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Digital quantum simulation (DQS) is one of the most promising paths for achieving first useful
real-world applications for industry-scale quantum processors. Yet even assuming continued rapid
progress in device engineering and successful development of fault-tolerant quantum processors,
extensive algorithmic resource optimisation will long remain crucial to exploit their full computational
power. Currently, among leading DQS algorithms, Trotterisation provides state-of-the-art resource
scaling. Moreover, recent theoretical studies of Trotterised Ising models suggest that it also offers
feasible performance for unexpectedly large step sizes up to a sharp breakdown threshold, but
demonstrations and characterisation have been limited, and the question of whether this behaviour
applies as a general principle has remained open. Here, we study a set of paradigmatic DQS models
with experimentally realisable Trotterisations, and show that a range of Trotterisation performance
behaviours, including the existence of a sharp threshold, are remarkably universal. Carrying out a
detailed characterisation of a range of performance signatures, we demonstrate that it is the onset of
digitisation-induced quantum chaos at this threshold that underlies the breakdown of Trotterisation.
Specifically, combining analysis of detailed system dynamics with conclusive, global static signatures
based on random matrix theory, we observe clear signatures of regular behaviour before the threshold,
and conclusive, initial-state-independent evidence for the onset of quantum chaotic dynamics beyond
the threshold. We also show how this behaviour consistently emerges as a function of system size for
sizes and times already relevant for current experimental DQS platforms. Finally, introducing new
error metrics, we show that the Trotter errors are an analytic function for large regions in step size
below the threshold, and can be bounded even at long simulation times. The advances in this work
open up many important questions about the algorithm performance and general shared features of
sufficiently complex Trotterisation-based DQS. Answering these will be crucial for extracting the
maximum simulation power from future quantum processors.

I. INTRODUCTION

Quantum simulation offers exciting opportunities for
quantum processors to tackle the “in-silico” modelling of
complex quantum systems that is often intractable for
even the most advanced classical computing technology [1].
In analogue quantum simulation (AQS), a controllable,
specialised surrogate is engineered to directly emulate the
dynamical properties of the full target system, with rapid
scaling of NISQ-era processors being achieved for mod-
els in condensed-matter physics [2–6] and lattice gauge
theories [7–9]. In digital quantum simulation (DQS) [10],
complex target dynamics is instead constructed in discrete
steps from a sequence of simpler interaction primitives
(gates) on a more generic processor. This versatile ap-
proach offers universal programmability that is not limited
to models which can be mapped in toto onto systems re-

∗ cahit.kargi@student.uts.edu.au
† nathan.langford@uts.edu.au

alisable naturally in a laboratory environment, and has
been used to simulate highly varied target models across
quantum chemistry [11–14], ultrastrong coupling [15–17],
condensed-matter [18–22] and high-energy [23] physics.

A digital gate-based approach offers compatibility with
future universal quantum computers [10] and the capacity
for error correction to overcome the noise and decoherence
limiting the power of noisy intermediate-scale quantum
(NISQ) devices [24]. Yet it also introduces digitisation er-
rors intrinsic to the algorithm which are reduced through
finer and more sophisticated discretisation [10, 25–35].
Typically, this increases the required experimental re-
sources (in terms of gates, qubits or runtime) and the
exposure to noise, thus creating a trade-off between suf-
ficient discretisation (algorithmic errors) and acceptable
hardware noise (gates, decoherence, etc). In medium-term
NISQ applications, DQS resource requirements can be
somewhat reduced by combining the discretisation that
increases versatility and accessible complexity, with ana-
logue toolbox primitives to maximally exploit architecture-
specific efficiencies [15–20, 22]. Ultimately, however, for
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both NISQ devices and even fully error-corrected quan-
tum processors, simulation power will for a long time
be limited by such resource constraints. It is therefore
an essential open problem to improve our fundamental
understanding of digitisation error and how much can be
tolerated for a given application, and if possible, how to
compensate or correct them.

The most common, and arguably still best-performing
approach to DQS, known as Trotterisation [10, 35], is
to approximate the target dynamics with small discrete
time steps (Trotter steps) composed of primitive gate
sequences determined by Trotter-Suzuki product formu-
las [25–29]. Coarser discretisation of time leads to larger
Trotter errors, and two recent works studying Trotterised
Ising models [36, 37], observed a performance threshold,
where the Trotter approximation breaks down rapidly and
completely, and the digitised dynamics beyond showed sig-
natures of quantum chaotic behaviour. Another work [38]
shows similar threshold behaviour for heating in a Trot-
terised spin chain with nearest-neighbour exchange inter-
actions. References [36, 37] also showed that the errors in
observables can be explained in terms of perturbative cor-
rections quantified by the Floquet-Magnus expansion (see
also [39]), showing that finer digitisation is not necessarily
needed for improved accuracy. In order to exploit the
possibilities these ideas open up, it is crucial to develop a
deeper understanding of the Trotterisation threshold and
how universally these systems behave. Creating the tools
to characterise this threshold, and studying how close to
it we can operate effectively will not only be important
for optimising the power of future DQSs, but could also
be essential for bringing forward the time frame on which
future quantum processors can be used to solve useful
applications.
In this paper, we study a set of paradigmatic, Trot-

terised model systems, from which we develop new insights
into the Trotterisation threshold, its universality and its
connection with the onset of quantum chaotic dynamics.
Using new techniques, we carry out an improved, de-
tailed characterisation of the threshold for experimentally
realisable Trotterisations of the Heisenberg [19, 20], Rabi-
Dicke [15–17], and all-to-all Ising (A2A-Ising) [37] models.
This allows us to target a set of important questions in
the context of the Trotterisation threshold, such as the
influence of symmetries, simulation with non-qubit com-
ponents, and systems with infinite-dimensional Hilbert
spaces. Across highly varied models, signatures and pa-
rameter regimes, we demonstrate strongly qualitatively
similar performance behaviour, identifying distinctive re-
gions in step size and simulation time that share sur-
prisingly universal features. In each model, we observe
a sharp Trotterisation threshold that marks an abrupt
onset of quantum chaotic dynamics breaking down the
periodic and quasiperiodic behaviour observed at small
step sizes. We also observe a series of regular (non-
quantum chaotic) regions beyond the threshold which
we call stable islands. Our static analyses provide initial-
state-independent signatures derived solely from the Trot-

terised unitary, supporting and extending the dynamical
observations. By choosing system parameters giving inte-
grable target dynamics, our results show that the observed
quantum chaotic dynamics in the Trotterised evolution
arises solely from digitisation.

In each model, we analyse the full system dynamics to
reveal new detailed insight into the threshold behaviour.
We show that the same threshold is shared among all sig-
natures studied, including the simulation fidelity, which
was previously thought not to exhibit a sharp threshold
based on analysis exploring time averages [37]. Trotterised
dynamics display clear signatures of (quasi)periodicity
and quantum chaos [22, 40–46], and localisation and de-
localisation [47, 48], respectively, before and after the
threshold. We study how the threshold and onset of
quantum chaos scale over several orders of magnitude in
Hilbert-space dimension, starting from the smallest cases,
and investigate the minimum sizes required to observe
the threshold and quantum chaos. Specifically, using tem-
poral averages (and evolutions) of the same dynamical
signatures, we consistently observe indicators of quantum
chaotic dynamics once the system becomes large enough.
After this size, the positions of the threshold, which are
in all cases respectable fractions of the relevant coupling
strengths, show no significant dependence on dimension.
While these dynamical signatures provide useful in-

sight, they also have some limitations, providing only
indicative evidence of quantum chaos and for a particu-
lar initial state. To extend our dynamical observations,
we therefore use the random matrix theory (RMT) [49]
properties of quantum chaotic systems, specifically the
eigenvector statistics [50, 51], to conclusively demonstrate
the onset of quantum chaos at a sharp threshold in step
size. We introduce a reduced chi-squared goodness-of-fit
test statistic X2

RMT to quantify agreement or disagree-
ment with the characteristic RMT statistics, and we again
show for all models the existence of a sharp threshold
for large enough systems at a step size that does not de-
pend significantly on Hilbert-space dimension. Contrary
to dynamical signatures, the eigenvector statistics reflect
(initial state independent) properties of the Trotterised
unitary. The fact that these signatures still conclusively
exhibit quantum chaotic dynamics, illustrates that the
threshold behaviour also does not depend significantly
on initial state. Our dynamical analysis also finds that
threshold behaviours and dynamical signatures of quan-
tum chaos can arise even at the smallest system sizes.
However, while X2

RMT still shows a noticeable change at
the threshold at these sizes, we have so far only observed
conclusive agreement with RMT for sufficiently large, if
still modest, sizes.
Finally, we introduce time-averaged error measures

that can distinguish Trotter errors from discrete sampling
errors (which are observed even in the ideal system dy-
namics), and we show that the same threshold appears in
each. These analyses also provide insight into the relation-
ship of the errors with Trotter step size, total simulation
time, and system size. We find that the pre-threshold er-
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rors are generally much smaller than the errors in chaotic
regions, with varying dependence on system size and total
simulation times. Significantly, we observe that, when
correctly defined, the error measures are an analytic func-
tion of step size before the threshold, which suggests that
it may be possible to at least partially correct these errors
using a perturbative approach like the Floquet-Magnus
expansion [36, 37].
The paper is organized as follows. In Sec. II, we pro-

vide key background information about Trotterisation, its
Floquet interpretation, and quantum chaos (with a more
detailed background on quantum chaos in appendix A).
Sec. III describes the physical models and their experi-
mentally accessible Trotterisations. Our detailed findings
are presented in the main part of the paper in Sec. IV,
and we discuss our conclusions and the outlook in Sec. V.

II. BACKGROUND

This section summarises the relevant concepts from
Trotterisation and quantum chaos, introducing the no-
tations and definitions that are used in the rest of the
manuscript. In all the equations here, we take ~ = 1.

A. Trotter Errors

In Trotterisation, the target model Hamiltonian HM =∑L
l=1 Hl is decomposed into a sum of experimentally

accessible Hamiltonians {Hl}. Then, the desired time
evolution UM (t) = e−iHM t is approximated by a sequence
of discrete time evolution operators Ul(τ) = e−iHlτ for
corresponding Hamiltonians Hl, according to [10]

UM (t) ≈
[∏

l

Ul(τ)
]r

︸ ︷︷ ︸
:=Urτ

, (1)

where we define the (Trotter) step size τ = t/r as the ratio
of total simulated time t and number of (Trotter) steps r.
Defining the unitary operators Uτ and Urτ for a single and
r Trotter steps, respectively, the approximation errors ε
can be defined using a Taylor series expansion [10]

UM (t)− Urτ = t2

r

∑
l>m

[Hl, Hm] +O( t
3

r2 ), (2)

where O(t3/r2) subsumes the higher-order corrections.
Eq. (1) is a generic example of first-order Trotterisation,
but in general the unitary operations in a Trotter step
Uτ are determined also by a Trotterisation order. The
approximation errors ‖UM (t)− Urτ ‖ → 0 for r → ∞
(i.e. τ → 0) for fixed t, and the rate of convergence to
continuum depends on the order of the Trotterisation [26–
29]. Trotter-Suzuki approximations (at any order) become
exact when all the summands {Hl} commute, but this

is commonly not satisfied. Additionally, in practice, τ is
always finite, so we target a maximum error ε (for fixed
simulated time t) and try to determine the Trotter step
size (for a particular Trotterisation order) required to
achieve the desired accuracy.

The usual assumption in Eq. (2) is that the first-order
error term dominates (and consequently bounds) the er-
rors, but this intuition does not always hold [35]. A more
concrete bound on the error can be obtained by using a
tail bound of the Taylor expansion [52]. This worst-case
bound scales, at best, linearly with simulation time t [52],
and can be expressed in terms of the required number of
steps r2k that ensures an error ‖UM (t)− Urτ ‖ ≤ ε for a
2k(th)-order Trotterisation [52, 53]:

r2k = O( (maxl ‖Hl‖Lt)1+ 1
2k

ε
1

2k
), (3)

where the ‖.‖ is the spectral-norm, L is the number of
summands, and k is any positive integer.
Though Trotterisations provide convenient implemen-

tations of direct Hamiltonian decompositions, the scaling
of the gate estimate in Eq. (3) with time, system size,
and other parameters draws a pessimistic picture for the
product formulas. Consequently, alternative, so-called
post-Trotter DQS algorithms [30–33], with different over-
heads such as requirements for auxiliary qubits, have
been developed to overcome the apparent inefficiency of
Trotterisation. But while the generic estimates of gate
complexities, such as Eq. (3), provide sufficient conditions
for the desired accuracy [52], empirical analyses of Trot-
terisation algorithms show that such rigorous estimates
are often loose, and the desired accuracy is typically al-
ready achieved for orders of magnitude fewer steps than
the estimates [35, 53–58]. Additionally, recent rigorous
theory results [35], providing improved bounds on Trot-
ter errors, showed that Trotterisation can match or even
outperform the state-of-the-art post-Trotter algorithms,
suggesting that Trotterisation may even be the optimal al-
gorithm. Also note that the performance of Trotterisation
algorithms might be improved even further by exploiting
commutations between summands [34, 54] and/or by ran-
domised ordering of unitary evolutions in each Trotter
step [53, 59, 60].
Since we focus on Trotterisation algorithms in this

paper, we may, unless otherwise specified, use DQS to
refer specifically to Trotterisation.

B. Trotterisation Sequences as Floquet Systems

In addition to gate complexities, it is equally important
to know the nature of the errors and the minimum r
(maximum τ) at which the approximation is still valid.
For example, before the complete breakdown point of the
approximation due to coarse digitisation [36, 37], it may
still be possible to correct the errors. Alternatively, it
may also be possible to predict the r → ∞ (i.e. τ → 0)
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value for a particular choice of observable from a smaller
number of steps.
An alternative approach to Trotter error analyses [36,

37] is to interpret the Trotterised evolution as the strobo-
scopic dynamics under a Floquet Hamiltonian HF ,

Uτ =
∏
l

Ul(τ) = e−iHF τ . (4)

The digitisation error in the effective Floquet Hamiltonian
is then quantified by the Floquet-Magnus (FM) expansion,

HF = HM + i
τ

2
∑
l>m

[Hl, Hm] +O(τ2), (5)

where O(τ2) subsumes any higher-order corrections. The
Floquet-Magnus expansion has a finite radius of conver-
gence τ∗, beyond which the approximation breaks down.
Theoretically, this represents the largest step size for
which Trotterisation will realise a meaningful approxi-
mate simulation. Taking the Floquet-Magnus expansion
as a special case of a more general Magnus expansion for
a periodically time-dependent Hamiltonian, a rigorous
sufficient condition of convergence can be derived that
suggests that the radius of convergence should scale in
inverse proportion to system size [61–63]. If this lower
bound on τ∗ were tight, its scaling with inverse system
size would suggest that realising large system sizes should
be very challenging.

As discussed in the introduction, two recent numerical
works studying DQS of the Ising model by some of the au-
thors [36, 37] identified a performance threshold in Trotter
step size (a threshold τ) separating a region of controllable
errors from a quantum chaotic regime. A work investigat-
ing where the Floquet-Magnus expansion diverges saw a
similar threshold in Floquet heating [38]. Moreover, by
interpreting the Trotterised evolution as a periodically
time-dependent quantum system, Refs [36, 37] considered
the errors in dynamical quantities, such as expectation
values, rather than errors in the full time evolution op-
erator (‖UM (t)− Urτ ‖), and they showed that the pre-
threshold Trotter errors in the Ising DQS agree with the
perturbative corrections predicted by the Floquet-Magnus
expansion [36]. Another very recent result [39] shows that
structural deviations can arise in the Floquet Hamiltonian
that cause localised regions of high Trotter errors even at
step sizes in the perturbative region. Nevertheless, the
findings of Refs [36, 37] open up interesting potential av-
enues for achieving better practical results with accessible
performance, even for NISQ-era DQS. For example, per-
turbative treatments could enable extrapolation of ideal
dynamics (i.e. τ → 0) from the simulations with finite
Trotter step sizes τ . This would effectively circumvent
the impact of Trotter errors by allowing accurate simula-
tion results to be calculated from simulations run over a
range of comparatively large Trotter step sizes, and would
simultaneously also help minimise the impact of errors
extrinsic to the algorithm, such as decoherence and imper-
fect gates. Our results here dramatically extend the scope

of these findings and help elevate the observations (that
were mainly limited to Ising models) from Refs [36, 37]
to the status of a universal DQS principle [39].

C. Quantum Chaos

In contrast to classical chaos, where infinitesimal differ-
ences in initial states diverge exponentially in time, the
unitarity of dynamics in quantum mechanics ensures that
the overlap between two arbitrary initial states stays the
same for all times t,

F(ψ1(0), ψ2(0)) = | 〈ψ1(0)|

=1︷ ︸︸ ︷
U†(t)U(t) |ψ2(0)〉 |2 (6)

= F(ψ1(t), ψ2(t)),

where F(ψ1, ψ2) := |〈ψ1|ψ2〉|2 is the fidelity between the
states |ψ1〉 and |ψ2〉. But while the notion of quantum
chaos does not naïvely follow popular concepts of classi-
cal chaos, similar intuitive signatures can still be found
in quantum dynamics. For example, the perturbation
fidelity between two states evolved from the same initial
state |ψ〉 under two slightly different unitaries U(t) and
a perturbed Up(t), F(ψp(t), ψ(t)) :=

∣∣〈ψ|U†p(t)U(t)|ψ〉
∣∣2,

decays exponentially for quantum chaotic systems [40].
Unfortunately, although this interpretation is intuitive,
this fidelity decay signature is reliable only for appropriate
perturbations [42].

