
ORIGINAL RESEARCH
published: 01 April 2021

doi: 10.3389/fnins.2021.651762

Frontiers in Neuroscience | www.frontiersin.org 1 April 2021 | Volume 15 | Article 651762

Edited by:

Mohammad Khosravi,

Persian Gulf University, Iran

Reviewed by:

Jamshid Pirgazi,

University of Science and Technology

of Mazandaran, Iran

Yinglei Song,

Jiangsu University of Science and

Technology, China

*Correspondence:

Chin-Teng Lin

chin-teng.lin@uts.edu.au

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 10 January 2021

Accepted: 22 February 2021

Published: 01 April 2021

Citation:

Singanamalla SKR and Lin C-T (2021)

Spiking Neural Network for

Augmenting Electroencephalographic

Data for Brain Computer Interfaces.

Front. Neurosci. 15:651762.

doi: 10.3389/fnins.2021.651762

Spiking Neural Network for
Augmenting
Electroencephalographic Data for
Brain Computer Interfaces
Sai Kalyan Ranga Singanamalla 1 and Chin-Teng Lin 1,2*

1Computational Intelligence and Brain Computer Interface Lab, School of Computer Science, University of Technology

Sydney, Sydney, NSW, Australia, 2Centre for Artificial Intelligence, University of Technology Sydney, Sydney, NSW, Australia

With the advent of advanced machine learning methods, the performance

of brain–computer interfaces (BCIs) has improved unprecedentedly. However,

electroencephalography (EEG), a commonly used brain imaging method for BCI,

is characterized by a tedious experimental setup, frequent data loss due to artifacts, and

is time consuming for bulk trial recordings to take advantage of the capabilities of deep

learning classifiers. Some studies have tried to address this issue by generating artificial

EEG signals. However, a few of these methods are limited in retaining the prominent

features or biomarker of the signal. And, other deep learning-based generative methods

require a huge number of samples for training, and a majority of these models can

handle data augmentation of one category or class of data at any training session.

Therefore, there exists a necessity for a generative model that can generate synthetic

EEG samples with as few available trials as possible and generate multi-class while

retaining the biomarker of the signal. Since EEG signal represents an accumulation of

action potentials from neuronal populations beneath the scalp surface and as spiking

neural network (SNN), a biologically closer artificial neural network, communicates

via spiking behavior, we propose an SNN-based approach using surrogate-gradient

descent learning to reconstruct and generate multi-class artificial EEG signals from just

a few original samples. The network was employed for augmenting motor imagery (MI)

and steady-state visually evoked potential (SSVEP) data. These artificial data are further

validated through classification and correlation metrics to assess its resemblance with

original data and in-turn enhanced the MI classification performance.

Keywords: spiking neural network, electroencephalography, brain computer interface, motor imagery, data

augmentation

1. INTRODUCTION

Brain–computer interfaces (BCIs) are a form of human–computer interaction through which users
can communicate with an external device or application, such as wheelchair navigation, playing
games, operating prosthetics, or using a keyboard speller, via their thoughts (Donoghue, 2002;
Moore, 2003; Schalk et al., 2004). The fundamental principle of a BCI system is interpreting brain
signals to extract reliable markers for decoding the user intentions and translate this information
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as a command to an external application. In BCI applications,
electroencephalography (EEG) is the most commonly used
brain imaging method for monitoring brain signals due to its
portability and high temporal resolution (Cincotti et al., 2008;
Alwasiti et al., 2010; Fazli et al., 2012).

EEG–BCI systems can employ different modalities, such as
motor imagery (MI) (Marchesotti et al., 2016), steady-state
visually evoked potential (SSVEP) (Nakanishi et al., 2014), and
P300 potentials (Jin et al., 2015). The recent developments in
deep learning have resulted in an unprecedented improvement
in the performance of BCI systems (Zhang et al., 2017; Chiarelli
et al., 2018; Schwemmer et al., 2018). However, such machine
learning techniques require abundant user-specific labeled data
samples for effective training, and recording a large sample
size is experimentally a tedious process. Additionally, EEG data
are often contaminated with noise and artifacts, leading to the
exclusion of many samples during the data pre-processing steps.
Generating synthetic EEG samples could aid in the training of
machine learning algorithms. Lotte (2011) generated synthetic
EEG trials by chunking each original EEG trial into a different
segment and then combine the segments from different trials
to form a new artificial sample. But this process results in a
trade-off with the loss of spectral-domain features in the artificial
signal and requires a careful division of segments to maintain the
temporal features. In another study, Dinarès-Ferran et al. (2018)
employed empirical mode decomposition (EMD), in which a
signal is decomposed into a finite number of intrinsic function,
a nonlinear oscillatory signal. These decomposed signals from
different EEG trials are again composed to produce a new EEG
sample. Though this method aims to retain the spectral domain
features, the study stated this method could often produce
irrelevant artificial samples.

