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—— Abstract

Verifying quantum systems has attracted a lot of interests in the last decades. In this paper, we
initialise the model checking of quantum continuous-time Markov chain (QCTMC). As a real-time
system, we specify the temporal properties on QCTMC by signal temporal logic (STL). To effectively
check the atomic propositions in STL, we develop a state-of-the-art real root isolation algorithm

under Schanuel’s conjecture; further, we check the general STL formula by interval operations with
a bottom-up fashion, whose query complexity turns out to be linear in the size of the input formula
by calling the real root isolation algorithm. A running example of an open quantum walk is provided
to demonstrate our method.

2012 ACM Subject Classification Theory of computation — Verification by model checking; Com-
puting methodologies — Symbolic and algebraic algorithms; Theory of computation — Quantum
computation theory

Keywords and phrases Model Checking, Formal Logic, Quantum Computing, Computer Algebra
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2021.13
Related Version Previous Version: https://arxiv.org/abs/2105.00382

Funding Ming Xu: The corresponding author M. X. is supported by the National Natural Sci-
ence Foundation of China (No. 11871221), the National Key R&D Program of China (No.
2018YFA0306704), the Fundamental Research Funds for the Central Universities, and the Re-
search Funds of Happiness Flower ECNU (No. 2020ECNU-XFZHO005).

Ji Guan: The corresponding author J. G. is supported by the National Key R&D Program of China
(No. 2018YFA0306701) and the National Natural Science Foundation of China (No. 61832015).
Nengkun Yu: N. Y. is supported by ARC Discovery Early Career Researcher Award (No.
DE180100156) and ARC Discovery Program (No. DP210102449).

1 Introduction

Aiming to study nature, physicists use different mechanics depending on the scale of the
objects they are interested in. Classical mechanics describes nature at a macroscopic scale
(far larger than 10~% meters), while quantum mechanics is applied at a microscopic scale
(near or less than 10~% meters).
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In physics, a closed quantum system is a physical system that does not interchange
information (i.e. energy and/or matter) with another system. The behavior of a closed
quantum system can be described as follows: A particle at this level can be mathematically
represented by a normalised complex vector |s) in a Hilbert space H. The time evolution of
a single particle closed system is described by the Schrédinger equation:

dls(t))
dt

= —H|s(t)) (1)

with some Hamiltonian H (a Hermitian matrix on ), where |s(¢)) is the state of the system
at time .

More practically, an open quantum system interacting with the surrounding environment
need to be considered. An open quantum system is a quantum-mechanical system that
interacts with an external quantum system, which is known as the environment or a bath.
In general, these interactions significantly change the dynamics of the system and result
in quantum dissipation, such that the information contained in the system is lost to its
environment. Suffering noises from the environment, the state of the system cannot be
completely known. Thus a density operator p (positive semidefinite matrix with unit trace)
on H is introduced to describe the uncertainty of the possible states: p = ., pi|s:)(sil,
where {(p;, |s:))}ier is a mixed state or an ensemble expressing that the quantum state is at
|s;) with probability p;, and (s;| is the complex conjugate and transpose of |s;). In this case,
the evolution is described by the Lindblad’s master equation:

PO _ 2o 2

where p(t) stands for the (possibly mixed) state of the system, and £ is a linear function of
p(t) (to be formally described in Subsection 2.2), which is generally irreversible.

To reveal physical phenomenon, physicists have intensively studied the properties of
closed and open quantum systems case by case in the last decades, such as long-term behavi-
ors (e.g. [18]) and stabilities (e.g. [10]). In recent years, the computer science community
has stepped into this field and adopted model checking technique to study quantum sys-
tems [16, 17]. Specifically, the quantum systems can be simulated by some mathematical
models and a bulk of physical properties can be reformulated as formulas in some temporal
logic with atomic propositions of quantum interpretation. In particular, a quantum discrete-
time Markov chain (QDTMC) (H,E) has been introduced as quantum generalisations of
classical discrete-time Markov chains (DTMC) to model the evolution in Eq. (2) in a single
time unit:

plt +1) = E(p(t)) (3)

where £ is a discretised quantum operation obtained from the Lindblad’s master equation,
usually called a super-operator in the field of quantum information and computation. Sev-
eral fundamental model checking-related problems for QDTMCs have been studied in the
literature, including limiting states [40, 21], reachability [45, 41], repeated reachability [14],
linear time properties [30], and persistence based on irreducible and periodic decomposi-
tion techniques [8, 21]. These techniques were equipped to solve real-world problems in
several different areas. For example, [15] proposed algorithms to model check quantum
cryptographic protocols against a quantum extension of probabilistic computation tree logic
(PCTL); and linear temporal logic (LTL) was adopted to specify a bulk of properties of
quantum many-body and statistical systems, and corresponding model checking algorithm
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was developed [20]. For quantum concurrent systems, the reachability and the termination are
studied in [47]. Very recently, Yu investigated a quantum temporal logic for the specification
of the system and studied the model checking problem for basic formulas [46]. See [43, 44]
for the comprehensive review of this research line.

However, to the best of our knowledge, there is no work on model checking the quantum
continuous-time system of Eq. (2). In contrast, there are fruitful results in the classical
counterpart, which is usually modelled by a continuous-time Markov chain (CTMC).