There are many other dynamical signatures of quantum
chaos [46], and all of them (including the reliability of
a perturbation for fidelity decay [42]) derive from cer-
tain features governing the eigenvectors of either a uni-
tary evolution operator, or equivalently its corresponding
Hamiltonian. For quantum chaotic systems, the eigen-
vectors show certain random matrix properties, namely
that the distribution of their components in another basis
follow specific distributions from random matrix theory
(RMT) [49–51]. This type of analysis, known as eigenvec-
tor statistics, underlies the study of quantum chaos that
will be described in this work. A more detailed overview
of quantum chaos, its relation with RMT, and technical
subtleties in calculating the signatures of quantum chaos
are provided in appendix A.

Throughout this paper, we use (quasi)periodic, regular
or stable interchangeably to mean non-quantum chaotic.

III. PHYSICAL MODELS AND THEIR
TROTTERISATIONS

To obtain a more comprehensive understanding of the
Trotterisation threshold observed in Refs [36, 37], we con-
sider a set of paradigmatic model systems, which share
the feature that their Trotterised dynamics could be real-
isable experimentally in the near future: the (i) Ising (in
all-to-all interactions limit), (ii) Heisenberg, and (iii) Rabi-
Dicke models. In this section, we provide descriptions
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of the model Hamiltonians HM and their experimentally
realisable Trotter-Suzuki decompositions. Since our goal
is to investigate the threshold behaviour of Trotter er-
rors, we do not provide either an extensive or a complete
summary (or references) of these models. They are exten-
sively studied fundamental quantum models describing
magnetism (Ising and Heisenberg [64]) and light-matter
interactions (Rabi-Dicke [65–69]), and they and their var-
ious generalisations and modifications offer rich physical
phenomena and practical applications, such as quantum
phase transitions (in Ising [70–72], Heisenberg [73], and
Dicke and Rabi models [66, 74]), and even mappings to
NP problems [75].

A. Spin Models

The general spin-spin interaction Hamiltonian [64]

H =
∑
k,l

gk,l
[
α
(
σkxσ

l
x + σkyσ

l
y

)
+ βσkzσ

l
z

]
(7)

defines the Heisenberg interaction for α = β = 1, Ising
interaction for α = 0 & β = 1, and the exchange (or XY-)
interaction for α = 1 & β = 0, where σµ are the Pauli spin
operators with µ ∈ {x, y, z}. Example Trotterisations of
these models are considered in Refs [19, 20], [36, 37, 39],
and [38], respectively. The structure of the coefficients
gk,l defines further variations in each case [64]. Here, we
consider all-to-all (gk,l 6= 0 ∀k, l) and one-dimensional
nearest-neighbour (gk,l 6= 0 iff |k − l| = 1) interactions
for the Ising and Heisenberg models, respectively.

1. The Ising Model

Trotterisation thresholds in Ising-model DQS have been
considered for various regimes of power-law interactions
in Refs [36, 37]. Here, we revisit the all-to-all (A2A) case,
and reveal new insight into the threshold behaviour. In
this limit, the DQS model maps to the quantum kicked
top [37], and reduces to a collective spin system with total
spin j, as depicted in Fig. 1 (a), facilitating the study of
threshold behaviours up to relatively large system sizes.
Here, we describe the corresponding quantum kicked-top
model and the effective target Hamiltonian, and refer to
Ref. [37] for further details of the model. Specifically, the
corresponding Trotter-Suzuki decomposition is given by
the kicked-top Floquet operator

UI(t) = e−iHIt ≈
(
e−iHzt/ne−iHxt/n

)r
= Urτ , (8)

where HI = Hz +Hx is the effective target-model Hamil-
tonian. The individual summand Hamiltonians are

Hµ = ωµJµ + gµJ
2
µ/(2j + 1), (9)

for µ ∈ {x, z}, with standard angular momentum opera-
tors Jµ of a spin j = N/2 system, corresponding to the

==ZZ

(a) DQS of all-to-all (A2A) Ising system of N qubits
maps to the quantum kicked top of a single spin with
spin number j = N/2. Here, ZZ represents the Ising

interaction.

XYZ XYZ

(b) The nearest-neighbour Heisenberg model is a chain
of N qubits with XYZ coupling between each neigh-

bouring qubits.

≡

(c) The collective behaviour of the qubit ensemble inside
a cavity is represented as a large spin for the Dicke

model.

Figure 1. Pictorial schematics of the physical models analysed
in this paper.

(maximal) collective spin of N = 2j spin-1/2 systems
in an A2A-Ising system [37]. The quantum kicked-top
models have already been implemented in various plat-
forms, including in a single Caesium atom with j = 3
[76], the collective spin of an ensemble of three supercon-
ducting qubits [22] corresponding to j = 3/2, and others
(including novel proposals [77]) discussed in Ref. [37].

For ease of comparison and consistency, we show our
results for the same simulation parameters as in Ref. [37],
that is gz := g (with time measured in units of 2π/g for
all models), ωx = 0.1gz, gx = 0.7gz, and ωz = 0.3gz,
and the initial state is |θ = 0, φ = 0〉 = |j, j〉, where
|θ, φ〉 = exp (iθ(Jx sin(φ)− Jy cos(φ))) |j,m = j〉 is the
spin coherent state. The qualitative behaviour of our
results does not depend on the precise values of these
parameters [37].

2. The Heisenberg Model

The Heisenberg model is an extensively studied model
in the quantum theory of magnetism [64], and, in addition
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to its fundamental importance, the random-field version
of this model is proposed to allow demonstrations of
quantum speed-up in quantum simulations [34]. Here,
we consider the uniform-field case with parameters and
system sizes readily available in current experiments [20].
Specifically, we consider a nearest-neighbour interact-

ing spin chain version of the Heisenberg model with open
boundary conditions, homogenous couplings, and a longi-
tudinal external field (as depicted in Fig. 1 (b)):

HH = ω

2

N∑
k=1

σkz︸ ︷︷ ︸
Hz

+g
N−1∑
k=1

(
σkxσ

k+1
x + σkyσ

k+1
y + σkzσ

k+1
z

)
,

(10)
where g is the nearest-neighbour coupling strength, and ω
is the Zeeman splitting due to the homogenous magnetic
field applied in the z-direction. All our results, including
the existence of stable islands, qualitatively hold also
for the cases with a transverse (i.e. σy or σx term) or
no external field (data available, but not shown). The
Heisenberg interaction is rotationally symmetric, and
the distinction between longitudinal and transverse fields
is not strictly relevant for it. However, the rotational
symmetry is broken by the chosen Trotterisation, and
this distinction is relevant for analysing the Trotterised
unitary and is reflected in its eigenvector statistics (see
appendix C 1).

The Heisenberg model Hamiltonian in Eq. (10) can be
decomposed into HH = Hz +Hxy +Hxz +Hyz [19, 20],
where the exchange interaction

Hxy = g′
N−1∑
k=1

(
σkxσ

k+1
x + σkyσ

k+1
y

)
, (11)

with interaction strength g′ = g/2, is the workhorse in-
teraction for many experimental platforms. Hz is just
the free-evolution, and the other two terms of the decom-
position are obtained from the exchange interaction by
applying local transformations:

Hxz = R∀k
x,
π
2
HxyR∀k†

x,
π
2

= g′
N−1∑
k=1

(
σkxσ

k+1
x + σkzσ

k+1
z

)
,

(12)
and

Hyz = R∀k
y,
π
2
HxyR∀k†

y,
π
2

= g′
N−1∑
k=1

(
σkyσ

k+1
y + σkzσ

k+1
z

)
,

(13)
where R∀kx(y),θ =

∏N
k=1 e

−iθJkx(y) are locally applied, single-
qubit (j = 0.5) rotations by an angle θ = π/2 along the
Jx(y) = j × σx(y).

This decomposition, without the Zeeman term, was pro-
posed [19] and experimentally realised in circuit-QED [20].
The generalisation we introduce here can be implemented
in any platform [20, 78] with the exchange interaction and

single-qubit rotations, via the following Trotterisation

Uτ = Uz(τ)
N−1∏
k=1

Uk,k+1
xy (τ)

N−1∏
k=1

Uk,k+1
xz (τ)

N−1∏
k=1

Uk,k+1
yz (τ),

(14)
where the Uk,k+1

ab (t) = exp(−iHk,k+1
ab t) are unitary opera-

tors ∀ab ∈ {xy, xz, yz}, Uz = exp(−iHzt), and the qubit
rotations are implicit.
In our numerical simulations, we choose the highly

symmetric parameters of ω = g, and the initial state for
the results presented in the main text of the paper is
|1〉i=1 ⊗ |0〉i>1, with all qubits in the ground state except
for a single excitation in the first qubit. We explored the
Heisenberg DQS for a range of different parameters, and
the threshold behaviour does not depend on the precise
choice of these parameters, but the (quasi)periodic dynam-
ics before the threshold may show variations depending
on the initial state. We discuss initial-state effects further
in our results (Sec. IV), and support these discussions in
appendix C3 by analysing the results for spin coherent,
product, and random initial states.

B. The Rabi-Dicke Model

The quantum Rabi (QR) model [65] describes the fun-
damental interaction between a two-level system (i.e., a
qubit) and a single mode of the quantised electromagnetic
field

HR = ωca
†a+ ωq

2 σz + g(a† + a)σx, (15)

where a† and a are the creation and annihilation operators
for the field mode, and ωc, ωq, and g are the cavity-field,
qubit, and coupling frequencies. Both natural and typical
experimental systems typically satisfy g � ωc, ωq, where
a rotating-wave approximation (RWA) applies, reducing
the QR model to the Jaynes-Cummings (JC) model [67]

HJC = ωca
†a+ ωq

2 σz + g(a†σ− + aσ+), (16)

where σ± = (σx ± iσy)/2 are raising/lowering operators
for a two-level system. However, DQS provides a flexible
platform to explore the full QR model without the need for
challenging, direct experimental implementations. This
was recently demonstrated in circuit QED [16], and can
easily be generalised.
One important generalisation is the N -qubit case de-

scribed by the Dicke model [66]:

HD = ωca
†a+ ωq

2

N∑
k=1

σkz + g√
N

N∑
k=1

(a† + a)(σk+ + σk−).

(17)
By exploiting the collective spin behaviour of the atomic
ensemble (as depicted in Fig. 1 (c)), it can be written in
terms of angular momentum operators [69]

HD = ωca
†a+ ωjJz + g√

2j (a† + a)(J+ + J−), (18)
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where j = N/2 is the total collective spin, the frequency
ωj = ωq, and J± = (Jx ± iJy)/2 are raising/lowering
operators of an angular momentum with total spin j.
Under the RWA, the Dicke model reduces to the Tavis-
Cummings (TC) model [68],

HTC = ωca
†a+ ωjJz + g√

2j (a†J− + aJ+). (19)

In systems with access to TC coupling and single-qubit
rotations, digital quantum simulation of the Dicke Hamil-
tonian (including the Rabi Hamiltonian) can be achieved
via the decomposition

HD = HTC(g,∆c,∆TC
j ) +HATC(g,∆c,∆ATC

j ), (20)

where the anti-Tavis-Cummings (anti-TC) Hamiltonian

HATC = R∀kx,πHTCR∀k†x,π (21)

= ∆ca
†a−∆ATC

j Jz + g√
2j (a†J+ + aJ−)(22)

contains only the counter-rotating terms and is obtained
from the TC interaction by locally applied qubit rotations
of an angle π. The effective simulation frequencies are
ωeffc = 2∆c and ωeffj = ∆TC

j −∆ATC
j , where ∆µ = ωµ−ωRF

are defined relative to a nearby rotating frame (RF), giv-
ing precise control of simulated frequencies (see Ref. [16]
for details on the RF and its experimental implementation
in circuit QED). The first-order Trotterisation

Uτ = UTC(τ)UATC(τ), (23)

where UA/TC(t) = exp
(
−iHA/TCt

)
, is proposed in

Ref. [15]. Both this and the 2nd-order Trotterisations are
experimentally realised for j = 0.5, i.e., the Rabi model,
in circuit QED [16].

The Dicke model is known to be quantum chaotic for g
values around the critical coupling strength gc = √ωcωj/2
of the superradiant phase transition [79, 80]. In order
to study digitisation-induced quantum chaos, we specifi-
cally choose cavity and spin frequencies far enough from
its quantum chaotic regime, in its normal phase, but
still staying in the ultra-strong coupling regime (so that
RWA does not apply). Our results (on the existence
and the qualitative properties of the threshold) hold for
both the quantum chaotic and regular parameter regimes
of the Dicke model, and, in the appendix D4, we dis-
cuss our choice of parameters and also provide exam-
ple results for the Dicke DQS in its quantum chaotic
regime. In our numerical simulations, the system pa-
rameters are ωj = ωc = 3.5g (giving gc = 1.75g, which
is sufficiently larger than g for the model to be non-
quantum chaotic), and the initial state is |0〉⊗ |j, j〉: that
is, with zero photons in the cavity and the qubit ensemble
in the spin coherent state |j, j〉 = |θ = 0, φ = 0〉, where
|θ, φ〉 = exp (iθ(Jx sin(φ)− Jy cos(φ))) |j,m = j〉. In our
descriptions, we will sometimes refer to the Rabi-Dicke
model to emphasise our results encompass both cases.

IV. TROTTERISATION THRESHOLD AND
ONSET OF QUANTUM CHAOS

In this section, we present the main results of this work,
demonstrating a clear Trotterisation threshold shared
across a range of physical signatures, and conclusive evi-
dence for the onset of quantum chaos beyond the threshold.
As described in Sec. II A, when all the terms in a Trotter-
Suzuki decomposition commute, the digitised dynamics
perfectly matches the target dynamics for any Trotter
step size. In such a situation, Trotterised dynamics cannot
exhibit any sort of step-size related threshold behaviour.
On the other hand, when there are non-commuting terms
in the decomposition that give rise to Trotter errors, it
was recently shown in the context of Trotterised Ising
models [36, 37] that there can be a performance threshold,
and it is possible for the Trotterised dynamics beyond the
threshold to be quantum chaotic, even when the target
dynamics is regular. Here, to characterise this threshold
behaviour in depth and study how generically it arises in
Trotterised DQS, we carry out a broader and more compre-
hensive analysis of Trotterisation performance thresholds
across a range of experimentally achievable physical mod-
els and system sizes, using new and expanded characteri-
sation techniques. In the models we study, we conclusively
show that this breakdown in Trotterisation results from
the onset of digitisation-induced quantum chaos beyond
the threshold. Therefore, our results suggest there may
be a generic, intrinsic connection between the onset of
quantum chaos and the breakdown of Trotterisation, both
of which stem from the non-commutations of the Trotter
decomposition.
For each model, we analyse various dynamical, time-

averaged, and static quantities together with error mea-
sures, to show that the Trotterisation has a performance
threshold in (Trotter) step size without a significant depen-
dence on system size. We first analyse the time evolution
of various quantities at one system size, providing new
insights into the threshold behaviour. We then compare
the time averages of these dynamical quantities for system
sizes across multiple orders of magnitude in Hilbert-space
dimension, starting from the smallest and scaling up. In
every model, the Trotterised dynamics show signatures
of quantum chaos beyond the threshold with additional
model-dependent characteristics, such as the structure
of stable islands observed inside the quantum chaotic re-
gions. Following this, we then combine powerful static
signatures based on RMT, namely eigenvector statistics,
with a chi-squared goodness-of-fit test, and we conclu-
sively demonstrate the transition from regular to quantum
chaotic dynamics at this threshold, show its system-size
and initial-state independence, and identify the existence
of stable islands beyond the threshold. With these power-
ful but experimentally less accessible static analyses, we
provide further support to the analyses using dynamical
signatures that are easier to characterise and measure
experimentally. Finally, using various error measures, we
analyse the relationship of the errors with the system size,
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Figure 2. Full dynamics for each model system, showing (a–c) local observables, (d–f) delocalisation, (g–i) further complementary
dynamical signatures of quantum chaos, and (j–l) simulation fidelity. Left to right, columns show results for A2A-Ising (with
j = 64), Heisenberg (chain of N = 8 qubits), and Dicke (with j = 6) models, respectively, with x-axes common to each column
showing step sizes. The y-axes of the colour plots (left axes) are the simulation times. The black lines (right y-axes) are the
time averages of the colour plots. In each model, dynamical quantities share a common Trotterisation threshold at a critical
step size separating (quasi)periodic from quantum chaotic regimes. (a–c) (Quasi)periodicity in expectation values of example
local observables is clearly observed prior to the threshold, and destroyed after it: shown for (a) magnetisation 〈J̄z〉 = 1

j
〈Jz〉,

(b) polarization of qubit one 〈σ1
z〉, and (c) normalised photon number 〈n〉/nj (with nj = 7 × dimj). (d–f) Localised initial

states rapidly delocalise beyond the threshold, quantified by participation ratios (PR, Eq. (24)). (g–i) further complementary
dynamical signatures of quantum chaos exhibit the same threshold: e.g., infidelity under perturbation 1−F(ψp(t), ψ(t)) (see
Eq. (25)) for Ising, and normalised sub-system entropies S(ρi) (Eq. (26)) for Heisenberg (first qubit) and Dicke (spin), are all
rapidly maximised beyond the threshold. (j–l) Simulation fidelity F(ψdig(t), ψide(t)) decays rapidly beyond the same threshold,
showing surprisingly universal behaviour across the different models. Clear quasiperiodic oscillations in the near pre-threshold
region explaining why the time-averaged simulation fidelity does not show the same sharp threshold. In each model, the
dynamical signatures of quantum chaos (a–i) disappear in certain regimes beyond the threshold, referred to as stable islands,
showing revival of regular dynamics, without a corresponding return of accurate target system simulation (j–l).
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total simulation time, and step size.