In the recent decade, various deep learning-based generative
models were formulated especially for image and speech
synthesis. The most prominent of these models include
generative adversarial networks (GAN) and its variants,
variational autoencoders (VAE), etc. Such models have been
explored for generating artificial EEG data with a focus on
performance enhancement in BCI applications. For example,
Aznan et al. (2019) generated artificial SSVEP data using deep
convolution GAN (DCGAN), Wassertian GAN (W-GAN), and
VAE. Similarly, Hartmann et al. (2018) used modified W-GANs
to stabilize its training process in generated left-hand motor
imagery data. However, these generative models can be trained to
produce only one class of data. Although GAN-based networks
have shown promising output, training the model is complex
due to GAN instability, fine-tuning of hyperparameters, and a
sufficiently large number of samples are needed for training.
And, we believe requiring huge data for generating even more
samples is counterintuitive. Therefore, a new generative model is
required that can produce multi-class artificial EEG data with as
few available original data samples as possible.

Humans process information through ensembles of spiking
neurons and the reorganization of collective chaotic neuronal
activity to produce varied behaviors and actions remain a
key neuroscience research topic (Sussillo and Abbott, 2009;
Churchland et al., 2012; Gilra and Gerstner, 2017; Nicola

and Clopath, 2017). Nicola and Clopath (2017) enforced such
behavior in a recurrent spiking neural network (SNN) using
FORCE, a supervised learning method, and reproduced an
array of signals such as sinusoidal waves, Lorenz attractor,
Ode to Joy, bird song, and movie replay mimicking the
hippocampal region. In another study, Ingrosso and Abbott
(2019) focused on dynamically balanced recurrent spiking
networks for reconstructing motion tracking signals using
bounded constrained coordinate descent optimization.

Inspired by these studies, understanding the underlying
spiking dynamics in EEG generation could potentially
advance BCI systems. Previously adopted methods for signal
reconstruction, such as recursive least square (RLS), have been
shown to train SNNs with remarkable performance. However,
these methods are usually suitable for periodic signals and
require finely tuned hyperparameters for training different
signals, i.e., the same set of hyperparameters cannot account for
training different signals. In contrast, EEG is non-stationary and
has high variance. To address these issues, we implemented a
feedforward SNN and trained the network via surrogate-gradient
descent (Zenke and Ganguli, 2018; Neftci et al., 2019) method to
reconstruct EEG template and, in turn, generate synthetic EEG
signals.

The non-stationarity of EEG signals and their uniqueness
across recorded trials for a given stimulus pose a challenge in
reconstructing the signal and in generating a synthetic dataset
in which each sample is different. The famous rodent spike
train repeatability experiment (Mainen and Sejnowski, 1995) has
shown that the same stimulus can elicit different spike trains
(with slight changes in spike timings) at neocortical neurons
owing to the variability either with unknown information flow
from other circuits or intrinsic background noise in the system.
Inspired by this concept, we aimed to influence the trained
SNN model through an external neural perturbation layer as
background noise. By modulating the perturbation layer’s noise
level, the proposed model was able to (theoretically) generate
an unlimited number of samples of MI and SSVEP. One of the
main use of synthetic data in machine learning is to improve
classifier performance. The synthetic MI-EEG data enhanced
the classification accuracy when used for training the classifier.
The major contributions of this work are threefold: (1) the
development of an SNN that is agnostic to the EEG signal
modality, i.e., the same model architecture to accommodate
varied EEG signals (e.g., MI and SSVEP) without extensively
change the hyperparameters, (2) the generation of multi-class
synthetic motor imagery EEG data from only a few original
samples, and (3) validating the artificial MI data through
classification and performance enhancement.

