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Abstract—The large amount data is one challenge in 

electroencephalogram (EEG) analysis, in which the channel 

(2D), time (1D) and spectral (1D) are generally considered. 

Convolutional neural networks (CNNs) have drawn much 

attention for automatic feature learning in various fields. 

Meanwhile, many studies have demonstrated integration from 

multiple sources and decisions could boost performance. 

However, CNN for EEG analysis usually involves millions of 

parameters, which easily leads to overfitting. A new model of 

a multi-stream 3D CNN with parameter sharing is proposed 

for EEG. Two EEG datasets, the lane-keeping task (LKT) 

dataset and sleep dataset, are applied. For LKT dataset, the 

proposed multi-stream 3D CNN with parameter sharing 

model achieves 0.5486 root mean square error (RMSE), 

showing improvement by at least 2.77% compared to the other 

approaches. In the sleep dataset, the error rate of the proposed 

model was 24.65%, showing at least 10.28% improvement in 

performance compared to the other methods. The lower 

RMSE and error rate show that the multi-stream 3D CNN 

with parameter sharing model efficiently extracts significant 

features from EEG data. Moreover, the sharing mechanism 

even reduces the risk of overfitting and number of parameters 

by comprehending common representations among multiple 

streams. 

 

Index Terms—convolutional neural network, parameter 

sharing, EEG 

 

I. INTRODUCTION 

Deep learning has gained great attention in the machine learning 

area due to its ability to learn important features from multiple 

layers hierarchically and build high-level representations 

automatically [1]. Deep learning algorithms have yielded 

competitive performance in multiple domains, such as image 

recognition[2, 3], human action recognition [4-6], image 

captioning [7, 8], speech recognition [9, 10], and brain-computer 

interfaces (BCIs) [11-15]. A convolutional neural network (CNN) 

is a typical type of deep learning structure in which a series of 

convolutional layers and pooling layers are applied to the input 

images[16]. CNNs can achieve superior performance because the 

hierarchy of features is built and extracted effectively from lower- 

level features [16, 17]. Encouraged by the significant capabilities 

of extracting features, recent studies [5, 18] have demonstrated 

further improved performance by incorporating several sources or 

fusing decisions from multiple CNNs. Simonyan and Zisserman 

published a two-stream architecture that is composed of spatial 

and temporal networks [5]. Final predictions were computed by 

averaging the outputs of the spatial and temporal networks. 

Currently, there are an increasing number of datasets in which the 

dimension of critical information is more than three. Ji et al. first 

applied a three-dimensional convolutional neural network (3D 

CNN) to extract motion features from spatial and temporal 

domains [4]. Compared with 2D networks, 3D CNNs can encode 

richer spatial information and extract more representative features 

via a hierarchical architecture trained with 3D samples [19]. 

As an effective way to monitor changes in human behaviour and 

brain states [20, 21], electroencephalogram (EEG) data have been 

greatly promised by deep learning (DL) and machine learning 

(ML) to learn good feature representations from raw signals. 

Several studies [13-15, 22-25] have leveraged ML or DL 

algorithms to analyse EEG signals. For example, Reddy et al. 

proposed fuzzy time-delay common spatial-spectral patterns to 

model human behaviour through EEG dynamics during 

drowsiness driving [23]. Wang et al. leveraged a support vector 

machine with a radial basis function kernel to distinguish brain 

dynamics to track attentional changes during distracted driving 

[24]. In our previous research, Hung et al. applied a 3D CNN with 

channel-wise convolution to extract EEG features and predict 

fatigue levels during continuous driving [14]. Chen et al. used raw 

EEG data to train deep learning models that could select specific 

features for better target detection when performing rapid serial 

visual presentation tasks [15]. Due to these successful ML- or DL- 

based EEG analysis, raw EEG signals and extracted features from 

the frequency, temporal or spatial domains can provide a high 

possibility to investigate physiological changes and model human 

performance. 