A. Threshold in Dynamical Quantities

Here, we show that studying time evolutions, rather
than time averages, provides clear signatures both for the
regular and quantum chaotic dynamics revealing improved
insight into the threshold behaviour. We study the time
evolutions of expectation values, localisation measures,
quantum chaos signatures, and simulation fidelities as
a function of step size. In particular, regular/quantum
chaotic dynamics before/after the threshold, such as ob-
servation/destruction of (quasi)periodicity in expectation
values, enable identification of Trotterisation thresholds,
even when they are not always clear from the time aver-
ages of dynamical quantities, especially for the simulation
fidelities. Finally, we note that the dynamical quantities
exhibit islands of non-chaotic behaviour (stable islands)
inside the quantum chaotic regime, which we discuss in
more detail in Sec. IVA4.
Colour plots in Fig. 2, with the time on (the left) y-

axes and the step size on x-axes, show our results for the
dynamical quantities given in the titles of each sub-figure.
The black lines on the colour plots are the time average
of the same quantities (averaged over the full time-axis),
with their y-axes given on the right side of the figures
(matching the corresponding colour bar axes).

1. Destruction of (Quasi)periodicity in the Dynamics of
Physical Observables

In quantum simulations, we are mostly interested in
expectation values of some physical observables, which
are often periodic or quasiperiodic for regular quantum
dynamics, and the destruction of (quasi)periodicity is
a characteristic signature of quantum chaotic dynamics.
Here, we show the onset of this destruction in Trotterised
dynamics as the step size is increased beyond a threshold.
Figures 2 (a–c) illustrate this effect for A2A-Ising (with
j = 64), Heisenberg (chain of N = 8 qubits), and Dicke
(with j = 6) models in the time evolutions of the observ-
ables, (a) magnetisation, i.e. the normalised expectation
value 〈J̄z〉 = 1

j 〈Jz〉 of the Jz angular momentum opera-
tor, (b) first qubit polarization, i.e. expectation value of
Pauli z-operator 〈σ1

z〉, and (c) normalised photon number
〈n〉/nj (with nj = 7× dimj := 7× (2× j + 1) based on
the numerical observations discussed in the Sec. IVB),
respectively. Because the total simulation time of each
model in Fig. 2 is chosen to reveal long time details of the
dynamics, especially for simulation fidelities discussed in
Sec. IVA3, some of the fast lower contrast dynamics in
(quasi)periodic regimes are only revealed when zoomed in.
The insets in Fig. 2 show the (quasi)periodic behaviour
present in each model by magnifying both the temporal
features and the colour contrasts. We have observed this
behaviour over a wide range of time scales and show both

short- and long-time examples as part of the Trotter error
analysis in Sec. IVD.
The threshold position is clear from both the destruc-

tion of (quasi)periodicity and the time averages (shown
in black lines) in Fig. 2 for (a) Ising and (c) Dicke mod-
els. For the Heisenberg model, however, while the time
averages do not exhibit a clear threshold, the reason for
this is immediately apparent from the full time evolution.
Specifically, while a changing oscillation frequency prior
to the threshold affects the time averages and obscures the
threshold, the full dynamics show a clear sharp threshold
between (quasi)periodic and quantum chaotic dynamics.
Here, the pre-threshold behaviour is connected with the
observation of larger Trotter errors for different initial
states. We show this by analysing the Heisenberg DQS
for various classes of initial states in appendix C3 and
show that all the states ultimately converge to the same
threshold but show significantly varying Trotter errors
prior to the threshold. Note, our results do not depend on
the specific choice of operator for the expectation values
or the sub-system. The first qubit of the Heisenberg chain
is used only for numerical convenience, see appendix C 2
for the other qubits in the Heisenberg chain. These local
results (i.e. dynamics for a particular initial state) are
confirmed and supported also by the eigenvector statistics
analyses in Sec. IVC, which provide a global property of
the Trotter step unitary, that is necessarily independent
of other factors like initial state and the choice of the
sub-system, and it shows a clear transition from regular
to quantum chaos beyond the threshold.

2. Dynamical Signatures of Quantum Chaos

In the previous section, we used our observation of clear
qualitative destruction of (quasi)periodicity to illustrate a
transition to quantum chaotic dynamics as a function of
step size. In this section, we conduct a more quantitative
study of this transition using a number of dynamical
signatures underpinned by the connection of quantum
chaos to ergodic dynamics and thermalisation.
For a closed system with a pure initial state, a con-

cept of thermalisation can only be achieved in a context
where the ergodic hypothesis holds, namely for dynamics
where the time and state-space averages match for any
macroscopic observable. Quantum chaotic dynamics pro-
vide a natural mechanism to achieve this condition for
quantum systems [22, 45, 81, 82]. Specifically, quantum
chaos drives a thermalisation-like process by dynamically
delocalising the system state to span a large portion of
the Hilbert space. This process, which relates to the
simple intuitive description of quantum chaotic dynam-
ics as being exponentially sensitive to perturbations in
system parameters, is reflected for composite quantum
systems in an increase of sub-system entropy. To study
these concepts, in the following sections, we discuss ex-
ample measures quantifying de-localisation, perturbation
sensitivity, and entropy.
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a. Delocalisation We first quantify the delocalisation
of the time-evolved state |ψ(t)〉 in a given basis B = {|j〉}
by means of the participation ratio (PR) [36, 37],

PR := 1
D

 D∑
j=1
|〈ψ(t)|j〉|4

−1

, (24)

where D is the dimension of the Hilbert space. Quantum
chaotic dynamics acts to create delocalisation, but to see
this effect, it is important to choose an initial state and
basis such that the state is initially localised. In this
definition, the normalisation factor ensures the PR lies
between D−1 for a fully localised state and 1 for a fully
delocalised state. In the Dicke model, the cavity is infinite
dimensional, and the choice of D is non-trivial. We here
choose a finite D = (2 dimj)2 (labelled PR) and justify
this choice in Sec. IVB.
Figures 2 (d–f) show that the temporal evolutions of

PRs for A2A-Ising, Heisenberg, and Dicke models, and
their time averages, are all clearly separated into localised
and delocalised regions at the same step sizes as other
quantities in Fig. 2. In A2A-Ising and Heisenberg Trot-
terisations, the PR beyond the threshold saturates to
maximum values that can be well understood in terms
of RMT symmetries and choice of the initial state. The
maximum PR value is related to the RMT class and the
choice of basis B = {|j〉}, and it is limited to 0.5, as ob-
served in Fig. 2 (d) for A2A-Ising DQS, for further details
see the discussions in Ref. [37]. The fact that the PR for
the Heisenberg DQS saturates here to ∼ 0.25 (Fig. 2 (e))
results from the choice of initial state. The results in
appendix C3 studying the digital Heisenberg dynamics
for various initial states show that the PR saturates to
0.5 for most states.

The maximum PR values in the Dicke model are more
difficult to interpret due to our observation that the finite
spin-ensemble dimension appears to limit how far the
state can delocalise in the infinite dimensional cavity space
(discussed further in later sections). Nevertheless, it is
clear that the system shows larger delocalisation beyond
the threshold. We also observe that the PR follows the
same decaying trend beyond the stable island seen in the
photon number. Our numerical analyses do not provide
an explanation for this behaviour, which we leave as an
open question.

b. Fidelity decay Sensitivity to small perturbations
in the system parameters is one of the most widely
appreciated characteristics of quantum chaotic dynam-
ics. This concept can be quantified via a variety of
related signatures such as fidelity decay, Loschmidt
amplitude and echo, and out-of-time order correlators
(OTOCs) [40, 42, 72, 83, 84], which are also useful in
other contexts like quantum phase transitions and sys-
tems with broken time-reversal symmetries [72, 83, 84].
However, a drawback is that such signatures are reliable
only if the perturbation itself does not show RMT distri-
bution in its eigenvector statistics [42].

Here, we look at the perturbation fidelity, defined as
the overlap

F(ψp(t), ψ(t)) :=
∣∣〈ψ(0)|U†p(t)U(t)|ψ(0)〉

∣∣2 (25)

between two states evolved from the same initial state
|ψ(0)〉 under a unitary U(t) and a perturbed unitary
Up(t) [40]. In the case of quantum kicked top pertaining
to the A2A-Ising model, we identify a reliable pertur-
bation by applying exp(−iHz0.05τ) to the Trotter step
unitary Uτ (see also appendix A4). Figure 2 (g) shows
that the fidelity decay, or rather, here, the complemen-
tary perturbation error (infidelity under perturbation)
1 − F(ψp(t), ψ(t)), displays a regular oscillating signa-
ture before the threshold, and a characteristic exponen-
tial decay after, providing further strong evidence of the
digitisation-induced transition to quantum chaotic dy-
namics. This trend is observed for arbitrarily small per-
turbations, with the perturbation strength only affecting
the oscillation and decay rates in the two regimes.

c. Sub-system Entropy For the Heisenberg and Dicke
models, we illustrate an alternative signature of quan-
tum chaotic dynamics that does not require perturbative
comparisons, namely the increase of entanglement be-
tween subsystems, as characterised by the sub-system
entropy [22, 41, 43, 44].

Here, we consider a normalised von Neumann entropy,

S(ρi) = − 1
ln(Di)

Tr (ρi ln(ρi)) , (26)

where ρi := Trnot[i](ρsystem) is the reduced state of sub-
system i with dimension Di. The normalisation factor

1
ln(Di) rescales the usual entropy to be in [0, 1] for any
sub-system dimension, simplifying comparisons between
different systems. This signature can be calculated via
tomography of the sub-system state, but importantly
does not require access to the full system state [22]. Fig-
ures 2 (h) & (i) show that sub-system entropies jump to
much larger values beyond the digitisation threshold for
both qubit 1 in the Heisenberg model and the spin-j sub-
system in the Dicke model. In Sec. IVB, we show that this
entropy approaches the maximum value asymptotically
with system size.

The observations of delocalisation, fidelity decay, and
increased sub-system entropies beyond the threshold pro-
vide strong evidence for the quantum chaotic dynamics,
and we show strong evidence for the onset of quantum
chaos using random matrix theory in Sec. IVC. Combined
with the observation that time averages of expectation val-
ues saturate to the relevant Hilbert-space means for each
model and observable, for 〈J̄z〉 in A2A-Ising (Fig. 2 (a)),
〈σ1
z〉 for Heisenberg (Fig. 2 (b)), and cavity and qubit

parity in the Dicke model (not shown), they also provide
evidence for the idea that the digitisation-induced quan-
tum chaos is driving the ergodic dynamics beyond the
threshold.
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3. Simulation Fidelity

In this section, we study the overall simulation perfor-
mance as characterised by the simulation fidelity with
the target state. In previous work [37], where simula-
tion performance was characterised through the use of
time-averaged quantities, the simulation fidelity seemed
to exhibit no persistent threshold behaviour. Here, how-
ever, by studying full time evolutions, we demonstrate
that a clear breakdown threshold also appears at the same
location in the simulation fidelity, and can explain the
apparently inconsistent behaviour observed in Ref. [37].

The simulation fidelity, defined as the overlap between
the states ψdig(t) and ψide(t) obtained, respectively, from
Trotterised and ideal dynamics,

F(ψdig(t), ψide(t)) := |〈ψdig(t)|ψide(t)〉|2 , (27)

directly characterises simulation performance via the error
in the simulated output state. Figures 2 (j–l) respectively
for A2A-Ising, Heisenberg, and Dicke models, show that
the simulation fidelity is oscillatory in time before the
threshold and quickly decays beyond it. This sharp change
in the dynamical characteristics of simulation fidelity
identifies the threshold.
Studying the simulation fidelity dynamics from Fig-

ures 2 (j–l) in more detail, we can identify three quali-
tatively distinctive regions of dynamical behaviour. In
the first region of each model, at short enough times
and small enough step sizes, the simulation fidelity shows
a clear fast oscillation with a period that is approxi-
mately step-size independent, but an amplitude that gets
deeper with increasing step size. At larger step sizes and
times, the slower and larger excursions in simulation fi-
delity with step-size-dependent (quasi)periodicity start
to dominate. Finally, at the same step-size threshold as
observed in other signatures, we see a sharp (simulation-
time-independent) transition from (quasi)periodic fidelity
evolution to the sudden collapse in simulation fidelity, an
effect which becomes increasingly stark with increasing
system size.
These dynamical results provide clear explanations

for the trends observed in the time-averaged values in
Ref. [37]. Namely, while the same sharp threshold can
be observed in simulation fidelity as in other signatures,
significant pre-threshold reductions in time-averaged sim-
ulation fidelity result from the increasing amplitude and
complexity of (quasi)periodic oscillations with both step
and system sizes, to the extent that the breakdown thresh-
old in time-averaged fidelity can even be completely ob-
scured at larger system sizes (see also Sec. IVB). They
furthermore show that the fidelity does not irrevocably
break down until after the sharp threshold, hinting that
pre-threshold errors could be significantly correctable
with perturbative treatments, such as Floquet-Magnus
expansion used in Refs [36, 37] for observable expecta-
tions. This implies that, before the threshold, the states
might differ only up to perturbative corrections in the
Floquet-Magnus expansion for the specific Trotterisation.

While not in the scope of this paper, our results highlight
that a detailed study of full simulation fidelity dynamics
and possible connections to perturbative error correction
terms may reveal valuable new insights into the nature of
Trotter errors.

Perhaps the most surprising feature of our results is
that the dynamics of Trotterised simulation fidelity across
such different model systems should exhibit such strik-
ingly similar qualitative behaviour, that is remarkably
robust to specific model and parameter choices. Our
three models cover different systems, system parameters
and symmetries. Yet in terms of both the nature of the
Trotterisation threshold and the nature of error pertur-
bations in the (quasi)periodic regimes, the observation
and behaviour of simulation fidelity in the three qualita-
tively different regions shown here, is remarkably robust
to specific model and parameter choices (including across
rather wide-ranging exploratory numerical analyses not
reproduced here).

4. Stable Islands

In each model, we see a clear sharp threshold between
(quasi)periodic and quantum chaotic dynamics at the
same step size for all physical signatures. Beyond the
threshold, however, we also observe clear localised regions,
as seen in Fig. 2, where the quantum chaotic dynamics
are partially or strongly interrupted, which we call “stable
islands”. These islands are localised at resonant step sizes
where the digitisation matches a certain periodicity in the
system dynamics, and are more or less pronounced depend-
ing on the strength of the underlying symmetries in both
the system Hilbert space and the specific choice of Trot-
terisation recipe. For example, very strong stable islands
are observed in the Heisenberg model at step sizes where
the two-body exchange interactions freeze out: that is,
for our model parameters, at every τstable = 0.5n (2πg−1)
for integer n, where Uxy(τstable) = 1. This effect is much
less prominent in the simulation fidelity, because the
digitisation-induced regular dynamical behaviour does
not generally match the underlying, non-digitised target
dynamics. We will explore these effects in more detail in
future work.

B. System Size Dependence of the Threshold

In this section, we explore how the threshold behaves as
a function of system size by analysing the time averages
of the dynamical quantities. In the previous section, we
show that the threshold is always clear from the time evo-
lution of dynamical quantities, while time averaging these
quantities may hinder the identification of the thresh-
old in certain cases. However, using the full dynamics
would be impractical for studying the dependence of the
threshold on system size. In this part, with the help of
our understanding of the full dynamics from the previous
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Figure 3. Time-averages of dynamical signatures for each model compared across system size: (a–c) local observables, (d–f)
delocalisation, (g–i) further complementary dynamical signatures of quantum chaos, and (j–l) simulation fidelity. Left to right,
columns show results for A2A-Ising, Heisenberg, and Rabi-Dicke models, respectively, with line colours corresponding to system
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〈〈n〉〉t/nj . Dotted silver lines are time averages of sampled ideal dynamics, sampled at intervals of τ , to illustrate the emergence
of sampling errors at large step sizes, even in the absence of digitisation errors. (d–f) Time-averaged participation ratios 〈PR〉t
show clear delocalisation beyond the threshold. (g–i) Beyond the threshold, infidelity under perturbation 〈1−F(ψp(t), ψ(t))〉t
for Ising in (g), and normalised sub-system entropies 〈S(ρi)〉t for Heisenberg (first qubit) (h) and Dicke (spin) (i), rapidly
approach maximum values for increasing system size. (j–l) While time-averaged simulation fidelities 〈F(ψdig(t), ψide(t))〉t do not
show the same sharp threshold because of pre-threshold quasiperiodic oscillations, they show a secondary drop at the threshold.
Where they occur (e.g., for large enough j values in the A2A-Ising and Rabi-Dicke models), stable islands are readily observed
in time-averaged signatures, and are observed at the same position independent of size.
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section, we analyse the temporal averages of the dynami-
cal quantities for system sizes, starting from the smallest
examples and increasing in each case by multiple orders of
magnitude in Hilbert space size. Figure 3 shows the tem-
poral averages of the same dynamical quantities as Fig. 2
for various system sizes (in different line colours), and it
shows that the threshold is largely independent of system
size across a rather large range of Hilbert-space dimension,
here limited mainly by numerics. Note that this conclu-
sion can be expected to continue to hold at very large
system sizes, because the target systems considered here
are integrable (and therefore non-quantum chaotic). In
non-integrable target systems, the Trotterisation thresh-
old can still exist and be observable even when the target
dynamics are themselves quantum chaotic irrespective
of step size. (In App. D4b, we show an example in the
j=6 Dicke model where the Trotterised dynamics show
stronger signatures of quantum chaos after the threshold
than the ideal dynamics, even when the ideal dynamics
are already in the quantum chaotic regime of the model.)
As discussed in Ref. [36], however, the threshold position
may move to smaller step sizes in these cases for very
large system sizes and run times, due to generic Floquet
heating effects (see Discussion for more details).

