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Abstract—We consider the problem of testing two hy-
potheses of quantum operations in a setting of many
uses where an arbitrary prior probability distribution is
given. The Chernoff exponent for quantum operations is
investigated to track the minimal average error probability
of discriminating two quantum operations asymptotically.
We answer the question, “When is the Chernoff exponent
for quantum operations finite?” We show that either two
quantum operations can be perfectly distinguished with
finite uses, or the minimal discrimination error decays
exponentially with respect to the number of uses asymptot-
ically. That is, the Chernoff exponent is finite if and only if
the quantum operations can not be perfectly distinguished
with finite uses. This rules out the possibility of super-
exponential decay of error probability. Upper bounds of the
Chernoff exponent for quantum operations are provided.

I. INTRODUCTION

A fundamental problem in quantum information the-
ory is to test a device that may be prepared for im-
plementing one of many quantum operations. The test-
ing treated in the framework of quantum mechanics is
performed by inputting a quantum state and performing
a quantum measurement. The general noncommutative
feature and the complex structure of quantum operations
make quantum statistics a much richer field than its
classical counterpart.

In the degenerate case where the outputs of the
quantum operations are fixed, the freedom of choosing
input states becomes useless. The asymptotic behavior
of the average error, in discriminating a set of quantum
states {ρ⊗n1 , . . . , ρ⊗nr } with prior probability distribution
{Π1, . . . ,Πr} is of great interest. In [26], Parthasarathy
showed that the average error decays exponentially,
asymptotically. Significant efforts have been made to
identify the Chernoff exponent as the optimal error

exponent. In two breakthrough papers, [3] and [25], the
closed-form of the optimal error exponent was obtained,
which can be regarded as the quantum generalization of
the Chernoff bound in classical hypothesis testing [6].
Li proved that multiple Chernoff exponent equals the
minimal mutual Chernoff exponent [22].

It is highly desirable to generalize the results of
quantum states to quantum operations. Given that consid-
erable experimental effort has been devoted to the field
of quantum mechanics to prepare quantum systems and
measure quantum states, it is of fundamental importance
to develop a theory that can discriminate the different
quantum operations. We note that for classical channel
discrimination, the optimal exponential error rate prob-
lem has been well understood, where it is proven that
adaptive choice does not improve the exponential error
rate in these settings [13].

Where quantum operations are only allowed to be
used once, the problem has been extensively studied,
with fruitful results. By employing Holevo-Helstrom’s
celebrated theorem on the one-copy quantum state dis-
crimination [14], [17], a completely bounded trace norm,
known as the diamond norm, was introduced to char-
acterize the difference between quantum channels by
Kitaev [19]. This norm becomes a fundamental tool in
almost all aspects of quantum information science [2],
[31], [32], [27] since it is the most physically meaningful
notion of distance between quantum operations.

The problem becomes much more complicated when
quantum operations are used multiple times [15], [7],
[28]. Much effort has been devoted to characterizing the
conditions of perfect distinguishability, in the sense that
two quantum operations can be distinguished without
error by a finite number of uses [1], [9], [37], [21], [20].
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Fig. 1. Model of discriminating two quantum operations E and F on
system Q with n uses by employing an arbitrary ancilla system R.
Gi are arbitrary quantum operations applied on the joint system RQ
and between two uses of the device. One can show that any arbitrary
adaptive strategy can be translated into this model, by following the
fact that any quantum measurement can be fully implemented by a
quantum operation with outcomes stored as qubits.

Unlike classical channel discrimination, unitary opera-
tions exist that cannot be distinguished without error for
single-use, while multiple uses can help achieve perfect
discrimination. A complete solution to this problem is
obtained in [10] with a feasible, necessary, and sufficient
condition.

In this paper, we investigate the concept of Chernoff
exponent for quantum operations to characterize the
asymptotic behavior of the average error probability of
distinguishing given quantum operations under any prior
probability distribution. Suppose we have a quantum
device that is secretly chosen from {E ,F}, and a known
set of two quantum operations according to a prior
probability distribution {Π0,Π1}. Our goal is to identify
whether the device is E or F by using this device
many times. We explore the Chernoff exponent for two
quantum operations E and F to track the optimal error
probability by using the following definition:

ξE,F = − lim
n→∞

logPerr,min,n
n

(1)

where Perr,min,n denotes the infimum discrimination
error over all possible output states ρn and σn as
illustrated in Figure 1 where the quantum device is used
n time.

