulation performances. These are the fine particle dose (FPD) and
fraction (FPF), mass median aerodynamic diameter (MMAD), and geometric standard
deviation (GSD) of the active drug particles collected. The impactors are used to assess
the performance of pMDIs, nebulizers, and DPI devices. Using a calibrated pump, these
devices operate at specific flow rates for each that simulate a patient lung capacity of 4 L;
specifically, 28.3 L/min for pMDIs or at 60 and 100 L/min with modifications for DPIs [273].

Another type of cascade impactor is the next-generation pharmaceutical impactor
(NGI, Figure 6D), which was specifically designed for pharmaceutical testing. Particles are

www.copleyscientific.com
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deposited on seven stages (collection cups) that are held in a removable tray for sample
collection. It also has a micro-orifice collector (MOC) that captures extremely small particles
in a collection cup, normally collected on the final filter in other impactors [274]. NGIs are
ideal for characterizing drug deposition by nebulizers [275].

For the assessment of DPIs, the multi-stage liquid impinger (MSLI, Figure 6B) can also
be used. The MSLI has four impaction stages, each containing a small volume of liquid
during operation, and a final filter stage. The liquid in the impinger reduces particle bounce.
For the operation of the MSLI, the induction port is connected to the inhaler, but unlike the
ACI’s, they do not require a pre-separator.

The twin stage impinger, a two-stage separation device (Figure 6C), is a more ‘ele-
mentary’ impinger that separates particles according to two different aerodynamic cut-off
sizes only. The aerosol is fractionated by rushing through a simulated oropharynx and
then through an impinger stage of defined aerodynamic particle size cut-off characteristics.
The fine (pulmonary) fraction which penetrates is collected by a lower impinger. The twin
impinger is a valuable device for routine quality assessment of aerosols during product
development, stability testing and quality assurance, and the comparison of inhalation
drugs [276].

Another two-stage impactor is the fast-screening impactor (FSI, Figure 6E), which
incorporates the NGI’s pre-separator technology and utilizes the same induction port.
The FSI first separates large non-inhalable particles which are captured by the liquid trap,
followed by an impaction stage at a 5-micron cut-off (30–100 L/min). The fine particle
dose is collected on a glass fiber filter. Additional inserts are available for 10-micron cut-off
size, but only at a 30 L/min flow rate. When used for DPI deposition assessments, FPF
performance is comparative to that of full NGI, and the FPD is comparative or better when
using the FSI, depending on the drug tested [277].

While these impactors are an excellent way to test aerodynamic particle size distri-
bution in the lungs, other aspects of the drug uptake, such as dissolution rate, transport
through the epithelium, and therapeutic efficacy of the drugs, cannot be determined using
standard impaction methods [278,279]. To address this issue, novel hybrid approaches and
modifications have been developed, which involve marrying the biological representation
of the lung epithelium with the impaction instrumentation.

Air–liquid interface (ALI) culture models are an effective way to produce epithelial
layers that represent the pulmonary epithelium [280]. Specifically, the Calu-3 lung cell line
has been a promising in vitro model of airway epithelia due to its similarity to in vivo phys-
iology [281]. Nevertheless, the use of primary broncho-epithelial cells is the gold standard
and can be obtained from donors who are healthy or have diseases and/or may be infected
with viruses [280,282–284]. Using these epithelial layers, assays that test the biochemical
characteristics of drugs, such as permeability, integrity, and mucus production of epithelial
layers, can all be performed. Additionally, the impact of the deposited drugs on inflamma-
tion and wound healing can be investigated [285,286]. Haghi et al. (2014b) developed a
modified Andersen cascade impactor (mACI) that incorporated ALI models of Calu-3 cells
inserted within the mACI at stages 4–7, representing the deep lung region. These modified
inserts can be customized to be inserted at various stages of the ACI for studies in both the
upper and the lower respiratory regions of the lungs. By integrating the ALI culture models
within the ACI, the deposition and subsequent permeability of formulations delivered with
pMDIs and DPIs can be assessed with physiological relevance [279,287,288].

Similarly, the NGI can also be modified to include an ALI cell culture model (mNGI),
enabling aerosol deposition and transport across cell epithelia. mNGIs have been engi-
neered to deliver aerosolized particles under controlled vacuum flow to ALI-cultured
Calu-3 cells at stages 2, 3, and 4 [289] and stages 3, 5, and 7 [290], highlighting the versatility
and adaptability of an mNGI depending on the research question.

Thus, utilizing standard and modified cascade impactor methods enables a thorough
assessment of drug deposition. Both the aerodynamic distribution in the lungs as well as



Int. J. Mol. Sci. 2022, 23, 2408 20 of 33

cellular responses such as uptake, transport, and therapeutic efficacy of known and novel
inhaled formulations can be determined.