It is important to note that subtle issues can arise when
calculating time averages from discretely sampled time
series. The light grey lines in Fig. 3 show the temporal
averages for the ideal evolution sampled at equal time
intervals τ , showing that undersampling at large step
sizes can cause averaging errors even in ideal dynamics.
This also highlights there is a key distinction between
discrete sampling errors and the Trotterisation errors,
which we discuss further in Sec. IVD. Here, we focus on
the temporal averages of the Trotterised dynamics and
discuss the characteristics of their deviations from the
ideal averages in each model.

a. A2A-Ising model Top to bottom, the first col-
umn of Fig. 3 shows the time averages of (a) 〈J̄z〉 val-
ues, (d) PRs, (g) perturbation fidelities, and (j) simu-
lation fidelities for a selection of system sizes between
j = 1 and j = 256 (labelled in Fig. 3 (d)), averaged over
t = 200 (2πg−1). Thresholds in the first three of these
quantities clearly appear around the same position for
any system size considered, and at the same location as a
secondary drop in the simulation fidelities which marks
its transition from oscillatory to decaying behaviour. At
the smallest sizes (j ∈ {1, 2, 3}), however, we observe
neither a sharp secondary drop in simulation fidelity, nor
sharp thresholds in the other quantities, although no-
ticeable, smooth deviations from the ideal dynamics do
occur starting around the same threshold position. In ap-
pendix B 1, we provide the dynamical evolutions of 〈J̄z〉
expectation values for j ∈ {1, 2, 3, 4, 6, 8} and observe
that (quasi)periodicity is destroyed once j ≥ 4, consistent
with the eigenvector statistics analyses in Sec. IVC. The
threshold does not move appreciably in position with sys-
tem size, and becomes sharper once the system is large
enough to show quantum chaotic dynamics (in this case

j ≥ 4). These results suggest that quantum chaotic dy-
namics beyond the threshold may be necessary for the
system to exhibit a sharp threshold.

b. Heisenberg model Top to bottom, the second col-
umn of Fig. 3 shows the time averages of (b) 〈σ1

z〉 values,
(e) PRs, (h) sub-system entropies for the first qubits,
and simulation fidelities for the system sizes given in the
Fig. 3 (e) and for t = 50 (2πg−1). The threshold position
is still largely independent of system size, but identifica-
tion of the threshold from these time-averaged quantities
is more subtle, due to initial-state effects discussed in
Sec. IVA1. In appendix C 3, we provide the time averag-
ing and error analyses for various types of initial states,
and they show that the significant pre-threshold deviation
here reflects the fact that some initial state choices result
in large Trotter errors before the threshold. In connec-
tion with this point, for the same system sizes considered
here, we also carry out eigenvector statistics analyses in
Sec. IVC, which show that global signatures (i.e., inde-
pendent of initial state) of the Trotter step unitaries still
show the same sharp threshold. An additional note here is
that the two-qubit case does not have any Trotter errors,
so it exactly follows the ideal dynamics, resulting in a
unit simulation fidelity (yellow line in Fig. 3 (k)), even
though the other time-averaged quantities still suffer from
sampling effects at large steps.

c. Dicke model Top to bottom, the third column of
Fig. 3 shows the time averages of (b) scaled 〈n〉/nj values,
(e) normalised PRs, (h) sub-system entropies for the spin
components, and (l) simulation fidelities for the system
sizes labelled in Fig. 3 (f) and for t = 200 (2πg−1). Here,
we observe a sharp threshold even at the smallest size
j = 0.5, the Rabi model. In the appendix D 1, we include
the dynamical evolutions of 〈n〉/nj , sub-system entropy,
and simulation fidelity for the Rabi model, which already
show dynamical signatures of quantum chaos, such as the
destruction of (quasi)periodicity. Thus, we still see a sharp
threshold whenever we also observe dynamical signatures
of quantum chaos beyond the threshold. Surprisingly,
however, in the next section, we show that the eigenvector
statistics in the Sec. IVC do not agree with the RMT
distributions for the Rabi model, with RMT agreement
once again obtained only when the spin component is
large enough, see Sec. IVC for the details.
The Trotterisation threshold (and quantum chaos be-

yond it) exists only when there are non-commuting terms
in the Trotter decomposition, which, otherwise, would be
an exact equation and show regular dynamics for any τ
(since we have chosen integrable target model parameters).
In the Trotterised Dicke model, the non-commutation
between the TC and anti-TC component unitaries in
each Trotter step is introduced primarily by single-qubit
gates, with no similar effect arising from cavity opera-
tors. This suggests that the quantum chaotic dynamics
in this model is mainly driven by the spin-j component
Hilbert space. This intuition is supported by our numeri-
cal observations: for example, the entropy in the spin-j
component is maximised, and, as shown in appendix D 2,
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Figure 4. Histograms showing eigenvector statistics of the j = 64 A2A-Ising Trotter step unitary (TSU) for representative step
sizes in different regimes: (a) τ = 0.02 (2πg−1) (before the threshold), (b) τ = 0.4 (2πg−1) (on the threshold), (c) τ = 0.5 (2πg−1)
(quantum chaotic regime beyond the threshold), and (d) τ = 0.7 (2πg−1) (stable island in the quantum chaotic regime). Agreement
with random matrix theory (RMT) distributions, shown for different time-reversal symmetries by black dashed and dotted
lines in each plot, provides conclusive evidence of quantum chaotic dynamics. While the agreement/disagreement in (a) and (c)
are visually clear, the apparent visual agreement in (d) is misleading as it corresponds to a stable island, and even (b) shows
apparently reasonable agreement at a purely visual level. The reduced chi-squared goodness-of-fit test statistic X2

RMT is used
to quantify these agreements in each model: values calculated against the closest (COE) distribution (labelled in colour on
each figure) provide quantitative and objective conclusions for agreement/disagreement with RMT, for example showing clear
disagreement in (b) and successfully distinguishing stable islands (such as in (d)) from quantum chaotic regimes.

the maximum photon numbers and PR values beyond the
threshold are, respectively, linear and quadratic in the
dimension of the spin-j component dimj = 2j + 1. In
our results, we normalise the photon numbers and PR
values by nj = 7 × dimj and (2 × dimj)2, respectively,
where the coefficients 7 and 2 are identified numerically
(see appendix D 2). The question of how to normalise the
Hilbert-space dimensionality also arises in the context of
the eigenvector statistics analysis we discuss in Sec. IVC,
where the results are consistent with the somewhat em-
pirical approach taken here.

C. Eigenvector Statistics

In this section, we analyse the static properties of the
Trotterised evolution, namely the eigenvector statistics
of the Trotter step unitary, to support and extend our
dynamical analyses. In the previous sections, time evolu-
tions and averages of dynamical quantities are employed
to show the Trotterisation threshold, its insignificant sys-
tem size dependence, and the dynamical signatures of
quantum chaos beyond the threshold. These dynami-
cal analyses, however, while strongly indicative, do not
provide rigorous evidence of quantum chaos in the Trot-
terised unitary evolution without relying on additional
random matrix theory (RMT) analysis, nor do they allow
strong conclusions about the initial-state dependence (or
independence) of the threshold. That is, they are gen-
erally neither conclusive nor global. By contrast, using
eigenvector statistics, we conclusively demonstrate the
onset of quantum chaotic dynamics beyond the thresh-
old, and since this approach probes global properties of
the Trotterised unitary, we simultaneously show that this

threshold does not depend significantly on the initial-state
choice. This means that the onset of quantum chaos in the
system dynamics might arise at slightly different step sizes
for different initial states, but any variation is confined to
a finite but very small range of step sizes. We, therefore,
leave how to objectively quantify a precise position for
(otherwise visually clear) thresholds as an open question.

1. Eigenvector Statistics

Dynamical signatures of quantum chaos are funda-
mentally consequences of random matrix theory (RMT)
properties of the eigenvectors and eigenvalues of a quan-
tum chaotic system [46], respectively, known as eigen-
vector [50, 51] and level-spacing statistics [85, 86] (see
appendix A for further details). Here, we calculate the
eigenvector statistics of the Trotter step unitary (TSU)
Uτ by expanding its eigenvectors |φi〉τ =

∑D
k=1 cik |k〉

in a basis {|k〉}, defined by the eigenvectors of the free
Hamiltonian (i.e., without the coupling terms ∝ g) in
each model. The squared moduli of complex coefficients
η = |cik|2 then show certain distributions for quantum
chaotic systems [50, 51, 87]. Depending on the time-
reversal symmetry of the system, there arise three (main)
physically relevant random matrix ensembles [88], known
as circular-orthogonal ensemble (COE), circular-unitary
ensemble (CUE), and circular-symplectic ensemble (CSE)
for unitary random matrices [49]. Their corresponding
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Figure 5. The reduced chi-squared goodness-of-fit test statistic X2
RMT, calculated from the Trotter step unitary (TSU) Uτ ,

quantifying each model’s agreement with RMT eigenvector statistics. (a–c) X2
RMT versus step size (x-axes) for the system

sizes given in the legends for A2A-Ising TSU, Heisenberg TSU, and Dicke TSU, respectively. (d–f) X2
RMT versus system size

(x-axes) for representative step sizes chosen in the regular and quantum chaotic regimes, and on the stable islands, with extra
panels below showing expanded views highlighting the grey areas, where X2

RMT . 1. The step sizes, recorded in the legends, are
marked as vertical dashed lines in (a–c). The colours are also chosen to correspond to the histograms plotted in Figs 4 (a–d)
(for the A2A-Ising TSU). From (a–c), the goodness-of-fit test statistic not only shows the sharp threshold observed in dynamical
quantities but also identifies stable islands. Figures (d–f) show how these features emerge at modest sizes as system sizes increase.
In the A2A-Ising and Dicke models, we observe that (quasi)periodic dynamics for the stable islands does not emerge from the
surrounding quantum chaotic regime until larger system sizes, and that X2

RMT is able to track this behaviour successfully. In the
A2A-Ising and Heisenberg models, the (quasi)periodicity of the stable islands is sufficiently marked that X2

RMT is comparable on
the stable islands to the pre-threshold non-quantum chaotic regime.

reduced probability densities are:

P̃COE(η) =
Γ
(D

2
)

Γ
(D−1

2
) (1− η)(D−3)/2

√
πη

, (28)

P̃CUE(η) = (D − 1)(1− η)D−2, and (29)
P̃CSE(η) = (D − 1)(D − 2)η(1− η)D−1, (30)

where D is the dimension of the Hilbert space, and Γ(x) is
the Gamma function, or generalized factorial. We denote
these distributions in our figures by the above three letter
acronyms of the corresponding classes. Relevant details
about these distributions, the choice of basis {|k〉}, the
relation between RMT and quantum chaos, and other
technical factors are summarised in the appendix A.

2. Goodness-of-Fit Test for Eigenvector Statistics

In this section, we demonstrate that the visual com-
parison of the eigenvector statistics against the above
RMT distribution can be misleading. We overcome this
problem by combining the eigenvector statistics with a re-
duced chi-squared goodness-of-fit test, and use a reduced
chi-squared goodness-of-fit test statistic, X2

RMT, to clearly
and objectively demonstrate the onset of quantum chaos
in the Trotterised dynamics both as a function of step
and system sizes.

a. Failure of visual comparisons versus X2
RMT Fig-

ure 4 shows the eigenvector statistics of the A2A-Ising
TSU calculated in the Jz basis for j = 64. Figures 4 (a–
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d) are, respectively, for the step sizes from (a) τ =
0.02 (2πg−1) before the threshold, (b) τ = 0.4 (2πg−1) on
the threshold, (c) τ = 0.5 (2πg−1) in the quantum chaotic
regime beyond the threshold, and (d) τ = 0.7 (2πg−1) on
a stable island in the quantum chaotic regime. Note that
collective spin behaviour in the A2A-Ising DQS restricts
the system evolution into a total-spin conserved subspace
Dj = 2j + 1 of the full Hilbert space DN = 2N of N
spin-1/2 systems. In this respect, it does not display
many-body quantum chaos of N systems but quantum
chaos of a single spin j, and the standard RMT distribu-
tions in Fig. 4 are for Dj = 2j+1. Because the A2A-Ising
decomposition in Eq. (8) has only time-reversal symmetry,
it should show COE statistics [37]. While Figure 4 (a/c)
shows clear visual disagreement/agreement with the ex-
pected COE distribution, the apparent visual agreement
in Fig. 4 (d) is highly misleading, as this corresponds to
a stable island, where the quantum chaotic dynamics are
definitely interrupted. To characterise this agreement in
a more quantitative manner, we introduce a reduced-chi-
squared goodness-of-fit test statistic X2

RMT to provide a
generic quantitative signature for the agreement with the
eigenvector statistics expected for random matrix theory
(see appendix A 3 for the definition and more details). The
values of X2

RMT comparing the histogram plots with the
relevant COE distribution in Figs 4 (a–d) are, respectively,
(a) ∼ 1012, (b) ∼ 1011, (c) ∼ 0.06, and (d) ∼ 108, success-
fully identifying not only the agreement/disagreement in
regular/quantum-chaotic regime, but also the significant
disagreement on the stable island. For Figure 4 (b), which
arguably also agrees reasonably well visually, the X2

RMT
demonstrates even stronger disagreement with the target
COE distribution.

TheX2
RMT goodness-of-fit test statistic provides a single

and (compared to visual inspection) meaningful value for
a histogram plot, and therefore also allows us to analyse
the eigenvector statistics as a function of some parameter.
Below, we provide the analyses of eigenvector statistics
for the Trotter step unitaries of each DQS as a func-
tion of step and system sizes. Full eigenvector statistics
histograms for some relevant step and system sizes are
shown in appendix B 2 for A2A-Ising, in appendix C 1 for
Heisenberg, and in appendix D 3 for Dicke Trotterisations.
Note that X2

RMT values for the Dicke DQS are obtained
by setting the cavity truncation to dimc = dimj , and we
discuss this further following a description of the results.

b. Onset of Quantum Chaos as the Trotter Step Size
Increases Figure 5 (a–c) shows the X2

RMT test statis-
tic as a function of step size, respectively, for (a) the
A2A-Ising TSU (against COE), (b) the Heisenberg TSU
(against CUE), and (c) the Dicke TSU (against COE).
In each model, X2

RMT shows a sharp drop to ≤ 1 for
system sizes larger than a certain value that depends on
the model, indicating that the eigenvector statistics of
these TSUs show good agreement with the corresponding
RMT distribution. This provides conclusive evidence that
we observe a sharp transition from regular to quantum
chaotic dynamics at the same position as the threshold

identified by studying each model’s full system dynamics,
and which sets in already at quite modest system sizes.
Across all models and multiple orders of magnitude in
Hilbert-space dimension, once the system reaches suffi-
cient size, we do not observe any significant movement of
the threshold position with system size.

c. Onset of Quantum Chaos as the System Size In-
creases Here, we examine X2

RMT as a function of sys-
tem size for three indicative step sizes in the regular
(pre-threshold), quantum-chaotic (beyond-threshold), and
stable-island regions. Figures 5 (d–f) plot this dependence
for (d) A2A-Ising TSU (against COE), (e) Heisenberg
TSU (against CUE), and (f) Dicke TSU (against COE),
respectively, for the step sizes given in each legend. Be-
fore the threshold, X2

RMT is much larger than 1 in every
DQS and any system size considered. This means that, as
expected, the eigenvectors do not show RMT properties
before the threshold, and the DQS is (quasi)periodic (non-
quantum chaotic) for these step sizes. By contrast, X2

RMT
rapidly drops below 1 for the quantum chaotic regime
of each model as the system size increases. The bottom
panels showing a zoomed-in view of the grey shaded re-
gions where X2

RMT . 1 show clearly at what size each
system’s TSU starts to agree convincingly with RMT in
the quantum chaotic regime: namely, for j ≥ 4 in A2A-
Ising, for N ≥ 4 in Heisenberg, and for j ≥ 2 in Dicke
Trotterisations, respectively. Figures 5 (d–f) also show
that X2

RMT rapidly increases to values much greater than
1 for step sizes in the stable islands, which appear at any
system size in the Heisenberg DQS, and emerge at larger
sizes in the A2A-Ising and Rabi-Dicke models.

d. Finite Truncation of the Cavity Dimension in the
Rabi-Dicke DQS Similar to the A2A-Ising DQS, the
Dicke DQS also consists of a mapping from N spin-1/2
systems to a single total spin j = N/2. Below, we argue
that, as a result of the single-qubit gates in the Dicke
Trotterisation, the effective total spin component j of
the model is the main driver of quantum chaotic dynam-
ics. However, there are additional complications in the
eigenvector statistics analyses of the Dicke TSU that arise
from numerically truncating the infinite-dimensional cav-
ity at a finite value dimc. It is non-trivial and is not
in the scope of this paper to provide a rigorous, theo-
retical explanation of the effects of cavity Hilbert-space
truncation on eigenvector statistics, but, in appendix D 3,
we study it in some detail numerically. Complementing
the eigenvector statistics with another strong signature
of quantum chaos from RMT, the level-spacing statis-
tics [45, 46, 85, 86], we observe that the beyond-threshold
Dicke TSUs show agreement with RMT distributions only
for dimc ∼ dimj , both for eigenvector and level-spacing
statistics. Any agreement is lost simultaneously in both of
these statistics when dimc � dimj . Combined with the
dynamical observations that maximum photon build-up
is linear in dimj , and the PR is quadratic in dimj (and
the fact that the reduced entropy of the spin j subsystem
is nearly maximised), these results indicate that quan-
tum chaotic dynamics and Trotterisation breakdown in
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the Dicke model are primarily driven from effects arising
within the Hilbert space of the spin component.

