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Abstract—Spatial and temporal data such as multiple data
streams often have concept drift problems, which refers to
changes of the data distributions over time. Once concept drift
occurs, a stationary machine learning predictor will probably be
invalid because the testing data have a different data distribution
from that of the training data. Recent studies in data streams
aim to address this issue by concept drift adaptation techniques.
Concept drift adaptation methods update the predictor by time
and have been validated to provide accurate real-time prediction
for single data stream. However, how to handle multiple relevant
data streams is still an unsolved challenge in this area, consider-
ing many real-world applications evolving multiple data streams
simultaneously. To fill this gap, we here present a predicting
network for multiple data streams, named MuNet, which can
provide real-time predictions for multiple data streams with
considering the dependency between data streams. In MuNet,
an online-learned Bayesian neural network (BNN) is designed as
a connector between streams. The proposed BNN-connector can
continuously use the real-time information from only one base
stream to correct the stationary predictor for the other streams,
which efficiently lowers down the computational cost.

Index Terms—Bayesian Neural Network, Spatial and temporal
data mining, concept drift, multiple streams

I. INTRODUCTION

Streaming data is widespread in many practical scenarios
such as finance, transportation, weather, social, etc., where
infinite data instances arrive in a sequential way [1]. The
streaming data mining has been one of the most important
research topics in recent years [2], especially how to over-
come the intrinsic uncertainties and obtain accurate real-time
predictions have attracted increasing attention in this area [3].
One of the most common uncertainties in data streams is the
occurrence of concept drift [4]. Concept drift refers to the
phenomenon that data distributions change over time [5]. For
example, the weather forecast of “rain/no rain” largely depends
on whether it is in the dry season or wet season [6].

In conventional machine learning methods, the training
set and test set are assumed to have the same probability
distribution [7], so that a predictor trained with the training set
can still be used to predict the testing set. Once concept drift
occurs, the trained predictor will be probably invalid to predict
the testing data because they have different or even opposite
data patterns, resulting in a decrease in the prediction accuracy
of the predictor for the coming data [8], [9]. In data stream

prediction, when concept drift occurs frequently, the predictor
is not applicable if it is trained with only fixed historical data
[10].

Current research shows that concept drift handling tech-
niques can solve this problem efficiently [11]. The detection,
the quantification and the adaptation are currently challenging
problems in the field of concept drift [12]. Drift detection is
to detect when the concept drift occurs [13] by monitoring
the learner error [14] or a designed statistic [15]. Regarding
the quantification of conceptual drift, it involves retrieving the
time when the drift occurred, the severity of the drift, and
the area of the drift. Most of the drift detection algorithms
can measure time and severity of the drift, but whether the
specific location of the drift can be determined depends very
much on the nature of the predictor itself [16]. The purpose
of concept drift adaptation is to integrate the latest data
machine statistical distribution information into the predictor
to maintain or improve the prediction accuracy. There are
usually two strategies to adjust the predictor [17]. The first is
to retrain the predictor with the latest data to adapt to the new
distribution, and the second is to update the original predictor
with new data training [18], [19].

So far, the concept drift handling techniques have been
validated in many single data stream cases [20], [21]. However,
how to solve multiple data streams with concept drift is still an
unsolved question. In addition, data streams in real scenarios
basically do not exist independently, and data mining on
multiple related data streams is the real dilemma [22]. Taking
a traffic scene as an example, the bus routes of different lines
in a city may overlap or intersect. The operating information of
these lines is concurrent in time, and there is a certain degree
of dependency between each other.

To fill the research gap in multiple streams, this paper
proposes a concept drift adaptation method called MuNet
for multiple dependent data streams. Especially, we discuss the
scenario that multiple data streams contain the concurrent drift,
that is, the similar concept drift would occur simultaneously
for all these data streams. Taking a traffic scenario as an
example, when there is traffic congestion on overlapping
lines, all buses on the same road section will be affected
simultaneously.

