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On the query complexity of connectivity with global

queries

Arinta Auza* Troy Lee†

Abstract

We study the query complexity of determining if a graph is connected with global queries.

The first model we look at is matrix-vector multiplication queries to the adjacency matrix.

Here, for an n-vertex graph with adjacency matrix A, one can query a vector x ∈ {0, 1}n
and receive the answer Ax. We give a randomized algorithm that can output a spanning forest

of a weighted graph with constant probability after O(log4(n)) matrix-vector multiplication

queries to the adjacency matrix. This complements a result of Sun et al. (ICALP 2019) that

gives a randomized algorithm that can output a spanning forest of a graph after O(log4(n))
matrix-vector multiplication queries to the signed vertex-edge incidence matrix of the graph.

As an application, we show that a quantum algorithm can output a spanning forest of an un-

weighted graph after O(log5(n)) cut queries, improving and simplifying a result of Lee, San-

tha, and Zhang (SODA 2021), which gave the bound O(log8(n)).
In the second part of the paper, we turn to showing lower bounds on the linear query

complexity of determining if a graph is connected. If w is the weight vector of a graph (viewed

as an
(
n
2

)
dimensional vector), in a linear query one can query any vector z ∈ R(

n

2
) and receive

the answer 〈z, w〉. We show that a zero-error randomized algorithm must make Ω(n) linear

queries in expectation to solve connectivity. As far as we are aware, this is the first lower bound

of any kind on the unrestricted linear query complexity of connectivity. We show this lower

bound by looking at the linear query certificate complexity of connectivity, and characterize

this certificate complexity in a linear algebraic fashion.

1 Introduction

Determining whether or not a graph is connected is a fundamental problem of computer science,

which has been studied in many different computational models [Wig92]. In this paper, we study

query algorithms for connectivity that make use of global queries. Traditionally, the most common

query models for studying graph problems have been local query models where one can ask queries

of the form (i) Is there an edge between vertices u and v? (ii) what is the degree of vertex v? (iii)

what is the ith neighbor of v? For example, in the adjacency matrix model one can ask queries of
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type (i), and in the adjacency list model one can ask queries of type (ii) and (iii). We call these

local query models as each query has information about a single vertex or single edge slot. It is

known that the randomized query complexity of connectivity on a graph with n vertices and m
edges is Θ(n2) in the adjacency matrix model and Θ(m) in the adjacency array model [DHHM06,

BGMP20].

On the other hand, a single global query can aggregate information about many vertices and

edge slots. There has recently been a lot of interest in the complexity of graph problems with

various global queries: matrix-vector multiplication queries to the adjacency or (signed) vertex-

edge incidence matrix [SWYZ19, CHL21], cut queries [RSW18, ACK21, LSZ21], and bipartite

independent set (BIS) queries [BHR+20], to name a few. If A is the adjacency matrix of an n-

vertex graph, in a matrix-vector multiplication query to the adjacency matrix one can ask a vector

x ∈ {0, 1}n and receive the answer Ax ∈ {0, 1}n, in a cut query on question x one receives

xTA(1 − x), and in a BIS query on question x, y ∈ {0, 1}n, where x, y are disjoint, the answer

is 1 if xTAy is positive and 0 otherwise. Motivation to study each of these models comes from

different sources: matrix-vector multiplication queries have applications to streaming algorithms

[AGM12], cut queries are motivated by connections to submodular function minimization, and

bipartite independent set queries have been studied in connection with reductions between counting

and decision problems [DL21].

Let us take the example of matrix-vector multiplication queries to the adjacency matrix, which

is the primary model we study. This is a very powerful model, as one learns an n-dimensional vec-

tor with a single query. On the other hand, this model can also lead to very efficient algorithms: we

show that a randomized algorithm making O(log4(n)) many matrix-vector queries to the adjacency

matrix of G can output a spanning forest of G with constant probability (see Corollary 9).

This result answers a natural question left open by Sun et al. [SWYZ19]. They introduce the

study of the complexity of graph problems with matrix-vector multiplication queries, and ask if

the particular representation of a graph by a matrix makes a difference in the complexity of solving

certain problems. Besides the adjacency matrix, another natural representation of an n-vertex

simple graph G = (V,E) is the signed vertex-edge incidence matrix A± ∈ {−1, 0, 1}n×(
n

2
). The

rows of A± are labeled by vertices and the columns are labeled by elements of V (2), the set of all

2-element subsets of V . Fix an ordering of the vertices. Then

A±(u, {v, w}) =





0 if {v, w} 6∈ E or u 6∈ {v, w}
1 if {v, w} ∈ E and u is the smallest element in {v, w}
−1 if {v, w} ∈ E and u is the largest element in {v, w} .

Sun et al. observe that a beautiful sketching algorithm of Ahn, Guha, and McGregor [AGM12] to

compute a spanning forest of a graph G via O(n log3(n)) non-adaptive linear measurements also

gives a non-adaptive randomized query algorithm that finds a spanning forest after O(log4(n))
matrix-vector multiplication queries to A±.

For a bipartite graph G with bipartition V1, V2, the bipartite adjacency matrix is the submatrix

of the adjacency matrix where rows are restricted to V1 and columns to V2. Sun et al. show that

Ω(n/ log n) matrix-vector multiplication queries to the bipartite adjacency matrix (where mul-

tiplication of the vector is on the right) can be needed to determine if a bipartite graph is con-
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nected or not. However, the family of instances they give can be solved by a single query to the

full adjacency matrix of the graph (or a single matrix-vector multiplication query on the left to

the bipartite adjacency matrix). The arguably more natural question of comparing the complex-

ity of matrix-vector multiplication queries in the signed vertex-edge incidence matrix versus the

adjacency matrix model was left open. Our results mean that connectivity cannot show a large

separation between these models.

While the matrix-vector multiplication query model is very powerful, as one can also hope for

very efficient algorithms it still has interesting applications to weaker models, like cut queries. As

an example, it is not hard to see that each entry of A±x can be computed with a constant number

of cut queries, and therefore a matrix-vector multiplication query to A± can be simulated by O(n)
cut queries. Thus the randomized non-adaptive O(log4(n)) matrix-vector query algorithm for con-

nectivity in this model implies a randomized non-adaptive O(n log4(n)) algorithm for connectivity

in the cut query model, which is state-of-the-art for the cut query model [ACK21].

We look at applications of matrix-vector multiplication algorithms to quantum algorithms us-

ing cut and BIS queries. Recent work of Lee, Santha, and Zhang showed that a quantum algorithm

can output a spanning forest of a graph with high probability after O(log8(n)) cut queries [LSZ21].

