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Abstract

The availability of a large labeled dataset is a key re-

quirement for applying deep learning methods to solve var-

ious computer vision tasks. In the context of understand-

ing human activities, existing public datasets, while large

in size, are often limited to a single RGB camera and pro-

vide only per-frame or per-clip action annotations. To en-

able richer analysis and understanding of human activities,

we introduce IKEA ASM—a three million frame, multi-view,

furniture assembly video dataset that includes depth, atomic

actions, object segmentation, and human poses. Addition-

ally, we benchmark prominent methods for video action

recognition, object segmentation and human pose estima-

tion tasks on this challenging dataset. The dataset enables

the development of holistic methods, which integrate multi-

modal and multi-view data to better perform on these tasks.

1. Introduction

Furniture assembly understanding is closely related to

the broader field of action recognition. The rise of deep

learning has rapidly advanced this field [8]. However, deep

learning models require vast amounts of training data and

are often evaluated on large datasets of short video clips,

typically extracted from YouTube [8, 33], that include a set

of arbitrary yet highly discriminative actions. Therefore, the

research on assembly understanding is far behind generic

action recognition due to the insufficient datasets for train-

ing such models and other challenges such as the need to

understand longer timescale activities. Existing assembly

datasets [68] are limited to the classification of very few ac-

tions and focus on human pose and object color information

only.

We aim to enable research of assembly understanding

and underlying perception algorithms under real-life con-

ditions by creating diversity in the assembly environment,

assemblers, furniture types and colors, and body visibility.

To this end, we present the novel IKEA ASM dataset, the

first publicly available dataset with the following properties:

• Multi-modality: Data is captured from multiple sen-

sor modalities including color, depth, and surface nor-

mals. It also includes various semantic modalities in-

cluding human pose and object instance segmentation.

• Multi-view: Three calibrated camera views cover the

work area to handle body, object and self occlusions.

• Fine-grained: There is subtle distinction between ob-

jects (such as table top and shelf) and action categories

(such as aligning, spinning in, and tightening a leg),

which are all visually similar.

• High diversity: The same furniture type is assem-

bled in numerous ways and over varying time scales.

Moreover, human subjects exhibit natural, yet unusual

poses, not typically seen in human pose datasets.

• Transferability: The straightforward data collection

protocol and readily available furniture makes the

dataset easy to reproduce worldwide and link to other

tasks such as robotic manipulation of the same objects.

While the task of furniture assembly is simple and well-

defined, there are several difficulties that make inferring ac-

tions and detecting relevant objects challenging. First, un-

like standard activity recognition the background does not

provide any information for classifying the action (since all

actions take place in the same environment). Second, parts

being assembled are symmetric and highly similar requir-

ing understanding of context and the ability to track ob-

jects relative to other parts and sub-assemblies. Third, the

strong visual similarity between actions and parts requires

a higher-level understanding of the assembly process and

state information to be retained over long time periods.
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Figure 1: Overview of the IKEA ASM dataset. The dataset contains 371 furniture assembly videos from three camera views,

including 3D depth, object segmentation and human pose annotations of 33 atomic actions.

On the other hand, the strong interplay between geom-

etry and semantics in furniture assembly provides an op-

portunity to model and track the process. Moreover, cues

obtained from the different semantic modalities, such as hu-

man pose and object types, are combined to provide strong

evidence for the activity being performed. Our dataset en-

ables research along this direction where both semantics

and geometry are important and where short-term feed-

forward perception is insufficient to solve the problem.

The main contributions of this paper are: (1) the intro-

duction of a novel furniture assembly dataset that includes

multi-view, and multi-modal annotated data; and (2) eval-

uation of baseline method for different tasks (action recog-

nition, pose estimation, object instance segmentation and

tracking) to establish performance benchmarks.

2. Background and related work

Related Datasets. The increasing popularity of action

recognition in the computer vision community has led

to the emergence of a wide range of action recognition

datasets. One of the most prominent datasets for action

recognition is the Kinetics [52] dataset—a large-scale hu-

man action dataset collected from Youtube videos. It is

two orders of magnitude larger than some predecessors,

e.g., the UCF101 [65] and HMDB51 [34]. Additional no-

table datasets in this context are ActivityNet [18] and Cha-

rades [63], which include a wide range of human activities

in daily life. The aforementioned datasets, while very large

in scale, are not domain specific or task-oriented. Addition-

ally, they are mainly centered on single-view RGB data.