In MuNet, we propose a novel adaptation strategy for mul-



tiple data streams with concurrent drift and we use Bayesian
neural networks [23], [24] to implement this strategy. The
main idea of the proposed adaptation strategy is to randomly
pick one stream as the base stream. We train and update
the predictor for this base stream by using a drift adaptation
method designed for the single data stream. As for the other
streams, we only train an initial predictor with a batch of
historical data and this predictor will not be stored in the
memory without updating. Then, the Bayesian neural network
would be designed as the connectors between the base stream
and other streams. These connectors can continuously learn
the drift information from the base stream and use the learned
information to correct the prediction results for other streams.
As it takes less time to update the connector than updating the
predictor, the computational cost has been largely decreased
when predicting data streams rather than the base stream. It
is also easy to be extended to other scenarios for application,
such as the monitoring of water quality and water level in a
certain water area, the speed prediction of each wind turbine
in a certain wind power station, etc. The data streams recorded
by multiple sensors establish a more comprehensive regional
monitoring system, and MuNet can maximize the operating
efficiency of this system and minimize its computation and
time costs.

The remainder of this paper will cover the following:
Section II reviews related works. Section III presents the
proposed FDA matrix. Section IV reports the empirical studies
of our method on the synthetic data streams. The conclusions
and future works are drawn in Section V.

II. RELATED WORK

Concept drift is a common phenomenon in non-stationary
data streams. The data stream is constantly updated over time,
but due to various factors, the historical data distribution and
the future data distribution may deviate, i.e., D0,t(X, y) 6=
D0,t+1(X, y) [25]. In fact, the concept drift on data streams
is inevitable, especially in the context of the current high-
speed generation, dissemination and update of information
[26]. Following the inconsistency of data distribution, there
are also changes in the statistical information of various target
objects.

Recent research on concept drift adaptation is devoted to
solving this problem [27]. Experiments have verified that by
continuously updating target variables and adjusting the model
over time, the concept drift adaptation can provide accurate
real-time predictions for a single data stream. A popular vari-
able sliding window algorithm is ADWIN [28], which checks
all possible window cuts and calculates the optimal window
size based on the difference in data distribution between two
sub-windows. Thus using the latest window data to train the
new model. DELM [29] expands on the traditional Extreme
Learning Machine (ELM) algorithm [30]. When concept drift
may occur, more nodes will be added to its hidden layer to
improve the model’s fitting ability. Similarly, FP-ELM [31]
introduces forgetting parameters on the basis of ELM to ensure
that the model adapts to concept drift. SAGA [32] is an

informed adaptation method, which develops a drift region-
based data sample filtering method to update the obsolete
model and track the new data pattern accurately. A drift region-
based data sample filtering method [33] based on competence
model is used to distinguish drift instances from noise. The
drift gradient in the algorithm is defined on a segment in
the training set. When only one new instance is available at
each point in time, it can accurately quantify the increase in
the distribution difference between the old segment and the
latest segment. Adaptive Random Forest (ARF) [34] is one
of them. It uses ADWIN algorithm to extend Random Forest
to decide when to replace an obsolete tree. The IADEM-3
model [35] is based on the classic online decision tree model.
As related research shows that the Hoeffding boundary used
in VFDT [36] may not be suitable for the split calculation
of nodes, in the IADEM-3 algorithm, the sum of independent
random variables is used to correct the problem caused by the
Hoeffding boundary. Meanwhile, the error rate of the subtree
is used to detect concept drift and tree pruning.

In order to eliminate the influence of concept drift, it is
necessary to design and build complex adaptive algorithms.
Existing work can indeed provide accurate prediction results
for online data streams by retraining all data, or retraining
local latest data through sliding windows, or continuously
incrementally updating and adjusting the model, but their
shortcomings are also obvious. They can be only limited
applied on a single data stream [37]. Practically, the concept
drift on multiple data streams is more complicated [38]. In
some prediction tasks, the data analysis of multiple data
streams needs to be performed synchronously [39]. Under the
premise of extremely fast information stream update speed,
setting up a separate concept drift processing module on each
data stream will not only increase the amount of computation
exponentially, but also greatly extend the time required for the
prediction task [40], [41].

Therefore, in this paper, we consider the scenario of multiple
dependent data streams with concurrent drift. That is, data
streams with the same target variable in a specific area are
affected by similar factors. When they experience concept
drift, their drift time, degree of drift and amount of drift will
all have a strong correlation, which means that there is a
mapping relationship between them. However, processing each
data stream individually is Undoubtedly inefficient. This article
will propose a new method for concurrent drift on multiple
data streams, which aims to quickly and efficiently provide
accurate prediction results for multiple data streams.

