
ar
X

iv
:2

11
0.

15
58

7v
1

 [
qu

an
t-

ph
]

 2
9

O
ct

 2
02

1

A sublinear time quantum algorithm for s-t minimum
cut on dense simple graphs

Simon Apers* Arinta Auza† Troy Lee‡

Abstract

An s-t minimum cut in a graph corresponds to a minimum weight subset of edges whose
removal disconnects vertices s and t. Finding such a cut is a classic problem that is dual to that
of finding a maximum flow from s to t. In this work we describe a quantum algorithm for the
minimum s-t cut problem on undirected graphs. For an undirected graph with n vertices, m
edges, and integral edge weights bounded by W , the algorithm computes with high probability
the weight of a minimum s-t cut in time Õ(

√
mn5/6W 1/3 + n5/3W 2/3), given adjacency list

access to G. For simple graphs this bound is always Õ(n11/6), even in the dense case when
m = Ω(n2). In contrast, a randomized algorithm must make Ω(m) queries to the adjacency
list of a simple graph G even to decide whether s and t are connected.

1 Introduction

Let G be a graph with n vertices and m edges, and let s, t be two vertices of G. The problem of
determining the maximum amount of flow λst(G) that can be routed from s to t while respecting the
capacity constraints of G is one of the most fundamental problems in theoretical computer science,
whose study goes back at least to the 1950s and the pioneering work of Ford and Fulkerson [FF56].
By the max-flow min-cut theorem, λst(G) is equal to the minimum weight of a cut separating s
and t in G. From a maximum s-t flow one can compute a minimum s-t cut in linear time, but no
such reduction is known the other way around. The Goldberg-Rao [GR98] algorithm, with running
time O(min{√m,n2/3}m log(n) log(W)), where W is the largest weight of an edge, stood as the
best bound for both problems for many years. In the past decade, however, beginning with work
of Christiano et al. [CKM+11] there has been tremendous progress in max-flow algorithms by
incorporating techniques from continuous optimization [She13, Mąd13, KLOS14, Pen16, LS14,
LS20, GLP21]. With a recent Õ((m + n3/2) logW) time max-flow algorithm by Brand et al.
[vdBLL+21], there are now near-linear time randomized max-flow algorithms for dense graphs
with polynomial weights.

*IRIF, CNRS, Paris. Email: smgapers@gmail.com
†Centre for Quantum Software and Information, University of Technology Sydney.
‡Centre for Quantum Software and Information, University of Technology Sydney. Email: troyjlee@gmail.com

1

http://arxiv.org/abs/2110.15587v1

Given its fundamental nature, there has been a surprising lack of work on quantum algorithms
for the exact maximum flow or minimum s-t cut problem. As far as we are aware, the only work
on the quantum complexity of these problems is by Ambainis and Špalek [AŠ06], who gave a
quantum algorithm for max flow in a directed graph with integral capacities bounded by W ≤ n1/4

with running time Õ(min{n7/6
√
mW 1/3, m

√
nW}), given adjacency list access to G. This bound

is completely subsumed by current classical randomized algorithms.
More recent work of Apers and de Wolf [AdW20] gives a Õ(

√
mn/ε) time quantum algorithm

for finding a (1 + ε)-approximation of the minimum s-t cut.1 This algorithm works by first con-
structing an ε-cut sparsifier H of the input graph G with a quantum algorithm in time Õ(

√
mn/ε).

An ε-cut sparsifier is a re-weighted subgraph of G that has only Õ(n/ε2) edges but for which the
weight of every cut agrees with that of G up to a factor of 1± ε. One can then run a classical ran-
domized s-t minimum cut algorithm on the sparse graph H to find an approximate s-t minimum
cut of G. The quantum sparsification algorithm also plays a key role in our work.

In this paper, we give a quantum algorithm that computes λst(G) on dense simple graphs faster
than is possible classically.2 More generally, for an undirected and integral weighted graph G
with maximum weight W , we give a quantum algorithm with adjacency list access to G that with
high probability outputs λst(G) in time Õ(

√
mn5/6W 1/3 + n5/3W 2/3) (see Theorem 15). Thus for

unweighted graphs the running time is Õ(n11/6) even for dense instances with m ∈ Ω(n2) edges.
On the other hand, it is easy to show that in the worst case a randomized algorithm requires Ω(m)
queries to the adjacency list of a graph with m edges even to decide whether s and t are connected
(see Theorem 20). Our algorithm also works with adjacency matrix access to G, in which case
its running time becomes Õ(n11/6W 1/3) (see Corollary 16). In addition to λst(G), our algorithm
can output the edges of a minimum s-t cut and the corresponding bipartition of the vertex set. It
does not however compute a maximum s-t flow, and finding a sublinear quantum algorithm for
this problem remains a tantalizing open question.