However, an inevitable issue is that while training EEG data 

with all information from frequency, temporal and spatial domains 

to achieve a higher performance, the enormous inputs from the 

combination of multiple networks into one model could generate 

a mass of related parameters as well, which easily encounters 

overfitting problems during the training phase. Besides caused by 

multiple domains network, the overfitting problem is more serious 

for EEG analysis itself because there are high diversities and 

variations across the data from multiple individuals. To overcome 

this problem, transfer learning and multi-task learning have been 

broadly applied for EEG-based training and analysis [26, 27]. The 

characteristics of transfer learning [28, 29] and multi-task learning 

[30] are suitable to overcome overfitting and subject-variant 

problems. Transfer learning aims to use knowledge from one or 

more source domains to help the learning in a target domain [31, 

32]. Transferring the pre-trained parameters from the source 

domain to the target domain avoids training complex models from 
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scratch [33]. Multi-task learning makes models comprehend 

multiple tasks simultaneously. Features in different networks 

enable transfer across related tasks to reinforce each other 

effectively [31, 33, 34]. In summary, both transfer learning and 

multi-task learning can share representations between related tasks 

or different domains. These characteristics can benefit overfitting 

and subject-variant problems in EEG analysis. 

As one of the most widely used approach for multi-task learning 

with neural networks, hard parameter sharing was applied to learn 

a common representation for all tasks through completely sharing 

weights/parameters between tasks [35]. This shared feature is used 

to model the different tasks, usually with additional, task-specific 

layers that are learned independently for each task. In fact, 

research summarized that the risk of overfitting the shared 

parameters is an order N, where N is the number of tasks that is 

smaller than overfitting the task-specific parameters from the 

output layers [30, 36]. In other words, during training phrase, more 

tasks the model learning simultaneously, the more model has to 

find a representation that captures all of the tasks and the less is 

the chance of overfitting on original task. Thereby, hard parameter 

sharing acts as regularization for multiple tasks, which is capable 

to greatly reduces the risk of overfitting. 

Inspired by the above mechanisms and approaches, we propose 

a model, multi-stream 3D CNN with parameter sharing, in this 

study to enhance the communication between multiple streams 

and reduce the number of parameters for EEG-based analysis. To 

fully exploit multimodal information for important characters in 

different domains of EEG data, the 3D CNN has been proven to 

achieve better performance and results in previous studies [4, 14]. 

In this work, we hypothesized that all information from EEG 

signals can improve the reliability and stability of human states 

identification. Note that the dimensions of EEG signals include 

spatial (2 dimension), temporal (1 dimension) and frequency (1 

dimension). We then leverage convolution neural network (CNN) 

to extract the significant patterns for modelling the relationships 

between the brain dynamics and human states. As each frequency 

band has different functional characteristics, we use one CNN 

model for every frequency bin in this study. Meanwhile, the 

increased or decreased amplitude is the main index across all 

frequency bins. The sharing parameters across frequency bins is 

applied to extract the significant changes of amplitude in the 

different CNN models. Proven by experimental results, with the 

sharing mechanism, the model converges fast and avoids 

overfitting since it has a smaller number of parameters [37] than 

3D CNN, CNN and neural network (NN) and recurrent neural 

network models. Additionally, the transferable features between 

parameter sharing are introduced in this section. 

A. Multi-stream 3D CNN 

In the following, the proposed multi-stream 3D CNN 

architecture is described. The proposed architecture developed for 

EEG signal analysis is shown in Fig. 1. N 3D CNN streams are 

trained in the proposed model, and each stream focuses on a 

specific frequency bin (1 Hz, 2 Hz to N Hz). The different 

frequency bin has different functional characteristics which can be 

indexed by the increased and/or decreased amplitude values in 

each frequency bin. the increased and decreased amplitude values 

from one frequency bin. are the major indexes There is a 

consensus of broad approval that high disparities in brain states 

can exist in different frequency domains [25, 38, 39]. The 

separation of spectrum information for each stream aims to make 

each stream focus on a single frequency and obtain more accurate 

features and knowledge of brain states from specific frequency 

domains, which enables us to classify different interpretations of 

the brain state on the spectrum more precisely [40]. Detailed 

information on each layer is provided in the following sections. 
 

 

Fig. 1. Architecture of the multi-stream 3D CNN with parameter sharing. The input 

x and y indicate channel information. N 3D CNN streams are trained in respective 

model, and each stream focuses on a specific frequency bin (1 Hz, 2 Hz to N Hz). 

The corresponding convolutional layers share the same set of parameters. See 

Section B below for a detailed method of updating the same set of parameters in 

convolutional layers. 

 
1) Convolution Layer: At the convolutional layer, 3D convolution 
is performed and defined by 
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analysis and further improve overall BCI performance. 

The rest of the study is organized as follows. The structure of a 

multi-stream 3D CNN with parameter sharing is illustrated in 

Section 2. Implementation details and experimental results of the 

LKT and sleep datasets are given in Section 3 and Section 4, 

respectively. Section 5 discusses the results observed in two 

experiments. Section 6 summarizes the conclusions of the 

experimental results. 

