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Abstract 

This paper proposes an integrated decision-making framework for the systematic 

selection of a renewable energy source (RES) from a set of RESs based on sustainability 

attributes. A real case study of RES selection in Karnataka, India, using the framework is 

demonstrated, and the results are compared with state-of-the-art methods. The main reason 

for developing this framework is to handle uncertainty and vagueness effectively by reducing 

human intervention. Systematic selection of RESs also reduces inaccuracies and promotes 

rational decision-making. In this paper, q-rung orthopair fuzzy information is adopted to 

minimize subjective randomness by providing a flexible and generalized preference style. 

Further, the study found systematic approaches for imputing missing values, calculating 

attributes' and decision-makers' weights, aggregation or preferences, and prioritizing RESs, 

which are integrated into the  framework. . Comparing the proposed framework with state-of-

the-art-methods shows that (i) biomass and solar are suitable RESs for the process under 

consideration in Karnataka, (ii) the proposed framework is consistent with state-of-the-art 

methods, (iii) the proposed framework is sufficiently stable even after weights of attributes 

and decision makers are altered, and (iv) the proposed framework produces broad and 

sensible rank values for efficient backup management. These results validate the significance 

of the proposed framework. 

Keywords: Gini index; Muirhead mean; q-rung orthopair fuzzy set; Renewable energy; 

TODIM method; MADM. 

1. Introduction 

Developing countries, including India, need abundant energy for growth and 

development, which can be provided with renewable energy sources (RESs) (Rani et al., 
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2019). RESs are clean and sustainable, which helps to reduce greenhouse gas emissions and 

various types of secondary waste (Indragandhi et al., 2017). Examples of RESs are solar 

energy, water, wind, and biomass (Bevrani et al., 2010). In general, the evaluation of RESs is 

a typical multi-attribute decision-making (MADM) problem, which can be solved rationally 

using MADM approaches (Yuan et al., 2018). 

Since hesitation/confusion are implicit factors in the selection of RESs (Zhang et al., 

2019), capturing them is essential. To do so, Yager (2017) proposed a generalized preference 

style called q-rung orthopair fuzzy sets (q-ROFSs), which offer a flexible preference space 

for decision-makers (DMs) to share their preferences for each RES. A fundamental property 

of q-ROFS is that 𝜇𝑞 + 𝜐𝑞 ≤ 1, where 𝑞 is a controlling factor that expands the preference 

space as the value monotonically increases. When 𝑞 = 1, the q-ROFSs are reduced to 

intuitionistic fuzzy sets (IFSs) (Atanassov, 1986), and when 𝑞 = 2, the q-ROFSs are reduced 

to Pythagorean fuzzy sets (PFSs) (Yager, 2014).  

To demonstrate the flexibility of a q-rung orthopair fuzzy information (q-ROFI), the 

following example is discussed. Suppose an expert rates the safety level of a power plant as 

𝜇 = 0.8  and 𝜐 = 0.8. This may not be allowed in IFS and PFS as the sum of the degree of 

belongingness 𝜇 and degree of non- belongingness 𝜐 is greater than one. However, 𝑞 = 4 is 

allowed by the q-ROFI, and 𝜇4 + 𝜐4 ≤ 1. Thus, q-ROFIs provides a flexible preference 

space and enriches the choice of information. 

Note: All abbreviations and their respective expansions are provided in the Supplementary 

material. Some definitions, theorems and their proofs are also provided in the Supplementary 

material to enrich better understanding of the work. 

1.1. Literature review related to RES selection 

Recently, various decision-making approaches have been developed and applied to the 

evaluation and selection of RESs. Previous studies identified multiple attributes and aspects 

that should be used to assess and select the most appropriate RESs. The following section 

outlines the application of MADM approaches in different uncertain environments. Wu et al. 

(2014) introduced an approach based on certain operators and used it to evaluate a wind 

technology project. Long and Geng (2015) developed an integrated entropy-based TOPSIS 

method for assessing the photovoltaic module within the context of IVIFSs. Zhang et al. 

(2015) introduced a method that employs integral and fuzzy measures and used it in the 



assessment and selection of clean energy methods in China. The results of that study showed 

that the solar photovoltaic method was the optimal choice.  

Wu et al. (2016) extended the ELECTRE-III method to intuitionistic fuzzy sets (IFSs) 

to evaluate and select sites for an offshore wind power station. Gumus et al. (2016) proposed 

an integrated framework based on the TOPSIS approach, entropy measure, and weighted 

arithmetic averaging operator for IFSs to assess wind energy resources in the United States. 

Kahraman et al. (2016) conducted an IVIF benefit-cost study that assessed investments in 

wind energy methods. The results showed that the technique proposed in this study is a 

flexible and informative tool for evaluating wind energy technologies. Çolak and Kaya 

(2017) presented an integrated approach based on the Analytic Hierarchy Process (AHP) and 

TOPSIS approaches within interval type-2 fuzzy sets and used it to select and evaluate the 

RES alternatives. The results showed that wind energy was the most suitable choice. Elzarka 

et al. (2017) presented a model for vague sets to assess onsite RESs for construction facilities. 

The outcomes of that study indicated that the method was proficient at selecting and 

evaluating RESs. 

Wu et al. (2018) developed a model utilizing AHP and PROMETHEE II methods 

within the context of triangular IFSs. They used it to evaluate and rank a large-scale rooftop 

photovoltaic project. Yuan et al. (2018) developed a new method based on a linguistic 

hesitant fuzzy set and an enhanced Choquet integral procedure and used it to evaluate and 

rank RESs in Jilin, China. Their findings concluded that biomass energy was the most 

appropriate option, among other alternatives. Jeong and Ramírez-Gómez (2018) studied an 

integrated method that is based on the decision making trial and evaluation laboratory 

(DEMATEL) and geographic information system (GIS) procedures for fuzzy sets (FSs) to 

assess the most suitable location for biomass plants to serve as a RES. Dincer and Yuksel 

(2019) evaluated DEMATEL and TOPSIS approaches that were used to assess and select 

RESs based on specific criteria. Mishra et al. (2019) developed a decision-making framework 

using the Jensen exponential divergence measure and used it to assess and rank RES 

alternatives. Aikhuele et al. (2019) presented a dynamic decision model with reliability 

attributes for RES evaluation using fuzzy numbers. Cavallaro et al. (2019) presented a 

TOPSIS method based on entropy under IFSs and used it to evaluate and select solar power 

plans. 



Karunathilake et al. (2019) developed a TOPSIS approach and used it to evaluate and 

choose the most appropriate RES alternative. That study demonstrated that tiny hydro- and 

solar  photovoltaic systems were the most efficient alternatives among all options. Rani et al. 

(2019) evaluated an integrated method using the VIKOR technique within the context of 

PFSs and used it to assess and rank RESs in India. The results of that study demonstrated that 

the developed approach played a valuable role in the process of evaluating and selecting 

RESs. Rani et al. (2020a) presented an integrated framework by combining SWARA and 

VIKOR methods to evaluate and choose ideal solar panel within Pythagorean fuzzy sets 

context. Wang et al. (2020) presented an innovative model based on fuzzy AHP and SWOT 

approaches and used it to assess and choose strategic RESs in Pakistan. That study 

demonstrated that socio-political and economic criteria were significant factors in the 

evaluation of RESs. Ghenai et al. (2020) used SWARA and ARAS techniques to evaluate a 

novel method for selecting and assessing RESs. The results of that study demonstrated that 

land-based wind energy is the best alternative. Rani et al. (2020b) used a decision-making 

framework based on a TOPSIS approach and a fuzzy divergence measure to evaluate and 

select RESs within a fuzzy environment. The results of that study showed that the developed 

framework was capable of assessing RES alternatives. Wang et al. (2020) proposed a non-

linear multi-dimensional model for analyzing the sustainability attributes of RESs for 27 

European Union countries. 

Ilababar et al. (2020) proposed a Pythagorean fuzzy-based decision model for the 

selection of RESs in Turkey. Krishankumar et al. (2020) used the VIKOR and interval-valued 

probabilistic linguistic standard variance approaches to evaluate an integrated framework 

within the context of an interval-valued probabilistic linguistic term set. The results of that 

study indicated that wind energy was the optimal alternative. Fossile et al. (2020) proposed a 

programming model for the selection of RESs to Brazil's ports. Results indicate that solar 

energy is most viable for the ports. Mishra et al. (2020a) introduced a combined methodology 

based on SWARA and COPRAS approaches for assessing bioenergy production processes. 