Instructional video datasets usually include domain spe-

cific videos, e.g., cooking (MPII [57], YouCook [15],

YouCook2 [77], EPIC-Kitchens [14]) and furniture assem-

bly (IKEA-FA [68]). These are most often characterized by

having fine grained action labels and may include some ad-

ditional modalities to the RGB stream such as human pose

and object bounding boxes. There are also more diverse

variants like the recent COIN [67] dataset, which forgoes

the additional modalities in favor of a larger scale.

The most closely related to the proposed dataset are

the Drive & Act [45] and NTU RGB+D [62, 40] datasets.

Drive & Act is specific to the domain of in-car driver ac-

tivity and contains multi-view, multi-modal data, including

IR streams, pose, depth, and RGB. While the actors follow

some instructions, their actions are not task-oriented in the

traditional sense. Due to the large effort in collecting it,

the total number of videos is relatively low (30). Similarly,

NTU RGB+D [62] and its recent extension NTU RGB+D

120 [40] contain three different simultaneous RGB views,

IR and depth streams as well as 3D skeletons. However,

in this case the videos are very short (few seconds), non-

instructional and are focused on general activities, some of

which are health related or human interaction related. For a

detailed quantitative comparison between the proposed and

closely-related datasets see Table 1.

Other notable work is the IKEA Furniture Assembly En-

vironment [35], a simulated testbed for studying robotic

manipulation. The testbed synthesizes robotic furniture as-

sembly data for imitation learning. Our proposed dataset is

complimentary to this work as it captures real-world data of
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Dataset Year Dur. #Videos #Frames Activity type Source Views 3D
Human

pose

object

seg. bb

MPII Cooking[57] 2012 9h,28m 44 0.88M cooking collected 1 ✗ ✓ ✗

YouCook [15] 2013 2h,20m 88 NA cooking YouTube 1 ✗ ✗ X–(bb)

MPII Cooking 2 [58] 2016 8h 273 2.88M cooking collected 1 ✗ ✓ ✗

IKEA-FA [68] 2017 3h,50m 101 0.41M assembly collected 1 ✗ ✓ ✗

YouCook2 [77] 2018 176h 2000 NA cooking YoutTube 1 ✗ ✗ X–(bb)

EPIC-Kitchens [14] 2018 55h 432 11.5M cooking collected 1 ✗ ✗ X–(bb)

COIN [67] 2019 476h,38m 11827 NA 180 tasks YouTube 1 ✗ ✗ ✗

Drive&Act [45] 2019 12h 30 9.6M driving collected 6 ✓ ✓ ✗

IKEA-ASM 2020 35h,16m 371 3M assembly collected 3 ✓ ✓ ✓

Table 1: Instructional video dataset comparison.

humans that can be used for domain-adaptation.

In this paper we propose a furniture assembly domain-

specific, instructional video dataset with multi-view and

multi-modal data, which includes fine grained actions, hu-

man pose, object instance segmentation and tracking labels.

Related methods. We provide a short summary of meth-

ods used as benchmarks in the different dataset tasks in-

cluding action recognition, instance segmentation, multiple

object tracking and human pose estimation. For an extended

summary, see the supplementary material.

Action Recognition. Current action recognition architec-

tures for video data are largely image-based. The most

prominent approach uses 3D convolutions to extract spatio-

temporal features,and includes methods like convolutional

3D (C3D) [69], which was the first to apply 3D convolutions

in this context, pseudo-3D residual net (P3D ResNet) [52],

which leverages pre-trained 2D CNNs and utilizes residual

connections and simulates 3D convolutions, and the two-

stream inflated 3D ConvNet (I3D) [8], which uses an in-

flated inception module architecture and combines RGB

and optical flow streams. Other approaches attempt to de-

couple visual variations by using a mid-level representation

like human pose (skeletons). One idea is to use a spatial

temporal graph CNN (ST-GCN) [74] to process the skele-

ton’s complex structure. Another is to learn skeleton fea-

tures combined with global co-occurrence patterns [36].

Instance Segmentation. Early approaches to instance seg-

mentation typically perform segment proposal and classifi-

cation in two stages [50, 13, 49]. Whereas recent one-stage

approaches tend to be faster and more accurate [22, 37].

Most notably, Mask R-CNN [22] combines binary mask

prediction with Faster R-CNN [55], showing impressive

performance. They predict segmentation masks on a coarse

grid, independent of the instance size and aspect ratio which

tends to produce coarse segmentation for instances occu-

pying larger part of the image. To alleviate this problem

approaches have been proposed to focus on the boundaries

of larger instances, e.g., InstanceCut [29], TensorMask [9],

and point-based prediction as in PointRend [30].