 

II. MULTI-STREAM 3D CNN WITH PARAMETER 
SHARING 

The architecture of the multi-stream 3D CNN and the setting of 

where 𝑣𝑥𝑦𝑧 is the unit at position (𝑥, y, z) in the 𝑖th layer and 𝑗th 

feature map, 𝑏ij is the bias between the two layers, 𝑚 is the 𝑚th 

filter in the convolutional layer, 𝑃, 𝑄 and 𝑅 are the kernel sizes of 

the filters, 𝑤𝑝𝑞𝑟 is the weight at position (𝑝, 𝑞, 𝑟) of the 𝑚th filter, 

and a rectified linear unit (ReLU) is the activation function. 

2) Pooling Layer: Pooling layers are connected to reduce the 

sample of feature maps from the convolution layers, which sub- 

samples the volume spatially independently in each depth slice of 

the input volume. We apply the 3D pooling operation and 2D 

pooling operation at the last layer to sub-sample the data points, 



 

 

which reduces the spatial and temporal resolution of every feature 

map. Both kinds of operations perform sub-sampling on the 

feature maps without overlapping. They select the maximum unit 

from the specific region. 2D max-pooling and 3D max-pooling use 

2×2 filters and 2×2×2 filters, respectively. With pooling layers, 
models can reduce the size of representation to decrease the 

where 𝐿 is loss function. First, we compute the gradients of each 

stream of 1 Hz to N Hz spectral data. Then, we sum the gradients 

of multiple streams and update the parameters by the total value. 

As represented in Equations 3 and 4, the model renews the 

trainable parameters every iteration 𝑖 until convergence. 
𝑁 

number of parameters and computation. 

3) Fully Connected Layer and Output Layer: These two layers 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 ∇𝐿(𝜃i) = M ∇𝐿(𝜃i)𝑛 

𝑛1* 

(3) 

present the function of classification/recognition in the whole 

proposed model architecture. After a sequence of convolutional 

layers and pooling layers, the size of the output feature maps of 

each stream becomes 4×4×4. All feature maps are concatenated in 

the channel dimension and flattened into a one-dimensional 

vector. Each unit in this vector is fully connected to each of the 

128 units. Then, the fully connected layer performs regression to 

predict with the soft-max activation function. 

With the aid of a multi-stream 3D CNN, feature and specific 

knowledge from different frequency domains can be trained and 

grabbed precisely. However, the usage of twenty 3D CNN models 

undoubtedly results in overfitting problems due to the large 

number of parameters trained in the model. The lack of shared 

representations causes the whole model to not comprehend the 

relevant parts insufficiently [41]. Thus, to converge the model fast 

and avoid overfitting, we applied parameter sharing to transfer 

similar features among multiple streams to help the model grab 

relevant parts effectively. 

B. Parameter Sharing 

Considering the above architecture of a multi-stream 3D CNN, 

the major challenge is the computational complexity and the time 

needed to train large networks [42]. In the proposed architecture 

for human state estimation, there are N different modes for the 

selected frequency bins (1 Hz, 2 Hz to N Hz). Each frequency band 

has different function characteristics which can be investigated 

through the increased or decreased amplitude [43]. Then one CNN 

model is used to extract the significant features from each single 

frequency bin. One essential characteristic of CNNs is that the 

feature map can reflect the affine transformations in the input 

image. Therefore, the feature map can provide the outputs that are 

subjected to the transformed inputs. As the increased or decreased 

amplitude is the common features across different frequency bins, 

we then apply the same parameters to all CNN models. In previous 

studies, parameter sharing demonstrated that the number of 

training parameters can be dramatically reduced [44, 45]. In this 

way, the sharing mechanism can extract the significant spectrum 

changes across different human states. 

In Fig. 1, the blue blocks with ‘shared’ text indicate that the 

corresponding convolutional layers use the same set of 

parameters. The method of updating the same set of parameters in 

convolutional layers is introduced as follows. The weights and 

biases in the corresponding convolutional layers are represented 

by 𝜃 = {𝑤*, 𝑤+, ⋯ , 𝑏*, 𝑏+, ⋯ }, and the initial value of 𝜃 is 𝜃0. The 

gradients of the parameters of the 𝑛𝑡. stream are defined as 

𝖥
𝜕𝐿(𝜃)/𝜕𝑤*

⎤
 

⎢
𝜕𝐿(𝜃)/𝜕𝑤+⎥

 

𝜃i2* = 𝜃i − ∇𝐿(𝜃i) (4) 
The sum of gradients and updating of parameters of different 

source domain data will help the network learn and keep all 

essential knowledge and avoid retraining similar parameters, 

especially for the temporal dimensions, with every iteration. 