Notice that all possible strategies can be described by,
or translate to, the model showed in Figure 1 with a
sufficiently large ancilla system. This model is the most
general scheme, and quantum operations Gi are freely
chosen. For instance, parallel uses of devices can always
be simulated by sequential uses and employing swap
operators.

We show that the Chernoff exponent for quantum
operations is finite if and only if they cannot be dis-
tinguished perfectly with finite uses. More precisely, we
show that the average error probability decays at most,
according to exponential function for quantum opera-
tions, if the quantum operations can not be perfectly dis-

tinguishable. This indicates that the error probability can
never decay super-exponentially, such as exp(−αn2).
Computable upper bounds on the Chernoff exponent for
quantum operations are provided. Finally, we generalize
our results to deal with multiple quantum operations.

II. NOTATIONS AND PRELIMINARIES

We use the symbols H,X ,Y,Z to denote finite-
dimensional Hilbert spaces over complex numbers and
L (H) to denote the set of linear operators mapping
from H into itself. For Hermitian matrices A,B, we use
〈A,B〉 = Tr(A†B) = Tr(AB) to denote their inner
product. Let Pos(H) ⊂ L (H) be the set of positive
(semidefinite) matrices, and D(H) ⊂ Pos(H) is the set
of positive matrices with trace one. A pure quantum
state of H is just a normalized vector |ψ〉 ∈ H, while
a general quantum state is characterized by a density
operator ρ ∈ D(H). For simplicity, we use ψ to represent
the density operator of a pure state |ψ〉 which is just the
projector ψ = |ψ〉〈ψ|. A density operator ρ can always
be decomposed into a convex combination of pure states:

ρ =

n∑
k=1

pk|ψk〉〈ψk|,

where the coefficients pk are strictly positive numbers
and add up to one. The support of ρ is defined as
supp(ρ) = span{|ψk〉 : 1 ≤ k ≤ n}. We say two
pure states |ψ〉 and |φ〉 are orthogonal if and only if
their inner product 〈ψ, φ〉 is equal to zero, and the
orthogonality of two density operators ρ and σ is defined
by the orthogonality of their supports, namely, ρ and
σ are orthogonal if and only if supp(ρ) ⊥ supp(σ).
Two density operators ρ and σ are said to be disjoint if
supp(ρ) ∩ supp(σ) = {0} and joint if the intersection
of their support contains some non-zero vectors.

There are two commonly used measures to charac-
terize the difference between the quantum states: trace
distance and fidelity. The trace distance D between two
density operators ρ and σ is defined as

D(ρ, σ) ≡ 1

2
Tr|ρ− σ|

where we define |A| ≡
√
A†A to be the positive square

root of A†A.

The fidelity of states ρ and σ is defined to be

F (ρ, σ) ≡ Tr
√√

ρσ
√
ρ.

For pure states |ψ〉 and |φ〉, F (ψ, φ) = |〈ψ|φ〉|.

The strong concavity property for the fidelity is quite
useful, which can be formalized as
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Fact 1 ([24]). For quantum states ρi, σi and probability
distributions (p0, p1, · · · , pn) and (q0, q1, · · · , qn)

F

(∑
i

piρi,
∑
i

qiσi

)
≥

n∑
i=0

√
piqiF (ρi, σi).

If ρi = ψi and σi = φi are all pure states, we obtain

F

(∑
i

piψi,
∑
i

qiφi

)
≥

n∑
i=0

√
piqiF (ψi, φi)

=

n∑
i=0

|〈√piψi|
√
qiφi〉|.

Definition 1. We say that a pure state |ψ〉 ∈ HA ⊗HB
is a purification of some state ρ if trA(ψ) = ρ.