D. Trotter Error Analyses

In each model, by analysing the statistical properties
of the Trotter step unitary and temporal evolutions (and
averages) of various dynamical quantities, we have iden-
tified a threshold in Trotter step size beyond which the
Trotterised dynamics become quantum chaotic. Here, we
analyse the Trotterisation errors in state fidelities and
expectation values, and we identify the same threshold
in each error measure and also examine the behaviour of
the errors before and beyond the threshold. We look at
the Trotter errors for various system sizes and different
time scales: The shorter time scales considered can be
achieved within accessible coherence times for current
experimental platforms, demonstrating that studies of
Trotter-error scaling with step size are within reach of
current experiments.
Figure 6 shows our error analysis for the A2A-Ising,

Heisenberg, and Dicke models. We first analyse errors in
the expectation values of local observables, using the same
observables considered in previous sections. The results
in Figs 6 (a–c) highlight an important subtlety: namely,
even for ideal dynamics, sampling the time evolution at
fixed times τ can lead to errors in time averages at large
enough τ . These time averages also depend strongly on
the averaging time, with more pronounced errors aris-
ing at smaller step sizes for short averaging times. Such
undersampling errors obviously become more significant
with a lower sampling rate. Here, we introduce appropri-
ate error measures to distinguish trivial sampling errors
from the approximation errors caused by Trotterisation.

We start by considering the absolute difference between
the temporal averages (as previously studied in Ref. [37])

∆O :=
∣∣〈〈Odig〉〉t − 〈〈Oide〉〉t

∣∣ , (31)

where 〈O〉 is the expectation value of some operator O,
with the superscripts (dig/ide) indicating expectation val-
ues obtained, respectively, from digital and ideal dynamics
(sampled at every τ), and the second layer of brackets 〈.〉t
represent time averaging for total simulation time t. Fig-
ures 6 (d–f) show ∆O for each model. In each model, ∆O
shows an approximately increasing trend with step size
leading up to the previously identified threshold positions,
before flattening out after the thresholds. (Note that the
error values for the 〈Jz〉 expectations in Ising and 〈n〉
photon numbers in Dicke are not normalised with spin
sizes to avoid removal of system size dependencies in the
errors.) In the A2A-Ising model (Fig. 6 (d)), the errors
reveal a reasonably clear threshold at the right position,
although this is somewhat complicated by the appear-
ance of additional noise prior to the threshold. In the
Heisenberg and Rabi-Dicke models (Fig. 6 (e–f)), however,
the situation becomes much less clear, with significant

extra noise before and after the threshold, and clear ir-
regular behaviour even at small τ . Moreover, while ∆O
still shows a generally increasing trend with step size, it
does not show an obvious scaling dependence with sys-
tem size and/or total simulation time across any of the
models. So even though this measure does to some degree
separate the sampling errors from the Trotter errors, it
nevertheless does not provide a good error measure for
the differences in time evolutions. For example, a small
difference between the averages does not guarantee that
the time evolutions are actually close.

We therefore introduce and analyse an alternative time-
averaged error, namely the average, point-to-point abso-
lute difference between expectation values

δO := 〈
∣∣〈Odig〉 − 〈Oide〉

∣∣〉
t
, (32)

where the notation is the same as in Eq. (31). Now, δO
captures the absolute deviations of Trotterised evolution
from the ideal dynamics at every sample, and therefore
both separates the Trotter errors from sampling errors,
and reliably measures how close the full dynamical evolu-
tions are (not just their averages). Figures 6 (g–i) show
δO, and, contrary to ∆O, we observe that δO is a sim-
ple analytic function of step size over a large range of
step sizes (prior to a plateau region that appears at long
time averages), suggesting that it can be perturbatively
expanded (and corrected) in step size. Unlike ∆O, δO
shows a clear increasing trend with both step size and to-
tal simulation time, and also, with some subtle variations,
as a function of system size. From Figs 6 (g–i), we see that
the average, point-to-point error also shows the thresh-
olds much more clearly, especially in the A2A-Ising and
Rabi-Dicke models, with the errors before the threshold
being consistently smaller than the errors in the quantum
chaotic regime. Even in the Heisenberg model, where the
pre-threshold errors near to the threshold almost reach
the error levels observed in the quantum chaotic regime,
the errors still show a clear change in their scaling with
step size beyond the threshold.
Another averaged, point-to-point error measure is the

averaged simulation (state) infidelity (or simulation er-
ror) 1−〈F(ψdig(t), ψide(t))〉t, shown in Figs 6 (j–l), and
it shows the same behaviours observed in δO. The lack
of a sharp threshold in average simulation fidelity (which
approaches 0 already as it nears the threshold) has al-
ready been explained as the result of the extra oscillatory
behaviour of simulation fidelity before the threshold. This
effect is obviously also reflected in the simulation error.
Consistent with our explanation, it affects the long time
averages much more than the short, and we identify the
threshold as the residual, secondary jump in simulation
errors highlighted by the insets of Figs 6 (j–l).
Our point-to-point error measures (i.e. δO and simu-

lation fidelity), in contrast to ∆O, provide reliable error
measures that separate Trotter and sampling errors. Be-
fore the threshold, they increase with total simulation
time and also generally with system size. They are also
largely increasing smooth functions of Trotter step size
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Figure 6. Trotterisation error analysis for (a–i) local-observable expectation values and (j–l) simulation fidelity for different
system sizes and different time scales. Left to right, the columns show results for A2A-Ising, Heisenberg, and Rabi-Dicke models,
respectively, with line colours corresponding to system sizes shown in the legends of (d–f), line styles indicating the averaging
time (shown in the legend of (g–i)), and Trotter step sizes on the x-axes common to each column. The specific quantities plotted
on the y-axes are given in the sub-figure titles, with 〈.〉t representing time averaging. The sub/super-scripts ide and dig represent
quantities obtained, respectively, from the ideal and digital simulations. Local-observable errors are calculated for expectation
value of magnetisation J̄z (A2A-Ising), the first qubit polarization σ1

z (Heisenberg), and the photon number n (Rabi-Dicke).
(a–c) Raw temporal averages for expectation values 〈〈Oide〉〉t for coarsely sampled ideal dynamics plotted against step-size
sampling intervals, τ . Sampling errors for the ideal dynamics depend strongly on averaging time, but can be disentangled from
Trotterisation errors by comparing the digital quantities 〈Odig(t)〉 with coarsely sampled ideal 〈Oide(t)〉. (d–i) The absolute
difference between time-averaged expectation values for digital and ideal dynamics,

∣∣〈〈Oide〉〉t − 〈〈Odig〉〉t
∣∣. (g–i) Time average

of the absolute, point-to-point difference between digital and ideal dynamics at each time step, 〈
∣∣〈Oide〉 − 〈Odig〉

∣∣〉t. (j–l) The
simulation infidelity 1−〈F(ψdig(t), ψide(t))〉t, is another point-to-point error metric. The quasiperiodic pre-threshold oscillations
observed in the full simulation fidelity dynamics cause the threshold to be seen as a secondary jump in the time-averaged
simulation infidelity, highlighted by the insets in (j–l).
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before the threshold, and show simple, approximately
analytic behaviour over a significant range of step sizes,
to near the threshold for shorter averaging times, and up
to the saturation values at longer averaging times. Thus,
these errors have an approximate perturbative expansion
in step size within this region, such as the Floquet-Magnus
expansion [36]. For local observables, the errors seem to
saturate at long averaging times to an upper bound which
is smaller than the errors in the quantum chaotic regions.

V. DISCUSSION AND OUTLOOK

The power of a quantum simulator, as represented by
the achievable complexity of tasks that it can solve, is typ-
ically limited by physical resources (e.g., fabrication costs
or runnings costs per qubit, cooling budget per qubit),
hardware performance (e.g., qubit noise and decoherence,
gate errors, etc), and in the case of DQS, the intrinsic ac-
curacy of the digitisation algorithm (e.g., Trotter errors).
In large-scale quantum simulators, these resource costs
will be to some degree fungible, and balancing them will
become an engineering optimisation to maximise simu-
lation power. For example, in fault-tolerant DQS, error
correction will ultimately allow hardware performance lim-
its to be surpassed by transferring the cost into increased
consumption of physical resources. But because these
costs snowball as the noise to be corrected approaches
the fault-tolerant threshold, directly optimising hardware
performance will still remain crucial. Similarly, methods
for improving digitisation accuracy typically result in in-
creased exposure to noise and decoherence. For example,
in architectures where gate times operate reasonably close
to the speed of the control electronics, the total run time
(and hence decoherence effects) can be increased because
the time spent on buffers between gates can be significant.
Also, constructing complex interactions from simple prim-
itive operations often requires additional transformation
gates (e.g., as in the Heisenberg and Dicke models defined
in Eqs 14 and 23, respectively), adding both run time and
gate errors. Similarly, increasing the order in Trotterisa-
tion algorithms, which typically requires the addition of
negative-time unitary evolutions (at least beyond second
order), also increases the laboratory run time required
to achieve a given simulation time. As a result, any im-
provements that can be achieved in terms of relaxing the
digitisation requirements for a given simulation accuracy,
will also directly decrease the decoherence and gate errors
experienced by the processor.

1. On universality of the Trotterisation performance

In this work, we have focussed exclusively on digitisa-
tion errors, in particular Trotter errors, to study the ulti-
mate performance limits that Trotterisation algorithms
will face. We numerically investigate the performance
of three experimentally realisable Trotterisation models:

the A2A-Ising, Heisenberg, and Dicke models. Our re-
sults demonstrate a striking similarity of behaviour in
the performance of these simulations. The models them-
selves encompass widely distinct system types and sym-
metries (kicked tops, nearest-neighbour spin chains with
longitudinal and transverse external fields, and coupled
spin-cavity systems with infinite dimension), and as well
as the specific parameters selected for the results in the
main text and appendices, we saw qualitatively similar
behaviour across different parameter choices. Using a
range of dynamical and static signatures (derived from
state evolutions and unitary operators, respectively), in
each model, we have demonstrated the emergence of a
performance threshold at modest system sizes that is
shared across all signatures we studied.
Specifically, across a range of dynamical (Figs 2(a–i)

and 3(a–i)) and static (Fig. 5) signatures of quantum
chaos, once a sufficiently large system size is reached, all
models studied exhibit regular, (quasi)periodic behaviour
prior to, and quantum chaotic dynamics after the thresh-
old. But more than this, by studying the full dynamics
of the simulation fidelity, we see that even widely differ-
ent models exhibit strikingly similar behaviours: a high-
fidelity region at smaller steps and shorter times, with fast,
but relatively stable oscillatory errors; a second region be-
tween that and the threshold exhibiting additional, slower
large-amplitude oscillations; strong quantum chaotic be-
haviour after the threshold; and intermittently emerging
stable islands where the quantum chaotic dynamics is in-
terrupted and some degree of (quasi)periodicity reemerges.
The surprising universality of these effects across varied
models and different parameter choices suggests that there
may exist underlying generic principles governing the be-
haviour of Trotterised DQS, which may help to predict
features of large-scale simulations which are difficult to
study classically. More work is required to identify and
understand these underlying principles. Interesting open
questions in this direction include, for example, finding
out whether these generic behaviours persist for differ-
ent digitisation techniques, even more varied simulation
models (e.g., in quantum chemistry), and non-integrable
target systems.

2. On interpretation of the Trotterisation threshold

Focussing now directly on the threshold transition to
quantum chaos, combining what we learn from across
all our results provides valuable insight into the underly-
ing nature of the breakdown in simulation performance.
From the full dynamics for each model (Fig. 2), we ob-
serve clear (quasi)periodic dynamics, consistent with the
Trotterised system being non-quantum-chaotic, until im-
mediately prior to the threshold (given in units of 2π/g:
τA2A-Ising ∼ 0.4, τHeisenberg ∼ 0.09 and τRabi-Dicke ∼ 0.08).
The pre-threshold oscillatory behaviour is particular clear
and sudden for the local observables (Fig. 2(a–c)) and
participation ratio (Fig. 2(d–f)). For the perturbation
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fidelity (Fig. 2(g)), entropy of entanglement (Fig. 2(h–i))
and simulation fidelity (Fig. 2(j–l), the periodicity of the
oscillations starts changing prior to the threshold, but
clear oscillations continue until the threshold. This under-
standing is also backed up by Trotter error analysis shown
in Fig. 6, and particularly the full quantum state error
calculated from the simulation fidelities Fig. 6(j–l). Fo-
cussing on the plots with shorter time averaging, where the
simulation-fidelity time averages are less complicated by
the behaviour in the pre-threshold, quasiperiodic region,
we observe that the full quantum state errors follow an an-
alytic, increasing trend up until just prior to the threshold.
In other words, the Trotter error grows steadily with step
size, which matches the intuition derived from considering
the Trotterised (Floquet) Hamiltonian as a convergent
Floquet-Magnus expansion, with the zeroth-order solu-
tion reproducing the target dynamics and perturbatively
increasing correction terms [36, 37]. And while the errors
may still become significant in this region, they are in
some sense still well behaved: from a given step size, you
can expect to improve performance by reducing the step
size, and worsen performance by increasing it.

Beyond the threshold, the staticX2
RMT signatures based

on eigenvector statistics (Fig. 5) demonstrate that, once
the system is large enough, the Trotter step unitary shows
strong quantitative agreement with RMT distributions,
providing conclusive and quantitatively rigorous evidence
that the Trotterised dynamics very rapidly become quan-
tum chaotic beyond the threshold. And since we chose
target systems and parameters corresponding to integrable
dynamics, we know that it is not the target dynamics
(HM in Eq. (5)), but the increasingly dominant Trotter
errors that give rise to the observed quantum chaos. But
if the Trotter step unitary becomes a completely random
matrix, the rather intuitive picture of the Trotterised
DQS as an approximate simulation of some underlying
target model breaks down entirely. These results suggest
we can make a direct connection between the onset of
digitisation-induced quantum chaotic behaviour in DQS
and the empirical breakdown in meaningful simulation
performance. While we do not make any rigorous con-
nection between this threshold and the formal radius of
convergence in the corresponding Floquet-Magnus expan-
sion, it seems reasonable to identify the quantum chaotic
threshold as an emergent radius of convergence for simu-
lation performance.

As a note, we wish to emphasise at this point the im-
portance of introducing the X2

RMT goodness-of-fit test
statistic as an objective, quantitative measure of simi-
larity of the Trotter step unitary with an appropriate
random unitary matrix. As discussed in Sec. IVC and
illustrated in Fig. 4, the visual comparisons usually ap-
plied to determine agreement with RMT are completely
inadequate to reliably and accurately identify whether
genuine agreement is present.

3. On size dependence of the threshold

From the time-averaged dynamical signatures studied
in Figs 3 and 6, we see that neither the threshold nor
the characteristics of quantum chaotic dynamics are ob-
served at the smallest system sizes for the A2A-Ising and
Heisenberg models. These only emerge once the system
is large enough (j & 4 for A2A-Ising, see also Appendix
Fig. 9, and N & 5 for Heisenberg), and the same size
is observed for the onset of quantum chaos as identified
by quantitatively rigorous agreement with RMT (Fig. 5,
see also Appendix Figs 10 and 11). For the Rabi-Dicke
model, however, the threshold and dynamical signatures
of quantum chaos are visible even at the smallest system
sizes (one qubit and one cavity, see Appendix Fig. 14),
yet conclusive proof of quantum chaotic behaviour con-
sistent with RMT is still only observed for large enough
spin dimensions. While the exact reason for this different
behaviour is still an open question, we speculate that this
may arise from the presence of the infinite-dimensional
cavity in the Rabi-Dicke system.

As discussed in Section II, the Floquet-Magnus approx-
imation in the general case breaks down beyond a formal
radius of convergence τ∗, and the inverse scaling of a
rigorous sufficient condition for convergence with system
size [61–63] (if tight) would imply that realising accurate
simulations for very large systems could require vanish-
ingly small Trotter step sizes. This could have significant,
fundamental implications for the practicality of future
large-scale DQS. Yet results from recent works [36–38] do
not appear to conform to these expectations. We have
significantly extended the previous work on this issue, in
terms of both the range of models and characterisation
tools, and have seen minimal if any movement of the
threshold, certainly much less than the almost 3 orders of
magnitude variation in Hilbert space size studied. Indeed,
the threshold arguably becomes more fixed in position
as size increases, with the main potential movement ob-
served at low system sizes where the thresholds are less
sharp and harder to locate precisely. These observations
seem to contradict the expectation that τ∗ ∝ N−1 for the
radius of convergence of the Floquet-Magnus expansion.
Recent asymptotic results in the field of Floquet

physics [89–92] suggest that any sufficiently generic, fixed,
interacting quantum many-body system, when subjected
to periodic driving, will heat up indefinitely, which is
a signature of quantum chaotic dynamics. They are
asymptotic in the sense that they hold under asymp-
totic limits on system size and run time. In the context of
DQS [36, 37], Trotterisation can be interpreted as imple-
menting a periodically driven, time-dependent Hamilto-
nian, and the digitised dynamics understood in terms of
an effective Floquet Hamiltonian. In the thermodynamic
limit and asymptotically long times, generic Trotterised
DQS may therefore also exhibit quantum-chaos-driven
heating, which suggests the breakdown threshold may
eventually shift to smaller Trotter steps. But this heating
takes place exponentially slowly in the fast driving regime
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which usually characterises a DQS operating in the pre-
threshold regime, emerging (in the worst case) only over
time scales t & τ0e

τ0/τ (if not even longer). Indeed, while
τ0 in this lower bound denotes a microscopic time scale
related to natural system frequency scales, in practice
heating seems to occur only for very large systems at
very long times, and has not been observed in numerical
simulations except in very specific exceptions [93, 94]. It
therefore seems likely that the apparent size-independent
scaling of the Trotterisation threshold observed here, will
continue for sizes and times applicable to NISQ-era and
early fault-tolerant processors, where error mitigation
and resource optimisation will be so critical. It is not yet
understood what system sizes will bring these heating
effects into play. But even for systems and run times
that do eventually reach large enough scales, they can
still be exponentially suppressed by increased digitisa-
tion. That is, for specific, long, yet finite simulation
times, the Trotterisation threshold can persist even in the
thermodynamic limit, because heating will only become
effective for large enough τ . (We show an example in
App. D4b in the quantum chaotic region of the Dicke
model, where digitisation-induced quantum chaos still
creates a threshold.)