Multiple Object Tracking (MOT). Tracking-by-detection is

a common approach for multiple object tracking. MOT

can be considered from different aspects: It can be cate-

gorized into online or offline, depending on when the deci-

sions are made. In online tracking [60, 71, 3, 12, 73, 28],

the tracker assigns detections to tracklets at every time-step,

whereas in offline tracking [66, 44] the decision about the

tracklets are made after observing the whole video. Dif-

ferent MOT approaches can also be divided into geometry-

based [60, 5] or appearance-based [12, 3, 73]. In our con-

text, an application may be human-robot collaboration dur-

ing furniture assembly, where the tracking system is re-

quired to make real-time online decisions [60, 5]. In this

scenario, IKEA furniture parts are almost textureless and of

the same color and shape, and thus the appearance infor-

mation could be misleading. Additionally, IKEA furniture

parts are rigid, non-deformable objects, that are moved al-

most linearly in a short temporal window. As such, a sim-

ple, well-designed tracker that models linear motions [5] is

a reasonable choice.

Human Pose Estimation. Multi-person 2D pose estimation

methods can be divided into bottom-up (predict all joints

first) [51, 7, 6, 53] or top-down (detect all person bound-

ing boxes first) [22, 19, 10]. The popular OpenPose de-

tector [7, 6] assembles the skeleton using a joint detec-

tor and part affinity fields. This was extended to incorpo-

rate temporal multi-frame information in Spatio-Temporal

Affinity Fields (STAF) [53]. Mask R-CNN [22] is a no-

table top-down detection-based approach, where a keypoint

regression head can be learned alongside the bounding box

and segmentation heads. Monocular 3D human pose es-

timation methods can be categorized as being model-free

[47, 48] or model-based [25, 26, 32, 31]. The former in-

clude VideoPose3D [48] which estimates 3D joints via tem-

poral convolutions over 2D joint detections in a video se-

quence. The latter approach predicts the parameters of a

body model, often the SMPL model [43], such as the joint

angles, shape parameters, and rotation. Some model-based
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approaches [25, 26, 31] leverage adversarial learning to pro-

duce realistic body poses and motions. Therefore, they tend

to generalize better to unseen datasets, and so we focus on

these methods as benchmarks on our dataset.

3. The IKEA assembly dataset

The IKEA ASM video dataset is publicly available for

download and includes all 371 examples and ground-truth

annotations. It includes three RGB views, one depth stream,

atomic actions, human poses, object segments, and extrin-

sic camera calibration. Additionally, we provide code for

data processing, including depth to point cloud conversion,

surface normal estimation, visualization, and evaluation in

a designated GitHub repository.

Data collection. Our data collection hardware system is

composed of three Kinect V2 cameras. These three cam-

eras are oriented to collect front, side and top views of the

work area. In particular, the top-view camera is set to ac-

quire the scene structure. The front and side-view cameras

are placed at eye-level height (∼1.6m). The three Kinect

V2 cameras are triggered to capture the assembly activities

simultaneously in real time (∼24 fps). To achieve real-time

data acquisition performance, multi-threaded processing is

used to capture and save images on an Intel i7 8-core CPU

with NVIDIA GTX 2080 Ti GPU used for data encoding.

To collect our IKEA ASM dataset, we ask 48 human sub-

jects to assemble furniture in five different environments,

such as offices, labs and family homes. In this way, the

backgrounds are diverse in terms of layout, appearance and

lighting conditions. The background is dynamic, containing

moving people who are not relevant to the assembly pro-

cess. These environments will force algorithms to focus on

human action and furniture parts while ignoring the back-

ground clutter and other distractors. Moreover, to allow hu-

man pose diversity, we ask participants to conduct assembly

either on the floor or on a table work surface. This yields a

total of 10 camera configurations (two per environment).

Statistics. The IKEA ASM dataset consists of 371 unique

assemblies of four different furniture types (side table, cof-

fee table, TV bench, and drawer) in three different col-

ors (white, oak, and black). There are in total 1113 RGB

videos and 371 depth videos (top view). Figure 2 shows

the video and individual action length distribution. Overall,

the dataset contains 3,046,977 frames (∼35.27h) of footage

with an average of 2735.2 frames per video (∼1.89min).

Figure 3 shows the atomic action distribution in the train

and test sets. Each action class contains at least 20 clips.

Due to the nature of the assemblies, there is a high imbal-

ance (each table assembly contains four instances of leg as-

sembly). The dataset contains a total of 16,764 annotated

actions with an average of 150 frames per action (∼6sec).

For a full list of action names and IDs, see appendix.