III. NETWORK FOR MULTIPLE DATA STREAMS(MUNET)

A. Notations and Concepts

Before we explain the proposed method in details, related
notations and definitions are listed in this subsection.

Notations:
• t: t ∈ Z+ presents the time point
• τ : τ > 1 presents a time period
• P: probability distribution
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Fig. 1. An example of concurrent drift among data streams. It can be inferred that data streams D1, D2 and D3 have a sudden error increase (sudden drift)
at the same time when t = 500.

• p: the probability for discrete cases or probability density
function for continuous cases

• Xt = (X1
t , ..., Xm

t ): time series for features or attributes
• yt = (y1t , ..., ylt): time series for labels. in this paper, we

only consider l=1
• s = {(Xt,yt)}: data stream

Definition 1 (Single Data Stream). A data stream Dt =
{(Xt, yt) |t = 1, ...∞}, generated from distribution Pt with
pt (X, y) its probability function or probability density func-
tion (pdf ), is received, where

{
Xt ∈ Rd

}
is the attribute

variable (or the input) consisting of d time series, for some d,
and

{
yt ∈ R1

}
is the label variable (or the scalar output).

Definition 2 (Concept Drift in Single Data Stream [32]).
Concept drift occurs in a data stream if ∃tdi that{

pt+1(X, y) 6= pt(X, y), for t = td(i)

pt+1(X, y) = pt(X, y), for t ∈
(
td(i)+τi , td(i+1)

) (1)

where ∀i, td(i+1) − td(i) > 1, t ∈ Z+ presents the time step,
d(i) is an order statistics denoting the ith drifted time point,
and 1 < τi < td(i+1) − td(i) is specifically for the occurrence
of incremental drift.

Remark 1. A data stream contains concept drift if the data
pattern changes at least once, namely {td(i)} 6= ∅ that
pt+1(X, y) 6= pt(X, y), for t = td(i) ; in addition, the
changed pattern is not ephemeral, but will last for a period
(at least last for two time steps), which is manifested by
∀i, td(i+1)−td(i) > 1. The pattern stays the same in this period
that pt+1(X, y) = pt(X, y), for t ∈

(
td(i)+τi , td(i+1)

)
; here

τi = 1 when the drift occurs suddenly while τi > 1 when the
drift occurs incrementally in the period of

(
td(i)+1, td(i)+τi

)
.

Definition 3 (Learning Aim at t-step for Single Data Stream).
To predict the value of the label variable for a data stream at
time step t, the learning aim is to obtain a predictor Ht for
pt (X, y), which can be denoted as

Ht = argmin
h∈H

` (h,X, y| (X, y) ∈ pt (X, y)), (2)

where H is the hypothesis set, ` : R1 × R1 → R+ is the loss
function used to measure the magnitude of error.

Definition 4 (Concurrent Drift in Multiple Data Streams).
Given Du

t , D
v
t (where u 6= v) two different data streams, pu

is the probability or probability density function for stream
u while pv is that for stream v. A concurrent drift occurs if
∃td(u) that{

put+1 6= put , p
v
t+1 6= pvt for t = td(i)

put+1 = put , p
v
t+1 = pvt for t ∈

(
td(i)+τi , td(i+1)

) (3)

Remark 2. It can be seen that concurrent drift occurs when
concept drift occurs in two data streams at the same time. It
should be noticed that the concurrent drift could occur among
more than two data streams, such as is shown in Figure 1.
In Figure 1, D1, D2 and D3 represent three data streams
separately and each sub-figure shows the learner error of a
static predictor changes over time. Normally, error is the most
common measurement to determine whether drift occurs [37].
Clearly, concurrent drift occurs among D1, D2, and D3 as
drift occurs at t = 500 for D1, D2, and D3.

Definition 5 (Learning Aim at t-step for Multiple Data
Streams). For multiple data streams D1, D2, · · · , DS at
time step t, the learning aim is to obtain a set of predictors
H1
t , H

2
t , · · · , HS

t for pt
(
D1, D2, · · · , DS

)
, which can be

denoted as

Hs
t = argmin

hs∈Hs
` (hs, Ds|D1, · · · , DS ∈ pt

(
D1, · · · , DS

)
), (4)

where Hs is the hypothesis set for Ds and s ∈ {1, · · · , S}.