Zhang et al. (2020) put forward a hybrid decision model to select appropriate RES for Fujian, 

China. The results indicated that wind energy is the most suitable choice for Fujian. Butkiene 

et al. (2020) prepared a detailed review to analyze the importance of MADM methods for the 

selection of RESs. 

 



1.2. Challenges in the current methods of RES selection 

Based on the literature in the review presented above, there are potential 

challenges/knowledge gaps that may be encountered during RES selection. Firstly, due to the 

implicit hesitation/confusion in the evaluation process, missing values are common. Previous 

studies revealed that such values are either imputed randomly or ignored, causing 

inaccuracies in the RES evaluation. Secondly, attributes’ weights for RES selection are not 

systematically determined by capturing the variation in the distribution of the information 

accurately. Additionally, the degrees of hesitation/confusion exhibited by the DMs are not 

captured during the calculation of the weights of attributes. Kao (2010) investigated different 

approaches for determining attribute weight and inferred that the systematic calculation of 

weights mitigates inaccuracies in the MADM process. Thirdly, the weights of the DMs 

reflecting their relative importance to the decision making process (relative importance 

values) are not computed in a systematic way, which causes inaccuracies to occur during the 

evaluation. Koksalmis and Kabak (2018) conducted a detailed analysis of various weight 

calculation methods for DMs and found that systematic calculation mitigates inaccuracies in 

the decision-making process. Fourthly, aggregation of preference information for RES 

selection is performed without capturing the interrelationship among attributes. As attributes 

for RES selection often are in conflict and compete with each other, capturing the 

interrelation is essential. Finally, RESs must be prioritized rationally without potential loss of 

information.  

It must be noted that these challenges are addressed by using the novel contributions 

presented in Section 1.4. Further, for clarity on each method, kindly refer to Section 2. 

1.3. A brief discussion of the methods 

Before presenting the contributions of this paper, it is essential to discuss the basic idea of 

the methods adopted in this study’s proposed framework.  

Firstly, the Gini index (Han et al., 2012) is a concept adopted from data mining, which is 

used to determine the significance of an attribute. A higher Gini value indicates a higher level 

of importance of an attribute. Furthermore, the method captures the variations in the 

distribution of the information. If the variation is high for an attribute, the Gini value is low, 

indicating the potential hesitation/confusion during preference elicitation. Consequently, 



when the variation is low, the Gini value is high – suggesting the level of certainty the expert 

team conveys concerning that attribute. 

Secondly, a programming model (Krishankumar et al., 2019) is used to evaluate each 

expert's relative importance value when the information associated with the DM is partially 

known. The objective function is formulated by using the operational laws, and a constrained 

optimization model is framed to compute the weights of the DMs. The main difference 

between this study’s proposed idea and the idea presented in (Krishankumar et al., 2019) is in 

the formulation of the objective function.  

Thirdly, the Muirhead mean (MM) (Muirhead, 1902) operator is used to aggregate 

preferences by properly handling the interrelationship between criteria. Operators such as 

arithmetic/geometric mean, Bonferroni mean, and Hamy mean are special cases of MM 

operators. Based on the properties of MM, various researchers extended it to different fuzzy 

variants such as Liu et al. (2019)  model for air quality evaluation and Wang et al. (2019b) 

model for investor selection problems.  

Finally, the TODIM method (Portuguese for interactive MADM) (Gomes & Lima, 1991) 

is used to prioritize RESs, based on the prospect theory by Kahneman & Tversky (1979). To 

handle uncertainty, researchers proposed TODIM under fuzzy (Krohling & De Souza, 2012) 

and intuitionistic fuzzy contexts (Krohling et al., 2013), both of which use prospect theory to 

evaluate alternatives. 

1.4. Novel contributions of the paper 

The novel contributions of this paper are presented here. First, missing values are 

imputed in a systematic manner using a case-based method, which puts ahead four cases that 

deal with different scenarios. Secondly, the weights of attributes are calculated using the Gini 

index, which effectively captures variation in the distribution and significance of the 

information. Thirdly, DMs’ relative importance values are determined using a programming 

model, formulated by utilizing the partially known information and the operational laws. 

Fourthly, the DMs’ relative importance values are utilized to extend the MM operator to a q-

ROFI for aggregation. Unlike the work of Wang et al. (2019b), the proposed operator 

systematically calculates each DM's relative importance value, which mitigates inaccuracies 

in the decision-making process. Finally, RESs are prioritized by extending the TODIM 



method to a q-ROFS context. The q-ROFI is flexible and provides a generic preference style 

for usage as compared to its close counterparts, which motivated our focus in this direction. 

The remainder of the work is structured as follows. Section 2 proposes a new decision-

making framework within the context of q-ROFSs. Section 3 implements the proposed 

framework in a real case study of RESs selection in Karnataka, India, demonstrating the 

applicability and strength of the developed method. Section 4 contains a comparative and 

sensitivity analysis to validate the consistency and robustness of the outcomes from section 3. 

Section 5 presents the conclusions of the study.  

2. Proposed Methods 

This section presents the core novel contributions of this paper. At first, missing values are 

imputed systematically. Later, weights of attributes and DMs are calculated by properly 

capturing existing hesitation. Preferences from DMs are aggregated by capturing the 

interrelationship among DMs. Finally, a prioritization method is put forward for prioritizing 

RESs. The details of the IFS, q-ROFS, and the different operators are provided in the 

supplementary material. 

 

2.1. Research problem 

This section provides the research problem that is addressed in this paper. The core 

research problem is "to select an appropriate RES from the set of available RESs in 

Karnataka, India, to satisfy its energy demands." To solve this problem, a novel decision-

making framework with integrated MADM methods for q-ROFI is proposed. A detailed 

explanation of each proposed method is presented in sections 2.2 to 2.6. From the literature 

related to RES selection in India and a report from the Ministry of New & Renewable Energy 

(MNRE), popular RESs in Karnataka are solar energy, biomass energy, tidal energy, 

hydropower, and wind energy. The real case study discussed in Section 3 considers these 

RESs as potential alternatives, rated by experts based on sustainabilityattributes. 

2.2.  Imputation of missing values 

This section focuses on the imputation of missing values in the decision matrices 

provided by the DMs. Due to hesitation/confusion, certain preferences cannot be provided. 

Previous imputation studies either adopted binning methods or random fills, both of which 



reduces the accuracy of the decision-making process. Moreover, in a MADM context, several 

different cases of missing values are identified which cannot be filled by existing methods. 

This section presents a case-based method, which can impute preference values 

rationally for different scenarios. 

Case 1: Of 𝑙𝑙 DMs who provide decision matrices, one matrix has a missing instance. To 

impute the missing value, Equation (1) is applied. 

𝑅 = (∏ 𝜇𝑖𝑗
𝜆𝑙𝑙𝑙∗

𝑙=1 ,∏ 𝜐𝑖𝑗
𝜆𝑙𝑙𝑙∗

𝑙=1 )                                                                                                     (1)  

where 𝑙𝑙∗ is the number of DMs, which has the value for the specific instance, and 𝜆𝑙 = 1 𝑙𝑙∗⁄  

is the unbiased weight vector. Clearly, 𝑙𝑙∗ < 𝑙𝑙. 

Case 2: A specific value (𝑖, 𝑗) is missing from all 𝑙𝑙 decision matrices. Equation (2) is used to 

impute value. 

𝑅 = (∏ 𝜇𝑖𝑗
𝜆𝑙𝑚∗

𝑙=1 ,∏ 𝜐𝑖𝑗
𝜆𝑙𝑚∗

𝑙=1 )                                                                                                      (2)  

where  𝑚∗ is the number of alternatives with the q-ROFI, and 𝜆𝑙 = 1 𝑚∗⁄  is the unbiased 

weight vector. 

Case 3: Of 𝑙𝑙 decision matrices, only one matrix has the (𝑖, 𝑗) position. To impute the 

remaining values, the value in the (𝑖, 𝑗) position is repeated. 

Case 4: A particular column is missing in all 𝑙𝑙 decision matrices. To impute the values, the 

type of the attribute (column) is identified; benefit or cost. If the missing column is of benefit 

type (or cost type), then the average of the values from the remaining benefit type (or cost 

type) columns (attributes) is taken. If there is only one benefit (or cost) attribute and the 

values for that attribute are missing,  then the adjacent column is arbitrarily selected to 

impute the values. 

Some of the shortcomings of case-based imputation of missing values are (i) equal weights 

are assigned to alternatives (RESs) during imputation by case 2, which is often not the case . 