Fact 2 (Uhlmann’s theorem, [29]). Given quantum states
ρ, σ, and a purification |ψ〉 of ρ, it holds that F (ρ, σ) =
max|φ〉 |〈φ|ψ〉|, where the maximum is ranging over all
purifications of σ.

The following fact connects the trace distance and the
fidelity between two states.

Fact 3 (Fuchs-van de Graaf inequalities [11]). For
quantum states ρ and σ, it holds that

1− F (ρ, σ) ≤ D(ρ, σ) ≤
√

1− F (ρ, σ)2.

For pure states |φ〉 and |ψ〉, we have

D(φ, ψ) =
√

1− F (φ, ψ)2 =
√

1− |〈φ|ψ〉|2.

The trace distance is a static measure quantifying how
close two quantum states are and is closely related to the
discrimination of quantum states. Let us consider the
two hypotheses, H0 and H1. Hypothesis H0 assumes
that a given unknown quantum state is equal to ρ0, and
Hypothesis H1 assumes that a given unknown quantum
state is equal to ρ1. We assume that the prior probability
distribution of ρ0 and ρ1 are Π0 and Π1, respectively,
which add up to one.

A physical strategy to discriminate between these two
hypotheses is to perform a positive-operator valued mea-
sure (POVM) on the quantum state with two outcomes,
0 and 1. Such a POVM has two elements {E0, E1}
satisfying E0, E1 ∈ Pos(H) and E0 + E1 = I , where
I is the identity matrix of H. The aim of quantum state
discrimination is to find the elements E0 and E1 that
minimize the total error Perr, which is

Perr = Π0Tr[E1ρ0] + Π1Tr[E0ρ1].

This optimal error has been identified by Helstrom as
expressed in the following equation

Perr,min =
1

2
(1− Tr|Π1ρ1 −Π0ρ0|) .

A quantum operation E from L (H) to L (Z) is a
completely positive and trace-preserving map used to
describe the evolution of an open quantum system. A
quantum operation E can always be represented using
the Kraus representation as

E(ρ) =

k∑
i=1

EiρE
†
i ,

where {Ei}i=1,··· ,k are the Kraus operators of E satis-
fying

∑k
i=1E

†
iEi = I , the identity of H.

The following fact states that the fidelity between two
states is non-decreasing under quantum operations.

Fact 4 ([24]). For states ρ, σ, and quantum operation
E(·), it holds that

F (E(ρ), E(σ)) ≥ F (ρ, σ).

Quantum operations E and F are said to be perfectly
distinguishable with finite uses if there exists a strategy
illustrated as Figure 1 such that σn and ρn are orthogo-
nal.

Two conditions introduced by [10] characterize the
perfect distinguishability between quantum operations.

Definition 2. Two quantum operations, E and F , acting
on the same principal system, denoted by Q, are said
to be disjoint if there is an auxiliary system R, and
a pure state

∣∣ψRQ〉, such that (IR ⊗ EQ)(ψRQ) and
(IR ⊗FQ)(ψRQ) are disjoint, where IR is the identity
operation on R, and the superscripts only identify which
systems the operations acted on. Otherwise, they are
called joint.

Intuitively, this disjointness guarantees that the outputs
do not have a common part with the carefully chosen
input. This disjointness is necessary to achieve perfect
distinguishability. Otherwise, according to an inductive
argument, there is always a non-zero common part
between the outputs for an arbitrary strategy with finite
uses.

Another relationship is to ensure that non-orthogonal
states, ρ and σ, exist such that (IR ⊗ EQ)(ρRQ) and
(IR ⊗ FQ)(σRQ) become orthogonal, then one can
distinguish (IR ⊗ EQ)(ρRQ) and (IR ⊗ FQ)(σRQ)
without error. This is the final step of any strategy to
achieve perfect distinguishability between E and F .
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Interestingly, these two conditions are not only neces-
sary but also sufficient for the perfect distinguishability
between quantum operations [10] .

Proposition 1. Two quantum operations E and F are
perfectly distinguishable if and only if: 1). They are
disjoint; 2). They can map some non-orthogonal states
into orthogonal states.

We remark here that ancillary systems are also allowed
to achieve perfect discrimination.