Our quantum algorithm follows an algorithm of Rubinstein, Schramm and Weinberg (RSW)
[RSW18], which computes a minimum s-t cut in the cut query model. In the cut query model
one can query a subset of vertices S and receives as an answer the total weight of edges with
exactly one endpoint in S. While designed for cut query complexity, we show the algorithm
also has a surprisingly time-efficient implementation that is well-suited for quantum speedups.
The crux of the algorithm is a procedure to transform the input graph G into a sparser graph G′

while preserving minimum s-t cuts. We use two quantum tools to speed up this procedure. The
first is to use the quantum algorithm from [AdW20] to find an ε-cut sparsifier of G faster than a
classical sparsification algorithm. The second is to use Grover’s algorithm to learn all the edges
in the sparser graph G′. Once we explicitly know the graph G′ we can use a classical randomized
algorithm to compute a minimum s-t cut in G′. This blueprint is similar to the global min cut
algorithm from [AL21], which is also based on a cut query algorithm by [RSW18]. There as well

1The bound quoted in [AdW20, Claim 9] for finding a (1+ε)-approximate minimum s-t cut is Õ(
√
mn/ε+n/ε5).

However, plugging into the proof the improved randomized approximate s-t minimum cut algorithm of [ST18] with
running time Õ(m+

√
mn/ε) improves this to Õ(

√
mn/ε).

2A simple graph is an undirected and unweighted graph with no self loops and at most one edge between any pair
of vertices.

2

a cut sparsifier of G is used to identify edges that can be contracted while preserving (non-trivial)
global minimum cuts, and then Grover search is applied to learn the edges in the sparser contracted
graph.

The contracted graph in the RSW procedure is obtained by contracting edges that cannot partic-
ipate in any minimum s-t cut. To get an intuition for the idea, suppose that G is a simple graph and
first imagine that we compute a maximum s-t flow F in G. If we let GF be the graph whose edge
weights are those of G minus the flow F , then s and t become disconnected in GF—otherwise we
could route more flow from s to t. Contracting all connected components of GF then results in a
sparser graph while preserving any edge that is part of a minimum s-t cut. This routine is also how
one can compute a minimum s-t cut from a maximum s-t flow: the connected component of s in
GF gives one side of a vertex bipartition corresponding to a minimum s-t cut.

Of course we did not save anything in this example as we had to compute a maximum s-t flow
in G. What RSW actually do is to first obtain an ε-cut sparsifier H of G. This is where we use
the Õ(

√
mn/ε) time quantum sparsification algorithm from [AdW20]. As H has only Õ(n/ε2)

edges it is much cheaper to carry out the above plan on H instead: we compute a maximum
flow F in H and consider the graph HF whose weights are those of H minus the flow F . As
cuts of H only approximate those in G we cannot fully contract the connected components in
HF and hope to preserve all minimum s-t cut of G. However, a key insight of RSW is that we
can still safely contract induced subgraphs of HF that are highly connected. Doing so results
in the desired contraction G′ of G that is relatively sparse—one can argue it has only O(εn2)
edges—yet preserves all minimum s-t cuts. We can learn the O(εn2) edges of G′ among the m

edges of G using Grover search in time Õ(n
√
mε). We then again run a randomized max flow

algorithm on the now explicitly known G′ to compute λst(G). Balancing the terms
√
mn/ε from

the sparsifier computation and n
√
mε for learning the edges of G′ leads to the choice ε = n−1/3,

and a Õ(
√
mn5/6) running time for the quantum steps of the algorithm. With this choice of ε the

classical parts of the algorithm can be performed in near-linear time in the sizes of H and G′, thus
in time Õ(n/ε2 + εn2) = Õ(n5/3). This gives the overall running time of Õ(

√
mn5/6 + n5/3) ∈

Õ(n11/6) in the unweighted case.

2 Preliminaries

2.1 Graph notation and background

Let V be a finite set and V (2) the set of all subsets of V of cardinality 2. We represent a weighted
undirected graph as a pair G = (V, w) where w : V (2) → R is a non-negative function. We let
V (G) be the vertex set of G and E(G) = {e ∈ V (2) : w(e) > 0} be the set of edges of G. We
extend the weight function to sets S ⊆ V (2) by w(S) =

∑
e∈S w(e). We say that G is simple if

w : V (2) → {0, 1} and in this case also denote G as G = (V,E), where E is the set of edges. For
a subset X ⊆ V we write G[X] for the induced subgraph on X .

For a subset X ⊆ V we use the shorthand X = V \ X , and we say X is non-trivial if
∅ 6= X (V . For disjoint sets X, Y ⊆ V we use E(X, Y) for the set of edges with one endpoint in
X and one endpoint in Y . For a non-trivial set X , let ∆G(X) = {{i, j} ∈ E(G) : i ∈ X, j ∈ X}

3

be the set of edges of G with one endpoint in X and one endpoint in X . A cut of G is a set of
the form ∆G(X) for some non-trivial set X . We call X and X the shores of the cut ∆G(X). For
two distinguished vertices s, t ∈ V we call ∆G(X) an s-t cut if s ∈ X, t 6∈ X . When we speak of
the shore of an s-t cut we always refer to the shore containing s. We let λst(G) be the minimum
weight of an s-t cut of G.