Methods may be developed to handle unequal weights of alternatives and partial information 

on each alternative. (ii) case 3 imputes values by repetition, which might cause subjective 

biases over that particular attribute, and hence, predictive models may be developed to 

handle the situation. 

2.3. Gini index for attribute weights 

A new extension to the Gini index, specifically for q-ROFSs, is discussed in this 

section. Generally, weights of attributes are estimated in two ways, partially known weight 



values  and fully unknown weight values. Programming models such as the one in 

Krishankumar et al. (2019) are used  for partially known weight values, and capture the 

partial information in the form of constraints. For fully unknown weight values weights are 

determined based on entropy (Xia & Xu, 2012), an analytical hierarchy process (Büyüközkan 

et al., 2019), or weighted arithmetic method (Valipour et al., 2017). 

From the analysis, the latter concept can determine weights without any a priori 

information. Moreover, the Gini index captures the hesitation/confusion during the 

preference elicitation process. Based on these concerns, the model for the Gini index under q-

ROFSs is discussed. 

Step 1: An evaluation matrix of 𝑙𝑙 × 𝑛 with q-ROFI is constructed. Here, 𝑙𝑙 and 𝑛 are the 

number of DMs and attributes, respectively. 

Step 2: Use a score function to transform the q-ROFI into a single-valued evaluation matrix. 

Use equation (3) to normalize these values column-wise. 

𝑅𝑖𝑗
∗ =

𝑅𝑖𝑗

∑ 𝑅𝑖𝑗
𝑙𝑙
𝑖=1

                                                                                                                          (3) 

where 𝑅𝑖𝑗
∗  is the normalized value given by the 𝑖𝑡ℎ DM over the 𝑗𝑡ℎ attribute. 

Step 3: Use equation (4) to apply the Gini index to determine the significance of information 

of each attribute. A vector of order (1 × 𝑛) is obtained using Equation (4). 

𝐺𝐼𝑗 = 1 − ∑ 𝑅𝑖𝑗
∗𝑙𝑙

𝑖=1                                                                                                                  (4) 

where 𝐺𝐼𝑗  is the Gini index value of the 𝑗𝑡ℎ attribute. 

Step 4: The values of Eq. (4) are normalized utilizing Eq. (5) to obtain the attribute weights. 

The higher the significance of information for an attribute, the higher is the weight. 

𝑤𝑗 =
𝐺𝐼𝑗

∑ 𝐺𝐼𝑗
𝑛
𝑗=1

                                                                                                                          (5)  

where 𝑤𝑗  is the 𝑗𝑡ℎ attribute weight. 

Some shortcomings of Gini index in attribute weight calculation are (i) when DMs 

provide similar opinions on attributes, the weights tend to be equal, and hence, the relative 

importance of DMs might here be considered for more efficient weight calculation; and (ii) 

personal opinion on each attribute is not used by the Gini index, and hence, constrained 

parametric-methods may be developed to include these. 

2.4. The programming model for DM weights 

This section focuses on the identification of DM weights using a programming model 

with a q-ROFI. Koksalmis and Kabak (2018) explained the importance and usefulness of a 



systematic evaluation of DM weights in multi-attribute group decision-making (MAGDM). 

Inspired by this, we attempted to compute the DMs’ weights systematically.  

Unlike the model presented in (Krishankumar et al., 2019), the proposed programming model 

formulates an objective function based on the weights of attributes and operational laws. 

Moreover, partial information about each DM is used to determine the weights. 

The procedure for calculating the weights of the DMs is shown below: 

Step 1: Calculate the weighted q-ROFI for each matrix using 𝑊𝑅𝑖𝑗 = ((1 − (1 −

𝜇𝑖𝑗
𝑞
)
𝑤𝑗
)
1/𝑞
, 𝜐𝑖𝑗
𝑞
) where 𝑤𝑗  is the 𝑗𝑡ℎ attribute weight. 

Step 2: Formulate the programming model, as shown below. 

Model 1: 

𝑀𝑎𝑥 𝑍 =∑𝜛𝑙 (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(⊕𝑗=1
𝑛 (𝑊𝑅𝑖𝑗)))

𝑙𝑙

𝑙=1

 

Subject to 

𝜛𝑗 ∈ [0,1] and ∑𝜛𝑗 = 1

𝑗

. 

The  relative importance values of DMs are obtained by solving the model using the 

optimization toolbox of MATLAB®. Some shortcomings of the mathematical model for DM 

weight calculation are (i) attitude of DMs are not taken into consideration during the 

formulation of the model; and (ii) variations in the distribution of preferences are not 

considered during the model formulation. This may be addressed by considering these 

measures as constrained parameters. 

2.5.  Aggregation of q-ROFI 

An extension to MM operators for aggregating a q-ROFI is presented in this section. 

Previous studies on aggregation operators showed that capturing the interrelationship 

between criteria is critical for rational aggregation (Mesiar & Calvo, 2008). Based on this 

claim, several researchers proposed various operators within the context of q-ROFS, viz. 

Bonferroni mean (Liu & Liu, 2018), Hamy mean (Wang et al., 2019a), Muirhead mean 

(Wang et al., 2019b), and Maclaurin symmetric mean (Krishankumar et al., 2019). 

The MM operator (Wang et al., 2019b) uses DM weights directly without any 

systematic calculation. Also, Kosalmis & Kabak (2018) claimed that systematic weight 

calculation is important for rational decision-making. Motivated by this claim and to 



circumvent this concern, we present an MM operator within the context of q-ROFS which 

uses DM weights that were evaluated in Section 2.3. 

Definition 4: Aggregation of q-ROFI using q-rung orthopair fuzzy weighted MM (q-

ROFWMM) operator is a function 𝑍𝑛 ⇢ 𝑍 and is given by 

𝑞 − 𝑅𝑂𝐹𝑊𝑀𝑀(𝜆1,𝜆2,…,𝜆𝑙𝑙) = ((1− (∏ (1 − ∏ 𝜇𝑖𝑗
𝜆𝑡𝑞𝑙𝑙

𝑡=1 )
𝜛𝑙𝑙𝑙

𝑙=1 ))

1/𝑞

)

1
∑ 𝜆𝑡𝑡

, (1 −

            ((1 − ∏ (1 − ∏ (1 − 𝜐𝑖𝑗
𝑞
)
𝜆𝑡𝑙𝑙

𝑡=1 )
𝜛𝑙

𝑙𝑙
𝑙=1 ))

1

∑ 𝜆𝑡𝑡

)

1/𝑞

                                                    (6) 

where 𝑙𝑙 denotes the number of DMs, 𝜆1, 𝜆2, … , 𝜆𝑙𝑙 are parameters that can have values from 

the set {1,2,… , 𝑙𝑙}, and 𝜛1, 𝜛2,…, 𝜛𝑙𝑙  are  relative importance values of DMs. 

     The main shortcoming of the proposed aggregation operator is that the risk appetite values 

are not calculated systematically, this may be done by using mathematical models. 

For properties and theorem related to the proposed aggregation operator and its proof, kindly 

refer to the Supplementary materials. 

2.6. Prioritization of RESs 

This section presents an extension to the TODIM method for q-ROFIs, taylored for 

prioritization of RESs. As previously mentioned, the TODIM method (Gomes & Lima, 1991) 

is associated with the prospect theory; additionally, the prioritization of RESs is based on the 

dominance concept. The main advantages of the TODIM method are: (i) it is simple and 

straightforward; (ii) it prioritizes RESs from a pessimistic viewpoint by considering risk, this 

closely resembles real-time decision-making (Chen, 2011); (iii) reference weights are used to 

capture information of an attribute during prioritization. 

Motivated by these advantages, researchers have extended the TODIM method into 

several fuzzy variants. Fan et al. (2013) generalized the TODIM approach to random 

variables, viz. interval, and fuzzy numbers, for MAGDM. Krohling et al. (2013) provided a 

generalization of Fan et al.'s (2013) approach, they proposed an intuitionistic fuzzy-based 

TODIM approach for MAGDM. Ren et al. (2016) further generalized Krohling et al.’s (2013) 

work, and proposed the Pythagorean fuzzy TODIM. Wei (2018) proposed an extension to the 

TODIM method under a picture fuzzy context and applied it to MAGDM. Xu et al. (2017) 

proposed using the TODIM method within a neutrosophic fuzzy context, and applied it to 



MAGDM. Mishra and Rani (2018) developed a TODIM approach-based biparametric 

similarity measure for IVIFSs to solve a plant location selection problem. Rani et al. (2019a) 

proposed an intuitionistic fuzzy TODIM approach with a Shapley divergence measure to 

address a decision-making problem. Mishra et al. (2020b) reviewed various entropy and 

divergence measures for IVIFSs and proposed new divergence and entropy measures to 

mitigate the inadequacies of existing measures. They also reviewed the TODIM method and 

used it to solve a service quality assessment problem for vehicle insurance companies. 