The seminal work on verifying CTMCs is Aziz et al.’s paper [3, 4]. The authors introduced
continuous stochastic logic (CSL) interpreted on CTMCs. Roughly speaking, the syntax of
CSL amounts to that of PCTL plus the multiphase until formula ®; UZt®, - .- UZ& g 4, for
some K > 1. Because [3] restricts probabilities in Prs. to ¢ € Q, they can show decidability
of model checking for CSL using number-theoretic analysis. An approximate model checking
algorithm for a reduced version of CSL was provided by Baier et al. [6], who restrict path
formulas to binary until: ®;UZ®,. Under this logic, they successfully applied efficient
numerical techniques for transient analysis [5] using uniformisation [37]. The approximate
algorithms have been extended for multiphase until formulas using stratification [48, 49].
Xu et al. considered the multi-phase until formulas over the CTMC with rewards [42].
An integral-style algorithm was proposed to attack this problem, whose effectiveness is
ensured by number-theoretic results and algebraic methods. Recently, continuous linear logic
was introduced to specify on CTMCS, whose decidability was established [23]. Most the
above algorithms have been implemented in probabilistic model checkers, like PRISM [29],
Storm [13], and ePMC [24].

Unfortunately, these results from CTMCs cannot directly tackle the problem of auto-
matically verifying quantum continuous-time systems. The main obstacle is that the state
space of classical case is finite, while the space of quantum states in even a finite-dimensional
Hilbert space is a continuum. Even though the probability space of a CTMC is also a
continuum, a probability distribution can only represent one ensemble (i.e. the uncertainty of
the possible states), while a quantum state generally admits infinitely many ensembles, such
as 210)(0] + 2 [1)(1] = L [¢1)(¥1| + L [402) (¥2] for any two orthogonal normalised complex
vectors |¢1) and |¢2) on the Hilbert space linearly spanned by orthonormal basis {|0),]1)}.
In this paper, we cross the difficulty by introducing quantum continuous-time Markov chains
(QCTMC) to model the evolution of quantum continuous-time systems in Eq. (2) and con-
verting them into a distribution transformer that preserves the laws of quantum mechanics.
Then, we consider a wide logic, signal temporal logic (STL), to specify real-time properties
against QCTMC. The STL is more expressible than LTL and CTL. Finally we present an
exact method to decide the STL formula using real root isolation and interval operations,
whose query complexity turns out to be linear in the size of the input formula by calling the
real root isolation routine.

The key contributions of the present paper are three-fold:

1. In the field of formal verification, the model checking on DTMC, QDTMC and CTMC
has been well studied in the past decades, but no work on checking QCTMCs as far as
we know. The first contribution is filling this blank.

2. In order to solve the atomic propositions in STL, we develop a state-of-the-art real root
isolation algorithm for a rich class of real-valued functions based on Schanuel’s conjecture.

3. We provide a running example — open quantum walk equipped with an absorbing boundary,
which drops the restriction on the underlying graph being symmetric/Hermitian. The
non-Hermitian structure brings real technical hardness. Fortunately, it is overcome by
Eq. (2) employed for describing the dynamical system of QCTMC.
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Organisation. The rest of the paper is structured as follows. Section 2 reviews some notions
and notations from quantum computing, the Lindblad’s master equation and number theory.
In Sections 3 and 4, we introduce the model of quantum continuous-time Markov chains and
the signal temporal logic (STL), respectively. We solve the atomic propositions in STL in
Section 5, and decide the general STL formulas in Section 6. Section 7 is the conclusion.

2 Preliminaries

2.1 Quantum Computing

Let H be a Hilbert space with dimension d. We employ the Dirac notations that are standard
in quantum computing:

|s) stands for a unit column vector in H labelled with s;

(s| := |s>Jr is the Hermitian adjoint (complex conjugate and transpose) of |s);
(s1]s2) := (s1||s2) is the inner product of |s1) and |s2);

[s1)(s2] :=|s1) ® (s2] is the outer product, where ® denotes tensor product; and

|s1, 82) :=|s1) |s2) is a shorthand of the product state |s1) ® |s2).

A linear operator v is Hermitian if v = ~; and it is positive if (s|~|s) > 0 holds for all
|s) € H. A projector P is a positive operator of the form Y.7", [s;)(s;| with m < d, where
|s;) are orthonormal. Clearly, there is a bijective map between projectors P = 37" | |s;)(s]
and subspaces of H that are spanned by {|s;) : 1 <4 < m}. In sum, positive operators are
Hermitian ones whose eigenvalues are nonnegative; and projectors are positive operators
whose eigenvalues are 0 or 1. Besides, a linear operator U is unitary if UUT = UtU =1

where I is the identity operator.

The trace of a linear operator v is defined as tr(y) := 2?21 (s;|v|si) for any orthonormal

basis {|s;) : 1 <@ < d} of H. A density operator p on H is a positive operator with unit trace.
It gives rise to a generic way to describe quantum states: if a density operator p is |s)(s| for
some |s) € H, p is said to be a pure state; otherwise it is a mized one, i.e. p=>""" | p;|s;)(s;|
with m > 2 by spectral decomposition, where p; are positive eigenvalues (interpreted as
the probabilities of taking the pure states |s;)) and their sum is 1. In other words, a pure
state indicates the system state which we completely know; a mixed state gives all possible
system states, with total probability 1, which we know. We denote by Dy the set of density
operators on H. The subscript H of Dy will be omitted if it is clear from the context.

The system evolution between pure states is characterised by some unitary operator U, i.e.
|s(t)){(s(t)] = U(t)|s(0))(s(0)| UT(¢) where U(t) comes from exp(—:Ht) for the Hermitian
operator H in Eq. (1); the system evolution between density operators (pure or mixed
states) is characterised by some completely positive operator-sum, a.k.a. super-operator, i.e.
p(t) = Z;n:l Lj(t)p(O)L; (t) where L; are linear operators satisfying the trace preservation
Z;.":l L;Lj = I. The latter dynamical system is obtained in such a way: an enlarged unitary
operator acts on the purified composite state (3.7, \/ps |si, envi)) (3~ /Di (si, env;|) with
p(0) = > pilsi)(si| for some orthonormal environment states |env;) [34, Section 2.5],
then the environment in the resulting composite state is traced out, which turns out to be
the aforementioned operator-sum form. We call it an open system as it interacts with the
environment. Whereas, the former dynamical system, independent from the environment, is

called a closed system. Open systems are more common than closed systems in practice.
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2.2 Lindblad’s Master Equation