 

III. EXPERIMENT Ⅰ: LKT DATASET 

In the first experiment, the multi-stream 3D CNN with 

parameter sharing and other methods (more detail in the next 

paragraph) on the LKT dataset. We used leave-one-subject-out 

cross-validation to evaluate regression and classification 

performance. In addition, the 10% training set was assigned as the 

validation set, which was used to determine the stopping epoch. 

Those models were trained by the adaptive moment estimation 

(Adam) optimizer with a mini-batch size of 32. The rates of start 

learning and decay are 0.001 and 0.96, respectively. The early stop 

threshold is 25 epochs. 

A. LKT Dataset and Pre-processing 

LKT is a lane-keeping task whose aim is predicting the driver’s 

driving performance based on fatigue level. This study obtained 

the approval of the local ethics committee (Institutional Review 

Board of Taipei Veterans General Hospital, Taiwan), and were 

recorded at National Chiao Tung University. The experiment was 

conducted in a 360 degree virtual reality lab [46, 47] with a motion 

platform, which simulates the driving environment in reality. The 

entire dataset includes 71 one-hour sessions from 37 normal 

participants. The performance of the drivers is measured by the 

reaction times (RTs). RT is the latency between the onset of 

deviation and the onset of response. During the period, the 

participants were aware of the deviation and drove the car back to 

the cruising lane with a steering wheel, as shown in Fig. 2. A high 

RT indicates that the participants were relatively drowsy in this 

virtual reality highway driving scenario; in contrast, a lower RT 

indicates that the participants were relatively alert. The proposed 

model with a sharing mechanism aims to predict RT by extracting 

crucial information on human brain dynamics. 
 

 
Fig. 2. The experimental scenario of the LKT dataset. The cruising car was 

randomly drifted to the left or right, and the participants were asked to control the 

∇𝐿(𝜃)𝑛 = ⎢ 
⋮ ⎥ 

⎢ 𝜕𝐿(𝜃)/𝜕𝑏* ⎥ 
⎢𝜕𝐿(𝜃)/𝜕𝑏+ ⎥ 
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(2) car back to the cruising lane. We use a 5.8-second EEG signal before the event 

onset (baseline) as the input data for the multi-stream 3D CNN, and the period 
between the event onset and the response onset is defined as the reaction time. The 

period between two continuous trials is approximately 7 to 12 seconds. 



 

 

 

 
Fig. 3. Structure of LKT data pre-processing and feature extraction in the multi-stream 3D CNN algorithm. For each trial, EEG signals were segmented into a 5.8- 
second baseline and divided into 13 one-second time frames with 600 ms overlap between two frames. FFT was then applied to translate the frequency information. 

There were 20 frequency bins generated (between 1 Hz to 20 Hz). Each frequency bin was composed of 13 sequential 2D EEG channel maps. Then the 5.8-second 

EEG signals were transformed into 4D data format, which are 2D EEG channel map × time frame × frequency bin. 

Fig. 3 shows the data structure of our multi-stream 3D input 

data. We applied EEGLAB for EEG data preprocessing [48]. The 

raw EEG data was first downsampled into 250-Hz, followed by a 

high-pass filter (1 Hz), and a low-pass filter (50 Hz). Then the 

EEG signals were segmented into 5.8-second baseline signals, 

which began 5.8 seconds before event onset (refer Fig. 2). The 

baseline signal was divided into 13 one-second time frames with 

a 600 ms overlap between two frames. Fast Fourier transform 

(FFT) was performed to transform a time frame into a 2D EEG 

channel map. Twenty frequency bins were generated from 1 Hz to 

20 Hz with a 1 Hz difference. Each frequency bin was composed 

of 13 sequential EEG channel maps. Additionally, the 2D EEG 

channel maps included the frequency power of all EEG channels 

in one single time frame. Hence, the 5.8-second EEG signals were 

transformed into 4D data format, which are the 2D EEG channel 

maps, time frame and frequency bin. In terms of normalization, 

the training and testing datasets were normalized by subtracting 

the mean of the training dataset and dividing by the standard 

deviation of the training dataset. Additionally, the RTs in each trial 

in a session were divided by the tenth percentage shortest RT in 

their session. After data pre-processing and normalization, we 

applied the multi-stream 3D CNN with parameter sharing to 

analyse the temporal and spatial information effectively. Each 

TABLE Ⅰ 
DETAILS OF THE MULTI-STREAM 3D CNN ARCHITECTURE 

FOR THE LKT DATASET 

 
 

stream focused on addressing one frequency bin of EEG signals. 