Based on the literature analysis presented above, the q-ROFS-based TODIM method 

has not yet been suggested by researchers for RES selection. However, the advantages of the 

TODIM method inspired us to use it in our proposed framework. The proposed idea is a 

generalization of state-of-the-art methods and offers sensible prioritization based on the 

prospect theory. The step-by-step procedure is presented below (see Fig. 1): 

Step 1: The aggregated matrix and attribute weight vector are obtained as input for the q-

ROFSs-based TODIM method. 

Step 2: Calculate the reference weight values for the attributes using equation (7). 

𝑤𝑗
𝑟𝑒𝑓

=
𝑤𝑗

𝑚𝑎𝑥𝑗(𝑤𝑗)
                                                                                                                    (7)  

where 𝑤𝑗  is the weight value of the 𝑗𝑡ℎ attribute. 

Step 3: Dominance values between RESs are calculated using equations (8)-(9). 𝑛 matrices 

of order 𝑚 ×𝑚 are obtained, which are further processed to prioritize RESs. 

𝐷𝑜𝑚𝑗(𝛼, 𝛽) =

{
 
 
 

 
 
 
√
𝑤𝑗
𝑟𝑒𝑓

𝑑(𝛼,𝛽)

∑ 𝑤𝑗
𝑟𝑒𝑓𝑛

𝑗=1

                 𝑓𝑜𝑟 𝛼 > 𝛽

0                                          𝑓𝑜𝑟 𝛼 = 𝛽

√
(∑ 𝑤𝑗

𝑟𝑒𝑓𝑛
𝑗=1 )𝑑(𝛼,𝛽)

𝑤𝑗
𝑟𝑒𝑓

−1
𝜃

  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                           (8) 

𝑁𝑒𝑡𝐷𝑜𝑚(𝛼,𝛽) = ∑ 𝐷𝑜𝑚𝑗(𝛼, 𝛽)𝑗∈𝑛
𝛼,𝛽∈𝑚

                                                                                 (9) 

Here, 𝛼 and 𝛽 are any two RESs and 𝑑(𝛼, 𝛽) =

√(∑ ((𝜇
𝑖𝑗

𝑞(𝛼)
− 𝜇

𝑖𝑗

𝑞(𝛽)
)
2

+ (𝜐
𝑖𝑗

𝑞(𝛼)
− 𝜐

𝑖𝑗

𝑞(𝛽)
)
2

+ (𝜋
𝑖𝑗

𝑞(𝛼)
− 𝜋

𝑖𝑗

𝑞(𝛽)
)
2

)𝑛
𝑗=1 ).  𝜃 can take values 1 

and 2.5, as shown by Fan et al. (2013). Equation (8) determines the dominance value between 

RESs for over each attribute. Equation (9) is used to obtain the net dominance value between 

RESs. 



Step 4: RESs are prioritized using equation (10). A vector of order 1 × 𝑚 is obtained, which 

is given in descending order to prioritize the RESs; that is, the RES with the highest 

dominance is ranked first and so on. 

𝜑𝑖 =
∑ 𝑁𝑒𝑡𝐷𝑜𝑚(𝛼,𝛽)𝑖 −𝑚𝑖𝑛(∑ 𝑁𝑒𝑡𝐷𝑜𝑚(𝛼,𝛽)𝑖 )

𝑚𝑎𝑥(∑ 𝑁𝑒𝑡𝐷𝑜𝑚(𝛼,𝛽)𝑖 )−𝑚𝑖𝑛(∑ 𝑁𝑒𝑡𝐷𝑜𝑚(𝛼,𝛽)𝑖 )
                                                                       (10)  

where 𝜑𝑖  is the dominance value of the 𝑖𝑡ℎ RES. 

Some shortcomings of q-ROFS-based TODIM method are (i) dominance values are 

calculated based on the comparison of q-ROFI, which is done using score and accuracy 

measure that does not consider the degree of hesitancy, causing information loss; (ii) rank 

reversal issues occur when adequate changes are made to the attributes. 

 
Fig.1 Implementation flowchart of the proposed framework 

Fig.1 represents the overall workflow of the developed framework that is used for the 

rational selection of RES. Initially, DMs provide their linguistic preferences for each RES 

based on the attributes. To reduce subjective randomness, q-ROFI is adopted for rational 

decision-making implementation. Since hesitation/confusion are implicit factors in MADM, 

some values might be missing; thus, a systematic method is used to impute these values. 



Next, weights of attributes and DMs are determined systematically by capturing the 

hesitation and utilizing the partial information provided by the selection committee. 

Preferences from the DMs are aggregated by capturing the interrelationship among attributes. 

Unlike existing methods, weights of DMs are rationally calculated and used for aggregation 

in this framework. Finally, by extending the TODIM method to q-ROFI and with the help of 

the aggregated matrix and the weight vector of the attributes, prioritization of RESs is 

performed. To better understand the strengths and weaknesses of the framework, two 

analyses were conducted; an analysis comparing the framework to existing methods, and a 

sensitivity analysis with different attributes and DMs weights. 

3. A case study in Karnataka: Prioritization of renewable energy sources 

This section demonstrates the practicality of the proposed framework by considering a real 

case study of RESs in Karnataka, India for satisfying its energy demands. 

3.1. Introduction to RESs in Karnataka 

With an area of around 191,791 square km, Karnataka is the seventh largest state in 

India – sharing the western boundary with the Arabian Sea and the Laccadive Sea (profile 

report of Karnataka, 2019). The state has toppled Tamil Nadu to become India's largest 

renewable energy (RE) generation with an installed capacity of 15.23 GW. This includes 7.27 

GW of solar energy, 4.78 GW of wind energy, 1.882 GW of biomass energy and 1.28 GW of 

small hydropower plants (MNRE Report, 2020). For the past two years, Karnataka has been 

top ranked in terms of RE generation. The main reasons have been the apt policies and the 

on-time completion of projects. Convincing farmers to lease their lands for solar and wind 

power generation is also a crucial task for the government of Karnataka. In addition, 

Karnataka’s  biomass generation is growing quicker compared to other states in India.  

Solar Energy  

High-density solar panels are installed in Karnataka, these produce around 2000 to 2500 

KWh solar energy per square meter. 2000 MW of solar power was produced by the Shakti 

Shala plant in Pavagada during 2018. Around 1,65,000 million Indian rupees (INR) were 

invested in solar parks to produce power for nearly 700,000 households during this period 

(Summers, 2019). Karnataka Solar Power Development Corporation Limited (KSPDCL) 

made an agreement that integrates the solar energy corporation of India and Karnataka 

Renewable Energy Development Limited (KREDL). This agreement enables large firms to 



gain access to power from the solar grids (Elavarasan et al, 2020). KREDL promotes the 

usage of RESs. 

Wind Energy 

The total installed wind power capacity in Karnataka is 4790.60 MW.  Wind speed is a 

crucial factor for generation of energy from wind farms. Ramachandra and Shruthi (2003) 

identified that the wind speed must be greater than 5.4 m/s for feasible energy production. 

Tuppadahalli onshore plant has a potential for 140 GWh per annum and the rotor diameter 

and height are 82 m and 78 m, respectively (Elavarasan et al, 2020). 

Small Hydro Energy  

With six percent contribution from water resources to the nation, Karnataka is 

fortunate to have good conditions for hydropower (Rivers in Karnataka, report, 2019). Out of 

939 plants in India, 132 are located in Karnataka, and theese yield a power of about 1230.73 

MW (Höffken, 2014).  

Biomass Energy 

Plants and animals are major sources for biomass energy production, along with waste 

from agro-industries (Mahishi et al., 2014). Wood and paper industries in Karnataka prepare 

fuel from combustion processes (KREDL, 2019a). Biomass Energy for Rural India employed 

a gasification-based power production plant to sate the power demands in the district of 

Tumkur. Two plants were set, each with a total potential for 240 KW, and the core aim being 

the reduction of green house-gases (GHG) (Dasappa et al., 2011). 

Tidal Energy 

With a 320 km coastline, Karnataka can effectively generate energy from the waves 

(Reddy et al., 2018). There is a potential for 0.2 MW per square meter, but rigid 

governmental policies reduce possibilities of exploration (Khare, 2019). 