Our work also raises a number of interesting open ques-
tions in this area of asymptotic heating and Trotterisation
thresholds. For example, the Hamiltonian of the Trotter-
Floquet system divides naturally into a time-independent
(DC) term, H0, and a purely “AC” time-dependent term,
V (t), satisfying the usual assumption [92]

∫ τ
0 V (t) dt = 0,

under which the reference Hamiltonian reduces to the tar-
get model Hamiltonian, H0 = HM . In the context of quan-
tum many-body physics, sufficiently generic systems are,
with vanishingly infrequent exceptions, non-integrable
(or quantum chaotic). For integrable systems, however,
which occur with measure zero and arise from fine-tuning
of system parameters and symmetries, the asymptotic
heating results [89–92] do not necessarily hold [38]. In
this work, to focus on digitisation-induced quantum chaos,
we specifically consider systems and parameters which
remain integrable even for very large system sizes. Such
systems may support a full performance threshold for
Trotter errors even in the thermodynamic limit. This
obviously needs to be studied in more detail, but such
a result, even if it does not hold completely universally,
would provide valuable evidence that DQS can be carried
out reliably, even at very large scales, which will be criti-
cal, if future large-scale quantum computers are to realise
the promising applications of most interest. Another very
important point is that these asymptotic heating results
have only been studied in the context of systems with
bound energy spectra, like networks of spins or fermions.
It is a completely open question what might happen for
systems involving bosonic degrees of freedom, which give
rise to very different phenomena under periodic driving,
such as parametric resonance. Systems like the Rabi-Dicke
model considered here could provide interesting testbeds
for exploring these questions, with potential implications

for both fundamental physics and quantum processors
utilising bosonic degrees of freedom.
Finally, at a more practical level, while the threshold

behaviours studied in this work are visually quite clear,
an important open challenge for understanding the size
dependence of the threshold is to develop an objective
quantitative description of where the threshold sits. Our
X2

RMT test statistic provides a promising way to attack
this problem, since it captures a direct quantitative mea-
sure of agreement with RMT in a single number, but
a number of subtleties in how to identify the threshold
make this an important open question for future work.
For example, while the thresholds observed in X2

RMT in
Fig. 5 are quite sharp, and get sharper with increasing
system size, they nevertheless appear to consistently span
a small finite region in step size, broader than is observed
in the full dynamics. Further study of these effects are
required, but we speculate this may arise because X2

RMT
is defined from the global unitary. That is, it would
be consistent with the notion of mixed-phase regions in
phase space, well known in the context of the kicked top
[22, 37], for the position of the chaotic threshold to show
some dependence on system initial state. Indeed, it would
not be surprising for such an effect to be quite signifi-
cant, although our initial exploration of this possibility
in App. Fig. 12 suggested the threshold is actually rather
stable. Also, while a goodness-of-fit test statistic value
of X2

RMT ∼ 1 is known to indicate good agreement with
the target probability distribution, further study is re-
quired to understand how the test statistic is expected
to behave in the non-quantum-chaotic regions, and in
particular whether there is a way to identify the smallest
step sizes where the threshold starts. Finally, we observe
that X2

RMT appears to exhibit some strong sensitivity to
step size near (and to some extent beyond) the Trotterisa-
tion threshold, which would be intuitively consistent with
the known sensitivity of quantum chaotic dynamics to
Hamiltonian perturbations. This effect looks particularly
pronounced during the narrow threshold transition, which
also creates some ambiguity in identifying a single, precise
threshold. We leave finding an objective way to precisely
describe the threshold position, in either the dynamical or
static (X2

RMT) signatures, as a topic for future research.

4. On scaling of Trotter errors with step size

A key motivation for our work and the previous work
in Refs [36, 37] is that a better understanding of the de-
tailed behaviour of Trotter errors in DQS may allow a
more nuanced use of Trotterisation to better balance the
Trotter errors against the effects of decoherence and gate
noise. For example, Refs [36, 37] show, at least for specific
cases in the Ising model, that the pre-threshold errors of
example observables agree with the values predicted by a
perturbative Floquet-Magnus expansion of the system dy-
namics. In Figures 6 (g–l), we extend these observations
and show that well-defined, point-to-point errors show
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clear analytic scaling across a wide span of Trotter step
sizes, even up to near the quantum chaotic threshold for
shorter simulation times, across a wide range of models
and parameter regimes, and even for the simulation er-
ror, which is a property of the global quantum state. As
suggested first in [36], this means that measuring results
for a range of larger step sizes can potentially allow more
accurate values to be predicted by extrapolating the ob-
servations back to smaller step sizes, which then don’t
need to be measured explicitly. Furthermore, provided
these errors can be explained perturbatively, calculating
the correction terms in a perturbative expansion like the
Floquet-Magnus expansion may provide insight into how
to correct these errors at an algorithmic level, to fur-
ther compensate and reduce the observed Trotter errors
without moving to smaller Trotter step sizes. Critical
to demonstrating the universality of this behaviour was
the introduction of more nuanced time-averaged errors
that distinguished reliably between sampling errors and
Trotter errors and eliminated spurious fluctuations in the
error scaling curves which obscured the true underlying
trends in the data.
Other key questions about the Trotter error scaling

that still require further investigation, include: a more
detailed investigation of how the error scaling depends
on system size and simulation time; and why the longer-
time Trotter errors appear to saturate to a finite error
below the threshold that remains considerably below the
value saturated by quantum chaotic dynamics beyond the
threshold.

5. Towards experiments and potential applications

In future work, and especially in the design of future ex-
periments, it will also be important to study the interplay
between Trotter errors and noise. At the simplest level,
to be able to experimentally observe the onset of quan-
tum chaotic dynamics at the Trotterisation threshold,
the decay and dephasing times will need to be signifi-
cantly longer than the quantum chaotic collapse time.
For the strongly quantum chaotic systems demonstrated
here (Fig. 2), this occurs already after very few Trotter
steps, but to distinguish this reliably from (quasi)periodic
dynamics in the regular (pre-threshold) regime, it will ob-
viously be necessary to observe coherent dynamics over a
longer duration. In this context, decoherence can be mod-
elled straightforwardly using a traditional master equation
in the “lab frame” of the simulator system, and simple
initialisation and measurement errors can be modelled
heuristically via appropriate choices of starting states and
measurements POVMs. By contrast, simple gate errors
such as calibration errors and parameter drift errors can
be modelled using random noise parameters and Monte-
Carlo techniques. The effects of gate errors, however,
can be expected to raise more subtle questions for fu-
ture study, since hardware errors such as gate errors and
residual couplings can already lead to quantum chaotic dy-

namics [95–100], even in analogue quantum systems. Note
that, based on our work in this paper, some experimental
results previously observed in Ref. [16] for the quantum
Rabi model, can be interpreted as providing preliminary
experimental verifications of our new results, indicating
that the performance required to investigate these effects
is already within reach of current experiments.
In this work, use of random matrix theory has been

crucial in conclusively establishing quantum chaos as the
underlying universal (across models) and global (through-
out Hilbert space) cause of the Trotterisation performance
breakdown threshold first noticed in the context of Ising
DQS in Refs [36, 37]. To consider this in context, it is
worth discussing how RMT is also arising in other areas
of quantum information. In recent years, the classical
computational complexity of the random matrices under-
pinning quantum chaos [101] has motivated a range of
pioneering experiments designed to implement random
unitary circuits, like quantum supremacy and information
scrambling [102–107]. For example, in contrast to our
main results, where target models are explicitly integrable
and quantum chaotic dynamics arise from simulation er-
rors, quantum supremacy experiments target the accurate
simulation of quantum chaotic target dynamics specifically
because it pushes the classical complexity. This provides
further motivation for many open questions around how
to optimise DQS of a target model which is itself quantum
chaotic, a situation which is likely to arise often in real
DQS applications. In Appendix D4b, we note already
that sharp Trotterisation thresholds may still be observ-
able for quantum chaotic target models, but quantum
supremacy experiments illustrate that this context mer-
its much more detailed investigation. For example, does
the remarkable universality of Trotterisation performance
across system types observed here extend to Trotterisa-
tions of quantum chaotic target models? Do similar sharp
thresholds appear in other contexts where hardware-error-
induced quantum chaos appears [95–100], and (how) are
these situations connected? We anticipate that the new
analytical tools we have introduced, like the goodness-
of-fit test statistic X2

RMT, will provide invaluable insight
into such questions.
In a different direction, while we can connect pre-

threshold Trotter errors to perturbative corrections in
the Floquet-Magnus expansion [36, 37] and identify the
threshold as an emergent radius of convergence, it remains
a fascinating open question to find some mechanistic ori-
gin for the threshold and the onset of quantum chaotic
dynamics beyond it. Given the key role of RMT in estab-
lishing the classical computational complexity of quantum
supremacy experiments [101, 102], we suggest that RMT
could perhaps be used to build an information theoretic
understanding of the breakdown of DQS performance in
terms of computational complexity.

Finally, in this work, we show that digitisation-induced
quantum chaotic dynamics can be realised in quite mod-
estly sized systems. While this heralds a breakdown in
performance in DQS, it is intriguing to speculate whether
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this can be used as a resource in other contexts, such
as open-system simulations (using the deep connection
between quantum chaos and thermalisation in closed quan-
tum systems [45, 81, 82]), or quantum metrology [108].
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Appendix A: Random Matrix Theory and Quantum
Chaos

Dynamical signatures of quantum chaos are manifes-
tations of certain random matrix properties in the eigen-
vectors of quantum chaotic systems. Here, we provide
an overview of quantum chaos and its relation with ran-
dom matrix theory (RMT). We also discuss the technical
subtleties and nuances involved in the calculation of the
quantum chaos signatures used in this paper, and we use
quantum kicked-top models of different symmetries to ex-
plain these for both statistical and dynamical signatures.

1. Random Matrix

A random matrix has all or most of its entries as inde-
pendent random numbers satisfying certain probability
laws, and random matrix theory is concerned with the
statistical properties of (all or a few of) the eigenval-
ues and eigenvectors of such matrices [49]. Wigner used
RMT analyses to explain certain spectral properties of
heavy nuclei [110], motivating much subsequent theoreti-
cal work [49, and references therein], and Dyson showed
that physically relevant random matrices fall (mainly)
into one of three universality classes according to their
symmetries [88]. These classes are categorised into cir-
cular or Gaussian ensembles for unitary and Hermitian
random matrices, respectively. Ensembles are categorised
according to the Dyson parameter β into orthogonal (CO-
E/GOE, β = 1), unitary (CUE/GUE, β = 2) and symplec-
tic (CSE/GSE, β = 4), related to degrees of freedom in
random entries and degeneracies of the matrices [49, 51].

2. Quantum Spectra of Classically Chaotic Systems

Over the years, many studies connected RMT with
quantum chaos [45, 46, 50, 51, 85, 86], by showing that
the distribution of energy levels in the Hamiltonians of
classically chaotic systems, commonly referred to as the
eigenvalue or level (spacing) statistics, adhere to the
Wigner-Dyson statistics [45, 46, 85], given by

P (s) = Aβs
βe−Bβs

2
(A1)

where s is the spacing between neighbouring levels, and
the coefficients

Aβ =


π/2 β = 1
32/π2 β = 2
218/36π3 β = 4

(A2)

and

Bβ =


π/4 β = 1
4/π β = 2
64/9π β = 4

(A3)

are calculated by normalising P (s) with the mean level
spacing fixed to 1 [46]. These distributions do not have
closed forms for a given Hilbert space dimension D. They
are generalisations of the results obtained for ensembles
of small dimensional matrices, and are exact for D = 2
(see Ref. [45] for further details). In appendix A4 a, we
discuss the nuances involved in the calculation of level
spacing statistics and illustrate them with the quantum
kicked top.
It is conjectured by Bohigas-Giannoni-Schmit (BGS

conjecture) [85] that, even for single particle quantum sys-
tems that are chaotic in the classical limit, level spacings
exhibit Wigner-Dyson statistics. For quantum systems
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with an integrable classical limit, Berry-Tabor conjec-
tured that the level spacings exhibit Poisson statistics [86].
There are a few counterexamples to both of these conjec-
tures, including: (i) a classically chaotic system without
Wigner-Dyson statistics in its quantised spectrum [111],
(ii) a 1D integrable system with Wigner-Dyson statis-
tics [112], and (iii) an integrable system without Poisson
statistics [113]. Additionally, these statistics can be tricky
to interpret in a context where the natural classical limit
of a quantum system is not clear. Therefore, the existence
of Wigner-Dyson statistics in level spacings is neither a
necessary nor a sufficient condition of quantum chaotic
dynamics, but it still is a strong signature of quantum
chaos.

3. Eigenvector Statistics

Despite the popularity of using level statistics as a
signature for quantum chaos, the conclusive and defining
RMT property of quantum chaotic dynamics is found
in the statistics of the dynamics’ eigenvectors, which
are rigorously defined in a closed form for any arbitrary
dimension D [50, 51, 87].
Eigenvectors {|ψi〉U} of a random unitary matrix U

are also random (column) matrices, and once they are ex-
panded in a generic-basis {|k〉}, as |ψi〉U =

∑D
k=1 cik |k〉

with the constraint
∑D
k=1 |cik|2 = 1, the squared mod-

uli (component populations/probabilities) η = |cik|2
obey a certain distribution depending on the universality
class [50, 51, 87]. As stated in the main text, the reduced
probability densities corresponding to these classes are
given as

P̃COE/GOE(η) =
Γ
(D

2
)

Γ
(D−1

2
) (1− η)(D−3)/2

√
πη

(A4)

P̃CUE/GOE(η) = (D − 1)(1− η)D−2 (A5)
P̃CSE/GSE(η) = (D − 1)(D − 2)η(1− η)D−1, (A6)

where D is the dimension of the Hilbert space, and Γ(x)
(the Gamma function) is the generalized factorial. In the
figures of this paper, we denote these (and Wigner-Dyson)
distributions by the appropriate three letter acronym, de-
pending on whether the unitary or the Hamiltonian is used
to calculate the eigenvectors (and eigen-phases/values).
The distributions in Eqs (A4–A6), contrary to Wigner-
Dyson distributions in Eq. (A1), have a closed form for a
given dimension of the Hilbert space D.

The eigenvector statistics analysis in this work is carried
out on the eigenvectors of each Trotter step unitary using
the following recipe:

1. Choose an appropriate reference basis {|k〉} to calcu-
late |ψi〉U =

∑D
k=1 cik |k〉 (discussed below).

2. Create a histogram from the component populations
η = |cik|2. Some care is required here to ensure that
the histogram is sufficiently well behaved (e.g., does

not contain too many low-count bins) to ensure it can
be compared meaningfully to a target distribution.

3. Convert the histogram to a probability density by
normalising the area under the histogram to 1.

4. Compare with the appropriate target probability den-
sity for unitaries P̃a (a∈{COE,CUE,CSE}) for the
appropriate dimension in Eqs (A4–A6).

a. Choosing the reference basis

The question of how to choose the reference basis is
important and a little subtle. It turns out that the above
construction will almost always lead to eigenvector statis-
tics satisfying the probability distribution of one of the
randomness universality classes for an arbitrary basis: A
non-random basis will give random eigenvector statistics
when expanded in a random basis, and an arbitrary basis
will almost always be random. So the reference basis
needs to be chosen in such a way that the eigenvector
statistics satisfy one of the universality classes if and
only if the underlying unitary matrix derives from non-
integrable/quantum chaotic dynamics (i.e., is a random
matrix), and this means that the reference basis must
itself not be random. The easiest way to ensure this is to
use the eigenbasis of an integrable system unitary as the
reference basis: the eigenvector statistics of an integrable
system will not satisfy RMT distributions when expanded
in the eigenbasis of another integrable system, whereas
the eigenvector statistics of a non-integrable system, using
the same reference basis, will. It must be acknowledged
that there is some risk of falling into a circular argument
here, but with care, it can be avoided. One way to ensure
that the reference basis derives from an integrable system
is to test the robustness/sensitivity of eigenvectors to
small perturbations [45, 87, 114]. Under small perturba-
tions, the eigenvectors of a regular quantum system only
negligibly differ from the unperturbed basis, while the
eigenvectors of perturbed quantum chaotic systems be-
come random matrices in the unperturbed basis [45, 114].
However, more straightforwardly, the free, uncoupled evo-
lution of a quantum system (without any non-interacting
terms) is integrable by construction. The eigenvectors
of the uncoupled system can therefore reliably be used
to define a non-random reference basis, and this is the
approach taken in this work.

As a final note, the dynamical distinctions between
regular and quantum chaotic systems derive from this
robustness (sensitivity) of the eigenvectors of integrable
(quantum chaotic) systems to small perturbations [46].
Therefore, eigenvector statistics are used in this paper as
the defining property of quantum chaotic dynamics.
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b. Chi-squared goodness-of-fit test for agreement with RMT

As illustrated in Fig. 4, comparing eigenvector his-
tograms with the expected statistical distributions visu-
ally can be very misleading. To make this comparison
both quantitative and objective, we therefore characterise
the agreement of a given histogram with RMT predic-
tions using a reduced chi-squared χ2

ν goodness-of-fit test.
Specifically, we define a reduced RMT goodness-of-fit test
statistic according to:

X2
RMT = mina∈{COE,CUE,CSE}X

2
a , (A7)

where

X2
a = 1

Nbin − 1

Nbin∑
i=1

(ni − P̃a(xi))2

P̃a(xi)
. (A8)

follows the usual definition for a reduced-chi-squared
goodness-of-fit test [115, 116]. Here, Nbin is the num-
ber of bins, ni is the number of elements in the ith bin
(ranging from [xi − δ

2 , xi −
δ
2 ]), and δ is the width of the

bins. Defined in this way, if the eigenvector statistics
agree with one of the universal RMT probability distribu-
tions, the residuals in the X2

RMT test statistic will reduce
to independent random variables, and the value for X2

RMT
should be distributed according to a chi-squared prob-
ability distribution. If needed, this comparison can be
formulated as a hypothesis test to determine whether to
reject the null hypothesis that the eigenvector statistics
do agree with RMT predictions.