Therefore, the input shape for each 3D CNN stream was 2D EEG 

channel map × time frame. 

B. Regression Performance on the LKT Dataset 

The structure of each 3D CNN stream is shown in Table Ⅰ. We 

adopt 3×3×3 (height, width, depth) filters in all three 

convolutional layers, in which there were 16, 32 and 64 filters, 

respectively. In the pooling layers, we utilize max-pooling with 

2×2×2 filters in the first and second convolutional layers. The third 

TABLE II 

INPUT CONFIGURATION AND COMPARISON RESULTS OF PROPOSED MODELS AND OTHER ALGORITHMS FOR THE LKT DATASET 

 

Method 
Multi-stream 3D CNN 
with parameter sharing 

Multi-stream 3D 
CNN 

4D CNN 3D CNN CNN NN 

 

Input data points (shape) 
 

266240 (2D EEG channel map × time frame × frequency bin) 

7800 (1D EEG 

channel × time frame × 

frequency bin) 

600 (1D EEG channel × 

frequency bin) 

Parameters amount of 
convolution layer 

69K 1393K 208K 69K 23K - 

RMSE 0.5486±0.1257 0.5549±0.1344 
0.5638 

±0.1391 

0.5862 

±0.1359 

0.5992 

±0.1489 

0.6188 

±0.1374 

Improvement of 

Proposed model 
- 1.14% 2.77% 6.85% 9.22% 12.79% 



 

 

convolutional layer utilizes a 2×2×1 filter. After performing 

convolution and reducing the dimensionality, the output of the last 

pooling layer in each stream has 64 feature maps with a size of 

4×4×4. They are concatenated in the channel dimension into a size 

of 4×4×4×1280 and flattened to a one-dimensional vector. Then, 

the fully connected layers perform regression to predict the RTs. 

The comparison results and input structures of the multi-stream 

3D CNN with and without parameter sharing, as well as other 

state-of-the-art algorithms, namely, 4D CNN [49], 3D CNN [14], 

CNN and NN on the LKT dataset are described in Table Ⅱ. 

According to the results, the sharing mechanism made the 

convergence rate faster and eased overfitting due to a smaller 

number of parameters. The RMSE of the multi-stream 3D CNN 

with parameter sharing was 0.5486±0.1257. The RMSE improved 

over the performance of the 4D CNN, 3D CNN, CNN, NN by 

2.77%, 6.85%, 9.22% and 12.79%, respectively. The results 

indicated that our proposed model with a sharing mechanism has 

the capability to predict RT by extracting crucial information on 

human brain dynamics. 

Fig. 4 shows the average RMSE and standard deviation for 

each method. To evaluate the regression performance statistically, 

a t-test with Bonferroni correction was performed for pair 

comparisons. The multi-stream 3D CNN with parameter sharing 

has the highest regression performance with a lower standard 

deviation, and the performance is significantly higher than 3D 

CNN, CNN and NN (p < 0.005 with Bonferroni correction). 

 

Fig. 4. Average RMSE and standard deviation of LKT dataset. The colour bars 
represent the comparing algorithms respectively, and the error bars indicate 

standard deviations. * indicates significant difference among pair methods with 

Bonferroni correction ( 𝑝 < 0.005). 

C. LKT Dataset Visualization 

In this section, we visualized topo-images and feature maps to 

explore the relationships between brain dynamics in specific bands 

and driving performance. 

First, we show the input data in the theta and alpha bands under 

alert and drowsy conditions, as shown in Fig. 5. Previous EEG 

studies showed that frequency power in theta (4-7 Hz) and alpha 

(8-13 Hz) bands was a significant indicator for monitoring brain 

dynamics during a driving task [38, 50, 51]. The increased theta 

and alpha activities are related to driver drowsiness. Furthermore, 

the theta power of posterior brain regions dramatically increases if 

the driver is at a high fatigue level [52, 53]. A high RT indicates 

that the participant is relatively drowsy; in contrast, a low RT 

indicates that the participant is relatively alert. To understand the 

influence of parameter sharing, we visualize the feature maps 

distributed in all convolutional layers. The feature maps of the 

multi-stream 3D CNN with and without parameter sharing are 

shown in Fig. 6. In the alpha band, both models caught the 

increased power of the drowsy condition. With sharing, the trend 

of the brain dynamic state over time was extracted more correctly. 