Remark 3. According to Definition 5, the learning aim in a
multi-stream scenario is to obtain multiple predictors at each
time point with considering the relationship among streams.
If we consider each stream separately, Definition 5 will be
degenerated to the following case

Hs
t = argmin

hs∈Hs

` (hs, Ds|Ds ∈ pt (Ds)). (5)
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Fig. 2. The One-step Adaptation Procedure for Multiple Streams with Concurrent Drift.
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Fig. 3. The proposed MuNet.

B. The proposed MuNet

Given the learning aim in Definition 5, the next step is
how to obtain the optimal Hs

t . If the data streams do not
have concept drift problem and the streams are independent
with each other, the probability function stays the same and
Hs
t ≡ Hs. That means we could use a period of historical data

to train a predictor Hs and use this predictor to predict without

retraining or tuning Hs. However, due to the occurrence of
concept drift, the assumption that data streams have unchanged
data distributions has been broken. In the meantime, data
streams are assumed to be dependent with each others in the
multi-stream scenario.

Concept drift is a common phenomenon in data streams
and it is unknown in advance whether drift occurs in a data
stream. It is risky to use stationary model for an arbitrary data
stream as the stationary model will lead to terrible prediction
results when drift occurs while drift-adaptive models are still
suitable to predict data streams that do not contain concept
drift. Therefore, the design of connector is very useful for
many real-world applications related to multiple data streams.

In this paper, we consider the case when streams have
concurrent drift (Definition 4). We randomly pick one stream
as the base stream. We train and update the predictor for the
base stream to handle the drift problem. As for the other
streams, we only train an initial stationary predictor with a
batch of historical data. After that, predictions from the initial
predictor will be corrected by an online-learned connector.
Compared to the predictor (a complex neural network), the
connector (a neural network with 1-2 layers) takes much
less computational cost. By this way, MuNet can efficiently
decrease the computational cost when predicting multi-streams
task.

For better understanding, we first introduce the general idea
of how we make drift adaptation for multiple streams with
concurrent drift. After that, we give technical details of how
MuNet implements that adaptation idea.



• The one-step adaptation for multiple streams with con-
current drift.

The one-step adaptation procedure for multiple streams with
concurrent drift is presented in Figure 2. There are S data
streams and we assume that these streams have concurrent
drift. Current drift adaptation methods are designed for single
data stream. Therefore, if we directly use those methods to
solve multi-stream task, the adaptation for all streams will be
the same as the adaptation for D1

t in Figure 2. That is to retrain
the predictor periodically, for example retraining every batch
of new arrived instances (where t denotes a time period) or
even every one instance (where t denotes a time point).

Although retraining predictors is an efficient way to solve
the problem of concept drift in data streams, it often has high
computational cost. Considering the unique characteristics of
concurrent drift, we assume that the drift pattern of one data
stream can be learned and applied to other streams because
these streams have drift at the same time. Therefore, we
propose to update predictors for one base data stream by
retraining and correct prediction results for other streams by
updating connector built between the base stream and others.

For example, in Figure 2, we first pick one stream from S
streams as the base stream. It should be noticed that in this
paper we pick the base stream randomly and we also give
an analysis of accuracy fluctuate with selecting different base
streams in Section IV. At t = 0, the predictors and connectors
are initialized. In this paper, we use a complex neural network
as the predictor and a two-layer Bayesian neural network as
the connector. With the initialized predictors and connectors,
we can estimate the labels for t = 1 which are denoted by ŷ11
for stream D1, ŷ21 for stream D2, and so on.

As discussed above, we have the initialized predictors and
connectors, as well as the prediction results at t = 0. Then
the time goes to t = 1, we obtain the true label y11 , y21 ,
and so on. At t = 1, we evaluate the predictions of ŷ11 ,
· · · , ŷS1 and then use the true labels to update the predictor
on the base stream and connectors on other streams. The
updated predictor and connectors are used to predict labels
for t = 2. Then the time goes to t = 2, we repeat the
evaluation, adaptation and prediction processes. Unlike the
stationary machine learning methods, the real-time prediction
uses this prequential evaluation method [4].

• Handling concurrent drift with MuNet.

So far, we have discussed the main idea of updating predictors
and connectors separately to reduce the computational cost.
Next, we will explain how this idea is used in our proposed
MuNet.