By the famous max-flow min-cut theorem [FF56], λst(G) is equal to the maximum amount of
flow that can be routed from s to t in G. While all the graphs G in this paper will be undirected,
for flows it is most natural to think of an undirected graph G as a directed graph with each edge
directed in both directions. Without loss of generality an s-t flow F in G can be defined to use an
edge in at most one direction. For e ∈ E(G) it will be convenient for us to let F (e) be the flow
along edge e in the direction it is used by the flow F .

We will need the following result about the total weight of a flow from Rubinstein, Schramm,
and Weinberg [RSW18].

Lemma 1 ([RSW18, Lemma 5.4]). Let G = (V, w) be a graph with integral weights from [0,W]
and let s, t ∈ V . Let F be a non-circular s-t flow of value f in G. Then the total weight of flow∑

e∈E(G) F (e) ≤ 10 · n√fW .

Finally, we will also need a very recent and very fast randomized algorithm for computing max
flows due to van den Brand, Lee, Liu, Saranurak, Sidford, Song and Wang [vdBLL+21].

Theorem 2 ([vdBLL+21, Corollary 7.9]). Let G be a directed graph with n vertices, m edges, and

integral edge weights bounded by W . There is a randomized algorithm that with high probability

computes a maximum s-t flow in G in time Õ((m+ n3/2) logW).

2.2 Quantum models and background

We will work with the two most standard quantum models for graph algorithms, the adjacency list
and adjacency matrix models. We refer the reader to [AL21, Section 2.3] for definitions of these
models.

Our quantum algorithm can be viewed as a classical algorithm with two quantum primitives.
The first is a quantum algorithm to compute a sparsifier [AdW20] described in the next section,
and the second is the following application of Grover’s algorithm.

Theorem 3 (cf. [AL21, Theorem 13]). Given t, N ∈ N with 1 ≤ t ≤ N and oracle access to

x ∈ {0, 1}N , there is a quantum algorithm such that

• if |x| ≤ t then the algorithm outputs x with certainty, and

• if |x| > t then the algorithm reports so with probability at least 9/10.

The algorithm makes O(
√
tN) queries to x and has time complexity O(

√
tN log(N)).

4

2.3 Sparsifiers and strong components

A key component of our algorithm will be a cut sparsifier of a graph.

Definition 4 (cut sparsifier). Let G = (V, wG) be a weighted graph. An ε-cut sparsifier H =
(V, wH) of G is a reweighted subgraph of G, i.e. wH(e) > 0 only if wG(e) > 0, satisfying

(1− ε)wG(∆G(X)) ≤ wH(∆H(X)) ≤ (1 + ε)wG(∆G(X))

for every X ⊆ V .

We will use a quantum algorithm to construct a cut sparsifier of a graph by Apers and de Wolf
[AdW20].

Theorem 5 ([AdW20, Theorem 1]). Let G be a weighted and undirected graph with n vertices

and m edges. There exists a quantum algorithm that outputs with high probability the explicit

description of an ε-cut sparsifier H of G with Õ(n/ε2) edges in time Õ(
√
mn/ε) in the adjacency

list model and time Õ(n3/2/ε) in the adjacency matrix model. Moreover, if G has integral weights

then so does H , and if the largest weight of an edge of G is τ then the largest weight of an edge of

H is Õ(τε2n).

Proof. The first part of the statement is directly from Theorem 1 of [AdW20]. The “moreover”
part follows from an examination of Algorithm 1 of [AdW20]. There it can be seen that when an
edge is added to the sparsifier it is always done so with a power of 4 times its original weight.
The power of 4 is at most the number of times Algorithm 1 is run, which depends on the error
parameter ε. To achieve an ε-cut sparsifier Algorithm 1 is run k = log(nε2)/2 + O(log log n)
times, thus an edge of G is placed in the sparsifier with weight at most its original weight times
4k = Õ(ε2n).

Apers and de Wolf actually show how to construct a spectral sparsifier. However, we will not
need the stronger properties of a spectral sparsifier.

We will also need some definitions and results relating to the minimum weight of cuts in in-
duced subgraphs of G.

Definition 6 (k-strong component). A graph G is k-connected if the weight of each cut in G is
at least k. A k-strong component of G is a maximal k-connected vertex induced subgraph of G.
Individual vertices are defined to be ∞-strong components.

Definition 7 (edge strength). The strength of an edge e, denoted ke is the maximum value of k such
that a k-strong component contains both endpoints of e. We say that e is k-strong if its strength is
k or more, and k-weak otherwise.

In our s-t mincut algorithm we would like to efficiently partition the vertices of G into k-strong
components. One way to do this would be to compute the strength of every edge, and then find
the connected components of the graph amongst edges whose strength is at least k. However,
Benczúr and Karger remark that even quickly approximating the edge strength of all edges is an
open question [BK15]. For the application of giving a randomized algorithm to construct a cut
sparsifier they come up with a way of estimating edge strengths which will still suffice for our
purpose.