Without a sharing mechanism, the model confused drowsiness 

with alerts in the theta band. 

 

Fig. 5. The input data of multi-stream 3D CNN. The baseline signals are divided 

into 13 one-second time frames with a 600 ms overlap between two frames. The 

labels of each image refer to the sequence of time frames, e.g., label 1 means 0- 

1000 ms; label 2 means 400-1400 ms and label 13 means 4800-5800 ms. The top 

half of topo-images relates to drowsy conditions, and the bottom half of topo- 

images relates to alert conditions. The right half part and left half part are topo- 

images of theta and alpha bands, respectively. 

 

 
Fig. 6. Feature maps of third convolutional layers in the theta and alpha bands. The 

left half is the predicted RTs and feature maps of the multi-stream 3D CNN with 

parameter sharing. The right half part shows the predicted RTs and feature maps 

of the multi-stream 3D CNN without parameter sharing. 

 

IV. EXPERIMENT Ⅱ: SLEEP DATASET 

In this experiment, another EEG dataset, sleep dataset is used to 

compare the performance between the proposed model (ref. Fig. 

1) and other algorithms. All same algorithms with the same 

training strategies for the LKT dataset were applied. 



 

 

A. Sleep Dataset and Pre-processing 

The sleep dataset included nine participants (5 males and 4 

females; at the age of 22±2 years). All participants were asked to 

keep a regular daily routine and filled out the sleep schedule for 

one week before the experiment. Participants were required to 

sleep for one night in the sleep laboratory at National Chiao Tung 

University, Taiwan. All experimental procedures were approved 

by the local ethics committee (Institutional Review Board of 

Taipei Veterans General Hospital, Taiwan). The sleep 

experimental environment was especially designed based on a 

home-style bedroom to avoid the impact of an unfamiliar 

environment. In addition, there were cameras for monitoring and 

emergency phones that could be used if the participants felt 

uncomfortable or had physiological problems. The temperature of 

the experimental room was controlled at 24 to 26 degrees Celsius, 

which is a suitable range for sleep. 

The experimental duration was from 22:30 to 07:30. At 

approximately 23:30, the experiment started with simultaneous 

EEG, electrooculography (EOG), and electrocardiography (EMG) 

recordings until the participants woke up. An experienced sleep 

technologist from Hospital follows the scoring rules in the 

American Academy of Sleep Medicine (AASM) to score all 

recorded EEG signals. In general, there are five sleep stages 

including wake stage (W), non-rapid eye movement (NREM) 

stage 1 (N1), NREM stage 2 (N2), NREM stage 3 (N3) and rapid 

eye movement (REM) stage. The N1, N2 and REM stages are 

regarded as light sleep in which people more easily wake up [54]. 

N3 is referred to as slow-wave sleep (SWS) or deep sleep [54]. 

During the whole night of sleep, the stage changes with cycles of 

REM and NREM, normally in the order of N1 → N2 → N3 → N2 

- REM. Each cycle lasts for 90 to 110 minutes, and the cycle 

repeats four to six times a night. The proposed model with a 

sharing mechanism aims to classify diverse sleep stages by 

extracting crucial information on human brain dynamics. 

The protocol of pre-processing and feature extraction for sleep 

dataset is same as LKT data (refer Fig. 3 for LKT data), except 

different signal length for baseline and overlap was extracted to fit 

sleep dataset. We only extracted the third and fourth cycles (180th 

~ 360th minute) and segmented the EEG signals into 30-second 

trials. The data in one trail are divided into 29 two-second time 

frames with a one second overlap between two frames. FFT was 

then applied to every time frame to translate the frequency/spectral 

information from 1 Hz to 20 Hz. Each frequency bin was 

composed of 29 sequential EEG channel maps. Additionally, the 

2D EEG channel maps include the frequency power of all EEG 

channels in one single time frame. Hence, the 30-sec EEG signals 

were transformed into 4D data format, which are the 2D EEG 

channel map, time frame and frequency bin. In terms of 

normalization, the training and testing datasets were normalized 

by subtracting the mean of the training dataset and dividing by the 

standard deviation of the training dataset. 