Data split. We aim to enable model training that will
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Figure 2: The duration statistics of the videos (left) and ac-

tions (right) in the IKEA assembly dataset.
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Figure 3: The IKEA ASM dataset action distribution (left)

and action instance occurrence distribution (right).

generalize to previously unseen environments and human

subjects. However, there is great overlap between sub-

jects in the different scenes and creating a split that will

hold-out both at once results in discarding a large portion

of the data. Therefore, we propose an environment-based

train/test split, i.e., test environments do not appear in the

trainset and vise-versa. The trainset and testset consist of

254 and 117 scans, respectively. Here, test set includes envi-

ronments 1 and 2 (family room and office). All benchmarks

in Section 4 were conducted using this split. Additionally,

we provide scripts to generate alternative data splits to hold

out subjects, environments and joint subject-environments.

Data annotation. We annotate our dataset with tempo-

ral and spatial information using pre-selected Amazon Me-

chanical Turk workers to ensure quality. Temporally, we

specify the boundaries (start and end frame) of all atomic

actions in the video from a pre-defined set. Actions involve

interaction with specific object types (e.g., table leg).

Multiple spatial annotations are provided. First, we an-

notate instance-level segmentation of the objects involved in

the assembly. Here an enclosing polygon is drawn around

each furniture part. Due to the size of the dataset, we man-

ually annotate only 1% of the video frames which are se-

lected as keyframes that cover diverse object poses and hu-

man poses throughout the entire video and provide pseudo

ground-truth for the remainder (see §4.3). For the set of

manually annotated frames in the test set, we also assign

each furniture part with a unique ID, which preserves the

identity of that part throughout the entire video.

We also annotated the human skeleton of the subjects

involved assembly. Here, we asked workers to annotated

12 body joints and five key points related to the face. Due

to occlusion with furniture, self-occlusions and uncommon

human poses, we include a confidence value between 1 and

3 along with the annotation. Each annotation was then visu-
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Method
Frame acc.

top 1 top 3 macro mAP

ResNet18 [23] 27.06 55.14 21.95 11.69

ResNet50 [23] 30.38 56.1 20.03 9.47

C3D [69] 45.73 69.56 32.48 21.98

P3D [52] 60.4 81.07 45.21 29.86

I3D [8] 57.58 76.72 39.03 28.77

Table 2: Action recognition baseline frame-wise accuracy,

macro-recall, and mean average precision results.

ally inspected and re-worked if deemed to be poor quality.

4. Experiments and benchmarks

We benchmark several state-of-the-art methods for the

tasks of frame-wise action recognition, object instance seg-

mentation and tracking, and human pose estimation.

4.1. Action recognition

We use three main metrics for evaluation. First, the

frame-wise accuracy (FA) which is the de facto standard for

action recognition. We compute it by counting the number

of correctly classified frames and divide by the total num-

ber of frames in each video and then average over all videos

in the test set. Second, since the data is highly imbalanced,

we also report the macro-recall by separately computing re-

call for each category and then averaging. Third, we re-

port the mean average precision (mAP) since all untrimmed

videos contain multiple action labels. We compare sev-

eral state-of-the-art methods for action recognition, includ-

ing I3D [8], P3D ResNet [52], C3D [69], and frame-wise

ResNet [23]. For each we start with a pre-trained model

and fine-tune it on the IKEA ASM dataset using parame-

ters provided in the original papers. To handle data imbal-

ance we use a weighted random sampler where each class

is weighted inversely proportional to its abundance in the

dataset. Results are reported in Table 2 and show that P3D

outperforms all other methods, consistent with performance

on other datasets. Additionally, the results demonstrate the

challenges compared to other datasets where I3D, for ex-

ample, has an FA score of 57.57% compared to 68.4% on

Kinetics and 63.64% on Drive&Act dataset.

4.2. Multi­view and multi­modal action recognition

We further explore the affects of multi-view and multi-

modal data using the I3D method. In Table 3 we report per-

formance on different views and different modalities. We

also report their combination by averaging softmax output

scores. We clearly see that combining views gives a boost

in performance compared to the best single view method.