To characterise state evolution of the continuous-time open system with the memoryless
property, we employ the Lindblad’s master equation [31, 19] that is

§ = L(p) = —Hp+1pH + > (LypLf - 1LIL;p — LpLIL), W
j=1

where H is a Hermitian operator and L; are linear operators. The terms —Hp+1pH describe
the evolution of the internal system; the terms Lij; — %L;Ljp — %pL;Lj describe the
interaction between system and environment. In other words, to characterise the evolution of
an open system, it is necessary to use those linear operators L; besides the Hermitian operator
H. It is known to be the most general type of Markovian and time-homogeneous master
equation describing (in general non-unitary) evolution of the system state that preserves
the laws of quantum mechanics (i.e., completely positive and trace-preserving for any initial
condition).
In the following, we will derive the solution of Eq. (4). We first define two useful functions:
L2V(y) := Z?:l Z‘jzl (¢]v 1) 7, 7) that rearranges entries of the linear operator v on
the Hilbert space H with dimension d as a column vector; and
V2L(v) = E‘Ll 27:1 (1,7 v]9)(j| that rearranges entries of the column vector v as a
linear operator.
Here, L2V and V2L are read as “linear operator to vector” and “vector to linear operator”,
respectively. They are mutually inverse functions, so that if a linear operator (resp. its

vectorisation) is determined, its vectorisation (resp. the original linear operator) is determined.

Using the fact that D = ABC <= L2V(D) = (A®CT)L2V(B) holds for any linear operators
A B, C,D, we can reformulate Eq. (4) as the linear ordinary differential equation

L2V (p))

m

~HeT+deH + Y (Lo L) - JLL e T- JIo LIL; ) | L2V() 5
=1

= M- L2V(p),

where * denotes entry-wise complex conjugate. We call M = - HRI+I@HT + Z;nzl (Lj ®
L - %L;Lj RI— %I ® L;PL;*-) the governing matriz of Eq. (5). As a result, we get the desired
solution L2V (p(t)) = exp(IM-t) - L2V (p(0)) or equivalently p(t) = V2L(exp(IM-t) - L2V (p(0)))

in a closed form. It can be obtained in polynomial time by the standard method [27].

2.3 Number Theory

» Definition 1. A number « is algebraic, denoted by o € A, if there is a nonzero Q-polynomial
fa(2) of least degree, satisfying fo(a) = 0; otherwise « is transcendental.

In the above definition, such a polynomial f,(z) is called the minimal polynomial of . The
degree D of « is deg,(f,). The standard encoding of « is the minimal polynomial f,, plus an
isolation disk in the complex plane that distinguishes « from other roots of f,.

» Definition 2. Let py1,..., uy, be irrational complex numbers. Then the field extension
Q(p1y -+ ) : Q is the smallest set that contains py, . .., m and is closed under arithmetic
operations, i.e. addition, subtraction, multiplication and division.

Here those irrational complex numbers pq, ..., 1, are called the generators of the field
extension. A field extension is simple if it has only one generator. For instance, the field
extension Q(v/2) : Q is exactly the set {a +bv/2: a,b € Q}.

13:5
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» Lemma 3 ([32, Algorithm 2]). Let oy and ag be two algebraic numbers of degrees Dy and
D, respectively. There is an algebraic number u of degree at most D1 Do, such that the field

extension Q(u) : Q is exactly Qaq, as) : Q.

For a collection of algebraic numbers aq, . .., a,, appearing in the input instance, by repeatedly
applying this lemma, we can obtain a simple field extension Q(u) : Q that can span all
Qlyeeey Q.

» Lemma 4 ([11, Corollary 4.1.5]). Let o be an algebraic number of degree D, and g(z) an
A-polynomial with degree Dy and coefficients taken from Q(«) : Q. There is a Q-polynomial
f(2) of degree at most DDy, such that roots of g(z) are those of f(z).

The above lemma entails that roots of any A-polynomial are also algebraic.

» Theorem 5 (Lindemann [7, Theorem 1.4]). For any nonzero algebraic numbers By, ..., Bm
and any distinct algebraic numbers A1, ..., A\, the sum Z:il Bie™ with m > 1 is nonzero.

» Conjecture 6 (Schanuel [2]). Let A1,..., Ay, be Q-linearly independent complex numbers.
Then the field extension Q(A1,e*, ..., Am,e ) : Q has transcendence degree at least m.

Let Alz1,..., 2] denote the ring that contains all A-polynomials in variables z1, ..., zp,.
Assuming Schanuel’s conjecture, we could get:

» Corollary 7 ([9, Proposition 5]). Let A1, ..., Ay, be Q-linearly independent algebraic numbers.
Then two co-prime elements o1 and o in the ring Alt,exp(Ait),...,exp(Ant)] have no
common root except for 0.

3 Quantum Continuous-Time Markov Chain

In this section, we propose the model of quantum continuous-time Markov chain (QCTMC).

We will reveal that it extends the classical continuous-time Markov chain (CTMC). To show

the practical usefulness, an example is further provided for modelling open quantum walk.
For the sake of clarity, we start with the QCTMC without classical states:

» Definition 8. A quantum continuous-time Markov chain Q is a pair (H, L), in which
‘H is the Hilbert space,
L is the transition generator function given by a Hermitian operator H and a finite set
of linear operators Lj on H.

Usually, a density operator p(0) € D is appointed as the initial state of Q.