This is in contrast to the randomized case where Ω(n/ log n) cut queries can be required to deter-

mine if a graph is connected [BFS86]. A key observation made in [LSZ21] is that a quantum

algorithm with cut queries can efficiently simulate a restricted version of a matrix-vector multipli-

cation query to the adjacency matrix. Namely, if A is the adjacency matrix of an n-vertex simple

graph, a quantum algorithm can compute Ax ◦ (1 − x) for x ∈ {0, 1}n with O(logn) cut queries.

Here ◦ denotes the Hadamard or entrywise product. In other words, the quantum algorithm can

efficiently compute the entries of Ax where x is 0.

We quantitatively improve the Lee et al. result to show that a quantum algorithm can out-

put a spanning tree of a simple graph with constant probability after O(log5(n)) cut queries

(Theorem 12). We do this by showing that the aforementioned O(log4(n)) adjacency-matrix-

vector multiplication query algorithm to compute a spanning forest also works with the more

restrictive Ax ◦ (1 − x) queries. In addition to quantitatively improving the result of [LSZ21],

this gives a much shorter proof and nicely separates the algorithm into a quantum part, simulating

Ax ◦ (1− x) queries, and a classical randomized algorithm using Ax ◦ (1− x) queries.

This modular reasoning allows us to extend the argument to other models as well. We also show

that a quantum algorithm can compute a spanning forest with constant probability after Õ(
√
n) BIS

queries. This is done by simulating an Ax ◦ (1 − x) by a quantum algorithm making O(
√
n) BIS

queries (Theorem 8).

In the second part of this work we turn to lower bounds for connectivity, and here we focus on

the model of linear queries. Let G be an n-vertex weighted and undirected graph on vertex set V ,

and let w : V (2) → R≥0 be its weight function, which assigns a non-negative (possibly zero) weight

to each two-element subset of V . We will view w as an
(
n
2

)
dimensional vector. In the linear query

model, one can query any x ∈ R(
n

2) and receive the answer 〈w, x〉. As far as we are aware, no lower

bound at all was known on the query complexity of connectivity in this unrestricted linear query

model. The reason is that the number of bits in a query answer is unbounded in the linear query

model, which causes problems for any kind of information-theoretic lower bound technique. Most
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lower bounds for connectivity go through the model of communication complexity and restrict the

set of “hard” instances to simple graphs. However, given that a graph is simple, one can learn the

entire graph with a single linear query by querying the vector of powers of 2 of the appropriate

dimension. One can extend this argument to show that in fact any problem where the set of input

instances is finite can be solved with a single linear query. This situation is unusual in the typically

discrete world of query complexity, and few techniques have been developed that work to lower

bound the linear query model. Two examples that we are aware of are a linear query lower bound

on the complexity of computing the minimum cut of a graph using the cut dimension method

[GPRW20], and its extension to the “ℓ1-approximate cut dimension” by [LLSZ21], and a linear

query lower bound for a problem called the single element recovery problem by [ACK21].

We show that any zero-error randomized algorithm that correctly solves connectivity must

make Ω(n) linear queries in expectation (Corollary 27). We do this by building on the ℓ1-approximate

cut dimension approach. The ℓ1-approximate cut dimension was originally applied to show lower

bounds on the deterministic linear query complexity of the minimum cut problem. We show that

this method actually characterizes, up to an additive +1, the linear query certificate complexity

of the minimum cut problem. Certificate complexity is a well-known lower bound technique for

query complexity. The certificate complexity of a function f on input x is the minimum num-

ber of queries q1, . . . , qk needed such that any input y which agrees with x on these queries

q1(x) = q1(y), . . . , qk(x) = qk(y) must also satisfy f(x) = f(y). The maximum certificate

complexity over all inputs x is a lower bound on the query complexity of deterministic and even

zero-error randomized algorithms for f .

In our context, the linear query certificate complexity of connectivity on a graph G = (V, w)
is the minimum k for which there are queries q1, . . . , qk such that for any graph G′ = (V, w′), if

〈w, qi〉 = 〈w′, qi〉 for all i = 1, . . . , k then G′ is connected iff G is. We adapt the ℓ1-approximate

cut dimension approach to give a linear algebraic characterization of the linear query certificate

complexity of connectivity. We then show that the linear query certificate complexity for connec-

tivity of the simple n-vertex cycle is Ω(n), giving the Ω(n) linear query lower bound for zero-error

algorithms solving connectivity.

2 Preliminaries

For a natural number n we let [n] = {1, . . . , n}. We represent an undirected weighted graph as a

pair G = (V, w), where V is the set of vertices, the set of edge slots V (2) is the set of subsets of

V with cardinality 2, and the weight function w : V (2) → R is non-negative. The set of edges of

G is defined as E(G) = {e ∈ V (2) : w(e) > 0}. When all edges of G have weight 1 we use the

notation G = (V,E), where E ⊆ V (2) is the set of edges of G.

3 Basic spanning forest algorithm

In this section, we give a template spanning forest algorithm based on Borůvka’s algorithm [NMN01].

In Borůvka’s algorithm on input a graph G = (V, w), one maintains the invariant of having a par-
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tition {S1, . . . , Sk} of V and a spanning tree for each Si. At the start of the algorithm this partition

is simply V itself. In a generic round of the algorithm, the goal is to find one outgoing edge from

each Si which has one. One then selects a subset H of these edges which does not create a cycle

among S1, . . . , Sk, and merges sets connected by edges from H while updating the spanning trees

for each set accordingly. If q of the k sets have an outgoing edge, then the cycle free subset H will

satisfy |H| ≥ q/2. Every edge from H decreases the number of sets by at least 1, so the number of

sets after this round is at most k − q/2. In this way we see that k minus the number of connected

components of G at least halves with every round, and the algorithm terminates with a spanning

forest of G after O(logn) rounds.

The main work of a round of this algorithm is the problem of finding an outgoing edge from

each Si. We abstract out performing this task by a primitive called RecoverOneFromAll. Given

oracle access to a non-negative matrix A ∈ Rn×n, a set of rows R, a set of columns S, and an

error parameter δ, with probability at least 1− δ RecoverOneFromAll does the following: for every

i ∈ R for which there is a j ∈ S with A(i, j) > 0 it outputs a pair (i, j′) with A(i, j′) > 0. We

record the input/output behavior of RecoverOneFromAll in this code header.

Algorithm 1 RecoverOneFromAll[A](R, S, δ)

Input: Oracle access to a non-negative matrix A ∈ Rm×n, subsets R ⊆ [m], S ⊆ [n], and an

error parameter δ.

Output: With probability at least 1− δ output a set T ⊆ R × S such that for every i ∈ R for

which ∃j ∈ S with A(i, j) > 0 there is a pair (i, t) ∈ T with A(i, t) > 0.