In the following, we give an analytical characterization
of the negation of the second condition, i.e., that E and F
cannot map some non-orthogonal states into orthogonal
states even with the help of ancillary system.

Remark 1. For E(·) =
∑
iEi ·E

†
i and F(·) =

∑
j Fj ·

F †j , Condition 2) of Proposition 1 is equivalent to I /∈
span{(Ei†Fj); 1 ≤ i, j ≤ m}.

We want to emphasize this proof of the characteriza-
tion is precisely the same as given in [10]. We provide
the following argument for the readers’ convenience.

Without loss of generality, we assume that E and F
have the same number of Kraus operators by adding zero
Kraus operators, if necessary. That is, E(·) =

∑m
i=1Ei ·

E†i and F(·) =
∑m
j=1 Fj · F

†
j , cannot make non-

orthogonal states orthogonal. That is, if ρRQ and σRQ

are not orthogonal, then (IR ⊗ EQ)(ρRQ) and (IR ⊗
FQ)(σRQ) are not orthogonal. Equivalently, if pure
states ρRQ = |ψRQ〉〈ψRQ| and σRQ = |φRQ〉〈φRQ|
are not orthogonal, then (IR ⊗ EQ)(ρRQ) and (IR ⊗
FQ)(σRQ) are not orthogonal. In other words,

Tr[(IR ⊗ EQ)(ψRQ)(IR ⊗FQ)(φRQ)] = 0

implies
〈ψRQ|φRQ〉 = 0.

That is, if ∀1 ≤ i, j ≤ m,

(IR ⊗ EQi )|ψRQ〉〈ψRQ|(IR ⊗ EQi )†

is orthgonal to

(IR ⊗ FQj )|φRQ〉〈φRQ|(IR ⊗ FQj )†],

then

〈ψRQ|φRQ〉 = 0.

The above condition is equivalent to for
∣∣ψRQ〉 and∣∣φRQ〉, if

〈ψRQ|(IR ⊗ EQi )†(IR ⊗ FQj )
∣∣φRQ〉 = 0

for all 1 ≤ i, j ≤ m, then

〈ψRQ|φRQ〉 = 0.

That is, if ∀1 ≤ i, j ≤ m
〈ψRQ|(IR ⊗ Ei†Fj)

∣∣φRQ〉 = 0,

then
〈ψRQ|φRQ〉 = 0.

For any M ∈ L (HQ), one can find
∣∣φRQ〉 and

∣∣ψRQ〉
such that M = TrR |φRQ〉〈ψRQ|. We know that ∀1 ≤
i, j ≤ m

Tr(MEi
†Fj) = 〈ψRQ|(IR ⊗ Ei†Fj)

∣∣φRQ〉 = 0,

implies
TrM = 0.

That is satisfied if and only if IRQ ∈ span{(IR ⊗
Ei
†Fj); 1 ≤ i, j ≤ m}, which in turn is equivalent to

I ∈ span{E†iFj ; 1 ≤ i, j ≤ m}.

Therefore, E and F can map some non-orthogonal
states into orthogonal states, Condition 2) of Proposition
1, is equivalent to I /∈ span{(Ei†Fj); 1 ≤ i, j ≤ m}.

III. TWO USEFUL LEMMAS

The following lemma shows that if two quantum
operations are joint, then for any input state, the output
states always have a common semi-definite positive
component whose size is positive and depends only on
the operations.

Lemma 1. If E and F are joint, there exists η > 0,
depending only on E and F , such that for any quantum
state ρ on a potentially larger Hilbert space RQ, there
is a matrix A, such that 0 ≤ A ≤ (IR⊗E)(ρRQ), (IR⊗
F)(ρRQ) and Tr(A) ≥ η.

Proof. It is straightforward to verify that we only need to
consider ρ to be a pure state. Thus, according to Schmidt
decomposition, we can assume that ρ is a quantum state
in HRQ = H′⊗H with the dimension of H′ being equal
to the dimension of H, where H is the Hilbert space of
Q.