In the model, the transition generator function £ gives rise to a universal way to describe
the bahavior of the QCTMC, following the generality of the Lindblad’s master equation. Thus
the state p(t) is given by the closed-form solution to Eq. (5), i.e., V2L(exp(IM - ¢) - L2V(p(0))),
where M is the governing matrix for £, is a computable function from R to C¥*4. We
notice that 0 < tr(Pp(¢)) < 1 holds for any projector P on H, as p(t) is a density operator
on D. Considering computability, the entries of H, L; and p(0) are supposed to be algebraic.

Next, we equip the QCTMC in Definition 8 with finitely many classical states.

» Definition 9. A quantum continuous-time Markov chain Q with a finite set S of classical
states is a pair (Heq, L), in which
Heq :=C @ H is the classical-quantum system with C = span({|s) : s € S}), and
L is the transition generator function given by a Hermitian operator H and a finite set
of linear operators L; on the enlarged Hcq.
Usually, a density operator p(0) € Dy, is appointed as the initial state of Q.



M. Xu, J. Mei, J. Guan, and N. Yu

In fact, the models in Definitions 8 and 9 have the same expressibility: The QCTMC in
Definition 8 can be obtained by setting the singleton state set S = {s} of the QCTMC in
Definition 9; conversely, the QCTMC in Definition 9 can be obtained by setting the Hilbert
space as Hqq of the QCTMC in Definition 8. Hence, we can freely choose one of the two
definitions for convenience. As an immediate result, using Definition 9, we can easily see
that the QCTMC extends the CTMC by the following lemma:

» Lemma 10. Given a CTMC € = (S, Q), it can be modelled by a QCTMC Q = (C QR H, L)
with C = span({|s) : s € S}) and dim(H) = 1.

Proof. It suffices to show that the states of a CTMC € can be obtained by those of some
QCTMC Q. The state x = (z5)ses of € is given by the dynamical system x'(¢) = x(t) - Q
or equivalently its closed-form solution x(t) = x(0) - exp(Q - t), where x(0) is a row vector
interpreted as the initial state. We construct the QCTMC by setting Hermitian operator
H = 0 and linear operators L, ; = [t)(s| ® Q]s, ] in @ for each pair s,t € S. It is not hard
to validate that the state p(t) of Q is diag(x(¢)) of €, thus the lemma follows. <

» Example 11 (Open Quantum Walk [35, 36]). Open quantum walk (OQW) is a quantum
analogy of random walk, whose system evolution interacts with environment. For the sake of
clarity, we suppose that a particle walking along the 2-dimensional hypercube is shown in
Figure 1. The position set is S = {500, So1, S10, S11 }, Where sgg denotes the starting position,
a.k.a. the entrance, sg; and s1p denote transient positions, and s1; denotes the exit, an
absorbing boundary. The direction set is {F,S}, where F means the particle takes the
external transition along the first coordinate, while S means the particle takes the external
transition along the second coordinate. The particle will choose a direction at every moment
by the inner quantum “coin-tossing” before being absorbed. This action is implemented by
the Hadamard operator H = |+)(F| 4 |—-)(S| with |+) = (|F) £S))/v/2, which denotes a fair

selection between F and S as the probability amplitudes of both directions are & = (£1/v/2)2.

The OQW is modelled by a QCTMC Q; = (C ® H, L) with C = span({|s) : s € S}),
where each position in S represents a classical state, and the transition function £ is given
by the Hermitian operator H = 0 and the unique linear operator

L ={s10)(s00| ® [F){(+| + [s01){s00| ® [S)(—[ + |s11)(s01]| & [F){+] +
[500) (01| @ [S){—| + [s00) (s10] @ [F){+| + |s11)(s10] @ [S)(—].

For instance, when the particle is in the position |sqgg), we first apply the quantum coin-tossing
H to the state in #H, then we get the result F or S leading to the position |s1g) or |so1). The
composite operations are (|F)(F|)H = |F)(+| and (|S)(S|)H = |S)(—|, which makes up the
first two terms in the above L.

From L, we could get the governing matrix M = L @ L* — %LTL ®I-— %I ®@ LTL*. Let
p(0) = |so0){s00| ® |F)(F| be an initial state. Then the states p(t) of the OQW could be
computed as V2L(exp(IM - t) - L2V(p(0))) (we omit the detailed value due to space limit). J

As an absorbing boundary s1; is introduced here, two transitions from it (in dashed
line) do not exist anymore. The absorbing boundary makes it impossible to characterise
the system evolution by a closed system, i.e., using some Hermitian operator H only, as
usual in [36]. Fortunately, we could characterise it by an open system, i.e., using the linear
operators Lj.
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entrance

Figure 1 A sample OQW with an absorbing boundary.

4 Signal Temporal Logic

Here we recall the signal temporal logic (STL) [33], which is widely used to express real-time
properties. Using it we could specify richer properties of QCTMC than linear temporal logic
(LTL) and computation tree logic (CTL) in the time-bounded fragment.

» Definition 12. The syntax of the STL formulas are defined as follows:
=P | b1 A2 | p1U ¢y

in which the atomic propositions ®, interpreted as signals, are of the form p(x) € I where p
is a Q-polynomial in x = (x5)scs and I is a rational interval, and T is a finite time interval.
Here U is called the until operator, and ¢p1 ULy is the until formula.

» Definition 13. The semantics of the STL formulas interpreted on a QCTMC 9 in
Definition 9 are given by the satisfaction relation |=:

p(t) E® if p(x) € I holds with z, = tr(P4(p(t))),
o(t) I - if p(t) - 6,

p(t) = ¢1 N ¢z if p(t) E ¢1 A p(t) E @2,

p(t) = o1 ULy if there exists a real number ¢’ € Z,

such that Vt; € [t,t+ 1) : p(t1) E ¢1 and p(t +t') = ¢o,
where P is the projector |s)(s| ® I onto classical state s.