3.2. Case Study of RES selection in Karnataka 

This section provides an empirical case study of RES selection in Karnataka, India, 

demonstrating the practical use of the proposed framework. As mentioned earlier, the 

systematic selection of RESs is important to India; to satisfy the high demand of consumers 

and to further the country’s economic development.  



A set of three experts/DMs choose a type of linguistic term as their preference that are 

transformed into q-ROFI values using Table 1. Let 𝐷𝑀 = (𝑑𝑚1, 𝑑𝑚2, 𝑑𝑚3) be a set of DMs 

who share their preferences for five RESs that are popular in India and evaluated  over 12 

attributes. Let 𝑅𝐸𝑆 = (𝑟𝑠1, 𝑟𝑠2, 𝑟𝑠3, 𝑟𝑠2, 𝑟𝑠5) be a set of RESs that are assessed over a set of 

𝐴𝑇 = (𝑎𝑡1 , 𝑎𝑡2, 𝑎𝑡3, 𝑎𝑡4, 𝑎𝑡5, 𝑎𝑡6, 𝑎𝑡7, 𝑎𝑡8, 𝑎𝑡9, 𝑎𝑡, 𝑎𝑡11, 𝑎𝑡12) (Rani et al., 2019). The five 

RESs under consideration are tidal energy, biomass energy, solar energy, wind energy, and 

hydropower. They are selected on the basis of 12 attributes: air pollutant emissions, need for 

waste disposal, water pollution, land disruption, land requirement, economic risk, security, 

sustainable energy, durability, adaptability to energy policy, cost, and feasibility. 

The linguistic rating of each DM is obtained from Rani et al. (2019), and the systematic 

procedure for rational selection of RES is presented below: 

Step 1: Convert the linguistic values provided by each DM into q-ROFI. The linguistic 

values are obtained from Rani et al. (2019), and Table 1 is used to convert these values into 

q-ROFI, which are depicted in Table 2. 

Table 1: Linguistic to q-ROFNs 

Linguistic term q-ROFN 

Absolutely high (0.98,0.01) 

Very high (0.9,0.6) 

High (0.8,0.65) 

Medium-high (0.75,0.6) 

Average (0.5,0.5) 

Medium-low (0.6,0.7) 

Low (0.7,0.8) 

Very low (0.6,0.9) 

Absolutely low (0.01,0.98) 

 

Step 2: The missing values in these tables are imputed using the procedure proposed in 

Section 2.2. Table 2 depicts the q-ROFIs related to each linguistic term, and the q-rung is 

considered to be  𝑞 = 3. Thus, 𝜇3 + 𝜐3 ≤ 1. 

Entries are shown as "XX” denotes the missing values, which are imputed using the case-

based approach proposed in Section 2.2. Entry (𝑎𝑡4) of 𝑑𝑚1 is imputed as (0.49,0.76) using 

case 4. Likewise, (𝑎𝑡4) of 𝑑𝑚2 is imputed as (0.47,0.81) using case 4, (𝑎𝑡4) of 𝑑𝑚3 is 

imputed as (0.51,0.82) using case 4, (𝑟𝑠1, 𝑎𝑡2) of 𝑑𝑚 is imputed as (0.52,0.91) using case 2, 

(𝑟𝑠1, 𝑎𝑡2) of 𝑑𝑚2 is imputed as (0.52,0.91) using case 2, (𝑟𝑠1, 𝑎𝑡2) of 𝑑𝑚3 is imputed as 

(0.52,0.91) using case 2, and (𝑟𝑠2, 𝑎𝑡5) of 𝑑𝑚1 is imputed as (0.49,0.76) using case 1. 



Table 2: RES evaluation by the DMs 

Attributes DMs RESs 

𝑟𝑠1 𝑟𝑠2 𝑟𝑠3 𝑟𝑠4 𝑟𝑠5 

𝑎𝑡1 𝑑𝑚1 (0.01,0.98) (0.01,0.98) (0.6,0.9) (0.7,0.8) (0.6,0.9) 

𝑑𝑚2  (0.01,0.98) (0.01,0.98) (0.6,0.9) (0.6,0.9) (0.6,0.9) 

𝑑𝑚3  (0.01,0.98) (0.6,0.9) (0.6,0.9) (0.6,0.9) (0.6,0.9) 

𝑎𝑡2 𝑑𝑚1 XX (0.6,0.9) (0.01,0.98) (0.7,0.8) (0.6,0.9) 

𝑑𝑚2  XX (0.6,0.9) (0.01,0.98) (0.7,0.8) (0.6,0.9) 

𝑑𝑚3  XX (0.01,0.98) (0.6,0.9) (0.6,0.9) (0.01,0.98) 

𝑎𝑡3 𝑑𝑚1 (0.01,0.98) (0.6,0.9) (0.6,0.9) (0.6,0.9) (0.01,0.98) 

𝑑𝑚2  (0.6,0.9) (0.7,0.8) (0.01,0.98) (0.6,0.9) (0.01,0.98) 

𝑑𝑚3  (0.6,0.9) (0.7,0.8) (0.6,0.9) (0.6,0.9) (0.6,0.9) 

𝑎𝑡4 𝑑𝑚1 XX XX XX XX XX 

𝑑𝑚2  XX XX XX XX XX 

𝑑𝑚3  XX XX XX XX XX 

𝑎𝑡5 𝑑𝑚1 (0.6,0.9) XX (0.6,0.9) (0.6,0.9) (0.6,0.9) 

𝑑𝑚2  (0.7,0.8) (0.01,0.98) (0.01,0.98) (0.6,0.9) (0.7,0.8) 

𝑑𝑚3  (0.01,0.98) (0.6,0.9) (0.01,0.98) (0.7,0.8) (0.6,0.9) 

𝑎𝑡6 𝑑𝑚1 (0.75,0.6) (0.98,0.01) (0.8,0.65) (0.8,0.65) (0.75,0.6) 

𝑑𝑚2  (0.8,0.65) (0.9,0.6) (0.9,0.6) (0.75,0.6) (0.75,0.6) 

𝑑𝑚3  (0.75,0.6) (0.9,0.6) (0.9,0.6) (0.8,0.65) (0.8,0.65) 

𝑎𝑡7 𝑑𝑚1 (0.6,0.9) (0.01.0.98) (0.01,0.98) (0.6,0.9) (0.6,0.9) 

𝑑𝑚2  (0.7,0.8) (0.01.0.98) (0.01,0.98) (0.7,0.8) (0.6,0.9) 

𝑑𝑚3  (0.01,0.98) (0.6.0.9) (0.6,0.9) (0.7,0.8) (0.7,0.8) 

𝑎𝑡8 𝑑𝑚1 (0.6,0.9) (0.6,0.9) (0.01,0.98) (0.7,0.8) (0.6,0.7) 

𝑑𝑚2  (0.7,0.8) (0.7,0.8) (0.6,0.9) (0.6,0.9) (0.7,0.8) 

𝑑𝑚3  (0.01,0.98) (0.7,0.8) (0.6,0.7) (0.6,0.9) (0.6,0.9) 

𝑎𝑡9 𝑑𝑚1 (0.5,0.5) (0.8,0.65) (0.75,0.6) (0.75,0.6) (0.6,0.7) 

𝑑𝑚2  (0.5,0.5) (0.8,0.65) (0.75,0.6) (0.8,0.65) (0.5,0.5) 

𝑑𝑚3  (0.5,0.5) (0.9,0.6) (0.8,0.65) (0.75,0.6) (0.5,0.5) 

𝑎𝑡10 𝑑𝑚1 (0.5,0.5) (0.75,0.6) (0.8,0.65) (0.6,0.7) (0.5,0.5) 

𝑑𝑚2  (0.6,0.7) (0.9,0.6) (0.75,0.6) (0.5,0.5) (0.6,0.7) 

𝑑𝑚3  (0.5,0.5) (0.9,0.6) (0.8,0.65) (0.6,0.7) (0.5,0.5) 

𝑎𝑡11 𝑑𝑚1 (0.75,0.6) (0.75,0.6) (0.75,0.6) (0.8,0.65) (0.75,0.6) 

𝑑𝑚2  (0.5,0.5) (0.8,0.65) (0.75,0.6) (0.8,0.65) (0.75,0.6) 

𝑑𝑚3  (0.75,0.6) (0.9,0.6) (0.9,0.6) (0.5,0.5) (0.5,0.5) 

𝑎𝑡12 𝑑𝑚1 (0.5,0.5) (0.8,0.65) (0.75,0.6) (0.75,0.6) (0.5,0.5) 

𝑑𝑚2  (0.75,0.6) (0.75,0.6) (0.9,0.6) (0.75,0.6) (0.75,0.6) 

𝑑𝑚3  (0.6,0.7) (0.75,0.6) (0.5,0.5) (0.5,0.5) (0.5,0.5) 

  

Step 3: Preferences of each expert/DM are obtained for each attribute, and, by using the Gini 

index (Section 2.3), weights are determined. 