Assadi, Chakrabarty, and Khanna [ACK21] study a similar primitive for connectivity called

single element recovery. In this problem one is given a non-zero non-negative vector x ∈ RN and

the goal is to find a coordinate j with xj > 0. RecoverOneFromAll is exactly the matrix version

of this problem, where one wants to solve the single element recovery problem on every row of

a matrix. This version is more suitable for the matrix-vector multiplication query algorithms we

study here where we want to implement a round of Borůvka’s algorithm in a parallel fashion.

In the subsequent sections we will see how RecoverOneFromAll can be implemented in vari-

ous global models. First we analyze how many calls to RecoverOneFromAll are needed to find a

spanning forest.

Theorem 1. Let G = (V, w) be a weighted graph with n vertices, and A its adjacency matrix.

There is a randomized algorithm that finds a spanning forest of G with probability at least 49/50
after making 3(log(n) + 10) calls to RecoverOneFromAll[A](R, S, δ) with error parameter δ =
(300(log(n) + 10))−1. Moreover, all calls to RecoverOneFromAll involve sets R, S ⊆ V that are

disjoint.

Proof. The algorithm is given in Algorithm 3. We use a Union-Find data structure to maintain

a partition of the vertices into sets which are connected. This data structure has the operations

MakeSet to create a set of the partition, FindSet which takes as argument a vertex and returns a

representative of the set containing the vertex, and Union which takes as arguments two vertices

and merges their corresponding sets. We also suppose the data structure supports the operation

Elts which, given a vertex v ∈ V , returns all the elements in the same set of the partition as v.
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Algorithm 2 FindSpanningForest

Input: Subroutine RecoverOneFromAll[A](R, S), where A is the adjacency matrix of a

weighted graph G = (V, w).
Output: Spanning forest F of G.

1: B ← ∅, F ← ∅, δ ← (300(log(n) + 10))−1, T = 3(log(n) + 10)
2: for v ∈ V do

3: B ← B ∪MakeSet(v) ⊲ Set up Union-Find data structure

4: end for

5: for i = 1 to T do

6: R← ∅, S ← ∅
7: for v ∈ B do

8: Flip a fair coin. If heads R← R ∪ Elts(v), else S ← S ∪ Elts(v).
9: end for

10: RoundEdges← RecoverOneFromAll[A](R, S, δ) ⊲ Note R ∩ S = ∅
11: EdgesToAdd← ∅ ⊲ EdgesToAdd will hold one outgoing edge from each set

12: for v ∈ B do

13: Outgoing← {e ∈ RoundEdges : |e ∩ Elts(v)| = 1}
14: if Outgoing 6= ∅ then

15: Add one edge from Outgoing to EdgesToAdd.

16: end if

17: end for

18: F ← F ∪ EdgesToAdd
19: for {u, v} ∈ EdgesToAdd do

20: Union(u, v) ⊲ Merge sets connected by an edge of EdgesToAdd
21: end for

22: Temp← ∅
23: for v ∈ B do

24: Temp← Temp ∪ FindSet(v) ⊲ Create updated partition

25: end for

26: B ← Temp
27: end for

28: Return F
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The algorithm makes one call to RecoverOneFromAll in each iteration of the for loop. There

are T = 3(log(n)+10) iterations of the for loop, giving the upper bound on the complexity. Let us

now show correctness. We will first show correctness assuming the procedure RecoverOneFromAll

has no error.

In an arbitrary round of the algorithm we have a partition B1, . . . , Bk of V and a set of edges

F which consists of a spanning tree for each Bi. For i = 1, . . . , k we color Bi red or blue indepen-

dently at random with equal probability. All vertices inBi are given the color of Bi. Let R be the set

of red vertices and S the set of blue vertices. We then call RecoverOneFromAll[A](R, S, δ). Note

that R ∩ S = ∅, showing the “moreover” part of the theorem. Assuming that RecoverOneFromAll

returns without error, this gives us an edge in the red-blue cut for every red vertex which has such

an edge. The set of all these edges is called RoundEdges. We then select from RoundEdges one

edge incident to each red Bi which has one, and let the set of these edges be EdgesToAdd. This

set of edges necessarily does not create a cycle among the sets B1, . . . , Bk as we have chosen at

most one edge from only the red Bi. We add EdgesToAdd to F and merge the sets connected by

these edges giving a new partition B′
1, . . . , B

′
k′ . Assuming that RecoverOneFromAll returns with-

out error, so that all added edges are valid edges, and as we have added a cycle free set of edges,

we maintain the invariant that F contains a spanning tree for each set of the partition.

To show correctness it remains to show that with constant probability at the end of the algorithm

the partition B1, . . . , Bk consists of connected components. The key to this is to analyze how the

number of sets in the partition decreases with each round. Let Qi be a random variable denoting

the number of sets of the partition that have an outgoing edge at the start of round i. Thus, for

example Q1 is equal to n minus the number of isolated vertices with probability 1. In particular

E[Q1] ≤ n.

Consider a generic round i and say that at the start of this round qi many sets of the partition

have an outgoing edge. In expectation qi/2 of the sets with an outgoing edge are colored red, and

each outgoing edge has probability 1/2 of being in the red-blue cut. Thus the expected size of

EdgesToAdd is at least qi/4. As each edge in EdgesToAdd reduces the number of sets in the

partition of the next round by at least one this means E[Qi+1 | Qi = qi] ≤ 3qi/4. Therefore we

have

E[Qi+1] =
∑

qi

E[Qi+1 | Qi = qi] Pr[Qi = qi] ≤
3

4

∑

qi

qi Pr[Qi = qi]

=
3

4
E[Qi] .

From this it follows by induction that E[Qi] ≤ (3/4)i−1n. Taking T = 3(log(n) + 10) we have

E[QT ] ≤ 1/100, and therefore by Markov’s inequality the algorithm will terminate with all sets

being connected components except with probability at most 1/100.

Finally, let us remove the assumption that RecoverOneFromAll returns without error. We have

set the error parameter inRecoverOneFromAll to be δ = (300(log(n)+10))−1. AsRecoverOneFromAll

is called T times, by a union bound the probability it ever makes an error is at most Tδ ≤ 1/100.

Therefore adding this to our error bound, the algorithm will be correct with probability at least

49/50.

7



4 Master Model

Given Algorithm 3, the task now becomes to implement RecoverOneFromAll[A](R, S, δ). There is

a natural approach to do this following the template of ℓ0 samplers [JST11]. Let B = A(R, S) be

the submatrix of interest, and assume for the moment that A ∈ {0, 1}n×n is Boolean.

1. Estimate the number of ones in each row of B.

2. Bucket together the rows whose estimate is in the range (2i−1, 2i] into a set Gi.

3. For each Gi, randomly sample Θ(n log(n)/2i) columns of B. With high probability every

row of Gi will have at least one and at most c · log(n) ones in this sample, for a constant c.