From the semantics, we can see that ®;UZ:(®;UZ2®3) and (®,UT1d,)UL2d3 have
different meanings: The former formula requires there exist ¢ € Z; and t”” € Z, such that
th (S [t,t —+ t/) : p(tl) ): @1, Vtg c [t + t,,t -+ t’ —+ t”) : p(tQ) ': CI)Q and p(t -+ t/ + t”) ': (I)g;
while the latter formula requires there exists a t” € Z such that p(t +¢”) = ®3 and for
each t; € [t,t +t"), there exists a ¢/ € Z; such that Vi € [t1,61 + ') : p(t2) E @1 and
p(t1 +t') E ®3. We usually use the parse tree to clarify the structure of an STL formula ¢.

The logic is very generic. STL has more expressive atomic propositions than LTL, as
true = p(x) € (—oo,+00) and false = p(x) € ). CTL has a two-stage syntax consisting
of state and path formulas. Negation and conjunction are allowed in only state formulas,
not path ones. Whereas, STL allows negation and conjunction in any subformulas. Besides
the standard Boolean calculus, we can easily obtain a few derivations: (Z¢ = trueUZ¢,
¢ = =(0T=¢), and ¢1RT o = —(=¢ UL -¢9) where R is the release operator.
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» Example 14. Consider the open quantum walk £; described in Example 11. It is not

hard to get the probabilities of the particle staying respectively in sgg, So1, S10, S11 as follows:

200 = tr(Paq o (p(1))) = 5 exp(—2521) + § exp(—2521),
x011 = tI‘(PSO’l p(t )) — _V2 exp(_yt) + ? exp(_Q—Q\/it)

1
+ i[exp —% ) — exp(—%t)] cos(%t) + i[exp(—%t) + exp(—%t)} sin(%t),

t
— 1lexp(—3t) — exp(—3t)] cos(3t) — L[exp(—2t) + exp(—21t)]sin(51),

We can see that the probability of exiting via s1; would be one as ¢ approaches infinity.

A further question is asking how fast the particle would reach the exit. This is actually
a question about convergence performance. It is worth monitoring the critical moment at

which the probability of exiting via si; equals that of staying at transient positions sg1, S10.

A requirement to be studied is like the following property.

Property A: At each moment ¢ € [0, 5], whenever the probability of staying at sg; or
s10 is greater than é, the probability of exiting via s;; would exceed that of staying
at sp1 or syg within the coming one unit of time.

We formally specify it with the rich STL formula
¢ =07 (B — 072 ®y) = ~(true UT () A ~(true UZ2d,))),

where Z; = [0, 5], Zz = [0, 1] are time intervals and ®; = z1+z1,0 > %, Oy =211 > 20,1+%1,0
are atomic propositions, a.k.a. signals. J

5 Solving Atomic Propositions

As a basic step to decide the STL formula, we need to solve the atomic proposition ®.

That is, we will compute all solutions w.r.t. ¢, in which p(¢) = ® holds. We achieve it
by a reduction to the real root isolation for a class of real-valued functions, exponential
polynomials. Although real roots of exponential polynomials have been studied in many
existing literature [1, 9, 26], the ones to be isolated in this paper involve the complicated
complex exponents. So we develop a state-of-the-art real root isolation for them, whose
completeness is established on Conjecture 6.

Given an atomic proposition ® = p(x) € I (assuming that I is bounded), we would like
to determine the algebraic structure of

o(t) = (p(x(t)) — inf I)(p(x(¢)) — sup), (6)

with which we will design an algorithm for solving ® = p(x) € I. The structure of ¢(t)
depends on that of z4(t) = tr(Ps(p(t))). We claim that each entry of p(t) is of the exponential
polynomial form

B1(t) exp(ait) + Pa(t) exp(ast) + - - - + B (t) exp(amt), (7)

where 51(t),...,Bm(t) are nonzero A-polynomials and «j,...,a,, are distinct algebraic
numbers. It follows the facts:
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Input: exponential polynomial ¢(7) Output: pairwise disjoint isolation intervals I, ..., I

n

linearly independent

[TH T isolation intervals I| 1r s Il n isolation intervals I[ 1o Itn
algebraic numbers 1 ) ,

! ’ ¢

[ | [ |
’ Classical Method ’ Algorithm 1 ‘ ’Classical Method

Polynomialisation ’ Algorithm 1 ‘

multivariate polynomial | f(z, exp(u,), ... , exp(pkt))

A

Yes No Yes No
Factoring @

irreducible factors q)l([) = f]

cp[(f) =/,

Figure 2 Flow chart of the whole isolation procedure.

1. The governing matrix IM in the state p(t) = V2L(exp(IM - t) - L2V (p(0))) of the QCTMC
takes algebraic numbers as entries.

2. The characteristic polynomial of IM is an A-polynomial. The eigenvalues aj, . .., q,, of
IM are algebraic, as they are roots of that A-polynomial by Lemma 4. Those eigenvalues
make up all exponents in (7).

3. The entries of the matrix exponential exp(IM - t) are in the form (7).

The same structure holds for x4(t), as zs(t) = tr(Ps(p(t))) is simply a sum of some entries
of p(t). Furthermore, o(t) is also of the exponential polynomial form (7), since it is a
Q-polynomial in x(t) = (4(t))ses. If I is unbounded from below (resp. above), the left
(resp. right) factor could be removed from (6) for further consideration.

Next, we will isolate all real roots A1,..., A, of ¢(t) in a bounded interval B (to be
specified in the next section). Before stating the core isolation algorithm — Algorithm 1, an
overview of the isolation procedure is provided in Fig. 2. The instances to be treated can be
roughly divided into two classes: one is trivial that can be solved by the classical methods,
e.g., [12], for ordinary polynomials; the other is nontrivial that can be solved by Algorithm 1
but should meet three requirements of the input in Algorithm 1. After the preprocesses
Basis Finding, Polynomialisation and Factoring, the two classes of instances can be
separated and solved by the corresponding methods. In the end, the Refinement process
outputs the pairwise disjoint isolation intervals.