5

Theorem 8 (Theorem 6.5 [BK15]). Let G = (V, w) be a weighted graph with n vertices and m
edges. There is a deterministic algorithm that in time O(m log3(n)) can produce edge strength

estimates k̃e such that

1. k̃e ≤ ke for all e ∈ E(G) and

2.
∑

e∈E(G)
w(e)

k̃e
= O(n) .

From this theorem we can obtain the following corollary.

Definition 9 (k-strong partition). For a graph G = (V, w), a k-strong partition of G is a partition
P = {S1, . . . , St} of V such that

1. The subgraph G[Si] is k-connected for each i = 1, . . . , t.

2.
∑

{i,j}∈[t](2) w(Si, Sj) = O(kn).

Corollary 10. Let G = (V, w) be a weighted graph with n vertices and m edges. Given k there is

a deterministic algorithm that in time O(m log3(n)) can produce a k-strong partition of G.

Proof. Let k̃e be the estimates of edge strengths obtained from Theorem 8. Let G′ be the graph
obtained from G by deleting all edges e with k̃e < k. Using depth first search we can find all
connected components S1, . . . , St of G′ in timeO(m+n). We claim that each G[Si] is k-connected.
If not then let (A, Si \ A) be the shores of a cut in G[Si] of weight less than k. Any edge e in this
cut has k̃e ≤ ke < k and the cut disconnects G[Si]. This contradicts the fact that vertices in A and
Si \ A are connected in G′.

Now we show item (2). Any edge e crossing sets of the partition has k̃e < k thus it suffices to
bound the weight of such edges. We have

∑

e : k̃e<k

w(e) ≤ k
∑

e : k̃e<k

w(e)

k̃e
= O(kn) ,

by item (2) of Theorem 8.

3 Main algorithm

Our algorithm is based on the following algorithm by Rubinstein, Schramm, and Weinberg [RSW18,
Algorithm 5.1], who used it to give a randomized cut query algorithm for the minimum s-t cut
problem.

6

Algorithm 1 Algorithm for s-t-mincut on a weighted graph G

Input: Oracle access to a weighted graph G = (V, wG), vertices s, t ∈ V , and a parameter
0 < ε < 1/3.

Output: The shore of a minimum s-t cut in G and the value λst(G).

1: Compute an ε-cut sparsifier H of G.
2: Compute a maximum s-t flow F in H and subtract F from H . Denote the result as H ′.
3: Compute a 3εn-strong partition P = {A1, . . . , At} of H ′.
4: Let G′ be the graph formed from G by contracting the vertices in each Ai, and let a, b ∈ P

be the sets containing s, t respectively. Compute a minimum a-b cut ∆G′(X ′) in G′ and return
λab(G

′) and the shore X = ∪A∈X′A.

For completeness we show correctness of the template, largely following the discussion of
[RSW18]. In the next section we analyze the running time for a quantum algorithm that implements
this algorithm with adjacency list access to G.

Theorem 11. If every step of Algorithm 1 is performed correctly then the algorithm returns a

minimum s-t cut of G.

We first prove two claims from which the proof of Theorem 11 will easily follow.

Claim 12. Let G = (V, wG) be a weighted graph and s, t ∈ V . For 0 < ε < 1/3, let H = (V, wH)
be an ε-cut sparsifier of G and let F be a maximum s-t flow in H . Form the graph H ′ = (V, wH′)
where wH′(e) = wH(e) − F (e) for all e ∈ V (2). Let P be a 3εn-strong partition of H ′. Then for

any minimum s-t cut ∆G(X) of G and all A ∈ P it holds that either A ⊆ X or A ⊆ X .

Proof. Let fG = λst(G) and fH = λst(H). As H is an ε-cut sparsifier of G we have fG ≤ fH/(1−
ε). Let ∆G(X) be a minimum s-t cut of G, i.e. such that s ∈ X, t 6∈ X and wG(∆G(X)) = fG.
Then wH(X) ≤ (1 + ε)fG ≤ 1+ε

1−ε
fH . Further, we have wH(X) = wH′(X) + wF (X) by definition

of H ′ and F . We must have wF (X) ≥ fH since there is a flow of value fH from s to t in H . Thus
wH(X) ≥ fH + wH′(X). Comparing inequalities we have wH′(X) ≤ 2ε

1−ε
fH < 3εn, as ε < 1/3.

Now let A ∈ P and let B = A ∩X . If B is nontrivial, i.e. ∅ 6= B (A, then there is a cut of
H ′[A] of weight less than 3εn, a contradiction to the assumption that P is a 3εn-strong partition of
H ′. Thus B must be trivial and either A ⊆ X or A ⊆ X .

Claim 13. Let G,H,H ′ and ε be as in Claim 12. Let P = {A1, . . . , At} be a 3εn-strong partition

of H ′ and G′ be the graph formed from G by contracting vertices in the same set of P . Let a, b ∈ P
be the sets containing s and t respectively. Then λst(G) = λab(G

′). Moreover, if X ′ is the shore of

a minimum a-b cut of G′ then X = ∪A∈X′X is the shore of a minimum s-t cut of G.