We also find that combining views and pose gives an ad-

ditional performance increase. Additionally, combining

views, depth and pose in the same manner results a small

disadvantage, which is due to the inferior performance of

Data type View
Frame acc.

top 1 top 3 macro mAP

RGB

top view 57.58 76.72 39.03 28.77

front view 60.75 79.3 42.67 32.73

side view 52.16 72.21 36.59 26.76

combined views 63.09 80.54 45.23 32.37

Human pose HCN [36] 39.15 65.37 28.18 22.32

Human pose ST-GCN [74] 43.4 66.29 26.54 18.56

combined RGB+pose 64.25 80.58 46.33 33.08

Depth top view 35.43 59.48 21.37 14.4

combined all 64.02 81.45 44.61 31.45

Table 3: Action recognition frame-wise accuracy, macro-

recall, and mean average precision results for multi-

view/modal inputs.

the depth based method. This suggests that exploring action

recognition in the 3D domain is an open and challenging

problem. The results also suggest that a combined, holistic

approach that uses multi-view and multi-modal data, facili-

tated by our dataset, should be further investigated in future

work.

4.3. Instance segmentation

As discussed in Section 3, the dataset comes with man-

ual instance segmentation annotation for 1% of the frames

(manually selected keyframes that cover diverse object

poses and human poses throughout the entire video). To

evaluate the performance of existing instance segmenta-

tion methods on almost texture-less IKEA furniture, we

train Mask R-CNN [22] with ResNet50, ResNet101, and

ResNeXt101, all with feature pyramid networks structure

(FPN) on our dataset. We train each network using the im-

plementation provided by the Detectron2 framework [72].

Table 4 shows the instance segmentation accuracy for the

aforementioned baselines. As expected, the best performing

model corresponds to the Mask R-CNN with ResNeXt101-

FPN, outperforming ResNet101-FPN and ResNet50-FPN

with 3.9% AP and 7.9% AP, respectively.

Since the manual annotation only covers 1% of the whole

dataset, we propose to extract pseudo-ground-truth auto-

matically. To this end, we train 12 different Mask R-CNNs

with a ResNet50-FPN backbone to overfit on subsets of

the training set that cover similar environments and furni-

ture. We show that to achieve manual-like annotations with

more accurate part boundaries, training the models with

PointRend [30] as an additional head is essential. Figure 4

compares the automatically generated pseudo-ground-truth

with and without the PointRend head. To evaluate the ef-

fectiveness of adding pseudo-ground-truth, we compare the

Mask R-CNN trained with ResNet50-FPN with 1% anno-

tated data (i.e., manual annotations) and 20% annotated data

(combination of manual and automatically generated anno-

tations) illustrated in Table 5(a) and see a slight improve-

ment. Note that any backbone architecture can benefit from

the automatically generated pseudo-ground-truth.
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Figure 4: Comparison between pseudo ground-truth with-

out PointRend head (left) and with PointRend head (right).

Figure 5: Illustration of part instance segmentation failure

cases. (Top row) Mask R-CNN fails to correctly classify

different panels of the drawer due to high similarity. (Bot-

tom row) Mask R-CNN incorrectly segments part of the

working surface as a furniture part (e.g., shelf) leading to

considerable false positives.

We also investigate the contribution of adding a

PointRend head to the Mask R-CNN with ResNet-50-FPN

when training on 1% of manually annotated data. Ta-

ble 5(b) shows that boundary refinement through point-

based classification improves the overall instance segmen-

tation performance. This table also clearly shows the effect

of PointRend on estimating tighter bounding boxes.

Additionally, to evaluate the effect of furniture color and

environment complexity, we report the instance segmenta-

tion results partitioned by color (Table 5(c)) and by environ-

ment (Table 5(d)). Note that, for both of these experiment

we use the same model trained on all furniture colors and

environments available in the training set. Table 5(c) shows

that oak furniture parts are easier to segment. On the other

hand, white furniture parts are the hardest to segment as

they reflect the light in the scene more intensely. Another

reason is that white parts might be missed due to poor con-

trast against the white work surfaces.

Although Mask R-CNN shows promising results in

many scenarios, there are also failure cases, reflecting the

real-world challenges introduced by our dataset. These fail-

ures are often due to (1) relatively high similarities between

different furniture parts, e.g., front panel and rear panel

of drawers illustrated in Figure 5(top row) and (2) rela-

tively high similarities between furniture parts of interest

and other parts of the environment which introduces false

positives. An example of the latter can be seen in Fig-

ure 5(bottom row) where Mask R-CNN segmented part of

the working surface as the shelf.

4.4. Multiple furniture part tracking

As motivated in Section 3, we utilize SORT [5] as a fast

online multiple object tracking algorithm that only relies on

geometric information in a class-agnostic manner. Given

the detections predicted by the Mask R-CNN, SORT assigns

IDs to each detected furniture part at each time-step.