It is not necessary to be too strict in how we apply the
minimum in the above definition. For example, to create
plots like those in Fig. 5, to observe the onset of quantum
chaos at the threshold, it is generally useful to define
the X2

RMT test statistic relative to a particular choice of
distribution, such as whichever is the closest RMT distri-
bution in the post-threshold region. Obviously, that may
not be known in advance for an arbitrary system, so that
is where the minimum in the definition can be used. How-
ever, there may also be situations where the universality
class may transition from one to another [117], such as
could in principle occur at a Trotterisation threshold for
a non-integrable target system, in which case it may be
useful to look specifically at the X2 test statistic for more
than one distribution. Generally, we will simply leave
this choice implicit and write X2

RMT, but occasionally, we
may write explicitly, e.g., X2

COE.

4. Quantum Kicked Top

The kicked top is one of the best-studied models, both
in classical and quantum chaos, and is extensively used to
demonstrate the connection between the two [118]. Here,
we use quantum kicked tops of different symmetries to
provide concrete examples of both the dynamical signa-
tures of quantum chaos and the RMT properties discussed

above. Quantum kicked-kicked toptops of COE and CSE
symmetries are given by the Floquet operator:

F = e−iV e−iH0 , (A9)

with

H0 = pJy (A10)
V = λJ2

z /2j, (A11)

for COE, and

H0 = pJ2
z /j (A12)

V = k
[
J2
z + k′ (JxJz + JzJx) + k′′ (JxJy + JyJx)

]
/j,

(A13)

for CSE. The kicked top with CUE symmetry is obtained
by the following Floquet operator:

F = exp(−ik′J2
x/2j) exp(−ikJ2

z /2j) exp(−ipJy) (A14)

For further details on these different quantum kicked-top
symmetries, see the Refs [51, 118]. The parameters used
for the numerical simulation below are: (COE) p = 1,
λ = 0.01 (regular) & 10 (chaotic), and j = 400, (CUE)
p = 1.7, k = 6, k′ = 0.5, and j = 400, and (CSE) p = 4.5,
k = 1.5, k′ = 2, k′′ = 3, and j = 399.5. In the dynamical
simulations, we use the COE symmetry with the initial
state |j,m = j − 1〉, and the perturbation fidelity decay
signature is obtained by comparing the quantum kicked
tops with kick strengths of λ and 1.001λ.

a. Static Signatures

Here, we discuss the procedures and nuances involved in
calculating the level-spacing and the eigenvector statistics,
illustrating them with quantum kicked-top examples.

a. Level-spacing statistics In this paper, for the quan-
tum kicked-top models here and the DQS models in the
main text, we mostly calculate the level spacing statis-
tics using the eigenphases {φU} of a unitary evolution
operator U(t), which are unique up to a {φU ± 2nπ} dif-
ference for any integer n. This means that, for a given
unitary operator, there are infinitely many correspond-
ing Hermitian operators with the same eigenvectors but
different {φU ±2nπ} eigenvalue spectrums. This is an im-
portant limitation for level-spacing statistics. Moreover,
regardless of the non-uniqueness, an unfolding procedure
is required to remove system-dependent secular variations
and make the level spacings of any eigen-phase/value
spectrum comparable with Wigner-Dyson distributions.
Full details on level spacing statistics and unfolding are
already found in many references [45, 46, 119, 120], but
the main calculation steps are:

• Sort the eigen-values/phases and group them into
symmetry-reduced sub-spaces.
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Figure 7. Eigenvector and eigenvalue (insets) statistics for quantum kicked top with (a) regular parameters (i.e. weak kick) and
COE, (b) chaotic (i.e. strong kick) and COE, (c) chaotic and CUE, and (d) chaotic and CSE, and (e) the X2

RMT test statistic
for COE eigenvector statistics as a function of kick strength λ. X2

RMT shows three main regions: (i) regular dynamics λ . 1, (ii)
1 . λ . 7 transition region with mixed-phase space and stable islands, and (iii) λ & 7 quantum chaotic system. j = 400 for
COE and CUE, and j = 399.5 for CSE, and the other parameters are given in appendix A 4.

• Unfolding: renormalise the local density of states
by a smooth function to have both global and local
unit-average level spacings.

• Calculate the level spacings for each symmetry-
reduced sub-spaces and create histograms with these
spacings.

• Normalise the area under the histogram to 1 and
compare it with Wigner-Dyson distributions.

We can also superimpose the statistics of all these
sub-spaces to have better resolution in the histogram
plots [118].
Insets in Fig. 7 show the level spacing statistics for

(a) COE with regular, (b) COE with quantum chaotic,
and (c) CUE with quantum chaotic parameters. For reg-
ular parameters, it closely follows the Poisson statistics,
and chaotic cases follow the corresponding Wigner-Dyson
distribution of each class. They are super-imposed his-
tograms of two sub-spaces. CUE and COE unitaries given
above are symmetric under a π rotation around the y-axis,
and two symmetry reduced sub-spaces are determined by
even and odd eigenstates of e−iπJy [118].

Obviously, it is also possible to define a goodness-of-fit
X2 test statistic to quantify agreement with Wigner-
Dyson level-spacing statistics, but since the eigenvector
statistics already provide a necessary and sufficient con-
dition for quantum chaotic dynamics (and are generally
easier to calculate), we have not included any such calcu-
lations here.

b. Eigenvector statistics Once an appropriate basis
{|k〉} is chosen, calculation of eigenvectors is almost trivial
using the prescription in appendix A 3. The only subtlety
in this procedure arises when the system has degenera-
cies. For example, when comparing eigenvector statistics
against the CSE distribution, which exhibits Kramers de-
generacies, you need to take the degeneracies into account
by summing the amplitudes for the degenerate levels,
and this procedure decreases the degrees of freedom by
half. The derivation of the CSE distribution in Eq. (A6)
already takes these into account [51]. Note that it can
be any two levels, so you do not have to identify the
exact degeneracies [51]. For the other symmetries, the
same procedure also applies for degenerate cases, and the
distributions in Eqs (A4–A5) need to be used with the
decreased degree of freedom, e.g., D/2, see Heisenberg
model DQS with σz. In degenerate cases, however, the
diagonalization routine may give random results even in
non-random cases, due to the linear freedom in choos-
ing the degenerate eigenvectors [99], and one needs to
ensure that results are not affected by the diagonalization
routine.

Figures 7 (a–d) show the eigenvector statistics, respec-
tively, for (a) COE with regular, and (b) COE, (c) CUE
and (d) CSE with quantum chaotic parameters. We ob-
serve close agreements (disagreement) between the eigen-
vector statistics of quantum chaotic (regular) systems
and the corresponding RMT distributions. We also quan-
tify the agreement/disagreement by calculating the X2

RMT
goodness-of-fit test statistic between the eigenvector statis-
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Figure 8. Dynamical signatures of quantum chaos in quantum kicked top with COE and j = 400 (The other parameters are
given in appendix A4). Dynamical evolutions of (a) (normalised) expectation value 〈J̄z〉 = 1

j
〈Jz〉, (c) participation ratio PR,

and (e) fidelity under perturbation F(ψp(t), ψ(t)) show quantum chaotic signatures for sufficiently large kicking strength λ.
Black dots are temporal averages with y-axes on the right. (b), (d), and (f) show time traces, respectively, from (a), (c), and (d)
for the kick-strengths values given in the legend of (d) and also marked by the line colours on colour plots. expectation values
lose (quasi)periodicity (a)&(b), system gets delocalised (c)&(d), and fidelity decays exponentially (e)&(f) in the chaotic regime,
while they all recover in the stable island (λ = 6.08(p−1)).

tics of quantum kicked top of COE symmetry and the
corresponding RMT distribution as a function of kick
strength. In Fig. 7 (e), X2

RMT shows three main regions:
(i) regular dynamics for λ / 1, (ii) a transition region
for 1 / λ / 7 with mixed-phase space and stable islands,
and (iii) the quantum chaotic region for λ ' 7. Next, we
demonstrate the same transition and regions in dynamical
signatures of quantum chaos.

b. Dynamical Signatures

Here, we demonstrate onset of quantum chaos in the
dynamics of a quantum kicked top with COE symmetry as
a function of kick strength. Figure 8 shows the time evolu-
tions of (a) (normalised) expectation value 〈J̄z〉 = 1

j 〈Jz〉,
(b) participation ratio (PR), and (c) fidelity under per-
turbation. Beyond the critical kicking strength ∼ 2p, the
system starts to show quantum chaotic characteristics: (i)
destruction of (quasi)periodicity in expectation values, (ii)
high delocalisation, (iii) rapid perturbation fidelity decay.
Figures 8 (d–f) show time traces for various kick-strengths,
and we clearly see the quantum chaotic (and regular) dy-
namics as well as the revival of regular dynamics on the
stable island marked (and plotted) by blue, which is also

identified in the X2
RMT analysis of eigenvector statistics.

Appendix B: Ising Model

1. Dynamics in Small Systems

Here, we show dynamics for the magnetisation 〈J̄z〉 =
〈Jz〉 /j for small j values in A2A-Ising Trotterisation.
Figure 9 shows that the threshold gets sharper as the
dynamics start to show quantum chaotic characteristics,
namely the destruction of (quasi)periodicity, beyond the
threshold. Even though the approximate threshold po-
sition is still clear for any system size in Fig. 9, it is a
smooth transition when the system is still (quasi)periodic
beyond the threshold, and it gets sharper only when the
(quasi)periodicity is destroyed for sufficiently large j val-
ues. In Fig. 9, we observe that the sharp threshold and
signatures of quantum chaotic dynamics start to appear
for j ≥ 4, and this observation is consistent with our
X2

RMT analysis in the main text, which shows X2
RMT ≤ 1

for j ≥ 4.
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Figure 9. The onset of quantum chaos and Trotterisation threshold as the system size increases in A2A-Ising. The lack of sharp
threshold in small sizes is understood from the dynamical evolutions. (a), (b) and (c) show that the dynamics beyond the
threshold is still (quasi)periodic, respectively, for the small spin sizes j = 1, j = 2 and j = 3, which consistently do not produce
a good agreement with RMT statistics analyses. The smallest system size with X2

RMT ≈ 1 is j = 4 and (d-f) shows that the
dynamics beyond the threshold start losing (quasi)periodicity for j > 4. The system parameters and the initial state are the
same as in the main text of the paper.

2. Eigenvector Statistics

In the main text of the paper, we show eigenvector
statistics histograms for j = 64 and calculate X2

RMT for
the other system sizes. Here, to illustrate how system size
affects the histograms themselves, we provide example
histograms for several j values and three step sizes, which
are chosen from regular (before the threshold), quantum
chaotic (after the threshold), and stable island regions.
Figure 10 shows the eigenvector statistics for different j
values on each column and different step sizes on each row:
(top to bottom) before the threshold (τ = 0.02 (2πg−1)),
quantum chaotic (τ = 0.5 (2πg−1)), and stable island
(seen only in large system sizes) (τ = 0.7 (2πg−1)) regions,
respectively. The smallest system size, in Fig. 10 (a), does
not have enough components to produce meaningful statis-
tics, and the visual comparisons in Figs 10 (b–c) do not
provide very clear conclusions. The X2

RMT goodness-of-
fit test statistic, on the other hand, provides consistent
conclusions in terms of successfully identifying the dis-

agreement/agreement of eigenvector statistics with RMT
distributions. For the large system sizes, the regular and
chaotic regions are clearly distinguishable in the eigen-
vector statistics, shown respectively for (d) j = 64 and
(e) j = 256 in Figs 10 (d–e). However, the stable islands
(τ = 4.5 (2πg−1)) are visually indistinguishable from the
quantum chaotic τ = 3.5 (2πg−1) case, and, once again,
X2

RMT proves useful and identifies these weak islands (see
main text).

Appendix C: Heisenberg Model

1. Eigenvector Statistics

In the main text, we present only the X2
RMT analysis

for the Heisenberg Trotterisations. Therefore here, Fig. 11
explicitly shows the eigenvector statistics histogram plots
for 3, 6, and 9 qubits Heisenberg Trotterisations on each
column and different step sizes on each row. The step sizes
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Figure 11. Eigenvector statistics for Trotterised Heisenberg unitary. Columns, left to right, show 3, 6, and 9 qubit chains, and
rows, top-to-bottom, are for step sizes before the threshold (τ = 0.001 (2πg−1)), quantum chaotic (τ = 0.2 (2πg−1)), and stable
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Figure 12. Dynamical evolutions of qubit polarization 〈σkz 〉 and sub-system entropy S(ρk) for qubit k = 2, 3, 4 in the N = 5
Heisenberg chain. The black lines, with y-axes on the right, are the time averages of the colour plots. System parameters are
the same as in the main text of the paper.

shown in the columns of Fig. 11 are, respectively from top-
to-bottom, from before the threshold (τ = 0.001 (2πg−1)),
quantum chaotic (τ = 0.2 (2πg−1)), and stable island
(τ = 0.5 (2πg−1)) regions. For the case of 9 qubits, the
histogram plots clearly agree/disagree with the RMT dis-
tributions in all three cases as seen in Figs 11 (c,f,i). The
eigenvector statistics of the 6 qubits case show visually
convincing agreement (and disagreement) in the quantum
chaotic (and regular) regime as shown in Fig. 11 (b) (and
(e)). However, for the 6 qubits case, the distinction be-
tween the stable island and quantum chaotic regimes is
not as clear as it is for 9 qubits. Finally, for the smallest
system size in Fig. 11, none of the histogram plots pro-
vides any clear conclusion. By contrast, in each case, the
X2

RMT analysis used in the main text of the paper pro-
vides quantitative measures of these visual comparisons,
and successfully identifies all these regimes providing con-
clusive and consistent results.

As a final note, this Trotterisation has degeneracies.
Therefore, the eigenvector statistics in Fig. 11 are calcu-
lated using the procedure discussed in appendix A4 a b.
Consequently, the number of independent components is
reduced by half, so the theoretical lines in Fig. 11 are
for D = 2N−1 for the case of N qubits. These degenera-

cies are removed when the longitudinal field σz term is
replaced with the transverse field σy/x term. Then, the
regular procedure can be followed, and we observed a
good agreement with RMT distributions of the full di-
mension D = 2N . In both cases, the results regarding the
threshold and the onset of quantum chaos beyond it are
qualitatively the same both in the eigenvector statistics
and the dynamical signatures (not shown, data available).

2. Dynamics of the Other Qubits in the Chain

In the main text of the paper, we use the first qubit of
the chain to demonstrate the dynamics of the expectation
values and subsystem entropies in the Trotterisation of
the Heisenberg model, and we argue that the onset of
quantum chaos and the threshold position is independent
of this particular choice by using eigenvector statistics of
the Trotter step unitary as well as sub-system independent
dynamical quantities such as PR and simulation fidelity.
Here, we provide the dynamics of the expectation values
and the subsystem entropies for the second, third and
fourth qubits of the chain of 5 qubits. Figs 12 (a–c) (and
(d–f)) show the dynamics of expectation values (and sub-
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Figure 13. Threshold position for 9 qubits Heisenberg chain with various initial states. The columns, left-to-right, show the
results for 20 spin-coherent, 20 product, and 20 pure initial states sampled uniformly at random. In each column, the same
line colours correspond to the same initial state. Here, the second layer of brackets 〈.〉t represents time averaging. The rows,
top-to-bottom, show time averaging of (a–c) the qubit polarization of the first qubit in the chain 〈〈σ1

z〉〉t for Trotterised evolution,
(d–f) the absolute difference

∣∣〈〈σ1,ide
z 〉〉t − 〈〈σ1,dig

z 〉〉t
∣∣ between the time averaged expectation values obtained from the Trotterised

(〈σ1,dig
z 〉) and ideal dynamics (〈σ1,ide

z 〉 sampled at every step size τ), (g–i) time average of the point-to-point absolute difference
〈
∣∣〈σ1,ide

z 〉 − 〈σ1,dig
z 〉

∣∣〉t at each step of the evolution, (j–l) participation ratio 〈PR〉t for the Trotterised dynamics, and (m–o)
simulation infidelity 1− 〈F(ψdig(t), ψide(t))〉t. We find the threshold at the same position. The smooth deviations from the
ideal value (i.e. the value at τ → 0) in the time averages of 〈〈σ1

z〉〉t start before the threshold for the states with larger Trotter
errors, which is also explained as the result of the change in (quasi)periodicity in the main text.
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Figure 14. The sharp threshold in the Trotterised quantum Rabi evolution. Dynamical evolutions of the smallest case of the
Dicke model (j = 0.5 i.e. the quantum Rabi model) show the dynamical signatures of quantum chaos beyond the threshold.

system entropies), respectively, for (a) (and (d)) second,
(b) (and (e)) third, and (c) (and (f)) fourth qubit. We
clearly observe the same threshold and same behaviours
observed for the first qubit.

3. Effect of Initial State on the Threshold

Trotterisation of the Heisenberg model show certain
initial-state-dependent effects in the main text of the
paper. Here, we analyse the dynamics of the 9-qubit
Trotterised Heisenberg model for various initial states (of
3 types) and provide results for expectation values, PR
values, and the Trotter errors. The results show that the
initial state does affect the size of the Trotterisation errors
before the threshold and we note that the threshold might
not seem sharp for the states with larger errors. Still,
the breakdown of digitisation occurs at a sharp threshold
largely independent of the initial state.

We sample 20 initial states uniformly at random from
each spin-coherent, product, and pure state types, where
the spin-coherent state

|θ, φ〉N = ⊗N (cos(θ/2) |1〉+ e−iφ sin(θ/2) |0〉), (C1)

is just a subset of product states |N〉 = ⊗Ni=1 |i〉, which
is a subset of pure states. Figure 13 shows various av-
eraged quantities calculated from the digital simulations
for t = 20 (2πg−1). Even for initially highly delocalised
states (and the pure state samples), there is a noticeable
difference at the same threshold position, and we observe
the same threshold in each quantity and initial state.