Proof. Let G = (V, wG) and note that by the definition of G′ we have G′ = (P, w) where
w(Ai, Aj) = wG(E(Ai, Aj)) for i 6= j.

Let us show that λst(G
′) ≤ λst(G). Let ∆G(X) be a minimum s-t cut in G. For every Ai ∈ P

we either have Ai ⊆ X or Ai ⊆ X by Claim 12. Note that in particular this means a ⊆ X and
b ∩X = ∅. From X we define a set X ′ where for every Ai ∈ P we put Ai in X ′ iff Ai ⊆ X . Note
that ∆G′(X ′) is an a-b cut of G′ and wG(∆G(X)) = w(∆G′(X ′)), thus λab(G

′) ≤ λst(G).

7

We next show the general fact that contraction cannot decrease the minimum s-t cut value. For
any set X ′ ⊆ P we can define a set X ⊆ V by X = ∪A∈X′A. Further w(∆G′(X ′)) = wG(∆G(X))
by the definition of w. Thus λab(G

′) ≥ λst(G).
This establishes λst(G) = λab(G

′). To see the “moreover” part of the claim, let X ′ be a
minimum a-b cut of G′. We have just shown that w(∆G′(X ′)) = wG(∆G(X)) for X = ∪A∈X′A,
thus X will be a minimum s-t cut of G.

Proof of Theorem 11. If the steps of the algorithm are implemented correctly then H,H ′ satisfy
the hypotheses of Claim 12. We can therefore invoke Claim 12 and Claim 13 to conclude that
λst(G) = λab(G

′) and that X will be the shore of a minimum s-t cut in G.

3.1 Implementation by a quantum algorithm

We now discuss the implementation of Theorem 15 by a quantum algorithm with adjacency list
access to G. For the running time it is important to have an upper bound on the number of edges
in the contracted graph G′ formed in step 4 of Algorithm 1. We do this by means of the following
claim.

Claim 14. Let G,H,H ′ and ε be as in Claim 12, with the following additional conditions:

1. The largest edge weight of G is W ≥ 1.

2. H has integral weights and the largest edge weight is WH ∈ O(ε2nW).

Let P = {A1, . . . , At} be a 3εn-strong partition of H ′. Then
∑t

i=1wG(∆G(Ai)) = O(εn2W).

Proof. As H is an ε-cut sparsifier of G we have

wG(∆G(Ai)) ≤
wH(∆H(Ai))

1− ε

=
wH′(∆H(Ai)) + wF (∆H(Ai))

1− ε
.

By the definition of a 3εn-strong partition (Definition 9), we have
∑t

i=1wH′(∆H′(Ai)) = O(εn2).
Note also that wH′(∆H′(Ai)) = wH′(∆H(Ai)) because e ∈ E(H ′) implies e ∈ E(H), and so∑t

i=1wH′(∆H(Ai)) = O(εn2). By Lemma 1 we also have that

t∑

i=1

wF (∆H(Ai)) ≤ 20n
√

λst(H)WH

= O(εn2W) ,

using that λst(H) ≤ (1 + ε)nW and WH ∈ O(ε2nW). As W ≥ 1 this term dominates and∑t
i=1wG(∆G(Ai)) = O(εn2W).

8

Theorem 15. Let G be a graph with n vertices and m edges where all edge weights are integral

and the largest weight of an edge is W . Given adjacency list access to G, there is a quantum

algorithm that with high probability computes λst(G) and the shore of a minimum s-t cut of G

with running time Õ(
√
mn5/6W 1/3 + n5/3W 2/3) and number of queries Õ(

√
mn5/6W 1/3).

Proof. We follow the algorithm given in Algorithm 1 with the choice ε = (nW)−1/3. As the choice
of ε depends on W , we first need to know what the maximum weight of an edge of G is. We can
do this by the quantum minimum finding routine of Dürr and Høyer [DH96] with high probability
in time Õ(

√
m). With that settled, we now go over each step of the algorithm to explain how it is

implemented and its running time.

Line 1 We run quantum algorithm of Apers and de Wolf [AdW20] given in Theorem 5 to find an
ε-cut sparsifier H of G with Õ(n/ε2) edges. As all edge weights of G are integral and the largest
weight of an edge is W , by the “moreover” part of this theorem the edge weights of H are integral
and the largest weight of an edge of H is O(ε2nW). This step succeeds with high probability and
takes time Õ(

√
mn/ε).

Line 2 For this step we run the classical maximum s-t flow algorithm of [vdBLL+21] quoted
in Theorem 2 to compute a max flow F in H . This algorithm requires a graph with integral
weights, which is satisfied by H . This step again succeeds with high probability, and runs in time
Õ((n3/2 + n/ε2) log(ε2nW)) = Õ(n5/3W 2/3) by the choice of ε. As λst(H) ≤ (1 + ε)nW , the
total weight of edges in F is O(εn2W) by Lemma 1. We can compute H ′ = H − F in time
Õ(n/ε2) as this is the number of edges in H .