4. For each i and row in Gi learn the O(log(n)) ones in the sampled set.

We now want to find a “master query model” that can efficiently implement this template, yet

is sufficiently weak that simulations of this model by other global query models give non-trivial

results. To do this we take inspiration from combinatorial group testing. In combinatorial group

testing one is given OR query access to a string x ∈ {0, 1}n. This means that one can query any

subset S ⊆ [n] and receive the answer ∨i∈S xi. Both the problems of estimating the number of

ones in x we need for step 1 and learning a sparse string x we need for step 4 have been extensively

studied in the group testing setting. A natural kind of query to implement group testing algorithms

in the matrix setting is a Boolean matrix-vector multiplication query, that is for A ∈ {0, 1}n×n one

can query x ∈ {0, 1}n and receive the answer y = A ∨ x ∈ {0, 1}n where yi = ∨j(A(i, j) ∧ xj).
With this kind of query one can implement a non-adaptive group testing algorithm in parallel on

all rows of A.

We will define the master model to be a weakening of the Boolean matrix-vector multiplication

query, in order to accomodate quantum cut queries later on. In the master model one can query

x ∈ {0, 1}n and receive the answer (A ∨ x) ◦ (1 − x). Here ◦ denotes the Hadamard or entrywise

product of vectors. In other words, in the master model one only learns the entries of A ∨ x in

those coordinates where x is zero. This restriction allows one to efficiently simulate these queries

by a quantum algorithm making cut queries.

If A is non-Boolean then in the master model one can again query any x ∈ {0, 1}n and receive

the answer [Ax]>0 ◦ (1 − x), where [y]>0 ∈ {0, 1}n is a Boolean vector whose ith entry is 1 if

yi > 0 and 0 otherwise. The following proposition shows that it suffices to restrict our attention to

Boolean matrices.

Proposition 2. Let A ∈ Rn×n be a non-negative matrix and x ∈ {0, 1}n. Then [Ax]>0 = [A]>0∨x.

The main result of this section is the following.

Lemma 3. Let A ∈ Rn×n be a non-negative matrix. RecoverOneFromAll[A](R, S, 1/n2) on dis-

joint subsets R, S ⊆ [n] can be implemented with O(log(n)3) many [Av]>0 ◦ (1− v) queries.

At a high level, this lemma will follow the 4 steps given at the beginning of the section. Step 2

does not require any queries. Step 3 follows easily by a Chernoff bound, as encapsulated in the

following lemma.
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Algorithm 3 Implementation of RecoverOneFromAll in the master model.

Input: (A ∨ x) ◦ (1 − x) query access to a Boolean matrix A ∈ {0, 1}n×n, disjoint subsets

R, S ⊆ [n], and an error parameter δ
Output: A set T ⊆ R × S such that for every i ∈ R if there is a j ∈ S with A(i, j) = 1 then

there is a pair (i, t) ∈ T with A(i, t) = 1, except with error probability at most δ.

1: Estimate |A(i, S)| for all i ∈ R using Theorem 6.

2: for i = 1, . . . , ⌈log n⌉ do

3: Let Gi be the set of rows of R whose estimate is in the range (2i−1, 2i]
4: Randomly sample min{n, ⌈32|S| ln(n)/2i⌉} elements from S with replacement, and let

the selected set be Hi

5: Learn the submatrix A(Gi, Hi)
6: end for

Lemma 4 ([LSZ21, Lemma 8]). Let x(1), . . . , x(k) ∈ {0, 1}ℓ be such that t
8
≤ |x(i)| ≤ 2t for all

i ∈ {1, . . . , k}. For δ > 0, sample with replacement
8ℓ ln(k/δ)

t
elements of {1, . . . , n}, and call the

resulting set R. Then

• PrR[∃i ∈ {1, . . . , k} : |xi(R)| = 0] ≤ δ

• PrR[∃i ∈ {1, . . . , k} : |xi(R)| > 64 ln (k/δ)] ≤ δ

The interesting part are steps 1 and 4, both of which will be done using non-adaptive group

testing algorithms. Towards step 1 we make the following definition.

Definition 5 (Good estimate). We say that b ∈ Rk is a good estimate of c ∈ Rk iff b(i) ≤ c(i) ≤
2b(i) for all i ∈ {1, . . . , k}.

The next theorem gives a randomized non-adaptive group testing algorithm for estimating the

number of ones in a string x.

Theorem 6 ([Bsh19, Theorem 4]). Let n be a positive integer and 0 < δ < 1 an error parameter.

There is a non-adaptive randomized algorithm that on input x ∈ {0, 1}n outputs a good estimate

of |x| with probability at least 1− δ after O(log(1/δ) log(n)) many OR queries to x.

The problem of learning a string x by means of OR queries is the central problem of combina-

torial group testing and has been extensively studied [DH99]. It is known that non-adaptive deter-

ministic group testing algorithms must make Ω
(

d2 log(n)
log(d)

)
queries in order to learn a string with at

most d ones [DR82, Rus94]. However, there are non-adaptive randomized group testing algorithms

that learn any x ∈ {0, 1}n with |x| ≤ d with probability at least 1−δ after O(d(log(n)+log(1/δ)))
queries. This is what we will use.

Theorem 7 ([BDKS17, Theorem 2]). Let d, n be positive integers with d ≤ n, and 0 < δ < 1.

There is a distributionD over n-by-k Boolean matrices for k = O(d(log(n)+log(1/δ))) such that

for any x ∈ {0, 1}n with |x| ≤ d, the string x can be recovered from [xTR]>0 with probability at

least 1− δ when R is chosen according to D.
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We are now ready to give the proof of Lemma 3

Proof of Lemma 3. By Proposition 2 we may assume that A is Boolean and we have (A∨x)◦(1−x)
query access to A. Let k = |R|, ℓ = |S| and B = A(R, S) be the submatrix of interest. Let b ∈ Nk

where b(i) is the number of ones in the ith row of B. By Theorem 6 applied with δ = 1/n4 and a

union bound, there is a distributionRcount over Boolean ℓ-by-t matrices with t = O(log(n)2) such

that from [BK]>0 we can recover a good estimate of b with probability at least 1 − 1/n3 when K
is drawn from Rcount. We add 1/n3 to our error bound and continue the proof assuming that we

have a good estimate of b. As R and S are disjoint we can simulate the computation of [BK]>0

with O(log(n)2) many (A ∨ x) ◦ (1− x) queries.

Next, for i = 1, . . . , ⌈logn⌉ we bucket together rows of B where the estimated number of

non-zero entries is in the interval (2i−1, 2i] into a set Gi. As the estimate is good, for every j ∈ Gi

the number of non-zero entries in the j th row of B is actually in the interval (2i−3, 2i+1]. For

each i = 1, . . . , ⌈logn⌉ randomly sample
32ℓ ln(n)

2i
elements of S with replacement and let Hi be

the resulting set. By Lemma 4, with probability at least 1 − 1/n3 there is at least 1 and at most

O(log (n)) ones in each row of the submatrix A(Gi, Hi). We add log(n)/n3 to our error total and

assume this is the case for all i = 1, . . . , ⌈log n⌉.
For each i = 1, . . . , ⌈log n⌉ we next learn the non-zero entries of A(Gi, Hi) via Theorem 7.