Appendix D: Dicke Model

1. Threshold in Rabi model

Here, we include the full dynamics of photon number,
subsystem entropy, and simulation fidelity in the Rabi
model (i.e., Dicke model with j = 0.5). Figure 14 shows
that the Rabi model already shows a strong threshold in
all these quantities, and we observe signatures of quantum
chaotic dynamics beyond the threshold. We see that the
(quasi)periodic dynamics of the (normalised) photon num-
ber is destroyed beyond the threshold (Figure 14 (a)), and
that the subsystem entropy of the spin component is con-
siderably larger than the pre-threshold value (Fig. 14 (b)),
which is maximised for sufficiently large spin components
in the Dicke model (Fig. 3 (i)). Finally, the threshold in
simulation fidelity, shown in Fig. 14 (c), again appears as
the secondary transition from (quasiperiodic) oscillatory-
in-time to decaying behaviour. Despite the threshold and
signatures of quantum chaotic dynamics beyond it, we
do not find an agreement with RMT in the eigenvector
statistics of the Rabi model. Instead, the Dicke model,
similar to the other models, shows agreement with RMT
predictions only for sufficiently large system sizes (in this
case, a sufficiently large spin component), but it also
shows certain cavity dimension truncation dependencies
discussed in appendix D3. We leave further analyses of
the threshold in the Rabi model, and why it appears at
the smallest sizes, as an open question for future research.

2. Normalisation of the Photon Number and the
Participation Ratio

In this section, we present numerical data supporting
our choice of normalisation coefficients nj and D for, re-
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Figure 15. The maximum of (a) the photon numbers 〈n〉 and
(b) the PR (shown as its square root) values of the quantum
chaotic dynamics are, respectively, linear and quadratic (linear
for
√
PR) in dimj . In each sub-figure, the circles are the data

points obtained numerically from the dynamical simulations,
and the black lines are the numerical fits. The blue lines are
the normalisation coefficients used in this paper.

spectively, the photon numbers 〈n〉 and PRs in the Dicke
model. Figures 15 (a–b) show that the maximum of
(a) the photon numbers 〈n〉 and (b) the

√
PR values of

the quantum chaotic regions are linear in dimj . We use
nj = 7×dimj and D = (2×dimj)2 for the normalisations
of the photon number and participation ratio, respectively,
and the blue lines in Figs 15 (a–b) show these values. The
constant coefficients 7 and 2 are determined numerically.
The dynamical signatures are independent of the cavity
truncation dimension dimc, provided that dimc is large
enough for the simulation to support all the components
of the time evolving state. Therefore, these observations
(together with the maximised subsystem entropy of the
spin component) suggest that the quantum chaos in this
model is driven by the spin-j component. The eigenvector
statistics analyses, in the next section, support this intu-
ition as they show agreement with the RMT distributions
only when the cavity truncation is dimc ∼ dimj .

3. Eigenvector Statistics and the Effect of
Truncated Cavity Dimension

In the numerical analyses of the Dicke DQS, the finite
truncation of the cavity dimension poses a non-trivial
problem. Here, we provide detailed numerical analysis of
the truncation dependency in the eigenvector (and also
eigenvalue) statistics of the Trotter step unitary of the

Dicke model. We first present the histogram plots for the
eigenvalue and eigenvector statistics for the case j = 6 for
different step sizes and cavity dimensions. Then, we carry
out the X2

RMT analysis for the eigenvector statistics for
various j values and as a function of various parameters.
Our numerical analysis gives us some intuitive physical
insight and suggests that the spin component of the sys-
tem drives the quantum chaotic dynamics beyond the
threshold. We report our numerical findings to support
and explain our choice for cavity truncation in the main
text of the paper, and to provide initial motivation for
further research. This is a subtle problem which merits
further investigation of how to apply these statistics for
truncated dimensions in unbounded systems, as well as
a more rigorous understanding and explanation of these
numerical results.

a. Level-spacing and Eigenvector Statistics

In this section, we provide the eigenvector statistics his-
tograms for the Dicke DQS to show the cavity dimension
truncation dependency, and we also employ an additional
static signature of quantum chaos as a supporting tool,
namely the level-spacing (or eigen-phase/value) statistics
(discussed in appendix A 2). Here, the level-spacing statis-
tics are calculated for each parity subspace of the Dicke
system (Π = eiπ(a†a+Jz+j), see appendix A4 a), and the
figures in this section show the super-imposed statistics of
these subspaces. Additionally, the eigenvector statistics of
the Dicke DQS are obtained using the degenerate system
procedure (discussed in appendix A4 a b). Therefore we
use the RMT distributions with half the total size of the
truncated space D = 1

2 dimj ×dimc.
Figure 16, for the j = 6 Dicke DQS, shows the level-

spacing statistics in the upper-right insets, and the eigen-
vector statistics in the main figures with its tail in the
lower-right insets. In Figs 16 (a–b), we use the step size
τ = 0.01 (2πg−1) (i.e. before the threshold), and we show
that neither the eigenvector nor the eigenphase statistics
have an agreement with RMT distributions, as expected.
The eigenphase statistics are actually Poisson distributed
for this step size, which is a signature of regular dynamics
according to the Berry-Tabor conjecture [86]. For the
step size τ = 0.12 (2πg−1) (beyond the threshold) and
the cavity dimension dimc = 25, both the eigenvector and
eigenphase statistics show agreement with RMT distribu-
tions, shown in Fig. 16 (c). However, once dimc exceeds a
certain value (that increases with j, as shown in the next
section), agreement with RMT is lost in both of these
cases, shown for dimc = 200 in Fig. 16 (d) where the
level-spacing statistics are actually closest to a Poisson
distribution.

Aside from the dimc dependency, both eigenvector and
level-spacing statistics simultaneously agree/disagree with
RMT beyond/before the threshold, and they show the
same behaviour in various other system parameter regimes
(not shown). Indeed, this even holds for examples the
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Figure 16. Eigenvector and eigenvalue statistics of Trotterised Dicke unitary with j = 6, and the system parameters are the same
as the main text of the paper. In each panel (a–d), the main histogram plots show the eigenvector statistics, upper insets show
the corresponding eigenvalue statistics, and the lower insets show the tail of the main histogram plots. Before the threshold
τ = 0.01 (2πg−1) neither the eigenvector nor the eigenvalue statistics show an agreement with RMT distributions for cavity
dimension truncations (a) dimc = 25 and (b) dimc = 200. Beyond the threshold τ = 0.12 (2πg−1), both the eigenvalue and the
eigenvector statistics are observed to be close to RMT distributions for (c) dimc = 25, and such agreements are lost both in the
eigenvalue and the eigenvectors statists for (d) dimc = 200.

regime where the ideal Dicke model itself is known to be
quantum chaotic [79, 80], where we still observe a sharp
threshold, beyond which the PR values and sub-system
entropies are larger for the digitised system than the ideal
system. Since our focus in this paper is the digitisation-
induced onset of quantum chaos, detailed analysis of this
case is beyond the scope of this paper, but we provide
some illustrative data in appendix D4.

b. Goodness-of-fit Analyses

In this section, we analyse the dependency of eigenvec-
tor statistics on the truncation value of cavity dimension
via the X2

RMT goodness-of-fit test statistic. In the previ-
ous section, we presented the eigenvector (and eigenphase)
statistics histograms of the Trotter step unitary of the
Dicke model with j = 6 for two different step sizes and two
cavity truncation values. We compared these statistics
with RMT distributions of dimension D = 1

2 dimj ×dimc
(i.e. half the total size of the truncated space). Here,
we calculate X2

RMT as a function of various parameters:

namely cavity truncation dimc, Trotter step size τ , spin
size j, and fit dimension dimf . Here, we use the fit dimen-
sion dimf to explore the effective system dimension. That
is, with the other parameters fixed (including the cavity di-
mension), we instead sweep the dimension variable of the
RMT distributions: we calculate X2

RMT by comparing the
numerical eigenvector histograms to RMT distributions
with dimension dimf /2 instead of D = 1

2 dimj ×dimc.

The main observation from the results below is that
the maximum cavity truncation dimension to obtain
X2

RMT ∼ 1 is dimc = dimj . Together with the behaviours
of the dynamical quantities (discussed in the main text
and appendix D 2), these X2

RMT results suggest that quan-
tum chaotic dynamics in the Dicke DQS is mainly driven
by the spin component. This is consistent with a sim-
ple intuition that the non-commutations in the Dicke
DQS result from single qubit rotations that affect only
the collective spin component. We nevertheless note the
importance of developing a more theoretically rigorous un-
derstanding of these numerical results as an open question
for further studies.
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Figure 17. X2
RMT analysis of the cavity truncation dependency in eigenvector statistics of the Trotterised Dicke unitary. The

system parameters are the same as in the main text of the paper. Calculating X2
RMT by sweeping the cavity truncation dimension

dimc, (a) X2
RMT values are always (much) larger than 1 before the threshold τ = 0.01 (2πg−1), and (b) in the chaotic region

beyond the threshold τ = 0.12 (2πg−1). X2
RMT reaches below 1 up to a maximum dimc that is observed to increase as the spin

dimension dimj (i.e. the j value) increases. Fixing cavity truncation to k × dimj and fitting it against COE distribution of
different fitting dimensions dimf , (c) shows X2

RMT < k is observed for dimf ∼ k
2 × dim2

j for k = 1. This relation is also shown
in (e) and (f) where the maximum (downward triangles) and minimum (upward triangles) dimensions of X2

RMT < k and the
dimension of the minimum X2

RMT (circles) are plotted against j values for different k values. The minimum of X2
RMT in (e)

(and (f), which is separated for visual clarity) stays between k × 1
2 dim2

j (solid lines) and k × 1
4 dim2

j (dashed lines). X2
RMT as a

function of step size corresponding to solid line is presented in the main text of the paper, and (d) shows X2
RMT as function of

step size for various j values and dimc = d0.5× dimje corresponding to dashed line.
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a. Cavity truncation First, we analyse X2
RMT as

a function of dimc for two step sizes before (τ =
0.01 (2πg−1)) and after (τ = 0.12 (2πg−1)) the threshold
and various j values. In this case, the fit dimension is
equal to the total dimension of the truncated system,
i.e. dimf = dimj ×dimc. Figure 17 (a) shows that the
eigenvector statistics before the threshold do not show
agreement with RMT for any value of j or dimc. For
the quantum chaotic region beyond the threshold, how-
ever, we observe that X2

RMT ∼ 1 up to a maximum dimc
(that increases with increasing j) as shown in Fig. 17 (b),
and X2

RMT quickly diverges to larger values beyond these
truncations.

b. Fit dimension Having observed agreement with
RMT for dimc ∼ dimj in Fig. 17 (b), we now fix the cav-
ity dimension to dimc = dimj and calculate X2

RMT while
varying the fit dimension dimf for various j values. The
data in Figure 17 (c) confirm that X2

RMT ∼ 1 is observed
only for dimf ∼ dimj ×dimc: specifically, we observe that
X2

RMT stays below 1 when dimf is between a minimum
(min dimf ) and a maximum max dimf . In Fig. 17 (e), we
plot the minimum and maximum dimf values with upper
and lower (yellow) triangles, respectively. The dimf at
which X2

RMT achieves its minimum is shown in yellow cir-
cles. These values appear to converge towards each other
as the j value increases, and stay mainly between 1

2 dim2
j

and 1
4 dim2

j . Accounting for the additional 1/2 factor in
dimf due to the degeneracies in the system (as discussed
in appendix A 4 a b), this means that the maximum dimf

after which X2
RMT starts to quickly increase is equal to

the dimc = dimj , which is the cavity dimension we set.
c. max and min dimf Next, we analyse these max

and min dimf values for larger cavity truncations. We
already know from Fig. 17 (b) that X2

RMT does not reach
below 1 for cavity truncations that are much larger than
dimc, but they are fit against the full system dimension
D while we here use the fit dimension as a free parameter.
In this case, we observed that the qualitative shape of
curves similar to Fig. 17 (c) (not shown) stays the same
provided that dimc is an integer multiple of k × dimj

and that the curves shift upwards in X2
RMT as the cavity

truncation increases. Therefore, X2
RMT again does not

go below 1 for these large cavity truncations, but it does
become smaller than the integer multiplicative factor k.
Figs 17 (e–f) show that max and min dimf at which
the X2

RMT reaches below k are k multiples of the above
dimension, respectively k × 1

2 dim2
j and k × 1

4 dim2
j , and

they again converge towards each other for larger j values
and stay approximately between these two values.

d. Step size These results, though we leave it as an
open question to find a rigorous explanation, show that
the maximum truncation dimension that gives close agree-
ment (i.e., X2

RMT ∼ 1) with RMT is dimc ∼ dimj , which
is also the value we used in the main text to analyse RMT
correspondence as a function of step size. In the above
results, the minimum cavity truncation that gives close
agreement is observed to be dimc ∼ 1

2 dimj . For compari-
son, here we plot X2

RMT for dimc = 1
2 dimj , as function
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Figure 18. Finding non-chaotic parameters of the Dicke Hamil-
tonian by calculating the level spacing statistics for j = 3 and
j = 10 on each column. It is qualitatively insensitive to dimc,
which is set to 100 in these calculations. The red, green, and
blue lines are RMT statistics respectively for COE, CUE, and
CSE classes, and the black line is Poisson distribution.

of step size and for various system sizes (Fig. 17 (d)).
It is qualitatively the same as the main text and shows
the same threshold, showing that within this small range
for dimc, the X2

RMT results for the Dicke model do not
depend sensitively on dimc.

4. Quantum Chaos in Dicke model

In order to focus on digitisation-induced quantum chaos,
we focus exclusively on regular parameters of the Dicke
Hamiltonian in the main text of the paper. Here, we
discuss how we choose these parameters, and also pro-
vide example results for the Trotterisation of the Dicke
Hamiltonian with quantum chaotic parameters.
In two papers [79, 80], the Dicke model is shown be

quantum chaotic for the coupling strengths g around the
critical coupling gc = √ωcωj of the super-radiant phase
transition (it becomes regular, if g is either too much
smaller or larger than gc). For these regimes, Refs [79, 80]
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Figure 19. Trotterisation of the Dicke model in its quantum chaotic regime (0.5ωc = ωj = g = 1 and j = 6). The dynamical
evolutions of (a) and (d) 〈a†a〉 expectations, (b) and (e) PR, and (c) and (f) entropy of the reduced state of spin component
S(ρj) show more dominant quantum chaotic characteristic for digital simulation (orange) beyond the threshold (a–c). The
digital simulation before the threshold (d–f) accurately simulate the quantum chaotic Dicke.

show that the level spacing statistics of the Dicke Hamilto-
nian follow Wigner-Dyson statistics. They support these
observations by obtaining a classical correspondence using
Holstein-Primakoff transformations, together with certain
approximations, and showing that the classical limit is
chaotic for the parameters that give Wigner-Dyson statis-
tics in the quantum case.

a. Choice of the Parameters for the Main Text of the Paper

Here, we choose the Dicke model parameters used in
the main text of the paper, by calculating the nearest-
neighbour level-spacing statistics of the Dicke Hamiltonian
for two j values, and we find a parameter regime where
it does not follow the Wigner-Dyson distribution. To do
this, we need to find a combination of spin and cavity fre-
quencies that are far enough from the superradiant phase
transition point of the Dicke Hamiltonian. We can move
far into either the superradiant or normal phase regime,
and here we use the latter. Specifically, we gradually
increase the product of the frequencies ωc × ωj (which
increases the critical coupling gc of the superradiant phase
transition) until we stop observing Wigner-Dyson statis-
tics. Using resonant spin and cavity frequencies, Fig. 18
shows this analysis for j = 3 and j = 10, and we find
that the level statistics fairly obviously do not agree with

Wigner-Dyson statistics at both j = 3 and j = 10 by the
time we have ωc = ωj = 3.4g. Thus, any combination of
spin and cavity frequencies that satisfy ωc × ωj ≥ (3.4g)2

should be far enough from the quantum chaotic regime
(which appears only for coupling frequencies near the
super-radiant phase transition critical coupling).

b. Trotterisation of the Dicke Model with Quantum Chaotic
Parameters

Our goal in this paper is to analyse digitisation-induced
quantum chaos, therefore we use regular parameters of the
Dicke model in the main text. We also, however, observed
(not shown in detail) that the threshold behaviour is
qualitatively the same for both regular and quantum
chaotic parameters. It is not in the scope of this paper to
provide detailed results for the threshold in the quantum
chaotic regime of the Dicke model, but, here, we provide
some example results (two different step sizes) for the
Dicke model with quantum chaotic parameters (0.5ωc =
ωj = g and j = 6). We show that the digitised dynamics
closely follow the target dynamics for the small step size,
and, for the large step size, it produces noticeably larger
photon numbers, PR values, and sub-system entropies
than the ideal Dicke evolution.

In Fig. 19, we compare the ideal and Trotterised dynam-
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ics for two step sizes, before and after the threshold, and
observe that the Trotterised dynamics beyond the thresh-
old show stronger signatures of quantum chaos than ideal
dynamics. Figures 19 (a–c) show that ideal (blue) and
Trotterised (orange) dynamics produce the same results
before the threshold for (a) a†a expectation, (b) PR, and
(c) sub-system entropy of the spin component S(ρj). We

then compare the ideal dynamics with the Trotterised
evolution beyond the threshold in Figs 19 (d–f), and we
observe that the Trotterised dynamics produce stronger
dynamical signatures of chaos, namely: (i) the destruction
of (quasi)periodicity in expectation values is much more
prominent, (ii) PR for DQS is an order of magnitude
greater than ideal, and (iii) entropy is maximised in DQS
and larger than the ideal.
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