A matrix of the order 3× 12 for determining the weights of the attributes is based on Rani et 

al. (2019). The linguistic terms are converted to their respective q-ROFI based on Table 1, 

and it is depicted in Table 3. 

Table 3: Preferences from DMs for attribute weight calculation 

Attributes DMs 

𝑑𝑚1 𝑑𝑚2  𝑑𝑚3  

𝑎𝑡1 (0.9.0.6) (0.8,0.65) (0.5,0.5) 

𝑎𝑡2 (0.8,0.65) (0.75,0.6) (0.5,0.5) 

𝑎𝑡3 (0.75,0.6) (0.8,0.65) (0.6,0.7) 

𝑎𝑡4 (0.8,0.65) (0.5,0.5) (0.5,0.5) 



𝑎𝑡5 (0.9,0.6) (0.75,0.6) (0.5,0.5) 

𝑎𝑡6 (0.6,0.7) (0.7,0.8) (0.5,0.5) 

𝑎𝑡7 (0.8,0.65) (0.9,0.6) (0.6,0.7) 

𝑎𝑡8 (0.5,0.5) (0.6,0.7) (0.6,0.7) 

𝑎𝑡9 (0.6,0.7) (0.7,0.8) (0.7,0.8) 

𝑎𝑡10 (0.7,0.8) (0.6,0.7) (0.6,0.7) 

𝑎𝑡11 (0.6,0.7) (0.9,0.6) (0.7,0.8) 

𝑎𝑡12 (0.7,0.8) (0.9,0.6) (0.6,0.9) 

 

Gini index is applied to Table 3 in order to determine the weights of the attributes, given by 

(0.085, 0.085, 0.085, 0.081, 0.085, 0.085, 0.085, 0.085, 0.081, 0.081, 0.081, 0.085, 0.081). 

Also, the weight values used by Rani et al. (2019) are considered for evaluation and a 

discussion is presented in the next section. 

Step 4: Decision matrices shown in Table 2 are used to obtain the  relative importance value 

of each DM by applying the programming model from section 2.4. 

Next, Model 1 is used to obtain the objective function, which is expressed as 0.96𝜛1 +

1𝜛2 + 0.96𝜛3, and the constraints are 𝜛1 +𝜛2 ≤ 0.6, 𝜛2 +𝜛3 ≤ 0.6, 𝜛1 ≤ 0.4, and 𝜛2 ≤

0.2. The optimization toolbox from MATLAB is utilized to solve the programming model, 

and weights were 0.4, 0.2, and 0.4, respectively. Also, DM weights from the work of Rani et 

al. (2019) were used for evaluation, which is discussed in the next section. 

Step 5: Matrix from Table 2 is aggregated using the  relative importance vector (from step 4) 

and the q-ROFWMM operator (from section 2.5), which is shown in Table 4. 

The aggregated values from Table 4 are also q-ROFIs and obey the condition 𝜇3 + 𝜈3 ≤

1. The q-ROFWMM operator considers 𝜆1, 𝜆2, and 𝜆3 values to be 2, 2, and 1, and the 

weights of the DMs are obtained from step 4. 

Table 4: The aggregated preferences using q-ROFWMM operator 
𝑑𝑚123 
Aggregated 

RESs 

𝑟𝑠1 𝑟𝑠2 𝑟𝑠3 𝑟𝑠4 𝑟𝑠5 

𝑎𝑡1 (0.32,0.95) (0.32,0.96) (0.24,0.96) (0.35,0.97) (0.24,0.96) 

𝑎𝑡2 (0.29,0.96) (0.35,0.96) (0.29,0.97) (0.35,0.98) (0.29,0.97) 

𝑎𝑡3 (0.29,0.96) (0.29,0.97) (0.3,0.96) (0.36,0.98) (0.29,0.97) 

𝑎𝑡4 (0.3,0.97) (0.33,0.98) (0.27,0.98) (0.41,0.97) (0.27,0.98) 

𝑎𝑡5 (0.27,0.96) (0.32,0.97) (0.29,0.97) (0.36,0.98) (0.31,0.96) 

𝑎𝑡6 (0.32,0.95) (0.33,0.96) (0.3,0.96) (0.4,0.97) (0.3,0.96) 

𝑎𝑡7 (0.33,0.96) (0.35,0.96) (0.33,0.96) (0.41,0.97) (0.3,0.95) 

𝑎𝑡8 (0.3,0.95) (0.35,0.94) (0.3,0.95) (0.42,0.96) (0.31,0.94) 

𝑎𝑡9 (0.3,0.96) (0.3,0.95) (0.29,0.96) (0.4,0.96) (0.3,0.96) 

𝑎𝑡10 (0.32,0.96) (0.33,0.95) (0.3,0.94) (0.42,0.97) (0.31,0.95) 

𝑎𝑡11 (0.33,0.95) (0.35,0.96) (0.29,0.95-) (0.4,0.96) (0.31,0.96) 

𝑎𝑡12 (0.33,0.95) (0.35,0.96) (0.3,0.96) (0.41,0.97) (0.3,0.96) 

 

Step 6: Prioritize the RESs with the help of the aggregated matrix and attribute weights. The 

q-ROFS-based TODIM method is applied to prioritize the RESs. Net dominance is calculated 



using equations (8)-(9) at 𝜃 = 1, as depicted in Table 5. By applying equation (10), the 

prioritization order for RESs were determined to be 𝑟𝑠2 = 1 ≻ 𝑟𝑠4 = 0.44 ≻ 𝑟𝑠3 =

0.35 ≻ 𝑟𝑠1 = 0.32 ≻ 𝑟𝑠5 = 0. When 𝜃 = 2.5, the net dominance is calculated using equations 

(8)-(9), as shown in Table 5. Based on the net dominance matrix, the prioritization order is 

calculated as 𝑟𝑠3 = 1 ≻ 𝑟𝑠4 = 0.72 ≻ 𝑟𝑠1 = 0.34 ≻ 𝑟𝑠5 = 0.25 ≻ 𝑟𝑠2 = 0. 

Table 5: Net Dominance for different values of 𝜃. 

RESs 𝑟𝑠1 𝑟𝑠2 𝑟𝑠3 𝑟𝑠4 𝑟𝑠5 

𝜃 = 1 𝜃 = 2.5 𝜃 = 1 𝜃 = 2.5 𝜃 = 1 𝜃 = 2.5 𝜃 = 1 𝜃 = 2.5 𝜃 = 1 𝜃 = 2.5 

𝑟𝑠1  0 0 2.334 2.6568 2.2967 6.1924 2.3093 6.2057 2.2703 3.2447 

𝑟𝑠2 2.3935 5.9706 0 0 2.32 5.8923 2.3313 5.9042 2.3694 5.945 

𝑟𝑠3 2.2436 2.2436 2.332 2.6547 0 0 2.2802 2.2802 2.2578 2.2578 

𝑟𝑠4 2.2431 2.2431 2.3323 2.655 2.2987 6.1945 0 0 2.2574 2.2574 

𝑟𝑠5 2.3641 5.2908 2.3334 2.6561 2.2974 6.1932 2.3099 6.2064 0 0 

 

4. Comparative study: Proposed framework vs. exisisting methods 

The current section compares the proposed framework with existing frameworks for RES 

evaluation. To maintain homogeneity, the proposed framework is compared with methods 

published on the PF-VIKOR method (Rani et al., 2019), Z-number-based COPRAS method 

(Chatterjee & Kar, 2018), IF-TOPSIS method (Aikhuele et al., 2019) and PF-WASPAS 

method (Ilbahar et al., 2020). Based on the investigation, it is evident that the proposed 

framework is a direct generalization of the work performed by Rani et al. (2019). 