To evaluate the MOT performance, we use standard met-

rics [56, 4]. The main metric is MOTA, which combines

three error sources: false positives (FP), false negatives

(FN) and identity switches (IDs). A higher MOTA score im-

plies better performance. Another important metric is IDF1,

i.e., the ratio of correctly identified detections over the aver-

age number of ground-truth and computed detections. The

number of identity switches (IDs), FP and FN are also fre-

quently reported. Furthermore, mostly tracked (MT) and

mostly lost (ML), that are respectively the ratio of ground-

truth trajectories that are covered/lost by the tracker for at

least 80% of their respective life span, provide finer details

on the performance of a tracking system. All metrics were

computed using the official evaluation code provided by the

MOTChallenge benchmark1.

Table 6 shows the performance of SORT on each test en-

vironment as well as the entire test set. The results reflect

the challenges introduced by each environment in the test

set. For instance, in Env1 (Family Room) provides a side

view of the assembler and thus introduces many occlusions.

This can be clearly seen in the number of FN. Moreover,

since the tracker may lose an occluded object for a reason-

ably long time, it may assign new IDs after occlusion, thus

affecting the mostly tracked parts and IDF1. On the other

hand, the front view provided in Env2 (Office) leads to less

occlusions, and thus better identity preservation reflected in

IDF1 and MT. However, since the office environment con-

tains irrelevant but similar parts, e.g., the desk partition or

the work surface illustrated in Fig. 5(bottom row), we ob-

served considerably higher FP which further affects MOTA.

4.5. Human pose

The dataset contains 2D human joint annotations in the

COCO format [39] for 1% of frames, the same keyframes

selected for instance segmentation, which cover a diverse

range of human poses across each video. As shown in Fig-

ure 6, there are many highly challenging and unusual poses

in the dataset, due to the nature of furniture assembly, par-

ticularly when performed on the floor. There are also many

other factors that reduce the accuracy of pose estimation ap-

proaches, including self-occlusions, occlusions from furni-

ture, baggy clothing, long hair, and human distractors in the

background. We also obtain pseudo-ground-truth 3D anno-

tations by fine-tuning a Mask R-CNN [22] 2D joint detector

on the labeled data, and triangulating the detections of the

1https://motchallenge.net/
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Feature Extractor Annotation Type AP AP50 AP75 table-t leg shelf side-p front-p bottom-p rear-p

ResNet-50-FPN mask 56.2 76.9 62.3 80.4 56.9 67.8 26.5 48.4 65.4 48.0

ResNet-101-FPN mask 60.2 81.2 66.1 82.1 64.8 73.1 28.7 51.8 69.0 52.6

ResNeXt-101-FPN mask 64.1 85.3 70.6 88.2 67.2 75.3 37.6 50.4 73.4 56.7

ResNet-50-FPN bbox 58.4 78.1 67.5 77.5 61.3 64.0 36.2 58.5 62.4 49.2

ResNet-101-FPN bbox 63.0 82.1 71.6 80.2 70.5 71.6 37.3 62.5 65.3 53.6

ResNeXt-101-FPN bbox 67.5 86.7 77.2 89.1 72.9 73.3 47.8 64.5 68.1 56.5

Table 4: Evaluating the effect of backbone architecture of Mask R-CNN in furniture part instance segmentation.

(a) Influence of adding Pseudo GT

Setting APsegm AP50segm AP75segm APbox AP50box AP75box

Manual GT 56.2 76.9 62.3 58.4 78.1 67.5

Manual + Pseudo GT 58.2 76.9 63.9 60.6 77.6 67.3

(b) Influence of PointRend head

Setting APsegm AP50segm AP75segm APbox AP50box AP75box

Without PointRend 56.2 76.9 62.3 58.4 78.1 67.5

With PointRend 58.2 76.5 63.6 60.4 77.5 67.7

(c) Color-based Evaluation

Colors APsegm AP50segm AP75segm APbox AP50box AP75box

White 53.4 75.9 57.8 56.1 77.1 63.7

Black 55.8 74.8 62.8 57.3 75.6 66.2

Oak 61.3 81.6 68.2 63.5 82.8 74.5

(d) Environment-based Evaluation

Environments APsegm AP50segm AP75segm APbox AP50box AP75box

Env1 (Family Room) 45.5 62.9 52.6 49.1 65.6 58.3

Env2 (Office) 62.4 84.7 68.6 63.5 85.0 72.7

Table 5: Ablation study on furniture part instance segmen-

tation. Note, all experiments are conducted with Mask R-

CNN with ResNet-50-FPN as the backbone and tested on

the same manually annotated data.