7. Animal Models to Assess Pulmonary Delivery

Preclinical animal models are essential for the translation of RNAi-based therapeutics
from in vitro studies to human clinical implementation [291]. Several factors need to
be considered when choosing appropriate animal models. Relative costs and logistics
with the handling and storage of animals are major factors dictating the species used in
preclinical studies.

Mouse models are the most widely used animal models to assess the pharmacokinetics
and the effects of pulmonary drug delivery [291]. They reflect important features of human
disease with severe infection and virus-induced hyper-inflammation, as well as features
of acute lung injury, acute respiratory distress syndrome, impaired lung function. Mice
are relatively inexpensive and easy to handle and can be bred in large quantities for high-
throughput analyses [40]. Larger rodent species, such as rats or hamsters, are also used
for the examination of pulmonary drug delivery; however, these models are much less
commonly used compared to standard mouse models. This is due to their larger size and
lack of established infrastructure in many laboratories, which dictates higher general costs
for purchasing, larger specialized housing requirements, and ultimately, smaller sample
size. Similarly, ferrets are less commonly used than mouse models due to higher costs and
the requirement for unique housing arrangements. This species shares a high degree of
anatomical similarity with the human respiratory tract, making them an excellent model
for pulmonary drug delivery assessment [292]. Non-human primates (NHP), such as the
Rhesus macaque, are uncommonly used for pulmonary drug delivery assessment and are
typically only used in the final stages of toxicology and safety profiling prior to human
trials [293]. NHP models are very expensive and require highly specialized animal facilities,
which are rare. NHP models have a very high fidelity of recapitulation of the human
respiratory system, making them the ‘gold standard’ in terms of clinical translatability.
Within the context of SARS-CoV-2 infection, a summary of the different animal models to
interrogate COVID-19 pathogenesis can be found here [291].

Routes of pulmonary drug delivery are relatively similar between all different animal
models; however, the volume of the drug administered and the specialized equipment
required all need to be scaled to the relative size of the animal species [278]. Intranasal drug
delivery is the most common pulmonary drug delivery system and can be performed using
light anesthesia to administer small volumes to the nostrils, which can be done quickly and
with relative ease. However, particle size is an important determining factor for successful
intranasal drug delivery, as it needs to bypass the mucociliary barrier within the nasophar-
ynx for deposition into the distal airways and alveoli [294]. Comparatively, intratracheal
drug delivery requires the induction of surgical anesthesia prior to tracheostomy and/or
tracheal intubation to administer larger volumes to the lungs, which is more labor-intensive
and takes longer compared to intranasal delivery [295]. Aerosol exposure is often used
to deliver nebulized drug formulations that are suspended in a particulate state. This is
often achieved using a passive inhalation system via nose-only exposure or a whole-body
exposure chamber. This is less common, largely due to low throughput capacity, variable
dosage delivery, larger amounts of the drug being required, and the process is stressful for
the animal due to the restraints used during the procedure [278,296].

Administration of RNAi-based therapeutics in mice via the intranasal and intratra-
cheal routes are highly successful for the amelioration of experimental asthma disease
phenotypes [297–302], chronic obstructive pulmonary disease, lung cancer, influenza, and
SARS-CoV infections [298,303–305]. Recently, lipid-nanoparticle-encapsulated siRNA for-
mulations injected via intravenous administration were shown to increase survival and
significantly reduce infectious viral titers in a lethal model of SARS-CoV-2 infection in
K18-hACE2 mice [30]; however, the administration of these formulations via pulmonary
delivery was not evaluated. These mice have the human ACE2 receptor incorporated into
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the epithelial specific K18 promoter and thus express it on the epithelial surface to enable
efficient infection [291]. Furthermore, intranasal delivery of siRNA to block SARS-CoV-2
RdRp significantly enhanced the antiviral response and reduced lung inflammation in a
COVID-19 hamster model [118]. The implementation of siRNA therapies for pulmonary
delivery in both rats and ferrets has been examined in the context of asthma, chronic
obstructive pulmonary disease, cystic fibrosis, and influenza infection models; however,
to date, this has not been explored for COVID-19 [306–308]. Finally, the use of siRNA
in NHP was highly effective in post-exposure protection against the Ebola virus when
given intravenously, whilst prophylactic and therapeutic siRNA intranasal administration
reduced SARS pathogenesis in Rhesus macaques, providing strong rationale and incentives
for the use of NHP in developing RNAi-based therapeutics for COVID-19 [309,310].

8. Conclusions

Despite the advances in RNA therapeutics and nanomedicine, COVID-19 continues to
cause severe infections and deaths globally, highlighting the urgent need to optimize RNAi
treatment strategies and appropriate NP carrier platforms for SARS-CoV-2 infection. Im-
portantly, these future advances will provide preparedness in the form of lung therapeutic
delivery strategies for future emerging diseases.
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