The technical details along the flow chart in Fig. 2 are described below.

Basis Finding. For a given set of algebraic numbers {aq,...,a;} extracted from the

exponents of the input exponential polynomial ¢(t), we can compute a simple extension

Q(p) : Q =Q(a,...,qm) : Q by Lemma 3, such that each a; = ¢;(1) with ¢; € Z[z] and

deg(q;) < deg(p); and further construct a Q-linearly independent basis {u1, ..., pur} of

those exponents {a1,...,am,} by [26, Section 3|, such that each o; can be Z*-linearly
expressed by {p1,..., 1k}

Polynomialisation. Thus we can get a polynomial representation f(t,exp(uit),...,

exp(prt)) of p(t), where f is a (k+ 1)-variate polynomial with algebraic coefficients. That

is, p(t) is obtained by substituting ¢, exp(u1t), ..., exp(urt) (as k + 1 variables) into f.

Factoring. Factoring ¢(t) into irreducible factors ¢;(t) (1 < i < £) corresponds to

factoring the (k + 1)-variate A-polynomial f into irreducible factors f; (1 < i < £), which

has been implemented in polynomial time, e.g. [28].
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1.

Univariate? If the irreducible exponential polynomial ¢;(t) corresponds to a univariate
polynomial f;, isolating the real roots of ¢;(t) can be treated by classical methods [12];
otherwise we will resort to Algorithm 1, for which we can infer:

The exponential polynomial ¢(t) in the form (7) is plainly an analytic function that is
infinitely differentiable; and it is a real-valued function, or equivalently the imaginary
part of o(t) is identically zero, since each variable x4(t) is exactly the real-valued
function tr(Psp(t)). The same holds for any factor ¢;(t) of ¢(t), which ensures the
first requirement of the input in Algorithm 1.

2. By Theorem 5, thanks to the irreducibility of ;(t), we have ¢;(\) # 0 holds for any

A € A\ {0}, which ensures the second requirement of the input in Algorithm 1.

3. By Conjucture 6 and Corollary 7, each irreducible factor ¢;(t) and its derivative ¢} (t)

are co-prime, and thus have no common real root except for 0, which ensures the last

requirement of the input in Algorithm 1.
Refinement. After performing Algorithm 1 with each individual irreducible factor ¢;(t)
of ¢(t), we would obtain a list of disjoint isolation intervals Z; 1, ...,Z; »,. The isolation
intervals of different irreducible factors may be overlapping. However, by Corollary 7
again, we have that each pair of co-prime factors of () has no common real root except
for 0. So all these isolation intervals Z; 1,...,Z; », (1 < i <¥) can be further refined to
be pairwise disjoint. That would be the complete list of isolation intervals Z,...,Z, for
©(t), and thereby completes the whole isolation procedure.

Algorithm 1 Real Root Isolation for a Real-valued Function.

{Z4,...,I,} < Isolate(p, T)

Input: ¢(t) is a real-valued function defined on a rational interval Z = [l, u], satisfying:

(
1. (1) is twice-differentiable,
2. ©(t) has no rational root in Z, and
3. ¢(t) and ¢'(t) have no common real root in Z.

Output: Z,...,7Z, are finitely many disjoint intervals, such that each contains exactly one

real root of ¢ in Z, and together contain all.

1: compute an upper bound M of {|¢'(¢)| : t € T};
2: compute an upper bound M’ of {|¢"(¢)| : t € T};

w

i 0, N+ 2and ¢« (u—1)/N; > Here N > 1 is a free parameter to indicate the
number of subintervals to be split. We predefine it simply as 2.
while : < N do

if |o(l+40)] > M then i < i+ 1; > ¢ has no local real root
else if |p(I 4+ id + d)| > Mo then i « i+ 2; > ¢ has no local real root
else if |¢'(I 4+ id)| > M'$ then > ¢ is locally monotonic
if (I +i0)p(l+ 16+ ) < 0 then output (I + 5,1+ id + 0);
141+ 1;
else if |¢'(I+id+ §)| > M'S then > ¢ is locally monotonic
if (Il +1i0)p(l +1i0 +20) < 0 then output (I + id,1 + 90 + 20);
14— 1+ 2;
else
Isolate(ep, [ 4 4,1 + 90 + 0]);
141+ 1.
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Soundness. We justify three groups of treatment in the loop body in turn.

1. If the condition in Line 5 (resp. 6) holds, ¢ has no real root in the neighborhood centered
at [+ 40 (resp. I+ (i + 1)d) with radius 6. So we exclude the neighborhood.

2. If the condition in Line 7 (resp. 10) holds, ¢ is monotonic in the neighborhood centered
at [+40 (resp. [+ (14 1)d) with radius §. Then, if the condition in Line 8 (resp. 11) holds,
i.e. ¢ has different signs at endpoints of the neighborhood, the unique real root in the
neighborhood exists and should be output; otherwise we just exclude the neighborhood.