Test Env. IDF1↑ MOTA↑ MT↑ PT ML↓ FP↓ FN↓ IDS↓

Env1 (Family Room) 63.7 69.6 60.1 35.9 4.0 92 1152 382

Env2 (Office) 72.0 59.1 94.8 5.2 0.0 4426 681 370

All 70.0 62.1 84.1 14.6 1.2 4518 1833 752

Table 6: Evaluating the performance of SORT [5] in mul-

tiple furniture part tracking given the detections computed

via MASK R-CNN with ResNeXt-101-FPN backbone.

model from the three calibrated camera views. As a ver-

ification step, the 3D points are backprojected to 2D and

are discarded if more than 30 pixels from the most confi-

dent ground-truth annotation. The reprojection error of the

true and pseudo ground-truth annotations is 7.12 pixels on

the train set (83% of ground-truth joints detected) and 9.14

pixels on the test set (53% of ground-truth joints detected).

To evaluate the performance of benchmark 2D human

pose approaches, we perform inference with existing state-

of-the-art models, pre-trained by the authors on the large

COCO [39] and MPII [1] datasets and fine-tuned on our an-

notated data. We compare OpenPose [7, 6], Mask R-CNN

[22] (with a ResNet-50-FPN backbone [38]), and Spatio-

Temporal Affinity Fields (STAF) [53]. The first two oper-

Figure 6: Qualitative human pose results. From left to right:

sample image, 2D ground-truth, 2D Mask R-CNN predic-

tion, 3D pseudo-ground-truth (novel view), and 3D VIBE

prediction (novel view). The middle row shows an example

where the 3D pseudo-ground-truth is incomplete, and the

bottom row, shows a partial failure case for the predictions.

ate on images, while the last one operates on videos, and all

are multi-person pose estimation methods. We require this

since our videos sometimes have multiple people in a frame

with only the single assembler annotated. For fine-tuning,

we trained the models for ten epochs with learning rates of

1 and 0.001 for OpenPose and Mask R-CNN, respectively.

We report results with respect to the best detected person

per frame, that is, the one that is closest to the ground-

truth keypoints, since multiple people may be validly de-

tected in many frames. We use standard error measures

to evaluate the performance of 2D human pose methods:

the 2D Mean Per Joint Position Error (MPJPE) in pixels,

the Percentage of Correct Keypoints (PCK) [75], and the

Area Under the Curve (AUC) as the PCK threshold varies

to a maximum of 100 pixels. A joint is considered cor-

rect if it is located within a threshold of 10 pixels from the

ground-truth position, which corresponds to 0.5% of the im-

age width (1080×1920). Absolute measures in pixel space

are appropriate for this dataset because the subjects are po-

sitioned at an approximately fixed distance from the camera

in all scenes. In computing these metrics, only confident
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Train set Test set

Method Input MPJPE↓ PCK↑ AUC↑ MPJPE↓ PCK↑ AUC↑

OpenPose-pt [7] Image 17.3 46.9 78.1 16.5 46.7 77.8

OpenPose-ft [7] Image 11.8 57.8 87.7 13.9 52.6 85.6

MaskRCNN-pt [22] Image 15.5 51.9 78.2 16.1 51.5 79.2

MaskRCNN-ft [22] Image 7.6 77.6 92.1 11.5 64.3 87.8

STAF-pt [53] Video 21.4 41.8 75.3 19.7 41.1 75.4

Table 7: 2D human pose results. The Mean Per Joint Po-

sition Error (MPJPE) in pixels and the Percentage of Cor-

rect Keypoints (PCK) @ 10 pixels (0.5% image width) are

reported. Pretrained models are denoted ‘pt’ and models

fine-tuned on the training data are denoted ‘ft’.

Method Head Sho. Elb. Wri. Hip Knee Ank. All

OpenPose-pt [7] 65.0 34.6 59.7 68.2 12.4 29.1 24.7 46.7

OpenPose-ft [7] 71.0 47.9 60.4 68.8 22.7 37.7 26.3 52.6

MaskRCNN-pt [22] 72.5 39.0 65.8 74.1 11.3 33.9 26.1 51.5

MaskRCNN-ft [22] 86.5 56.4 69.4 81.9 26.9 53.4 38.0 64.3

STAF-pt [53] 54.9 35.1 55.9 61.0 11.6 23.4 18.7 41.1

Table 8: 2D human pose test set results per joint group. The

Percentage of Correct Keypoints @ 10 pixels is reported.