2. METHODS

A feedforward spiking neural network, as depicted in Figure 1,
with each node behaving as a Leaky-Integrate and Fire (LIF)
neuron model, was designed for producing EEG signals. As the
ground truth spike train triggering a targeted EEG signal is
inaccessible, a Poisson-generated spike train with a firing rate of
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FIGURE 1 | Depiction of a three-layered feedforward spiking network mapping a random spike train to an electroencephalography (EEG) signal with additional neural

perturbation layer of Poisson neurons distorting the information of Spike Output layer. The spike train from the Spike Output layer is converted to a smoothed signal

via a double exponential spike filter, which is then transformed to an EEG signal. The number of nodes in each layer varies depending on the task for best fit.

10 Hz acts as the input layer preceding with one hidden and one
output layer. The number of neurons in each layer is different for
MI and SSVEP reconstruction (see Table 1). The spiking activity
from the output layer is transformed to a rate signal using a
double exponential synaptic filter (see Equation 9), which is then
weighted averaged to produce an EEG signal. All the weight
matrices between layers except for perturbation layers were
trained during the reconstruction process. The number of nodes
in the signal output layer varies depending on the number of EEG
channels that were target toward generation. The perturbation
layer containing Poisson neurons acts as background noise whose
parameters i.e., the number of noise neurons and its firing rate,
are varied to assess the effect of SNN on artificial data.

The entire data generation process (see Figure 2) is performed
in three stages: (a) extracting reliable EEG templates (one
for each class) either through averaging original samples (in
SSVEP) or selecting the best trial among all the samples (in
MI), (b) training the SNN to reconstruct EEG templates of
all classes simultaneously, and (c) activating the perturbation
layer after completion of the training process to generate
synthetic EEG samples. These stages were performed in the
mentioned sequential order. In any recording, EEG signals for
a given stimulus vary due to noise, artifacts, and background
activity. However, under ideal conditions, all the trials retain the
stimulus-related biomarker. Therefore, for stage 1 (i.e., template
extraction), we averaged few trials to reduce noise and obtain
a clean signal with a good biomarker (a strong power peak at
target frequency in the power spectrum) in the case of SSVEP.
Contrarily for MI, averaging impaired its biomarker alongside
noise as the MI’s biomarker spread in a range of mu and beta
spectral bands. Therefore, we chose the best trial in a dataset as a
template.

To extract a reliable EEG template in MI, a classification
algorithm was applied on the original dataset for both training
and testing. During testing, the probability of each sample to
identify its class or label is estimated. The sample with highest
probability (one for each class) was considered as template. For

TABLE 1 | List of parameters in the model equations, the spiking neural network

(SNN) architecture, and the optimizer.

Equation parameters value

dt 1 mS

urest 0 mV

τm 10 mS

τs 5 mS

R 1 M

ϑ 1 mV

τd 2 mS

τr 3 mS

Model parameters Spiking layer nodes

MI [500, 1500, 100]

SSVEP [100, 500, 200]

Optimizer properties Value

Learning rate 0.0005

Betas (0.9, 0.999)

Epsilon 8 x 10−1

Weight decay 0

Spiking layer nodes represents an array of the number of neurons in each of the spiking

network’s layer.

example, if two samples have probability of 0.9 and 0.8 to be
labeled into a particular class, then the sample with highest
probability (i.e., sample with 0.9 probability) is assumed as
reliable template due to its high value.

Using the surrogate-gradient descent method for weight
updating, the SNN is initially trained to reconstruct an EEG
template. Then, the neural perturbation layer composed of
Poisson neurons (acting as background activity) injects random
current (a random spike train for each new sample) to the output
layer via fixed synaptic weights, enabling the network to generate
synthetic EEG samples that differ from the original signal while
retaining its biomarker.
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2.1. Neuron Model
Spiking neural networks are constructed with neurons that show
biological realism. A wide range of neuron models exists with
varying complexity, such as the Hodgkin Huxley (HH), the LIF
neuron, the FitzHugh-Nagumomodel, and the Izhikevichmodel.
Opting for computational simplicity, the LIF neuron model,
whose membrane potential is described by Equation (1), was
chosen as a basis for constructing each node in a spiking layer.