3. If it is not in the two decisive cases listed above, we perform Algorithm 1 recursively in a
subinterval [l 4 8,1 + (i 4+ 1)d] of [I,u]. N

Completeness. The termination of Algorithm 1 entails the completeness. In other words, it
suffices to show that for any real-valued function ¢ that satisfies the requirements, Algorithm 1
can always output all real roots of ¢ within finitely many times of recursion. Since ¢ and
¢’ are real-valued functions defined on the closed and bounded interval Z and they have no
common real root in Z, there is a positive constant 7, such that either |p| > 7 or |¢/| > 7
holds everywhere of Z. Then, at any point ¢ in Z, we can get a neighborhood with constant
radius rad := min(7/M,7/M"), in which either ¢ has no real root or is monotonic. So the
two decisive cases must take place, provided that the subinterval has a length not greater
than rad. It implies that the recursion depth of Algorithm 1 is bounded by [log,(||Z]|/rad)],
where ||Z|| = supZ — inf Z. Hence the termination is guaranteed. a

After obtaining all real roots A, ..., A, of ¢(t) in the bounded interval B by Algorithm 1,
we have that on each interval 7; (0 < ¢ <n) of the n + 1 intervals in B\ {A1,..., A\ }:

[lnf 87 )‘1)7 ()\17 )‘2)7 ceey ()‘nfh )‘n)> ()\nasup B]a (8)

p(x(t)) € I holds everywhere of ¢ € J; or nowhere. Finally, we can obtain the desired solution
set J (to be used in the next section) of p(x(t)) € I by a finite union as follows

U suv U ©)
0<i<n 1<i<n
p(x(Ji))Cl p(x(X:))€el

» Example 15. Reconsider Example 14. The exponential polynomial extracted from ®; is

e1(t) = o (t) +a10(t) — 2 = =1 — L2 exp(—ZHV2¢) + V2 exp(—25Y21),

and the exponential polynomial extracted from @5 is

pa(t) = 11 (t) — w01 (1) — 10(t) = 1+ (V2 — L) exp(—2521) — (V2 + 1) exp(— 2521).

To solve ®; and P5 in a bounded interval, say B = [0, 6], we need to determine the real roots
of 1 and 9. Since both ¢ and s are irreducible and their corresponding polynomial

representations are bivariate, they have no rational root, repeated real root, nor common
real root. After invoking Algorithm 1 on ¢; with B, we obtain two isolation intervals [0, 23]

containing real root Ay =~ 0. and |%7, T5¢] (containing Ay ~ 4. , which cou
ini 1 A1 &~ 0.352097) and [273, 513 ining As &~ 4.49181), which could

be easily refined up to any precision. For ¢, as ¢2(0) = 0, we make a slight shift on the
left endpoint of B under consideration, e.g., [1555,6]. After invoking Algorithm 1 on ¢, with

[ 1 125059 275117
1000 64000 * 128000

root Az & 2.14897. The three isolation intervals are pairwise disjoint.
Finally, we have that the solution set of ® is (A1, A2) in B, and the solution set of @5 is
{0} U [As, 6]. 2

6], we could get the unique isolation intervals | ], which contains the real
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Under Conjecture 6, we get the following computability result:
» Lemma 16. The atomic propositions in STL are solvable over QCTMCs.

The solvability here means that given an atomic proposition ® and a bounded interval
B, we can always compute all solutions J of ® in B, which consists of a finite number of
pairwise disjoint solution intervals J; with computable real numbers as endpoints. The
solving procedure is an exact one, i.e., no numerical error is allowed. Although it is efficient

in practice, its complexity is still an open problem, as is left in existing literature [9, 26].

To pursue the guarantee of polynomial time, we could allow some numerical errors, which
results in an approzrimate solving procedure.

In fact, Conjecture 6 is a powerful tool to treat roots of the general exponential polynomial.

For some special subclasses of exponential polynomials, there are solid theorems to treat
them: one is Theorem 5 that has been employed [1] for the exponential polynomials in the
ring Q[t, exp(t)], the other is the Gelfond—Schneider theorem employed [26, Subsection 4.1]
for the exponential polynomials in Q[exp(u1t), exp(pat)] where p; and ps are two Q-linear
independent real algebraic numbers. In Example 15, the Gelfond—Schneider theorem is
sufficient to treat roots of the exponential polynomials ¢; and o, thus the termination
is guaranteed. Algorithm 1 can isolate roots of elements in Q[¢, exp(u1t),. .., exp(uxt)] for
arbitrarily many Q-linear independent complex algebraic numbers p1, . .., ux. Additionally,
Conjecture 6 has been employed to isolate simple roots of more expressible functions than
exponential polynomials [38, 39], but fails to find repeated roots. Hence, this paper makes a
trade-off between the expressibility of functions and the completeness of methodologies.

6 Checking STL Formulas

In the previous section, we have solved atomic propositions. Now we consider the general
STL formula ¢. For a given formula ¢, we compute the so-called post-monitoring period
mnt(¢), independent from the initial time ¢, such that the truth of p(ty) E ¢ could be

affected by those p(t) with ¢ € [to, to + mnt(¢)]. Then we decide ¢ with a bottom-up fashion.

The complexity turns out to be linear in the size ||¢|| of the input STL formula ¢, which is
defined as the number of logic connectives in ¢ as standard.

Given an STL formula ¢, we need to post-monitor a time period to decide the truth
of p(ty) = ¢ at an initial time tg, especially for the until formula ¢;UZ¢y. For example,
according to the semantics of STL, to decide p(tg) = ¢2 with ¢ = ®;UT (DU L2d3), we
have to monitor the states p(t) from time ¢g to to +supZ; +supZo. It inspires us to calculate
the post-monitoring period mnt(¢) as

0 if =9,
mnt(qbl) lf ¢ = ﬁqﬁl,
mnt(¢) = 10
(@) max(mnt(¢1 ), mnt(¢2)) if ¢ =1 A ¢o, (10)

supZ + max(mnt(¢p1), mnt(¢p2)) if ¢ = ¢1UZgs.

» Lemma 17. Given an STL formula ¢, the satisfaction p(ty) = ¢ is entirely determined by
the states p(t) with to <t < to+ mnt(¢).

Proof. We discuss it upon the syntactical structure of the STL formula ¢.

For the atomic proposition ®, p(tg) = @ is plainly determined by p(to).