Our goal is to show

η > 0

where η is defined as

η := inf
ρ∈D(HRQ)

sup
0≤X≤(IR⊗E)(ρRQ),

0≤X≤(IR⊗F)(ρRQ)

TrX

= inf
ρ∈D(HRQ)

max
0≤X≤(IR⊗E)(ρRQ),

0≤X≤(IR⊗F)(ρRQ)

TrX.
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To prove this, we notice that for a fixed input ρRQ, the
optimization problem

max
0≤X≤(IR⊗E)(ρRQ),

0≤X≤(IR⊗F)(ρRQ)

TrX

can be formulated as the following semidefinite program
[31]:

Primal problem

maximize: 〈I,X〉
subject to: Φ(X) ≤ B,

X ∈ Pos (HRQ) .
Dual problem

minimize: 〈B, Y 〉
subject to: Φ†(Y ) ≥ I,

Y ∈ Pos (HRQ ⊕HRQ) .

In the above formula, Φ is the super-operator

Φ : L (HRQ)→ L (HRQ ⊕HRQ)

as

Φ(X) =

(
X 0
0 X

)
,

where the adjoint super-operator

Φ† : L (HRQ ⊕HRQ)→ L (HRQ)

is given by

Φ†
(
Z ·
· W

)
= Z +W,

and

B =

(
(IR ⊗ E)(ρRQ) 0

0 (IR ⊗F)(ρRQ)

)
.

Choose Y = I > 0, then Φ†(Y ) = 2I > 0. This dual
program is strictly feasible. Thus, the primal value and
dual value are the same [38].

Now we are going back to the original problem by
considering the dual problem with ρRQ ranging over all
possible states.

Let B denote the following set{(
(IR ⊗ E)(ρRQ) 0

0 (IR ⊗F)(ρRQ)

)
: ρ ∈ D(HRQ)

}
.

B is a compact set because it is a closed bounded set in
a finite-dimensional space.

According to the compactness of B, we have the
following

inf
ρ∈D(HRQ)

max
0≤X≤(IR⊗E)(ρ),

0≤X≤(IR⊗F)(ρ)

TrX

= inf
B∈B

min
Φ†(Y )≥I,

Y ∈Pos(HRQ⊕HRQ)

〈B, Y 〉

= min
Φ†(Y )≥I,

Y ∈Pos(HRQ⊕HRQ)

inf
B∈B
〈B, Y 〉

= min
Φ†(Y )≥I,

Y ∈Pos(HRQ⊕HRQ)

min
B∈B
〈B, Y 〉

=〈B0, Y0〉,

for some B0 ∈ B and Y0 ∈ Pos (HRQ ⊕HRQ).

Let ρRQ0 be such that

Y0 =

(
M ·
· N

)
B0 =

(
(IR ⊗ E)(ρRQ0 ) 0

0 (IR ⊗ E)(ρRQ0 )

)
.

For ρRQ0 , the intersection of the supports of (IR ⊗
E)(ρRQ0 ) and (IR ⊗ F)(ρRQ0 ) has a non-zero element.
It indicates that there exists a non-zero 0 ≤ G ≤
(IR ⊗ E)(ρRQ0 ), (IR ⊗F)(ρRQ0 ).

According to Φ†(Y0) ≥ I , we have M +N ≥ I . Let

η =〈B0, Y0〉
=〈(IR ⊗ E)(ρRQ0 ),M〉+ 〈(IR ⊗F)(ρRQ0 ), N〉
≥〈G,M〉+ 〈G,N〉
=〈G,M +N〉
≥〈G, I〉
= TrG > 0.

We can conclude that this η satisfies the wanted property.

The following observation shows that if I ∈
span{E†iFj}, then E and F cannot change the fidelity
of two quantum states significantly.

Lemma 2. If I ∈ span{E†iFj}, then, there exists ζ > 0,
depending only on E and F , such that for all ρ, σ on a
potentially larger Hilbert space RQ,

F ((IR ⊗ E)(ρRQ), (IR ⊗F)(σRQ)) ≥ ζF (ρ, σ).

Proof. The condition I ∈ span{E†iFj} leads us to the
existence of χi,j ∈ C such that

I =

m∑
i,j=1

χi,jE
†
iFj .
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Using polar decomposition of the coefficient matrix χi,j ,
we can always assume that

I =

m∑
i=1

χiE
†
iFi,

and χi ≥ 0. We use χ = maxi χi to denote the largest
χi.