Line 3 To find a 3εn-strong partition of H ′ we use the deterministic algorithm from Corollary 10.
This step runs in near-linear time in the number of edges of H ′, thus in time Õ(n/ε2).

Line 4 Let P = {A1, . . . , At} be the 3εn-strong partition of H ′ computed in the previous step.
The graph G′ is formed by contracting vertices in the same set of this partition. By Claim 14
the graph G′ has O(εn2W) edges, assuming all previous steps have succeeded. Consider the
concatenation of all the lists in the adjacency list representation of G. This gives a vector of
dimension 2m and defines an ordering of edges of G where every edge appears twice. Define a
string x ∈ {0, 1}2m using the same ordering where x(e) = 1 if the endpoints of e are in distinct
sets of the partition P and x(e) = 0 otherwise. A query to a bit of x can be answered with a single
query to the adjacency list of G. By Theorem 3 via Grover search in time Õ(n

√
mεW) with high

probability we can determine if x has at most O(εn2W) ones, and if so learn the positions of all
these ones. If the number of ones in x is larger than O(εn2W) then we abort. With high probability
we do not abort and once we learn the positions of all the ones in x we can then classically learn
the weight of the corresponding edges in G with O(εn2W) more queries. Then we have explicitly
learned the graph G′.

Once we have an explicit description of G′ we can run the max flow algorithm of [vdBLL+21]
to compute a maximum a-b flow F ′ in G′ where a, b ∈ P are the sets of the partition containing s, t

9

respectively. This takes time Õ(n3/2+εn2W) = Õ(n5/3W 2/3) and succeeds with high probability.
The flow of F ′ gives λab(G

′). To also compute the shore of a minimum a-b cut of G′ we consider
the residual graph of the flow F ′ and compute the connected component containing a. This can be
done deterministically by breadth-first search in time O(εn2W).

Correctness and total running time Each step individually succeeds with high probability and
so with high probability all steps will be correct. We can thus invoke Theorem 11 to conclude that
the algorithm is correct with high probability.

To analyze the running time note that the quantum parts of the algorithm give terms with√
mn/ε and n

√
mεW , and the classical steps have complexities n3/2, n/ε2 and εn2W . The choice

ε = (nW)−1/3 makes the quantum terms equal to n5/6W 1/3, makes the n3/2 term low order,
and makes the remaining classical terms equal to n5/3W 2/3. Thus overall the running time is
Õ(

√
mn5/6W 1/3 + n5/3W 2/3). Queries to G are only made in the quantum steps as all classical

steps work on graphs explicitly constructed by the algorithm. Thus the total number of queries is
Õ(

√
mn5/6W 1/3).

We have the following result for the adjacency matrix model.

Corollary 16. Let G be a graph with n vertices and m edges where all edge weights are integral

and the largest weight of an edge is W . Given oracle access to the adjacency matrix of G, there

is a quantum algorithm that computes λst(G) and the shore of a minimum s-t cut of G with high

probability in time Õ(n11/6W 1/3).

Proof. As in the proof of Theorem 15 we first compute the maximum weight of an edge of G.
This can be done by the quantum minimum finding routine of Dürr and Høyer [DH96] with high
probability in time Õ(n). If W ≥ √

n then we simply run the randomized max-flow algorithm of
[vdBLL+21] from Theorem 2 with running time Õ(n2 log(W)).

If W <
√
n then we follow from the proof of Theorem 15. Only minor modifications are

needed in the lines 1 and 4 where we require query access to the graph. In particular, we again use
Algorithm 1 with the same value ε = (nW)−1/3.

In Line 1 we run the adjacency matrix version of the sparsifier algorithm from [AdW20]
(quoted in Theorem 5), which takes time Õ(n3/2/ε) = Õ(n11/6W 1/3). In Line 4 we find the
O(εn2W) edges of G′ by applying Theorem 3 over the O(n2) entries of the adjacency matrix,
rather than theO(m) entries of the adjacency list. This requires time Õ(n2

√
εW) = Õ(n11/6W 1/3).

The remaining steps are performed classically on graphs explicitly constructed by the algorithm
and work in the same time Õ(n5/3W 2/3) as before. As W <

√
n in this case this term is dominated

by the Õ(n11/6W 1/3) term.
Finally, for W ≥ √

n we have n2 log(W) = Õ(n11/6W 1/3) thus we can say that in all cases the
running time of the algorithm is Õ(n11/6W 1/3).

Remark 17. After finding the shore of a minimum s-t cut via Theorem 15 or Corollary 16, one

can also learn the edges in the cut by a quantum algorithm in the same asymptotic running time.

If the maximum weight of an edge is W then in a graph with integral weights the number of edges

10

in a minimum s-t cut is at most nW . We can learn these O(nW) edges by Grover’s algorithm

(Theorem 3) in time Õ(
√
mnW) in the adjacency list model or time Õ(n3/2

√
W) in the adjacency

matrix model. In both cases this is low order to the Õ(n5/3W 2/3) term.