B. Classification Performance on the Sleep Dataset 

The structure of each 3D CNN stream with parameter sharing is 

shown in Table Ⅲ. We adopted 3×3×3 (height, width, depth) 

filters in all three convolutional layers, in which there were 16, 32 

and 64 filters, respectively. In the pooling layers, we utilized max- 

pooling with 2×2×2 filters. After performing convolution and 

reducing the dimensionality, the output of the last pooling layer in 

each stream had 64 feature maps with a size of 4×4×4. They were 

concatenated in channel dimensions into sizes of 4×4×4×1280 and 

flattened to a one-dimensional vector. Then, the fully connected 

layers classified the EEG signals into five categories. 

 
TABLE Ⅲ 

DETAILS OF THE MULTI-STREAM 3D CNN ARCHITECTURE 

FOR THE SLEEP DATASET 

 

The comparison results as well as input configurations of the 

multi-stream 3D CNN with parameter sharing and other methods 

are summarized in Table Ⅳ. With the sharing mechanism, the 

model could avoid overfitting owing to fewer parameters. 

Additionally, we compared the system performance with other 

methods, including 3D CNN, CNN and NN. 

The error rate of our proposed model was 0.2465±0.07, which 

represented improvements over the performance of 3D CNN, 

CNN and NN by 10.28%, 14.80% and 16.06%, respectively. The 

model with sharing mechanism used 69K parameters (same as 3D 

CNN in TABLE IV), but the error rate improved by 10.28%. The 

results demonstrate that the proposed model can successfully 

capture significant features and relationships from brain signals. 

Fig. 7 shows the average error rate and standard deviation for 

each method. The t-test with Bonferroni correction indicated that 

there was no statistically significant difference in classification 

performance among the different methods on the sleep dataset (p 

< 0.005 with Bonferroni correction). 
 

TABLE Ⅳ 
INPUT CONFIGURATION AND COMPARISON RESULTS OF PROPOSED MODELS AND OTHER ALGORITHMS FOR THE SLEEP DATASET 

 

Method 
Multi-stream 3D CNN with parameter 

sharing 

Multi-stream 3D 

CNN 
3D CNN CNN NN 

 

Input data points (shape) 

 

593,920 (2D EEG channel map × time frame × frequency bin) 

11,600 (1D EEG 

channel × time frame 

× frequency bin) 

 

400 (1D EEG channel × frequency bin) 

Parameters amount of 
convolution layer 

69K 1,393K 69K 23K - 

Error rate 0.2465±0.07 0.2635±0.09 0.2719±0.08 0.2830±0.08 0.2861±0.13 

Improvement of Proposed 

model 
- 6.91% 10.28% 14.80% 16.06% 



 

 

 

 
Fig. 7. Average error rate and standard deviation of the sleep dataset. The colour 

bars represent the comparing algorithms respectively, and the error bars indicate 

standard deviations. The proposed multi-stream 3D-CNN with parameter sharing 

reach the lowest error rate, but there is no significant difference as comparing with 
the other state-of-the-art algorithms. 

C. Sleep Dataset Visualization 

In the AASM guidelines [54], the characteristics of each sleep 

stage were recorded in detail. Fig. 8 shows the input data and 

feature maps across four sleeping states (N1, N2, N3 and REM). 

In the delta bands, the frequency power gradually increases from 

the N1 stage to the N3 stage (ref. Fig. 8(a)). This indicates that the 

participant will deeply sleep [55]. The difference between the N1 

and N2 stages is also in the theta band (ref. Fig. 8(b)). As a person 

moves from N1 to N2, brain activity might increase in the theta 

band. When the participant is in the REM stage, lower frequency 

power in the alpha band occurs (ref. Fig. 8(c)). The participant 

might have intense dreams during REM sleep since the brain is 

more active. 

According to those characteristics, we then focused on 

exploring whether the feature maps included the relationships 

between the changes in sleep stages. We want to understand what 

different information is learned between multi-stream 3D CNNs 

with and without parameter sharing, which improves the 

performance. The feature maps of the third convolutional layers in 

the delta band, theta band and alpha band are shown in Fig. 8(a- 

c), respectively. In the delta band, both models extracted the 

frequency power, which gradually increased from the N1 stage to 

the N3 stage. In the theta band, the feature maps extracted by the 

models with and without parameter sharing were significantly 

different. With the sharing mechanism, the model with the highest 

power occurs in the N3 stage. In contrast, the trend of human brain 

activity from the N1 to N3 stages could not be extracted 

successfully without parameter sharing. In the alpha band, the 

model with parameter sharing obtained decreased frequency 

power in the REM stage. Without a sharing mechanism, the 

variation among the four sleep stages was not extracted. 