Table 6: Aggregated preferences using the q-ROFWMM operator 

𝑑𝑚123 𝑟𝑠1  𝑟𝑠2 𝑟𝑠3 𝑟𝑠4 𝑟𝑠5 

𝑎𝑡1 (0.4477,0.9324) (0.4244,0.9402) (0.44,0.9302) (0.4289,0.9342) (0.4399,0.9336) 

𝑎𝑡2 (0.4583,0.9304) (0.4305,0.9387) (0.4421,0.93) (0.4355,0.9334) (0.4434,0.933) 

𝑎𝑡3 (0.4538,0.93) (0.4332,0.9377) (0.4418,0.9284) (0.4297,0.9334) (0.4402,0.9324) 

𝑎𝑡4 (0.4608,0.9354) (0.4361,0.9434) (0.4475,0.9345) (0.4359,0.9396) (0.4478,0.9379) 

𝑎𝑡5 (0.4502,0.9316) (0.4233,0.9406) (0.4338,0.9308) (0.4295,0.9351) (0.4396,0.9337) 

𝑎𝑡6 (0.4421,0.9419) (0.4229,0.9425) (0.4305,0.9418) (0.4152,0.9469) (0.4275,0.9453) 

𝑎𝑡7 (0.4477,0.931) (0.4215,0.941) (0.4338,0.9306) (0.4269,0.9343) (0.4391,0.9328) 

𝑎𝑡8 (0.4606,0.9296) (0.4367,0.9377) (0.4465,0.9285) (0.4366,0.9332) (0.4484,0.9311) 

𝑎𝑡9 (0.4595,0.9307) (0.438,0.94) (0.448,0.9301) (0.4363,0.9352) (0.4466,0.9337) 

𝑎𝑡10 (0.4587,0.932) (0.4381,0.9409) (0.4476,0.9316) (0.4337,0.9368) (0.4456,0.9344) 

𝑎𝑡11 (0.4604,0.9302) (0.4371,0.9389) (0.4482,0.9292) (0.4352,0.9343) (0.4469,0.9326) 

𝑎𝑡12 (0.466,0.9286) (0.4414,0.9371) (0.4525,0.9277) (0.4414,0.9327) (0.4528,0.931) 



Table 6 depicts the aggregated values when DM weights from the work of Rani et al. 

(2019) are considered. Based on these values, net dominance is calculated by applying 

Equations (8)-(10), which is shown in Table 7 at 𝜃 = 1 and 𝜃 = 2.5, respectively. The 

weights of the attributes are considered from the work of Rani et al. (2019), and the 

prioritization orders are given by 𝑟𝑠2 = 1 ≻ 𝑟𝑠1 = 0.71 ≻ 𝑟𝑠5 = 0.63 ≻ 𝑟𝑠4 = 0.16 ≻ 𝑟𝑠3 =

0 and 𝑟𝑠3 = 1 ≻ 𝑟𝑠4 = 0.71 ≻ 𝑟𝑠5 = 0.37 ≻ 𝑟𝑠1 = 0.23 ≻ 𝑟𝑠2 = 0. 

Table 7: Net Dominance for different values of 𝜃. 

RESs 𝑟𝑠1 𝑟𝑠2 𝑟𝑠3 𝑟𝑠4 𝑟𝑠5 

 𝜃 = 1 𝜃 = 2.5 𝜃 = 1 𝜃 = 2.5 𝜃 = 1 𝜃 = 2.5 𝜃 = 1 𝜃 = 2.5 𝜃 = 1 𝜃 = 2.5 

𝑟𝑠1  0 0 2.3663 2.6774 2.0406 5.7989 1.9809 5.7279 2.0893 5.5334 

𝑟𝑠2 2.1392 5.5909 0 0 2.095 5.5414 2.046 5.4834 2.089 5.5332 

𝑟𝑠3 2.3467 2.3467 2.3654 2.6766 0 0 2.4115 2.4115 2.3813 2.3813 

𝑟𝑠4 2.3476 2.3476 2.365 2.6762 2.0407 5.7991 0 0 2.3816 2.3816 

𝑟𝑠5 2.2971 2.6101 2.3653 2.6765 2.0412 5.7997 1.9825 5.7298 0 0 

Table 8 compares the developed framework with existing frameworks. Certain 

advantages/innovations of the proposed framework can be seen in Table 8, which are detailed 

as follows. Firstly, the q-ROFI is a flexible preference style that is generalized and allows 

DMs to express their choice on each alternative freely. Secondly, existing methods work on 

the assumption that all data (preferences) are available. However, in practical MADM 

problems, this may not be true. Unlike existing methods, the proposed framework considers 

missing values and imputes them systematically using a case-based method. Further, unlike 

in existing methods, weights are computed by capturing both hesitation and partial 

information. Later, the proposed framework aggregates preferences by accurately capturing 

the interrelationship among attributes, which is lacking in existing methods. Finally, RESs 

are prioritized by extending the TODIM method to q-ROFI, which utilizes a dominance 

measure to calculate rank values. This replicates human cognition and produces values that 

are broader and make backup management sensible and effective. 

To establish the efficacy of the proposed framework, it was compared in a sensitivity analysis 

to the framework by Rani et al. (2019). The weights of attributes and DMs suggested in the 

work of Rani et al. (2019) were used in the proposed framework. Based on the analysis, the 

RES ranked highest is 𝑟𝑠2 when 𝜃 = 1 and 𝑟𝑠3 when 𝜃 = 2.5 remains unaltered even when 

the weights of attributes and DMs are changed (weights were adopted from Rani et al. 

(2019)). 



 
Table 8: Investigation of theoretical factors: Proposed vs. Other extant methods  

Context Methods 

Proposed (Rani et al., 

2019) 

(Chatterjee 

& Kar, 

2018) 

(Rani et al., 

2020) 

(Zhang et al., 

2019) 

(Fossile, et 

al., 2020) 

Data q-ROFI PFI Z number Fuzzy 

number 

Cloud model Fuzzy 

number 

Missing data Considered by 

the framework 

Not considered by the methods 

Imputation Done 

systematically 

using a case-

based method 

Not calculated 

Operator Muirhead 

mean 

Weighted 

average 

Min-max Weighted 

average 

No No 

DMs’ weights Programming 

model 

Score 

measure 

No Score 

measure 

No No 

Attributes’ 

weights 

Gini index Divergence 

method 

Entropy 

measure 

Divergence 

measure 

Mathematical 

model 

Mathematical 

model 

Prioritization TODIM VIKOR COPRAS TOPSIS TODIM Mathematical 

model 

Theme of 

prioritization 

Dominance 

theory 

Compromise 

solution 

Utility 

theory 

Compromise 

solution 

Dominance 

theory 

FI tradeoff 

Interrelationship Captured 

among 

attributes 

Not captured 

Information on 

each DM 

Partial 

information 

about DMs is 

used 

Information not utilized effectively 

Flexibility High, due to 

usage of a 

generalized 

model 

Low, due to usage of a non-generalized model 

 To recognize the strengths of the proposed framework  compared to existing methods with q-

ROFIs, we here discuss several parameters. These values were ranked based on Spearman 

correlation to determine the consistency of the developed framework. Fig. 2 shows that the 

proposed framework is highly reliable compared to the already developed methods using q-

ROFIs. For a useful and relevant comparison we chose to compare the proposed framework 

with those of the existing methods that were most similar, thus we considered these methods: 

q-ROF-WDBA method (Peng et al., 2019), q-ROFI-hybrid method (Liu, et al., 2018), q-

ROFI-Muirhead mean (Wang et al., 2019b) and q-ROFI-Bonferroni mean ( Liu & Liu, 2018). 

Fig. 2 shows that proposed framework is highly consistent with existing methods. The 

values are given by (1.0, 0.1, 1.0, 0.9, 0.3, 0.9). The prioritization order deviates with 

variation in the 𝜃 values. According to the work of Fan et al. (2013), the values of 𝜃 are 1 and 

2.5.  



 

 
Fig.2 Correlation plot from Spearman correlation – Diagonals are histograms, and Non-diagonals are scatter 

plots. Values at the top left are 𝑹 values. 

 
Fig.3 Standard deviation value analysis - Broadness test 

Finally, a broadness test is conducted through a simulation study. 400 matrices of 

order 5× 12 are simulated with linguistic information, and its corresponding q-ROFIs and 

Pythagorean fuzzy information (PFI) are used. A rank value set is determined for each 

matrix, which forms a vector of order 1× 400, whose standard deviation is calculated, shown 

in Fig. 3. Based on Fig. 3, the proposed framework produces broad rank values compared to 

its close counterpart Rani et al. (2019). The main reasons for this is the flexibility of q-ROFI 



over PFI and the capacity of the proposed framework to capture the interrelationship and 

hesitation among the preference distributions. 