τm
dui

dt
= − (ui − urest) + RIi (1)

dIi

dt
= −

Ii(t)

τs
+

∑

j

WijSj(t) (2)

where ui(t) is the membrane potential of a neuron, i, urest is
the resting potential, τm is the membrane time constant, R is
the input resistance, Ii(t) is the input current, and τs is the
synaptic time constant. The membrane potential increases with
input current, and after reaching a threshold ϑ , the neuron emits
a spike and resets its potential to urest . Incorporating the reset
property into Equation (1):

dui

dt
= −

1

τm
(ui − urest) + RIi + Si(t) (urest − ϑ) (3)

Si(t) =
∑

k

δ

(

t − tki

)

(4)

Si(t) is the spike train (sum of a dirac delta function, δ) of
a neuron and tki is the kth firing time of the corresponding
neuron (see Equation 4). As suggested in Neftci et al. (2019), an
approximated version of the LIF membrane potential for a small
simulation time step 1t > 0, as shown in Equation (6), with the
substitution of numerical value of R, urest , and ϑ from Table 1,
was implemented in this study.

Ii[n+ 1] = αIi[n]+
∑

j

WijSj[n] (5)

ui[n+ 1] = βui[n]+ Ii[n]− Si[n] (6)

where α ≡ exp
(

−
1t
τs

)

, β ≡ exp
(

−
1t
τm

)

.

Two other neuron models, the quadratic integrate-and-
fire (QIF) model (Equation 7) and the exponential integrate-
and-fire (EIF) model (Equation 8), were also tested for EEG
reconstruction (see Supplementary Figures 2, 3).

τm
d

dt
ui = a0 (ui − urest) (ui − uc) + RIi (7)

τm
d

dt
ui = − (ui − urest) + 1T exp

(

ui − ϑ

1T

)

+ RIi (8)

where, a0 > 0, uc > urest and sharpness parameter1T > 0. And,
Ii follows the same dynamics as Equation (2).

FIGURE 2 | Overview of the steps involved in generating synthetic

electroencephalography (EEG) samples using the spiking neural network

(SNN). The process is divided into three different stages: (1) Template

extraction, where EEG template from the sample data is derived (blue box), (2)

training SNN to produce EEG signal template (yellow box), and (3) activating

the perturbation layers that help SNN to generate artificial samples (green box).

2.2. Synaptic Filter
Spike trains of the output layer are filtered by a double
exponential synaptic filter rj for each neuron j as shown in the
following equation:

ṙj = −
rj
τd

+ hj

ḣj = −
hj
τr
+ 1

τrτd

∑

tj<t δ
(

t − tjk
) (9)

where τr is the synaptic rise time and τd is the synaptic decay
time. δ is the spike train of Spike Output layer (from Figure 1),
which is filtered through an intermediary exponential filter hj
and in-turn via another exponential filter rj, which is the final
output of the synaptic filter. Following the work of Nicola and
Clopath (2017), in which a double exponential synaptic filter was
applied to produce smoothed and continuous signals from spike
trains, we opted to apply this filter to each output node in the final
spiking layer of SNN. This filtered output is transformed into
the EEG signal (single-channel EEG for SSVEP and two-channel
EEG for MI) according, as shown in the following equation for a
single channel c, where * indicates dot product multiplication.

EEGc = 6jWcj ∗ rj (10)

See Table 1 for a list of the model parameters.

2.3. Surrogate-Gradient Descent
A spike is emitted when the membrane voltage reaches a pre-
defined threshold ϑ and reset back to resting potential and this
behavior mimics Heaviside step activation function (2). Due
to this non-differentiable nature of spiking neurons, training
the synaptic weights is challenging as the traditional gradient
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FIGURE 3 | Left-Hand-MI (LH-MI) and Right-Hand MI (RH-MI ) EEG signal reconstruction outcomes. (A) Illustration of original (blue line) and reconstructed (red line)