This theorem states that for t = O(log(n)2) there is a family of |Hi|-by-t matricesD such that from

[A(Gi, Hi)D]>0 we can learn the positions of all the ones of A(Gi, Hi) with probability at least

1− 1
n3 , when D is chosen from D. Again by a union bound this computation will be successful for

all i except with probability log(n)/n3. As R and S are disjoint we can simulate the computation

of [A(Gi, Hi)D]>0 with O(log2 n) many (A ∨ x) ◦ (1− x) queries. Over all i, the total number of

queries is O(log(n)3) and the error is at most 3 log(n)/n3 = O(1/n2).

Theorem 8. Let G = (V, w) be an n-vertex weighted graph and A its adjacency matrix. There

is a randomized algorithm that outputs a spanning forest of G with probability at least 4/5 after

O(log(n)4) many [Av]>0 ◦ (1− v) queries.

Proof. This follows from Theorem 1 and Lemma 3.

5 Applications

In this section we look at consequences of Theorem 8 to algorithms with matrix-vector multiplica-

tion queries to the adjacency matrix, quantum algorithms with cut queries, and quantum algorithms

with bipartite independent set queries.

5.1 Matrix-vector multiplication queries

Let G = (V,E) be a simple n-vertex graph. There are several different ways one can represent

G by a matrix, for example by its adjacency matrix A ∈ {0, 1}n×n, or its signed vertex-edge

incidence matrix A± ∈ {−1, 0, 1}n×(
n

2
). Sun et al. study the complexity of graph problems with

matrix-vector multiplication queries, and ask the question if some matrix representations allow
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for much more efficient algorithms than others [SWYZ19, Question 4]. They point out that the

sketching algorithm for connectivity of Ahn, Guha, and McGregor [AGM12] can be phrased as

a matrix-vector multiplication query algorithm to the signed vertex-edge incidence matrix A±.

Specifically, the AGM algorithm gives a randomized non-adaptive algorithm that can output a

spanning forest of an n-vertex graph after O(log4(n)) matrix-vector multiplication queries to A±,

where the queries are Boolean vectors. 1

In contrast, Sun et al. show that there is a bipartite graph G such that when one is given matrix-

vector multiplication query access on the right to the bipartite adjacency matrix of G, Ω(n/ log(n))
many matrix-vector multiplication queries are needed to determine if G is connected. However,

the instances they give can be solved by a single matrix-vector multiplication query to the full

adjacency matrix of G (or a single matrix-vector multiplication query on the left to the bipartite

adjacency matrix).

This leaves open the natural question if connectivity can be used to separate the matrix-vector

multiplication query complexity of the adjacency matrix versus the signed vertex-edge incidence

matrix representation. As one can clearly simulate a query [Ax]>0 ◦ (1 − x) in the master model

by a matrix-vector multiplication query, our results show that connecitivity does not separate these

models with the current state-of-the-art.

Corollary 9. Let G = (V, w) be an n-vertex weighted graph. There is an randomized algorithm

that outputs a spanning forest of G with probability at least 49/50 after O(log(n)4) matrix-vector

multiplication queries to the adjacency matrix of G.

The O(log(n)4) complexity matches the upper bound in the signed vertex-edge incidence ma-

trix representation, however, the latter algorithm is non-adaptive while the adjacency matrix al-

gorithm is not. It is still possible that connectivity provides a large separation between the non-

adaptive adjacency matrix-vector multiplication and non-adaptive signed vertex-edge incidence

matrix-vector multiplication models.

5.2 Quantum cut queries

Let G = (V, w) be an n-vertex weighted graph. In this section, we will assume that the edge

weights are natural numbers in {0, . . . ,M − 1}. Let A ∈ {0, . . . ,M − 1}n×n be the adjacency

matrix of G. In a cut query, one can ask any z ∈ {0, 1}n and receive the answer (1 − z)TAz. A

very similar query is a cross query. In a cross query one can query any y, z ∈ {0, 1}n that are

disjoint (i.e. y ◦ z = 0) and receive the answer yTAz. It is clear that a cross query can simulate a

cut query. One can also simulate a cross query with 3 cut queries because for disjoint y, z

yTAz =
1

2

(
(1− y)TAy + (1− z)TAz − (1− (y + z))TA(y + z)

)
.

Because of this constant factor equivalence we will make use of cross queries when it is more

convenient.

1The literal translation of the AGM algorithm uses O(log3(n)) many queries by vectors whose entries have

O(log n) bits. When translated to queries by Boolean vectors this results in O(log4(n)) queries.
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Lee, Santha, and Zhang [LSZ21] give a quantum algorithm to find a spanning forest of a

simple n-vertex graph after O(log8(n)) cut queries. A key observation they make is that a quantum

algorithm can efficiently simulate a restricted version of a matrix-vector multiplication query to the

adjacency matrix. This follows from the following lemma, which is an adaptation of the Bernstein-

Vazirani algorithm [BV97].

Lemma 10 ([LSZ21, Lemma 9]). Let x ∈ {0, 1, . . . , K − 1}n and suppose we have access to an

oracle that returns
∑

i∈S xi mod K for any S ⊆ [n]. Then there exists a quantum algorithm that

learns x with O(⌈log(K)⌉) queries without any error.

Corollary 11 (cf. [LSZ21, Lemma 11]). Let G = (V, w) be an n-vertex weighted graph with

integer weights in {0, 1, . . . ,M − 1}, and let A be its adjacency matrix. There is a quantum

algorithm that for any z ∈ {0, 1}n perfectly computes x = Az ◦ (1 − z) with O(log(Mn)) cut

queries to A.

Proof. Let x = Az ◦ (1− z). The entries of x are in {0, . . . , n(M −1)}, thus we can work modulo

K = 2Mn and preserve all entries of x. Moreover, x is zero wherever z is one. Thus for any

y ∈ {0, 1}n we have yTx = (y ◦ (1 − z))Tx = (y ◦ (1 − z))TAz, which can be computed with

one cross query. Thus we can apply Lemma 10 to learn x perfectly with O(log(Mn)) many cut

queries to A.

Using Corollary 11, classical algorithms using Az ◦ (1 − z) queries give rise to quantum al-

gorithm using cut queries. Thus we can apply Theorem 8 to obtain the following quantitative

improvement of the result of [LSZ21].

Theorem 12. Given cut query access to an n-vertex graphGwith integer weights in {0, 1, . . . ,M−
1} there is a quantum algorithm making O(log4(n) log(Mn)) queries that outputs a spanning for-

est of G with at least probability 49/50.