5. Conclusion and implications 

This section provides the concluding remarks along with valuable policy implications to 

clearly understand the novelties of the propoed framework and the need for rational selection 

of RESs. 

5.1. The relevance of the proposed framework 

In this paper a new decision framework was developed for systematic evaluation of RESs, 

using q-ROFIs. To reduce subjective randomness, linguistic preferences are transformed into 

q-ROFIs and are given as input to the framework. Due to hesitation and confusion being 

common in practical RES selection, missing values are implicit. This problem is addressed in 

the proposed framework, unlike in the existing selection models for RES. Further, the 

missing values are imputed systematically using case-based methods. Next, attribute weights 

and DMs’ importance weights are calculated systematically by considering the hesitation and 

partial information from the DMs. Preferences from DMs are aggregated by reflecting the 

interdependencies among DMs, this is lacking in existing models. Finally, RESs are 

prioritized by applying the TODIM method to q-ROFIs. This method prioritizes RESs based 

on the dominance measure, which closely resembles the human cognition.  

From this paper, it is inferred that the proposed framework is moderately stable even 

after suitable deviations are made to the DMs’ and attributes’ weights. This is evident from 

the prioritization order obtained by using weights from the proposed framework as well as 

from Rani et al. (2019); consistent with existing methods under q-ROFI. This is inferred from 

the Spearman correlation (Fig. 2); produces broad rank values for effective backup 

management compared to the decision model of Rani et al. (2019). This is conclusive based 

on the standard deviation analysis (refer Fig.3). 

5.2. Policies implications relevant for RESs in India 

Initially, renewable energy (RE), such as wind energy, solar energy, biomass energy, and 

geothermal heat, is based on natural processes (Kaya & Kahraman, 2010). Various 

developing nations utilize such types of energy to reduce the carbon footprint, which in turn 

mitigates global warming and creates societies with sophisticated sustainability. RE is 

associated with various technologies that enhance efficiency and reduce implementation 



overhead (Alcayde et al., 2018). RE policies and strategies implemented by a nation can help 

the energy sector grow. India benefits from a large geographic distribution of ￼￼. To achieve 

sustainability and environmental goals more RESs are required, and their exploration is a 

substantial task. A stable increase in the availability of RE was recently achieved, due to 

effective initiatives from the Indian administration (Mishra et al., 2019).  

Official assessments state that by 2022 the overall share of RE will reach 15.9%. In 

India, three states – Karnataka, Tamil Nadu and Gujarat – mounted as leaders to  RES power 

generation. The three states are the responsible for most of the enormous growth in RESs 

prospective during last two decades. To achieve India's goal of 175 GW production from 

RESs by 2022, those three states are working continuously. The Karnataka government 

promises to offer 24/7 electricity for the whole state by 2020. The government launched 

“KREDL 2009-2014” to create and employ the produced energy in a creative way. In that 

five years plan, the target was to reach around 1970 MW. A Green Energy Fund, called 

“Akshaya Shakthi Nidhi”, has been established by KDREL to assist the development of the 

project with regards to funding and energy preservation (KREDL report, 2019a). 

Solar energy production is one of the encouraged hybrid technologies (Sridharan et al., 

2018). For promoting the development of solar power, Jawaharlal Nehru National Solar 

Mission (JNNSM) was established by the Government of India (GoI) in 2010-2011. 

Originally, the GOI had a target of employing grid-connected solar power of 20,000 MW by 

2020, but in 2015 the goal was extended to 1,00,000 MW (Quitzow, 2015). Karnataka has 

generated nearly 51 MW through roof-top solar projects (Jakhar et al., 2018). In addition, the 

Karnataka is manufacturing the world’s largest solar park in Tumkur, to generate 2000 MW 

of solar power for irrigation (KREDL, 2019b). Furthermore, it is evident that Karnataka is the 

leading  producer of biomass power in India, followed by Tamil Nadu and Gujarat (MNRE, 

2019). The main reason for the high generation of biomass power in Karnataka is the 

availability of high quantity of raw materials from the Western Ghats (Madugundu et al., 

2008). A pioneering structure called tail-end grid is being proposed by the GoI, and has been 

adopted on large plants. When considering energy transmission losses, smaller plants would 

be a better choice for future projects. To illustrate; the smaller plants of 100 KW to 2 MW 

capacity would mitigate the losses by 5-7% compared with plants with a massive capacity of 

50-100 MW – and at the same time, the smaller plants still manage voltage and frequency 

issues.  



By 2022, the projected production potential of small hydro power (SHP) is nearly 

15000 MW, and 5718 sites are recognized. Approximately 285 projects of around 940 MW 

are in introductory stages. The goal is an addition of 300 MW per year, of which 70% is from 

the private regions (Garg, 2012).  

When it comes to solar energy, the production capacity is increased every day.  One of 

the JNNSM’s goals is to install 20 million square meters solar thermal collector areas, and to 

establish 20 million solar lighting systems with an off-grid capacity of 2000 MW by 2022 

(Khare et al., 2013).  

5.3. On the results of the study 

By looking at which attributes received the highest weight value in the study, it was 

inferred that the following attributes were the most important: feasibility, pollutant emission, 

urge for waste disposal, water pollution, economic risk, security, and sustainable energy. 

These attributes had a relative importance value of 0.085. Following them with a relative 

importance value of 0.081 were land disruption, durability, adaptability to energy policy, and 

cost. Based on these results it is apparent that the DMs have similar hesitation/confusion on 

each attribute. This iscaptured by the Gini index, and is presented as a relative importance 

value of each attribute.  

Moreover, comparing the proposed framework to existing methods highlights the 

usefulness of the proposed framework. The comparative study results show that biomass 

energy was the optimal alternative among other RESs when 𝜃 = 1, while solar energy was 

the best alternative, when 𝜃 = 2.5. 

Further, the prioritization order of different methods with q-ROFI was presented, and 

different factors such as consistency, stability, and broadness of the rank value set were 

discussed to realize the strengths of the proposed framework.  

5.4. General info on the state of RESs in India 

In global preference order, the RE sector has been acknowledged as being the fourth 

most remarkable sector (Sharma, 2017). India was ranked fifth for established RE capacity, 

mainly hydro-electric energy, in October 2018 (Luthra et al., 2015). In recent years, the 

amount of RE generators installed has grown considerably, with a compound annual growth 

rate (CAGR) of 19.78% between  2014 and 2018. 



In August 2018, more than 122.1 TWh of electricity was produced, of which 16.3 TWh 

were from the RE sector. Between 2018 and 2019, the  energy generation from RESs for 

August increased with 51% (IEEFA, 2018). The use of biomass as a RES has increased 

during the last decade; statistically, it accounts for approximately 14% of total energy 

utilization worldwide (Parikka, 2004). Researchers have stated that by 2050, almost 15-50% 

of the prime energy used will be produced from biomass. Several nations apply the use of RE 

as a part of the political agenda. Each year, power generation from biomass in India receives 

enormous investments of more than INR 600 crores; it generates over 5,000 million 

electricity units, which has generated employment of over 10 million man-days per year, 

predominantly in Indian rural sectors (Kumar et al., 2010).  

MNRE has an efficient collaboration with the Indian RE development agency (IREDA) 

in supporting the use of all solar energy structures and increasing the allocation of REs from 

the Indian perspective (Mishra, 2018). 

Additionally, MNRE has developed a comprehensive plan to make India able to reach 

the 100 GW target by 2022 (Rani et al., 2019). Plants with a  capacity of 23.12GW were 

installed in India by July 2018. Currently, the 10GW projects are being realized, and plans 

are being made for the 24.4 GW projects.  

India is fortunate to be in the equatorial region with its abundant sunlight; India receives 

over 5000 trillion kWh of solar enegy per year (Kumar et al., 2010).  There is a need for a 

strategy for the evaluation of combined biomass and solar energy power plants.  

5.5. Limitations of the proposed framework 

Certain limitations of the proposed framework are  important to be aware of. A practical 

difficulty is that DMs must be trained with the preference style to properly utilize the 

flexibility and potential of q-ROFIs . The shortcomings of the proposed methodologies 

mentioned in subsections 2.2 to 2.6 should also be considered.  

Generalized preference styles, such as interval-valued probabilistic linguistic term sets 

and double hierarchy hesitant fuzzy linguistic sets, can be adopted as preference information 

for the evaluation of RESs.   

5.6. Suggestions for further research 



The proposed framework will serve as a useful tool for selecting the optimal RES 

under multi-criteria conditions and uncertain environments. In further research, more RESs 

and more attributes should be evaluated.  
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