4 Randomized lower bound

In this section we show that a randomized algorithm that computes λst(G) with success probability
at least 9/10 on simple graphs G with m edges must make Ω(m) queries to the adjacency list of
G in the worst case. This holds true even for just determining if s and t are connected in G, which
we call the USTCON problem.

Definition 18 (USTCON). In the USTCON problem one is given adjacency list access to an undi-
rected graph G = (V,E) and two distinguished vertices s, t ∈ V . The problem is to determine if s
and t are connected in G.

To show a lower bound on USTCON we will use the classical adversary method for random-
ized query complexity [Aar06, LM08, AKP+21], a randomized analog of the quantum adversary
method [Amb02]. We will just need a simple unweighted version of the method, adapted from
[Aar06, Theorem 4.3].

Lemma 19 (cf. [Aar06, Theorem 4.3]). For a finite set Σ and S ⊆ Σn, let f : S → {0, 1}. Let

X ⊆ f−1(0) and Y ⊆ f−1(1). Let R ⊆ X × Y be such that for every x ∈ X there are at least t
different y ∈ Y such that (x, y) ∈ R and for every x ∈ X and k ∈ [n] there are at most ℓ different

y ∈ Y such that (x, y) ∈ R and xk 6= yk. Then any randomized algorithm that computes f with

success probability 9/10 must make Ω(t/ℓ) queries.

Theorem 20. A randomized algorithm that solves USTCON with success probability at least 9/10
on graphs with m edges edges requires Ω(m) queries.

Proof. First we show the lower bound in the dense case where m = Ω(n2) using Lemma 19. We
construct sets of negative instances X and positive instances Y . Suppose that n is even. Excluding
s and t we partition the remaining n− 2 vertices into two sets A and B each of size (n− 2)/2. In
all instances, s will be connected to all vertices in A and t will be connected to all vertices in B.
X will consist of a single negative instance G where we additionally put a clique on the vertices in
A and a clique on the vertices in B and no further edges. Thus s and t will not be connected in G.
Note that apart from s and t, every vertex has degree (n− 2)/2 in G.

For Y we create a family of 2
(
n−2
2

)2
positive instances. A positive instance will be labeled by

a = {a1, a2} ∈ A(2), b = {b1, b2} ∈ B(2) and a bit c ∈ {0, 1}. Associated to a, b, c we construct
a graph Ga,b,c as follows. Take the graph G and remove the edges a and b. If c = 0 then add
edges {min{a1, a2},min{b1, b2}} and {max{a1, a2},max{b1, b2}} to form Ga,b,c. Otherwise if
c = 1 then add edges {min{a1, a2},max{b1, b2}} and {max{a1, a2},min{b1, b2}} to form Ga,b,c.
In both cases all vertices in A ∪ B have degree (n − 2)/2 in Ga,bc and there will be two edges
connecting A and B so λst(Ga,b,c) = 2. This completes the description of the instances.

11

The degree sequences of all instances are the same, thus we may assume this is known to the
algorithm and the algorithm does not need to make any degree queries. We thus focus on queries
to the name of the ith neighbor of a vertex v. For this it is important to specify the ordering of
vertices given in the adjacency lists. For all vertices we will use the same ordering in their list. Let
k = (n − 2)/2 and label the vertices of A as a1, a2, . . . , ak and the vertices of B as b1, b2, . . . , bk.
We use the ordering s < t < a1 < b1 < · · · < ak < bk.

We are now ready to show the lower bound using Lemma 19. We put G in relation with all
2
(
n−2
2

)2
of the Ga,b,c. Now consider how many of the Ga,b,c differ from G in a specific location of

the adjacency list, specifically consider the ith neighbor of a vertex aj ∈ A. In G the ith neighbor
of aj is

1. s if i = 1.

2. ai−1 if i ≤ j.

3. ai if i > j.

The ith neighbor of aj in Ga,b,c will be the same unless

1. i ≤ j and a = {ai−1, aj}.

2. i > j and a = {aj , ai}.

In either case, the number of a, b, c for which Ga,b,c differs from G on the name of the ith neighbor
of aj is 2

(
n−2
2

)
, as one only has free choice of the edge b and the bit c. A similar argument holds

when considering the ith neighbor of a vertex bj ∈ B. Thus for any position of the adjacency list
the number of Ga,b,c that differ from G is at most 2

(
n−2
2

)
and by Lemma 19 we obtain a lower

bound of
(
n−2
2

)
= Ω(m), proving the theorem in the dense case.

Finally, let us treat the general case of graphs with at most m edges. We choose the largest
integer p such that 2(p +

(
p
2

)
) ≤ m and then take disjoint sets of vertices A and B both of size

p. We then repeat the construction from the dense case on s, t, A,B. The lower bound will be(
p
2

)
= Ω(m) as desired.

Acknowledgements

Troy Lee is supported in part by the Australian Research Council Grant No: DP200100950.