For any ρRQ and σRQ, by Uhlmann’s Theorem 2,
there exist

∣∣ψRQTρ

〉
and

∣∣ψRQTσ

〉
being ρ and σ’s purifi-

cations respectively, and

F (ρRQ, σRQ) = F (ψRQTρ , ψRQTσ ) = |〈ψRQTρ |ψRQTσ 〉|.

Now we can have the following

F ((IR ⊗ E)(ρRQ), (IR ⊗F)(σRQ))

≥F ((IRT ⊗ E)(ψRQTρ ), (IRT ⊗F)(ψRQTσ ))

=F [

m∑
i=1

(IRT ⊗ Ei)ψRQTρ (IRT ⊗ Ei)†,

m∑
i=1

(IRT ⊗ Fi)ψRQTσ (IRT ⊗ Fi)†]

≥
m∑
i=1

F [(IRT ⊗ Ei)ψRQTρ (IRT ⊗ Ei)†,

(IRT ⊗ Fi)ψRQTσ (IRT ⊗ Fi)†]

=

m∑
i=1

|〈ψRQTρ |(IRT ⊗ Ei)†(IRT ⊗ Fi)|ψRQTσ 〉|

≥ 1

χ

m∑
i=1

|〈ψRQTρ |χi(IRT ⊗ E†iFi)|ψ
RQT
σ 〉|

≥ 1

χ
|〈ψRQTρ |(IRT ⊗ (

m∑
i=1

χiE
†
iFi)|ψ

RQT
σ 〉|

=
1

χ
|〈ψRQTρ |IRQT |ψRQTσ 〉|

=
1

χ
|〈ψRQTρ |ψRQTσ 〉|

=
1

χ
F (ψRQTρ , ψRQTσ )

=
1

χ
F (ρRQ, σRQ).

The first inequality is due to Fact 4, the monotonicity of
the fidelity under partial trace. The second inequality is
due to Fact 1, the strong concavity of the fidelity, and
positive homogeneity.

Therefore, we choose ζ = 1
χ .

IV. MAIN RESULTS

Our main result is as follows

Theorem 1. The Chernoff exponent for quantum op-
erations, Eq. 1, is finite if and only if they cannot be
distinguished perfectly.

For two distinct quantum operations, E and F , it is
straightforward to verify that Perr ≤ exp(−nξ′) for
some ξ′ > 0 by observing the following process. First,
one can always find an input state ρ such that E(ρ) and
F(ρ) are distinct. Then we feed ρ as input through the
device for n times. After that, the problem becomes to
distinguish E(ρ)⊗n and F(ρ)⊗n. Invoking the celebrated
result on the Chernoff exponent for quantum states, we
know that the error probability of distinguishing two
different quantum states with identical copies decays
according to an exponential function. Notice that this
protocol only provides an upper bound on the minimal
error probability of distinguishing E and F , so one can
conclude that Perr ≤ exp(−nξ′) for some ξ′ > 0.

The above arguments show that the error decays at
least exponentially. In other words, ξE,F is greater than
0. However, this scheme can be far from optimal. Per-
fect discrimination between unknown processes chosen
from a finite set is shown to be possible. For two
quantum operations that can be distinguished perfectly,
ξE,F = ∞, we prove that this is the only case where
ξE,F = ∞. Moreover, we provide an easy computable
upper bound of ξE,F for quantum operations that can not
be distinguished perfectly, i.e., Perr ≥ exp(−nξ), where
the parameter ξ is a positive constant that depends on the
two operations only.

Proof. The only if part of Theorem 1 is trivial. The if
part follows Proposition 1 in Section II, and we prove it
for prior probability distribution Π0 = Π1 = 1/2. Also,
we prove the Chernoff exponent is independent of a prior
distribution in Proposition 2.

To prove the only if part of Theorem 1 under dis-
tribution Π0 = Π1 = 1/2, we only need to show that
when either condition in Proposition 1 is violated, the
error probability is at least an exponential function of
the number of channel uses.