 

V. DISCUSSION 

To enhance communication between multiple streams, we 

utilized a method to combine parameter sharing and a multi- 

stream 3D CNN for EEG processing in this study. Each stream has 

a specific spectrum input. With parameter sharing, the model had 

the capability to extract crucial information to distinguish 

physiological conditions and capture the trend of brain dynamic 

states more exactly. Additionally, the sharing mechanism also 

improves the convergence rate and avoids overfitting by 

decreasing the number of parameters. In the following sections, 

we discuss the results observed in both the LKT and sleep datasets. 

A. Brain dynamics under fatigue driving 

In the LKT dataset, the multi-stream 3D CNN outperforms the 

NN, CNN, 3D CNN and 4D CNN (Ref. Table Ⅱ) and extracts the 

increased theta and alpha activities in the drowsy condition (Ref. 

Fig. 5 and Fig. 6). On the contrary, the model without a sharing 

mechanism might not extract significant features between drowsy 

and alert conditions because of lack of the shared information 

across similar frequencies. As illustrated in Fig. 5, without 

sharing, the model cannot distinguish drowsiness between alert 

states by similar patterns in the theta band. With sharing, the trend 

of the brain dynamic state is extracted more correctly. This may 

be because features can be transferred across related tasks to 

reinforce each other [30] and effectively distinguish the similarity 

with the sharing mechanism. In addition to greatly decreasing the 

number of parameters and avoiding the overfitting problem, the 

proposed model has good performance in processing EEG signals 

with high similarity. 

B. Brain dynamics across different sleeping stages 

The proposed multi-stream 3D CNN reaches lower error rate 

for sleeping stage identification as shown in Table Ⅳ and Fig. 7. 

According to feature maps (Ref. Fig. 8), the sharing mechanism 

could obtain important patterns of brain dynamics for 

distinguishing sleeping stages (N1, N2, N3 and REM). As shown 

in Fig. 8, the increased activities over all three major frequency 

ranges can be extracted for sleeping stage identification. In 

contrast, a multi-stream 3D CNN without a sharing mechanism 

could not efficiently extracted the significant patterns of brain 

activities across the different sleeping stages. Particularly, the 

patterns in alpha band across all sleeping stages are pretty similar 

(Ref. Fig. 8(c)). However, the proposed models have the capability 

to extract significant patterns of brain dynamics to distinguish 

sleeping stages. 

 

VI. CONCLUSION 

In this study, we include all channel, time and frequency 

domains to pursue lower error rate for prediction problem. Two 

high dimension datasets including LKT and sleep are used for 

validation purpose. To handle the huge amount of data, the 

overfitting and parameters are the challenges. The proposed multi- 

stream 3D CNN with parameter sharing mechanism successfully 

overcome the above challenges. The experimental results 

demonstrate that the proposed model outperforms the other 

approaches. 

In the LKT dataset, the multi-stream 3D CNN with parameter 

sharing reaches 0.5486 RMSE which is significantly improved 

over the RMSEs of the 3D CNN, CNN and NN by 6.85%, 9.22% 

and 12.79%, respectively. In the sleep dataset, the error rate is 

24.65%. Compared with the 3D CNN, CNN and NN, the 

performance of the proposed method is improved by 10.28, 

14.80% and 16.06%, respectively. Meanwhile, the feature maps 

demonstrate that the sharing mechanism effectively extracts the 

significant brain dynamics in both LKT and sleep experiments. 

The increased theta and alpha activities in the drowsy state can be 

explored from the LKT dataset. According to feature maps of 



 

 

 

 
 

Fig. 8. Input data and feature maps of third convolutional layers. (a-c) are feature maps in the delta band, theta band and alpha band, respectively. The upper part of the 
sub-figure is the input data. The middle part of the sub-figure shows feature maps of the model with parameter sharing. The bottom part of the sub-figure shows feature 

maps of the model without parameter sharing. 



 

 

sleep data, the proposed model obtains important clues for 

distinguishing sleep stages. From sleeping stage N1 to N3, the 

increased delta and theta activities have been extracted. The 

decreased activities in both alpha and beta bands are in the REM 

stage. Overall, the reliable and high performance of the proposed 

3D CNN multi-stream model has been demonstrated by both LKT 

and sleep datasets. In the near future, we will extend the proposed 

3D CNN multi-stream model with parameter sharing to more EEG 

datasets and other research fields to ease the training complexity 

and investigate the insight of datasets with high regression 

performance. 
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