Proof. The proof follows from Corollary 11 and Theorem 8.

5.3 Quantum bipartite independent set queries

Let G = (V,E) be a simple graph and A its adjacency matrix. In a bipartite independent set query,

one can query any disjoint y, z ∈ {0, 1}n and receive the answer [yTAz]>0 ∈ {0, 1}. A query in

the master model can be simulated by a quantum algorithm making Õ(
√
n) bipartite independent

set queries. The key to this result is the following theorem of Belovs about combinatorial group

testing with quantum algorithms.

Theorem 13 (Belovs [Bel15]). Let x ∈ {0, 1}n. There is a quantum algorithm that outputs x with

probability at least 2/3 after O(
√
n) OR queries to x.

Corollary 14. Let G = (V,E) be an n-vertex simple graph, and let A be its adjacency matrix.

There is a quantum algorithm that for any z ∈ {0, 1}n computes Az ◦ (1 − z) with probability at

least 1− 1/n3 after O(
√
n log(n)) bipartite independent set queries to G.
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Proof. Let x = Az◦(1−z). For any y ∈ {0, 1}n we have yTx = (y◦(1−z))Tx = (y◦(1−z))Az,

thus [yTx]>0 can be computed with a single bipartite independent set query to G as y ◦ (1 − z)
and z are disjoint. Therefore by Theorem 13 and error reduction, with O(

√
n log(n)) bipartite

independent set queries we can compute x with probability at least 1− 1/n3.

Theorem 15. Let G = (V,E) be an n-vertex simple graph. There is a quantum algorithm which

outputs a spanning forest of G with probability at least 4/5 after O(
√
n log(n)5) bipartite inde-

pendent set queries to G.

Proof. Let A be the adjacency matrix of G. By Theorem 8 there is an algorithm that outputs

a spanning forest of G with probability at least 49/50 after O(log(n)4) many [Av]>0 ◦ (1 − v)
queries. We can implement an [Av]>0 ◦ (1 − v) with error at most 1/n3 by a quantum algorithm

making O(
√
n log(n)) bipartite independent set queries by Corollary 14. The probability any of

the O(log(n)4) many [Av]>0 ◦ (1 − v) queries is computed incorrectly is at most O(log(n)4/n3).
Thus there is a quantum algorithm with success probability at least 4/5 that outputs a spanning

forest of G after O(
√
n log(n)5) bipartite independent set queries.

6 Lower bound for linear queries

On input an n-vertex graph G = (V, w), a linear query algorithm can ask any x ∈ R(
n

2) and receive

the answer 〈w, x〉. In this section we show that any deterministic, or even zero-error randomized,

algorithm for connectivity must make Ω(n) linear queries. As far as we are aware, this is the first

lower bound of any kind for connectivity in the unrestricted linear query model.

The reason lower bounds against linear queries are difficult to show is because the answer to

a query can have an unbounded number of bits. The “hard” inputs for a linear query lower bound

cannot be limited to simple graphs, as given the promise that a graph is simple it can be learned

with a single linear query, by querying the vector of powers of 2 of the appropriate dimension.

Most global query lower bounds for connectivity are derived from communication complexity.

It is known that the communication complexity of connectivity is Θ(n log n) in the deterministic

case [HMT88] and Ω(n) in the bounded-error randomized case [BFS86]. Moreover, the family of

instances used to show these lower bounds are all simple graphs. If the answer to a global query on

a simple graph can be communicated with at most b bits, then these communication results imply

Ω(n log(n)/b) and Ω(n/b) deterministic and randomized lower bounds on the query complexity of

connectivity in this model, respectively. In particular, this method gives an Ω(n) deterministic and

Ω(n/ log n) randomized lower bound on the cut query complexity of connectivity. This approach,

however, cannot show any lower bound against linear queries.

A lower bound technique which goes beyond considering simple graphs is the cut dimension

[GPRW20]. This technique was originally developed by Graur et al. for showing cut query lower

bounds against deterministic algorithms solving the minimum cut problem. In [LLSZ21] it was ob-

served that the lower bound also applies to the linear query model, and a strengthening of the tech-

nique was given called the ℓ1-approximate cut dimension. Here we observe that the ℓ1-approximate

cut dimension characterizes, up to an additive +1, a well known query complexity lower bound

technique applied to the minimum cut problem, the certificate complexity. We further adapt this
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certificate complexity technique to the connectivity problem, allowing us to show an Ω(n) lower

bound for deterministic linear query algorithms solving connectivity. By its nature, certificate

complexity also lower bounds the query complexity of zero-error randomized algorithms, thus we

get a lower bound of Ω(n) for connectivity in this model as well.

We first define the linear query certificate complexity in Section 6.1 and show that it is equiva-

lent to the ℓ1-approximate cut dimension of [LLSZ21]. Then in Section 6.2 we apply this method

to show an Ω(n) lower bound on the linear query certificate complexity of connectivity.

6.1 Certificate complexity

While our main focus is connectivity, the ideas here apply to the minimum cut problem as well, so

we treat both cases. We will need some definitions relating to cuts. Let G = (V, w) be a weighted

graph. For ∅ 6= S ( V the cut ∆G(S) corresponding to S is the set of edges of G with exactly one

endpoint in S. When the graph is clear from context we will drop the subscript. We call S a shore

of the cut. Every cut has two shores. When we wish to speak about a unique shore, for example

when enumerating cuts, we will take the shore not containing some distinguished vertex v0 ∈ V .

The weight of a cut w(∆G(S)) is
∑

e∈∆G(S)w(e). We let λ(G) denote the weight of a minimum

cut in G.

Definition 16 (CONn and MINCUTn). The input in the CONn and MINCUTn problems is an

n-vertex weighted undirected graph G = (V, w). In the CONn problem the goal is to output if

λ(G) > 0 or not. In the MINCUTn problem the goal is to output λ(G).

A deterministic algorithm correctly solves the MINCUTn problem if it outputs λ(G) for every

n-vertex input graph G. We let Dlin(MINCUTn) denote the minimum, over all deterministic

linear query algorithmsA that correctly solve MINCUTn, of the maximum over all n-vertex input

graphs G = (V, w) of the number of linear queries made by A on G. The deterministic linear

query complexity of connectivity, Dlin(CONn), is defined analogously.

We will also consider zero-error randomized linear query algorithms. A zero-error randomized

linear query algorithm for MINCUTn is a probability distribution over deterministic linear query

algorithms that correctly solve MINCUTn. The cost of a zero-error randomized algorithm A on

input G = (V, w) is the expected number of queries made by A. We let R0,lin(MINCUTn) denote

the minimum over all zero-error randomized algorithms A for MINCUTn of the maximum over

all G of the cost of A on G. R0,lin(CONn) is defined analogously. Clearly R0,lin(MINCUTn) ≤
Dlin(MINCUTn) and R0,lin(CONn) ≤ Dlin(CONn)

We will investigate a lower bound technique called certificate complexity.