First, we suppose E and F are joint, in the sense that
the produced quantum states have non-zero overlapping
supports for any common input state, we show that there
exists η > 0 such that Perr,n ≥ ηn/2 in the following:

Refer to Figure 1 for our notations. By employing
Lemma 1, we observe that there exists 0 ≤ A1 ≤ ρ1, σ1

such that TrA1 ≥ η. Then, 0 ≤ A′1 = G1(A1) ≤ ρ′1, σ
′
1

such that TrA′1 = TrA1 ≥ η. Then, there exists 0 ≤
A2 ≤ ρ2, σ2 such that TrA2 ≥ η2. Thus, 0 ≤ A′2 =
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G2(A2) ≤ ρ′1, σ
′
1 such that TrA′2 = TrA2 ≥ η2 · · ·

There exists 0 ≤ An ≤ ρn, σn such that TrAn ≥ ηn.

By Helstrom’s celebrated result on state discrimination
[14], we know that the discrimination error satisfies the
following

Perr,min,n = inf
ρn,σn

1

2
(1− Tr |ρn − σn|

2
)

= inf
ρn,σn

1

2
(1− Tr |ρn −An − σn +An|

2
)

≥ inf
ρn,σn

1

2
(1− Tr(ρn −An) + Tr(σn −An)

2
)

=
TrAn

2

≥ ηn

2
.

The first inequality is according to the triangle inequality
and 0 ≤ An ≤ ρn, σn.

Second, suppose two quantum operations E and F
can not transform non-orthogonal states into orthogonal
states. This is equivalent to I ∈ span{E∗i Fj}, as
illustrated in Remark 1 at the end of Section II. We
show in the following that there exists µ > 0 such that
Perr,n ≥ µn/4. The proof of this part is according to the
observation that if two quantum operations cannot make
nonorthogonal states orthogonal, they cannot change
their fidelity significantly.

Refer to Figure 1 for our notations. By employing
Lemma 2, we observe that there exists ζ > 0 such
that after n uses of the unknown quantum operation, the
possible outcome states ρn and σn satisfy the following:

F (ρn, σn) ≥ ζF (ρ′n−1, σ
′
n−1)

≥ ζF (ρn−1, σn−1)

≥ ζ2F (ρ′n−2, σ
′
n−2)

· · ·
≥ ζn−1F (ρ1, σ1)

≥ ζnF (ψ,ψ)

= ζn,

where F (·, ·) denotes the fidelity of quantum states.

The first inequality is due to Lemma 2. The second
inequality is due to the monotonicity of fidelity under
any quantum operation.

According to the relation between fidelity and trace

distance, we have

Perr,min,n = inf
ρn,σn

1

2
(1− Tr |ρn − σn|/2)

≥ 1

2
(1−

√
1− ζ2n)

≥ ζ2n

4
,

where the minimization ranges across all possible output
ρn and σn.

Therefore, we can choose µ = ζ2.

Putting these two conditions together, we obtain that
for indistinguishable quantum operations E ,F under
uniform distribution,

ξE,F ≤ min{− log η,− logµ}. (2)

If we have more than two quantum operations, sup-
pose we have a quantum device that is secretly chosen
from {E1, · · · Er}, a known set of quantum operations
according to prior probability distribution {Π1, · · · ,Πr}.
Our goal is to see which quantum operation the quantum
device implements by using the device many times. The
definition of the Chernoff exponent for two quantum
operations Eq.(1) can be easily generalized into multiple
quantum operations, where Perr,min,n now is defined as
the infimum error probability for distinguishing multiple
quantum operations with n uses. One can prove that
the Chernoff exponent for multiple quantum operations
shares the same properties as the Chernoff exponent for
two quantum operations. This exponent does not depend
on the prior probability distribution, and it is infinite if
these quantum operations are mutually perfectly distin-
guishable. Moreover, it is, at most, the minimal mutual
Chernoff exponent for quantum operations.

Proposition 2. The Chernoff exponent for multiple quan-
tum operations, Eq. 1, does not depend on the prior
distribution. Moreover, the multi-channel Chernoff expo-
nent is upper bounded by the smallest pairwise Chernoff
exponent.