We introduce our MuNet from both aspects of memory and
computation at each t. Compared to Figure 2 which includes
general processes in both t = 0 and t = 1, Figure 3 presents
details at t = 1. As this procedure is repeated for each t, the
case t = 1 is also the case for an arbitrary t that t 6= 0.

As is shown in Figure 2, MuNet only stores the most
current data. For example, if we only have two streams D1

t

and D2
t , and D1

t is chosed as the base stream, the stored data

Fig. 4. The change of target variable t2m obs gt historical data.

for base stream at t are a batch of historical data D1
Ht

, the
predicted value(ŷ1t ), and the newly arrived data(X1

t and y1t ).
Compared to other streams, we store an extra batch of data
with fixed length for the base stream, and this batch of data
will be updated by including the newest data and deleting the
oldest data at each t.

The stored data for other streams at t are the predicted
values(ŷ2t , ỹ2t ) and the newly arrived data(X2

t and y2t ). Com-
pared to the base stream, there are two predicted values for
Stream 2 where ỹ2t ) is the predicted value by the initial
predictor and ŷ2t is the predicted value by the initial predictor
corrected by the connector BNN1,2

t .
With these stored values, MuNet is self-adapted as is

shown in the computation part in Figure 2. The adaptation
of MuNet on Stream 1 is to retrain the neural network
predictor NN1

t−1 with the historical information and the new
information. The adaptation of MuNet on Stream 1 is to tune
the Bayesian neural network with drift information from base
stream and unique information for Stream 2.

When the predictor has high computational cost for updating
and the connector cost low computational cost for updating,
MuNet will efficiently decrease the total computational cost,
especially there are many streams to predict. For example,
in weather prediction, we need to know the prediction for
all weather station at the same time. These weather stations
are normally built not far away from each other in one area.
Therefore, the data streams from these stations have concurrent
drift.

IV. EXPERIMENTAL EVALUATION

We validate the proposed MuNet by a real-world dataset
of weather prediction. In this section, we will first introduce
the data in Section IV-A. Section IV-B lists the parameters
used in MuNet and the experimental results are presented in
Section IV-C.

A. Data Description

We use a public dataset collected from the weather stations
in Beijing, China. This data contains hourly weather data from
ten weather stations during time zone (3:00 intraday to 15:00
of the next day) from 03/01/2015-05/31/2018 (1188 days in
total) where missing values were deleted during the testing.
Each station contains same features.



To mimic the real prediction scenario, the original data has
been pre-processed by overlapping in [42]. In this paper, we
use the same pre-processed data as is in [42]. In our exper-
iment, we use the data from ten stations. Each station data
contains nine attributes, including psur obs (ground pressure),
t2m obs (temperature at 2 meters), q2m obs (specific humidity
at 2 meters), w10m obs (wind speed at 10 meters), d10m obs
(meridional wind at 10 meters), rh2m obs (relative humidity
at 2 meters), u10m obs (warp wind direction at 10 meters),
v10m obs (zonal wind at 10 meters), RAIN obs (accumu-
lated rainfall in one hour at ground). The target variable is
t2m obs gt (temperature at 2 meters). ” obs” represents the
observed value, ” obs gt” represents the ground truth value.

Clearly, each station contains 10 times series as one data
stream, and we have 10 data streams. These data streams have
concept drift due to the intrinsic characteristics of atmospheric
variables. Take the target variable t2m obs gt as an example, it
has obvious seasonal changes according to the three-year data
record, as shown in Figure 4. As these stations are located
near to each other, the corresponding data streams have the
concurrent drift.

TABLE I
THE PERFORMANCE COMPARISON OF STATIONARY PREDICTOR AND

ADAPTIVE PREDICTOR

Si Stationary Si Adaptation

S0 MAPE AVG 10.67% 6.57%
S1 MAPE AVG 10.41% 6.32%
S2 MAPE AVG 10.63% 6.66%
S3 MAPE AVG 10.76% 6.69%
S4 MAPE AVG 10.32% 6.31%
S5 MAPE AVG 9.98% 6.34%
S6 MAPE AVG 11.15% 7.23%
S7 MAPE AVG 10.26% 6.25%
S8 MAPE AVG 10.29% 6.23%
S9 MAPE AVG 10.52% 6.80%

B. Experimental Settings

The experiments were implemented on a CPU server with
Core i7 7700K CPU and Pytorch (1.8.1) programming envi-
ronment.