C3 and C4 EEG signals for LH-MI and RH-MI tasks before and after SNN training. (B) Raster plot of 20 randomly selected neuronal spike trains from the hidden layer

corresponding to both classes before and after training. The yellow box indicates the effectiveness of the training process in reorganizing the spike trains across

layers. However, it should be noted that multiple neuronal spike trains rather than a single neuron contribute to the expected output signal. (C) Original (bold line) and

reconstructed (dashed line) signal power spectrum at C3 and C4 channels for LH-MI (blue) and RH-MI (red), which appear to be fairly similar. (D) The loss value, i.e.,

the MSE, decreased substantially within a few epochs of the training process.

descent algorithm commonly used for training artificial neural
networks (ANNs) is unsuitable because the gradient is zero
everywhere except at the event of spike emissions where it is

undefined. Additionally, to account for the less extensive hyper-
parameter search, in contrast to previous studies such as FORCE,
SNNs in this study were trained using a surrogate-gradient

Frontiers in Neuroscience | www.frontiersin.org 5 April 2021 | Volume 15 | Article 651762

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Singanamalla and Lin SNN for Augmenting BCI

FIGURE 4 | Two class SSVEP signal (10 and 11 Hz) reconstruction outcomes. (A) Illustration of original (blue line) and reconstructed (orange line) SSVEP signal of Oz

channel before and after SNN training. (B) Raster plot of 20 randomly selected neuronal spike trains from the hidden layer corresponding to each class before and

after training. The yellow box shows that the training process was effective at reorganizing spike trains. (C) Original (bold line) and reconstructed (dashed line) power

spectra if signals recorded from the Oz channel are similar, indicating the preservation of the SSVEP biomarker in the reconstructed signal. (D) The loss value (MSE)

across epochs during the training process.
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FIGURE 5 | Evaluating synthetic motor imagery (MI) and steady-state visually evoked potential (SSVEP) data generated from different combinations of the number of

noise neurons and the firing frequency in the perturbation layer. (A,B) MI accuracy obtained by training the classifier with original data and testing with synthetic data

(A) and vice versa (B). (C,D) SSVEP accuracy obtained by training classifier with original data and testing with synthetic data (C) and vice versa (D). The highest

accuracy in (B) is ∼80%, while the highest accuracy in (D) is 90%, which are close to the accuracies obtained when the original data are used for both training and

testing the classifier.

FIGURE 6 | The configuration of the perturbation layer, i.e., the number of neurons and their firing rate, modulates the similarity of the synthetically generated sample

to its template for the C4 electroencephalography (EEG) signal. Pearson’s correlation between the averaged synthetic samples (100 samples) and the template

showcase higher deviation from the template with more neurons and a high firing rate in the perturbation layer.

descent approach (Zenke and Ganguli, 2018; Neftci et al., 2019),
which introduces a continuous relaxation on gradient estimation
without affecting the forward pass of spike trains. The step nature
of spike emission Si[n] ∝ 2(ui[n]−ϑ) from forward propagation
is replaced with σ (ui[n] − ϑ) during backpropagation, where
σ (x) = 1/(1 + exp(−x)). Finally, Adam optimizer (see Table 1

for properties) was adopted for weight optimization alongside the
surrogate gradient.

2.4. EEG Datasets
For MI, the majority of the datasets is from publicly available
BCI competition IV resources (Tangermann et al., 2012) and

Frontiers in Neuroscience | www.frontiersin.org 7 April 2021 | Volume 15 | Article 651762

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Singanamalla and Lin SNN for Augmenting BCI

TABLE 2 | Comparison of classification performance for synthetic motor imagery (MI) assessment when (a) the classifier is trained and tested with original data using

100-fold cross-validation (95% training set and 5% testing set) for baseline accuracy estimation (denoted as Original), and (b) the classifier is trained with synthetic data

and tested with all of the original data (denoted as Synthetic).