Proof. For prior (Π1,Π2, · · · ,Πr), Π1 ≥ Π2 ≥
· · ·Πr > 0 and fixed n, we use Perr,min,n,Π to
denote the infimum error probability. Perr,min,n de-
notes the infimum error probability for uniform prior
(1/r, 1/r, · · · , 1/r). For any discrimination scheme, we
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let 1−pn,i be the probability of correctly identifying the
i-th channel. Then we have

Π1

r∑
i=1

pn,i ≥
∑
i

Πipn,i ≥ Πr

r∑
i=1

pn,i ≥
Πr

2
(pn,k + pn,l)

for any 1 ≤ k, l ≤ r.

Since this inequality holds for the error probabilities
in any strategy, one can just take the infimum over all
strategies in each term of the inequality and have

rΠ1Perr,min,n ≥Perr,min,n,Π
≥rΠrPerr,min,n

≥ΠrPerr,min,n,{k,l}

Therefore,

− lim
n→∞

Perr,min,n
n

=− lim
n→∞

Perr,min,n,Π
n

≤− lim
n→∞

Perr,min,n,{k,l}

n
.

That is, the Chernoff exponent for multiple quantum
operations does not depend on prior.

According to the proof, we can also conclude that

Corollary 1. The Chernoff exponent for multiple quan-
tum operations, Eq. 1, is infinite if and only if the quan-
tum operations are mutually perfectly distinguishable.

Proof. Suppose we are given a quantum operation E
being one of the quantum operations E1, E2, · · · , Er,
and any two quantum operations can be distinguished
perfectly. Let a protocol produce orthogonal quantum
states ρ1 and ρ2 for quantum operations E1 and E2,
respectively.

Now we run the protocol on E and measure the output.
We employ the measurement which can distinguish ρ1

and ρ2 perfectly. If the measurement outcome corre-
sponds to ρ1, then we know E can not be E2; otherwise,
it can not be E1.

Therefore, via finite uses of E , we can eliminate one
candidate. By repeating this procedure, we can conclude
that the Chernoff exponent is ∞.

Otherwise, if two quantum operations, say E1 and
E2, can not be distinguished perfectly. According to
the proof of Proposition 2, the multi-channel Chernoff
exponent is upper bounded by the smallest pairwise
exponent which is no more than the Chernoff exponent
of E1 and E2, a finite number by Theorem 1.

V. CONCLUSION AND OPEN PROBLEMS

In this paper, we introduce the Chernoff exponent for
quantum operations. We show the Chernoff exponent
is finite if and only if the operations are not perfectly
distinguishable. More precisely, we provide computable
upper bounds of the Chernoff exponent by proving lower
bounds on the error probability of distinguishing quan-
tum operations with n uses. Our result is an asymptotic
generalization of the diamond norm.

There are several open questions. One relates to the
local operations and classical communication (LOCC)-
Chernoff distance. Motivated by the quantum Chernoff
theorem [3], [25], the LOCC-Chernoff exponent studies
the distinguishability of two bipartite mixed states under
the constraint of LOCC, in the limit of many copies
[8], [23]. There is a significant difference between the
LOCC Chernoff exponent and the standard Chernoff
exponent. Orthogonality does not indicate perfect LOCC
distinguishability. More precisely, there exist quantum
states which cannot be locally distinguished but mul-
ticopy makes them perfectly distinguishable [35], [36].
This behavior is similar to the discrimination of quantum
operations. A fundamental question regarding the LOCC
Chernoff exponent is still not answered: For two quan-
tum states that are not LOCC perfectly distinguishable,
even in the limit of many copies, does the LOCC
discrimination error always decay exponentially? The
first difficulty is we do not have a characterization of
LOCC distinguishability of quantum states, even though
this problem has been studied for more than 20 years
[34], [33], [12], [5], [30], [16], [4].

We thank the editor and the anonymous reviewers
whose comments have greatly improved this manuscript.
This work is supported by ARC Discovery Early Career
Researcher Award DE180100156 and ARC Discovery
Program DP210102449.
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