The MuNet contains predictors and connectors.
The predictors for all data streams uses a 5-layer neural

network and each layer contains 128 neurons. The input of
the predictor is the 9 meteorological attribute observations at
the observation point at time t, and the output is the predicted
value of the target variable at time t+ 1. The training epoch
of predictors is 2000 for all streams. All predictors use the
stochastic gradient descent (SGD) method, and the learning
rate is 0.01. As for the predictors initialization, we use 2400
hours of recorded weather data in the same time period of
all streams as the training data for their initial predictors.
The predictor of base stream is retrained every 120 hours by
including the newly arrived 120 hours’ data and deleting the
oldest 120 hours’ data.

The BNN-connector is a Bayesian neural network contain-
ing 2-layer hidden layers and each layer contains 30 and

10 neurons respectively. The training epoch of each BNN-
connector is 30. All BNN-connectors use the SGD method,
and the learning rate is 1e − 1. BNN-connectors are updated
by continuously tuned by the newly arrived instances.

C. Results

We have conducted three groups of experiments: a) compar-
isons between stationary methods and the adaptation methods;
b) comparisons between the adaptation by the single data
stream adaptation method and the adaptation by MuNet;
c) time cost of MuNet when adding extra streams. For
all experiments, we use the mean absolute percentage error
(MAPE) as the evaluation criterion. MAPE is calculated as
follows:

MAPE =
100%

n

n∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣
Where ŷi is the predicted value, yi is the true value, and n
is the number of samples. The smaller the value of MAPE,
the closer the predicted value is to the true value. It means
that the prediction model is more accurate. In the tables of
experimental results, Si MAPE AVG represents the average
value of MAPE of all prediction results on the current data
stream Si, which can indicate the overall prediction level of
the model.

Experiment a) is to validate whether these data streams have
the concept drift problem. The results are shown in Table I
where Si Stationary uses an unchanged initial predictor while
Si Adaptation retrains the predictor every 120 hours. It can be
seen that the overall accuracy of Si Adaptation is much better
than its corresponding accuracy of Si Stationary, indicating
that these data streams contain concept drift problem.

Experiment a) concludes that all these data streams contain
concept drift problem, and retraining predictors is an efficient
solution. Based on a), Experiment b) is to test whether we can
use MuNet to predict these multiple data streams with less
computational cost and comparable accuracy. The results are
listed in Table II. The accuracy of Si Adaptation is 6.57%,
6.32%, 6.65%, 6.68%, 6.30%, 6.33%, 7.22%, 6.27%, 6.21%
and 6.79% for stream S0 to S9 separately. The accuracy
of MuNet with S0 the base stream is a little lower than
Si Adaptation, which is 6.57%, 6.94%, 7.39%, 7.36%, 6.88%,
6.96%, 8.16%, 6.67%, 6.91% and 7.49% for stream S0 to S9

separately. But MuNet takes less time obviously. In addition,
in Table II, We test the MuNet performance by using ten data
streams from S0 to S9 as the base stream separately. When
using different base streams, the accuracy and time cost are
slightly different but all the results are in a reasonable range.

Lastly, we list the time cost increases of Si Adaptation and
MuNet separately when an extra stream is gradually added
in Experiment c). According to the results in Table III, the
time cost is the same between Si Adaptation and MuNet
when there is only one stream S0, as now MuNet is exactly
the same as Si Adaptation. Then we add the S1 stream. The
time cost of Si Adaptation increase from 87 to 167, and the
time cost of MuNet increase from 87 to 130. As a result,



TABLE II
THE PERFORMANCE COMPARISON OF THE MUNET AND CONVENTIONAL ADAPTATION METHOD

Si Adaptation
MuNet (Si base)