Definition 17 (Certificate complexity). Let G = (V, w) be an n-vertex graph. The minimum-

cut linear-query certificate complexity of G, denoted mincut-cert(G), is the minimum k such that

there is a matrix A ∈ Rk×(n
2
) with the property that, for any graph G′ = (V, w′), if Aw = Aw′ then

λ(G) = λ(G′).
The connectivity linear-query certificate complexity, denoted con-cert(G), is the minimum k

such that there is a matrix A ∈ Rk×(n
2
) with the property that, for any graph G′ = (V, w′), if

Aw = Aw′ then λ(G′) > 0 iff λ(G) > 0.
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It is a standard fact that certificate complexity is a lower bound on zero-error randomized query

complexity. We reproduce the proof here for completeness.

Lemma 18. For any n-vertex graph G = (V, w)

R0,lin(MINCUTn) ≥ mincut-cert(G)

R0,lin(CONn) ≥ con-cert(G) .

Proof. We treat the minimum cut case, the connectivity case follows similarly.

First consider a deterministic linear query algorithm for minimum cut on input G. This algo-

rithm must make at least mincut-cert(G) many queries. If not, there is a graph G′ which agrees

with G on all the queries but such that λ(G′) 6= λ(G). As the algorithm does not distinguish G
from G′ it cannot answer correctly.

Consider now a zero-error randomized linear query algorithm A for minimum cut. Each de-

terministic algorithm in the support of A correctly solves MINCUTn and so must make at least

mincut-cert(G) many queries on input G. Thus expected number of queries made by A on input

G is at least mincut-cert(G) as well.

It is useful to think of a certificate in two parts. Let A ∈ Rk×(n
2
) be a minimum cut certificate

for G. Then for any G′ = (V, w′) with Aw = Aw′ it must hold that λ(G) = λ(G′). The condition

that λ(G′) ≤ λ(G) can be certified with a single query. If S is the shore of a minimum cut in G

then we can query χS ∈ {0, 1}(
n

2
), the characteristic vector of ∆Kn

(S) where Kn is the complete

graph. Then 〈χS, w〉 = λ(G), and including χS as a row of A guarantees that if Aw = Aw′ then

λ(G′) ≤ λ(G).
The more challenging problem is certifying that the minimum cut of any G′ = (V, w′) with

Aw = Aw′ is at least λ(G). We single out a more general version of this lower bound certification

problem, which will be useful to treat the minimum cut and connectivity cases together.

Definition 19. Let G = (V, w) be a graph and let 0 ≤ τ ≤ λ(G) be a parameter. The at-least-τ -cert

of G is the least k such that there is a matrix A ∈ Rk×(n
2
) such that for any G′ = (V, w′) with

Aw = Aw′ it holds that λ(G′) ≥ τ .

Lemma 20. Let G = (V, w) be a graph. Then

at-least-λ(G)-cert(G) ≤ mincut-cert(G) ≤ at-least-λ(G)-cert(G) + 1 .

If G is connected then con-cert(G) = infτ>0 at-least-τ -cert(G).

Proof. If A is a mincut-cert for G then in particular it certifies that λ(G′) ≥ λ(G) for any G′ =
(V, w′) with Aw = Aw′. This shows the first lower bound. For the other direction, suppose A is

an at-least-λ(G)-cert for G. Let S be the shore of a minimum cut in G and χS ∈ {0, 1}(
n

2
), the

characteristic vector of the cut corresponding to S in the complete graph. Then adjoining χS as an

additional row to A creates a minimum cut certificate for G.

Now we show the second part of the lemma. Let G be a connected graph. For any 0 <
τ ≤ λ(G), if A is an at-least-τ -cert certificate for G then it holds that for any G′ = (V, w′)
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with Aw = Aw′ that λ(G′) ≥ τ > 0 so G′ is also connected. This shows that con-cert(G) ≤
infτ>0 at-least-τ -cert(G).

For the other direction, let A be a connectivity certificate for G. We claim that A is also a

at-least-τ -cert for some τ > 0. For ∅ 6= S ( V let χS ∈ {0, 1}(
n

2
) be the characteristic vector of

∆Kn
(S), where Kn is the complete graph on n vertices. Define

ι(S) =minimize
w′

〈χS, w
′〉

subject to Aw = Aw′

w′ ≥ 0 .

As ι(S) is defined by a linear program, the minimum is achieved, and is strictly positive as A is a

connectivity certificate. Thus letting τ = min∅6=S(V ι(S) we see that A is an at-least-τ -cert. This

shows infτ>0 at-least-τ -cert(G) ≤ con-cert(G).

We now proceed to give a linear-algebraic characterization of these certificate complexities.

First a definition.

Definition 21 (universal cut-edge incidence matrix). Let Kn be the complete graph on vertex set

{1, . . . , n}. The universal cut-edge incidence matrixMn is a Boolean (2n−1−1)-by-
(
n
2

)
matrix with

rows indexed by non-empty sets S with 1 6∈ S and columns indexed by edges e and Mn(S, e) = 1
iff e ∈ ∆Kn

(S).

Definition 22. Let G = (V, w) be a graph on n vertices and Mn the universal cut-edge incidence

matrix. For τ ∈ R with 0 ≤ τ ≤ λ(G) define

τ -cut-rank(G) = minimize
X

rank(X)

subject to X ≤Mn

Xw ≥ τ .

Remark 23. The λ(G)-cut-rank(G) is equivalent to the ℓ1 approximate cut dimension defined in

[LLSZ21].

We have defined the cut rank where X is a matrix with
(
n
2

)
columns as this will be more

convenient in the proof of Theorem 24. If G has m edges, one could instead restrict Mn and X to

matrices with m columns, corresponding to the edges of G.

Indeed, let M̂n be the (2n−1− 1)-by-m matrix that is Mn with columns restricted to edges of G
and similarly ŵ ∈ Rm be w restricted to edges of G. One can see that the program

minimize
Y

rank(Y )

subject to Y ≤ M̂n

Y ŵ ≥ τ

has value equal to τ -cut-rank(G). It is clear that τ -cut-rank(G) is at most the value of this program

as any feasible Y can be turned into a feasible X by populating the additional columns with zeros.
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For the other direction, let let X∗ realize τ -cut-rank(G) and let Y ∗ be X∗ with columns cor-

responding to non-edges of G deleted. Then rk(Y ∗) ≤ rk(X∗), Y ∗ ≤ M̂n and Y ∗ŵ ≥ τ because

w is zero on all entries corresponding to the deleted columns. When we are actually proving

lower bounds in Section 6.2, it will be more convenient to use this formulation where columns are

restricted to edges of G.