For the negation —¢1, if p(tg) | ¢1 is determined by p(t) with g <t < to + mnt(¢,), so
is p(to) = =1
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For the conjunction ¢; A ¢, if p(to) | @1 (resp. p(to) | ¢2) is determined by p(t) with
to <t <to+mnt(¢1) (resp. to <t < tg+ mnt(dz)), p(to) = ¢1 A @2 is determined by the
union of those states, i.e. p(t) with tg <t < tg+ max(mnt(¢y), mnt(ps)).

For the until formula ¢ UZ gy, if p(to) = ¢1 (resp. p(to) | ¢2) is determined by p(t) with
to <t < to+mnt(¢y) (resp. tg <t < to+mnt(pz)), p(to) = ¢1 UL, is determined by p(t)
with tg <t <t + supZ + max(mnt(¢; ), mnt(¢ps)), where supZ is caused by the admissible
transition at the latest time in the until formula, since then we have to determine p(t) = ¢1
from time tg to tg + supZ and determine p(tg + supZ) = ¢s. <

To decide p(0) | ¢, our method is based on the parse tree T of ¢ as follows.

Basically, for each leaf of T that represents an atomic proposition ®, we compute the
solution set J (possibly a union of maximal solution intervals 7) of ® within the monitoring
interval B := [0, mnt(¢$)] by Algorithm 1.

Inductively, for each intermediate node of T that represents the subformula 1 of ¢, we
tackle it into three classes.

If ¢ = —¢1, supposing that J; is the solution set of ¢;, the solution set J' of ¢ is B\ J;.

If Y = ¢1 A @2, supposing that J; (resp. J2) is the solution set of ¢; (resp. ¢2), the

solution set J' of ¥ is J; N Ja.

If 1 = ¢1UZ gy, supposing that J; (resp. J2) is the solution set of ¢; (resp. ¢o), the

solution set J of 1 is

{t: ' eD)A(t,t+t)CI)A [+t €T2)}

directly from the semantics of the until formula ¢, UZ ¢, in Definition 13, as

[t,t+¢') CJyif and only if Vi, € [t,t +1') : p(t1) = ¢1, and

t+1t €Jyif and only if p(t +t') = ¢a.
Note that the inductive steps of the above procedure do not generally produce all solutions of
the subformula v in B. Since by Lemma 17 p(tg) | 4 is entirely determined by p(t) with tg <
t < to+mnt(1)), the resulting solution set J’ contains all solutions of ¢ in [0, mnt(¢) — mnt(1))]
and possibly misses some solutions in the right subinterval (mnt(¢) — mnt(¢), mnt(¢)].
Anyway, the subinterval [0, mnt(¢) — mnt(¢))] has the left-closed endpoint 0, which suffices
to decide p(0) = ¢.

With a bottom-up fashion, we could eventually get the solution set J of ¢, by which
p(0) |= ¢ can be decided to be true if and only if 0 € J. Overall, the procedure costs ||¢||
times of the interval operations and at most ||¢|| times of calling Algorithm 1 for getting the
solution set of an atomic proposition. That is, the query complexity of model checking STL
formulas is linear in ||¢|| by calling Algorithm 1. The query complexity addresses the issue of
the number of calls to a black box routine with unknown complexities and is commonly used
in quantum computing, where the routine is usually called an oracle. For example, oracles
can be a procedure of encoding an entry of a matrix into a quantum state [25] or a quantum
circuit of preparing a specific quantum state [22].

» Example 18. For the STL formula ¢; = —~(true Ut (&; A =(true UZ2®,))), the post-
monitoring period mnt(¢;) is supZy + supZz = 6 by Eq. (10), implying B = [0, 6] as used in
Example 15. We construct the parse tree of ¢; in Figure 3. Based on it, we could calculate
the solution sets of all nodes in a bottom-up fashion:
Basically, the solution set for @4 is (A1, Ay) where A1 ~ 0.352097 and s ~ 4.49181, the
solution set for @5 is {0} U [A3, 6] where A3 &~ 2.14897, and the solution set for true is
plainly [0, 6]. The post-monitoring periods of the three distinct leaves are 0. Since B is
[0, 6], we have got all the solutions in [0, 6].
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The solution set for true UZ2®, is [\3 — 1,6], and that for the negation is [0, A3 — 1). The
post-monitoring periods of the two nodes are 1, thus we have got all solutions in [0, 5].
The solution set for ®; A =(true UZ2d,) is (A1, A3 — 1). Its post-monitoring period is 1,
thus we have got all solutions in [0, 5].
Finally, the solution set for true UZt (®; A =(true UZ2®,)) is [0, A3 — 1), and that for
the negation (the root, representing the whole STL formula ¢) is [A3 — 1,6]. Their
post-monitoring periods are 6, thus we have got the solution in [0, 0].

Since 0 ¢ [A3 — 1, 6], we can decide p(0) |= ¢1 to be false. Hence the particle walking along

Figure 1 does not satisfy the desired convergence performance — Property A. J
- UL A - Uz Py
true P, true

Figure 3 Parse tree of the STL formula ¢;

Finally, under Conjecture 6, we obtain the main result:

» Theorem 19. The STL formulas are decidable over QCTMCs.

7 Concluding Remarks

In this paper, we introduced the model of QCTMC that extends CTMC, and established
the decidability of the STL formulas over it. To this goal, we firstly solved the atomic
propositions in STL by real root isolation of a wide class of exponential polynomials, whose
completeness was based on Schanuel’s conjecture. Then we decided the general STL formula
using interval operations with a bottom-up fashion, whose query complexity turned out to
be linear in the size of the input formula by calling the developed state-of-the-art real root
isolation routine. We demonstrated our method by a running example of an open quantum
walk. For future work, we would like to explore the following aspects:

how to apply the proposed method to verify non-Markov models in the real world [35];

how to design an efficient numerical approximation of the exact method in this paper;

and checking other formal logics, e.g. [3], over the QCTMC.
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