S0 base S1 base S2 base S3 base S4 base S5 base S6 base S7 base S8 base S9 base

S0 MAPE AVG 6.57% 6.57% 7.24% 7.36% 7.29% 7.28% 7.33% 7.41% 7.45% 7.18% 7.28%
S1 MAPE AVG 6.32% 6.94% 6.32% 7.16% 6.99% 6.88% 6.95% 7.38% 7.11% 6.97% 6.98%
S2 MAPE AVG 6.65% 7.39% 7.25% 6.66% 7.48% 7.25% 7.72% 7.53% 7.39% 7.21% 7.34%
S3 MAPE AVG 6.68% 7.36% 7.36% 7.49% 6.69% 7.37% 7.50% 7.63% 7.56% 7.44% 7.40%
S4 MAPE AVG 6.30% 6.88% 6.85% 6.99% 7.00% 6.31% 6.98% 7.24% 7.01% 6.86% 6.89%
S5 MAPE AVG 6.33% 6.96% 6.86% 7.03% 7.00% 6.93% 6.34% 7.14% 7.04% 6.83% 7.00%
S6 MAPE AVG 7.22% 8.16% 7.97% 8.30% 8.21% 8.02% 8.56% 7.23% 8.12% 7.95% 8.53%
S7 MAPE AVG 6.27% 6.67% 6.64% 6.68% 6.70% 6.65% 6.65% 6.76% 6.25% 6.64% 6.62%
S8 MAPE AVG 6.21% 6.91% 6.74% 7.12% 6.83% 6.77% 6.83% 6.96% 6.96% 6.23% 6.83%
S9 MAPE AVG 6.79% 7.49% 7.38% 7.65% 7.44% 7.38% 7.45% 7.61% 7.65% 7.44% 6.80%

Time Cost 886 350 361 373 358 347 355 370 354 350 360

TABLE III
THE COMPUTATIONAL COST OF DIFFERENT METHODS AS THE NUMBER OF DATA STREAMS INCREASES (S0 AS THE BASE STREAM)

One Streams Two Streams Three Streams Ten Streams

Si Adaptation MuNet Si Adaptation MuNet Si Adaptation MuNet Si Adaptation MuNet

S0 MAPE AVG 6.57% 6.57% 6.57% 6.57% 6.57% 6.57% 6.57% 6.57%
S1 MAPE AVG - - 6.32% 6.94% 6.32% 6.94% 6.32% 6.94%
S2 MAPE AVG - - - - 6.65% 7.39% 6.65% 7.39%
S3 MAPE AVG - - - - - - 6.68% 7.36%
S4 MAPE AVG - - - - - - 6.30% 6.88%
S5 MAPE AVG - - - - - - 6.33% 6.96%
S6 MAPE AVG - - - - - - 7.22% 8.16%
S7 MAPE AVG - - - - - - 6.27% 6.67%
S8 MAPE AVG - - - - - - 6.21% 6.91%
S9 MAPE AVG - - - - - - 6.79% 7.49%
Time Cost (min) 87 87 167 130 248 176 886 350

MuNet is 37 minutes faster Si Adaptation. Similarly, we add
the S2 stream. The time cost of Si Adaptation increase from
167 to 248, and the time cost of MuNet increase from 130
to 176. MuNet is 72 minutes faster Si Adaptation. When
the number of data streams increases to 10, it can be seen
that the MuNet already has a huge time advantage, which is
almost 2.5 times faster than Si Adaptation. Clearly, the time
cost difference between Si Adaptation and MuNet will be
increasing greatly when more streams are included, indicating
our MuNet is an efficient prediction method for multiple data
streams with concurrent drift.

V. CONCLUSION AND FUTURE STUDIES

This paper addresses the problem of concurrent concept drift
in multiple streams with considering the correlations between
data streams. An efficient method called MuNet was designed
to predict multiple streams. MuNet, one of the streams is
randomly assigned as the base stream, predictors are retrained
periodically for the base stream while the predicted value of
other streams are corrected by an online learned Bayesian
neural network called BNN-connector. As it takes less time to
online learn BNN-connector than retraining predictor, MuNet
is able to predict multiple data streams with less computational
cost as well as ensuring the prediction accuracy. We validated
MuNet on a real-world weather forecast dataset. The ex-
perimental results show that our method can efficiently save

computational cost with high accuracy compared to traditional
drift handling techniques for the single data stream.

In future research work, we will further improve the adap-
tive performance of the base stream predictor to ensure the
basic prediction accuracy, while improving the learning effi-
ciency of the BNN-connector. Meanwhile, we will extend our
method to more realistic multiple streams, especially streams
with noise.
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