References

[Aar06] Scott Aaronson. Lower bounds for local search by quantum arguments. SIAM Jour-

nal of Computing, 35(4):804–824, 2006.

[AdW20] Simon Apers and Ronald de Wolf. Quantum speedup for graph sparsification, cut
approximation and Laplacian solving. In Proceedings of the 61st IEEE Annual Sym-

posium on Foundations of Computer Science (FOCS). IEEE, 2020.

12

[AKP+21] Andris Ambainis, Martins Kokainis, Krisjanis Prusis, Jevgenijs Vihrovs, and Alek-
sejs Zajakins. All classical adversary methods are equivalent for total functions.
ACM Transactions on Computational Theory, 13(1):7:1–7:20, 2021.

[AL21] Simon Apers and Troy Lee. Quantum complexity of minimum cut. In Proceedings

of the 36th Computational Complexity Conference (CCC). LIPICS, 2021.

[Amb02] Andris Ambainis. Quantum lower bounds by quantum arguments. Journal of Com-

puter and System Sciences, 64(4):750–767, 2002.

[AŠ06] Andris Ambainis and Robert Špalek. Quantum algorithms for matching and network
flows. In Proceedings of the 23rd Symposium on Theoretical Aspects of Computer

Science (STACS), pages 172–183. Springer, 2006.

[BK15] András A. Benczúr and David R. Karger. Randomized approximation schemes for
cuts and flows in capacitated graphs. SIAM Journal on Computing, 44(2):290–319,
2015.

[CKM+11] Paul Christiano, Jonathan A. Kelner, Aleksander Mądry, Daniel A. Spielman, and
Shang-Hua Teng. Electrical flows, laplacian systems, and faster approximation of
maximum flow in undirected graphs. In Proceedings of the 43rd ACM Symposium

on Theory of Computing (STOC), pages 273–282. ACM, 2011.

[DH96] Christoph Dürr and Peter Høyer. A quantum algorithm for finding the minimum.
CoRR, quant-ph/9607014, 1996.

[FF56] Lester R. Ford and Delbert R. Fulkerson. Maximal flow through a network. Cana-

dian Journal of Mathematics, 8:399–404, 1956.

[GLP21] Yu Gao, Yang P. Liu, and Richard Peng. Fully dynamic electrical flows: Sparse
maxflow faster than Goldberg-Rao. In IEEE 62nd Annual Symposium on Founda-

tions of Computer Science (FOCS). IEEE, 2021.

[GR98] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. Jour-

nal of the ACM, 45(5):783–797, 1998.

[KLOS14] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-
linear-time algorithm for approximate max flow in undirected graphs, and its multi-
commodity generalizations. In Proceedings of the 25th Annual ACM-SIAM Sympo-

sium on Discrete Algorithms (SODA), pages 217–226. SIAM, 2014.

[LM08] Sophie Laplante and Frédéric Magniez. Lower bounds for randomized and quan-
tum query complexity using kolmogorov arguments. SIAM Journal on Computing,
38(1):46–62, 2008.

13

[LS14] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solv-
ing linear programs in Õ(

√
rank) iterations and faster algorithms for maximum flow.

In Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer

Science, pages 424–433. IEEE, 2014.

[LS20] Yang P. Liu and Aaron Sidford. Faster energy maximization for faster maximum
flow. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of

Computing, (STOC), pages 803–814. ACM, 2020.

[Mąd13] Aleksander Mądry. Navigating central path with electrical flows: From flows to
matchings, and back. In Proceedings of the 54th Annual IEEE Symposium on Foun-

dations of Computer Science (FOCS), pages 253–262. IEEE, 2013.

[Pen16] Richard Peng. Approximate undirected maximum flows in O(m polylog(n)) Time.
In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA 2016), pages 1862–1867. SIAM,
2016.

[RSW18] Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact
minimum cuts without knowing the graph. In Proceedings of the 9th Innovations in

Theoretical Computer Science Conference (ITCS), pages 39:1–39:16. LIPICS, 2018.

[She13] Jonah Sherman. Nearly maximum flows in nearly linear time. In 54th Annual IEEE

Symposium on Foundations of Computer Science (FOCS), pages 263–269. IEEE,
2013.

[ST18] Aaron Sidford and Kevin Tian. Coordinate methods for accelerating ℓ∞ regression
and faster approximate maximum flow. In 59th Annual IEEE Symposium on Foun-

dations of Computer Science (FOCS), pages 922–933. IEEE, 2018.

[vdBLL+21] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Minimum cost flows, MDPs, and ℓ1-regression in nearly
linear time for dense instances. In 53rd Annual ACM SIGACT Symposium on Theory

of Computing (STOC), pages 859–869. ACM, 2021.

14

	1 Introduction
	2 Preliminaries
	2.1 Graph notation and background
	2.2 Quantum models and background
	2.3 Sparsifiers and strong components

	3 Main algorithm
	3.1 Implementation by a quantum algorithm

	4 Randomized lower bound