Theorem 24. For any n-vertex graphG = (V, w) and 0 ≤ τ ≤ λ(G)we have at-least-τ -cert(G) =
τ -cut-rank(G).

Proof. We first show at-least-τ -cert(G) ≥ τ -cut-rank(G). Suppose the at-least-τ -cert certificate

complexity of G is k and let A be a k-by-
(
n
2

)
matrix realizing this. Let G′ = (V, w′) be such that

Aw = Aw′. Let us write w′ = w − z ≥ 0 where Az = 0.

Consider a shore ∅ 6= S ( V . Let χS ∈ {0, 1}(
n

2
) be the characteristic vector of ∆Kn

(S),
where Kn is the complete graph. Thus w(∆G(S)) = 〈χS, w〉 and

w′(∆G′(S)) = 〈χS, w − z〉 = w(∆G(S))− 〈χS, z〉 .

As A is an at-least-τ -cert certificate, we must have w(∆G(S)) − 〈χS, z〉 ≥ τ which means

〈χS, z〉 ≤ w(∆G(S))− τ .

Consider the optimization problem

α(S) =maximize
z

〈χS, z〉
subject to Az = 0

w − z ≥ 0 .

As we have argued, α(S) ≤ w(∆G(S))− τ . The dual of this problem is

β(S) =minimize
v

〈w, χS − ATv〉
subject to χS −ATv ≥ 0 .

The primal is feasible with z = 0 so we have strong duality and α(S) = β(S). This means there

exists a vector XS in the row space of A with χS ≥ XS and 〈w, χS − XS〉 ≤ w(∆G(S)) − τ ,

which implies 〈XS, w〉 ≥ τ .

As S was arbitrary, this holds for every shore. Package the vectors XS as the rows of a matrix

X . This matrix satisfies X ≤ Mn, since XS ≤ χS, and Xw ≥ τ . Further, rk(X) ≤ k as every row

of X is in the row space of A.

Now we show τ -cut-rank(G) ≥ at-least-τ -cert(G). Let X be a matrix realizing τ -cut-rank(G)
and let k = rk(X). Let A be a matrix whose rows are a basis for the row space of X , and so

rk(A) = k. To show that A is an at-least-τ certificate for G it suffices to show that α(S) ≤
w(∆G(S))− τ for every shore S.

Let XS be the row of X corresponding to shore S. We have that XS ≤ χS and that XS is in

the row space of A. Thus α(S) = β(S) ≤ 〈w, χS − XS〉 ≤ w(∆G(S)) − τ . This completes the

proof.
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Corollary 25. Let G = (V, w) be a graph. Then

λ(G)-cut-rank(G) ≤ mincut-cert(G) ≤ λ(G)-cut-rank(G) + 1 .

If G is connected then con-cert(G) = infτ>0 τ -cut-rank(G).

6.2 Application to connectivity

Theorem 26. Let n be even and Cn = ([n], w) be a cycle graph on n vertices where all edge

weights are 1. Then con-cert(Cn) ≥ n/4.

Proof. We will show that infτ>0 τ -cut-rank(Cn) ≥ n/4 which will give the theorem by Corollary 25.

Let w be the weight vector of Cn and let X be a (2n−1 − 1)-by-
(
n
2

)
matrix satisfying X ≤ Mn

and Xw > 0. We want to show that rk(X) ≥ n/4. Let Y be a n/2-by-n submatrix of X where

the rows are restricted to the singleton shores {2}, {4}, . . . , {n} at even numbered vertices, and

the columns are restricted to the edges e12, e23, . . . , en1 of Cn. To show a lower bound on the rank

of X it suffices to show a lower bound on the rank of Y .

The cuts ∆({2}),∆({4}), . . . ,∆({n}) partition the edges of Cn, therefore every pair of rows

of Y are disjoint. Note that Xw only depends on the columns of X corresponding to edges of

Cn. These are the columns we have restricted to in Y , therefore since Xw > 0, every row sum

of Y must be positive. Also note that entries of Y in the row corresponding to shore {2i} can

only potentially be positive in the columns labeled by e2i−1,2i and e2i,2i+1, where addition is taken

modulo n.

We further modify Y to a square n/2-by-n/2 matrix Y ′ by summing together columns 2i− 1
and 2i for i = 1, . . . , n/2. Note that rank(Y ′) ≤ rank(Y ) and now Y ′ has strictly positive entries

on the diagonal, and must be non-positive everywhere else. Next we multiply each row by the

appropriate number so that the diagonal entry becomes 1. This preserves the property that in each

row the sum of the positive entries (which is now 1) is strictly greater than the sum of the negative

entries, and does not change the rank. Thus in each row the ℓ1 norm of the off-diagonal entries is

at most 1, and by the Gershgorin circle theorem all eigenvalues of Y ′ are at most 2. On the other

hand, the trace of Y ′ is n/2, thus the rank must be at least n/4.

Corollary 27. R0,lin(CONn) ≥ n/4.

Proof. Follows by Lemma 18 and Theorem 26.

7 Open problems

We conclude with some open questions.

1. We have shown that connectivity has an efficient algorithm with matrix-vector multiplication

queries to the adjacency matrix. It remains an interesting question to find an example of a

graph problem that can be solved much more efficiently with matrix-vector multiplication

queries to the signed vertex-edge incidence matrix than with matrix-vector multiplication
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queries to the adjacency matrix. Sun et al. [SWYZ19] show that one can find a spectral spar-

sifier of a graph with polylog(n) matrix-vector multiplication queries to the signed vertex-

edge incidence matrix. This means that one can solve the problem of determining if the

edge connectivity of a simple graph is at least 2k or at most k with polylog(n) matrix-vector

multiplication queries to the signed vertex-edge incidence matrix. It is an interesting open

question if this can also be done with polylog(n) matrix-vector multiplication queries to the

adjacency matrix.

2. What is the randomized non-adaptive complexity of connectivity with matrix-vector mul-

tiplication queries to the adjacency matrix? The O(log4(n)) query algorithm in the signed

vertex-edge incidence matrix model is non-adaptive, but we do not see how to design a non-

adaptive algorithm making polylog(n) matrix-vector multiplication queries to the adjacency

matrix.

3. How large can the minimum-cut linear-query certificate complexity of a graph be?

4. What is the bounded-error randomized linear query complexity of connectivity? It seems

that new ideas are needed to show lower bounds for the bounded-error model.
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mum spanning tree problem: Translation of both the 1926 papers, comments, history.

Discret. Math., 233(1-3):3–36, 2001.

[RSW18] Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact min-

imum cuts without knowing the graph. In Proceedings of the 9th Innovations in The-

oretical Computer Science Conference, ITCS 2018, pages 39:1–39:16. LIPICS, 2018.
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