Male / Female Floor / Table

Method MPJPE↓ PCK↑ Miss↓ MPJPE↓ PCK↑ Miss↓

OpenPose-pt [7] 15.3 / 19.2 46.6 / 46.9 0 / 1 16.9 / 15.8 47.1 / 45.9 1 / 0

OpenPose-ft [7] 13.8 / 14.0 52.4 / 53.0 0 / 6 14.3 / 13.0 52.5 / 52.8 0 / 6

MaskRCNN-pt [22] 15.6 / 17.5 51.9 / 50.5 0 / 1 16.8 / 14.8 53.1 / 48.3 0 / 1

MaskRCNN-ft [22] 11.2 / 11.9 64.6 / 63.8 0 / 0 11.4 / 11.5 65.4 / 62.3 0 / 0

STAF-pt [53] 17.6 / 24.1 40.7 / 42.1 1 / 1 19.3 / 20.3 39.3 / 44.6 1 / 1

Table 9: Evaluating the impact of gender and work surface

on 2D human pose test set results. ‘Miss’ refers to the num-

ber of frames in which no joints were detected.

ground-truth annotations are used and only detected joints

contribute to the mean error (for MPJPE). The results for

2D human pose baselines on the IKEA ASM train and test

sets are reported in Tables 7, 8, and 9. The best perform-

ing model is the fine-tuned Mask R-CNN model, with an

MPJPE of 11.5 pixels, a PCK @ 10 pixels of 64.3% and

an AUC of 87.8, revealing considerable room for improve-

ment on this challenging data. The error analysis shows that

upper body joints were detected accurately more often than

lower body joints, likely due to the occluding table work

surface in half the videos. In addition, female subjects were

detected considerably less accurately than male subjects and

account for almost all entirely missed detections.

To evaluate the performance of benchmark 3D human

pose approaches, we perform inference with existing state-

of-the-art models, pre-trained by the authors on large 3D

pose datasets, including Human Mesh and Motion Re-

covery (HMMR) [26], VideoPose3D (VP3D) [48], and

VIBE [31]. All are video-based methods. To measure

the performance of the different methods, we use the 3D

Mean/median Per Joint Position Error (M/mPJPE), which

Train set Test set

MPJPE ↓ mPJPE ↓ PCK ↑ MPJPE ↓ mPJPE ↓ PCK ↑

Method PA ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

HMMR [26] Vid 589 501 189 96 32 54 1012 951 369 196 25 40

VP3D [48] Vid 546 518 111 87 63 70 930 913 212 179 44 47

VIBE [31] Vid 568 517 139 81 55 74 963 940 199 153 43 50

Table 10: 3D human pose results. The Mean Per Joint

Position Error (MPJPE) in millimeters, the median PJPE

(mPJPE), and the Percentage of Correct Keypoints (PCK)

@ 150mm are reported, with and without Procrustes align-

ment (PA). Only confident ground-truth annotations are

used and only detected joints contribute to the errors.

computes the Euclidean distance between the estimated

and ground-truth 3D joints in millimeters, averaged over

all joints and frames, Procrustes Aligned (PA) M/mPJPE,

where the estimated and ground-truth skeletons are rigidly

aligned and scaled before evaluation, and the Percentage of

Correct Keypoints (PCK) [46]. As in the Humans 3.6M

dataset [24], the MPJPE measure is calculated after aligning

the centroids of the 3D points in common. The PCK thresh-

old is set to 150mm, approximately half a head. The results

for 3D human pose baselines on the IKEA ASM dataset

are reported in Table 10. The best performing model is

VIBE, with a median Procrustes-aligned PJPE of 153mm,

and a PA-PCK @ 150mm of 50%. The baseline methods

perform significantly worse on our dataset than standard

human pose datasets, demonstrating its difficulty. For ex-

ample, OpenPose’s joint detector [70] achieves a PCK of

88.5% on the MPII dataset [1], compared to 52.6% on our

dataset, and VIBE has a PA-MPJPE error of 41.4mm on the

H36M dataset [24], compared to 940mm on our dataset.

5. Conclusion

We have introduced a large-scale comprehensively la-

beled furniture assembly dataset for understanding task-

oriented human activities with fine-grained actions and

common parts. Our dataset provides a challenging testbed

for computer vision algorithms such as textureless object

segmentation/tracking and human pose estimations in mul-

tiple views. Furthermore, we have reported benchmark re-

sults of strong baseline methods on those tasks. Notably,

since our dataset contains multi-view and multi-modal data,

it enables the development and analysis of algorithms that

use this data to further improve performance on these tasks.

Through recognizing human actions, poses and object posi-

tions, we believe that our dataset will facilitate understand-

ing of human-object-interactions and lay the groundwork

for the perceptual understanding required for long time-

scale structured activities in real-world environments.
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