Dataset
LDA SVM KNN Gaussian

Original Synthetic Original Synthetic Original Synthetic Original Synthetic

1 80.45 82.50 79.00 83.13 81.89 83.13 78.44 81.25

2 59.11 63.13 61.56 63.13 54.67 63.13 61.11 63.75

3 52.22 61.25 51.78 60.63 43.44 60.63 56.56 60.00

4 78.38 67.36 77.63 79.17 74.50 81.94 70.13 79.17

5 60.00 65.28 63.00 65.97 67.75 66.67 52.75 58.33

6 64.75 65.63 61.88 65.63 56.13 64.38 64.50 68.75

7 60.05 65.83 62.83 65.00 65.33 63.33 51.83 65.00

8 79.88 80.71 78.13 80.71 69.63 80.00 54.00 80.71

9 91.00 93.13 91.38 93.13 91.00 93.13 90.63 91.25

10 71.63 70.63 70.63 69.38 71.50 72.50 71.13 72.50

11 82.88 85.00 83.25 84.38 83.00 84.38 81.00 84.38

12 78.17 77.50 76.17 78.33 70.17 78.33 69.00 77.50

13 61.63 67.36 59.38 66.67 62.50 67.36 60.88 70.14

Avg 70.78 72.71 70.51 73.48 68.58 73.76 66.30 73.29

Common spatial pattern (CSP) was used to extract features and was classified with linear discriminant analysis (LDA), support-vector machines (SVM), K-nearest neighbor (KNN),

and Gaussian classifier. For all the classifiers, Synthetic has resulted in enhanced performance. LDA resulted in the highest baseline performance of 70.78% and the performance was

improved to 72.71% with Synthetic. A Wilcoxon signed-rank test resulted in p-value < 0.01 for all the classifiers. Bold represents the maximum value obtained by a dataset.

few datasets are previously recorded data by our group from Ko
et al. (2019). All MI datasets are of 3 s trial duration, sampled
to 250 Hz, and contain epochs of left-hand motor imagery and
right-hand motor imagery classes. Similarly, publicly available
datasets from Wang et al. (2016) were imported for SSVEP
analysis. For SSVEP processing, only 2 s epochs were extracted
and down-sampled to 250 Hz from the original datasets. Further
EEG pre-processing steps for each modality are described in
section 3.

2.5. Classification
Since SSVEP is a more effective and high performing BCI
modality than motor imagery, this efficacy of data augmentation
was explored toward MI classification assessment. Different
perturbation combinations (number of noise neurons and
their firing rate) in the perturbation layer were used to
generate 100 samples (per combination) of artificial MI-
EEG data. The artificial MI-EEG data are further assessed
for classification performance by (1) comparing the cross-
classification between artificial and original data, and (2)
correlation analysis to compare the similarity of artificial data
with the original. Common spatial pattern (CSP), a widely
adopted method for extracting MI-related features (Wang et al.,
2006) was used to test the above assessment and the details
of the CSP algorithm is described in section 2.5.1. Finally,
the features obtained via CSP were classified using linear
discriminant analysis (LDA), support-vector machines (SVM)
with linear kernel, K-nearest neighbor (K-NN) with k = 5, and
Gaussian classifier were adopted (Mishuhina and Jiang, 2018),
(Xygonakis et al., 2018).

2.5.1. Common Spatial Pattern

The objective of CSP is to estimate spatial filters for maximal
variance to discriminate two sets of data. With E as EEG signal
andW as spatial filter, the transformed signal S is given by:

S = WTE or s(t) = WTe(t) (11)

The criteria for CSP is as follows:

maximize trWT61W

subject to W
T (61 + 62)W = I

(12)

where

61 = Exp
En∈{ class 1}

EnE
T
n

trEnE
T
n

62 = Exp
En∈{ class 2}

EnE
T
n

trEnE
T
n

(13)

3. RESULTS

3.1. SNN for MI
Prominent MI features, such as event-related synchronization
(ERS) and event-related desynchronization (ERD), are typically
observed over the motor cortex and traced at central EEG
electrodes (typically from C3 and C4 channels) in the mu
frequency range of 8–13 Hz (Thomas et al., 2009; Shahid et al.,
2010). Therefore, in this study, C3 and C4 channel time-series
EEG data of two classes: (1) left-hand MI (LH-MI) and (2) right-
handMI (RH-MI) were targeted for data augmentation. The data
are band-pass filtered between 0.5 and 20 Hz and sampled at
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250 Hz in pre-processing. For extracting the target template, CSP
was used to find the best sample from this processed data based
on the probability of each sample to be classified accurately. As
previously stated, a 10 Hz Poisson spike train matrix is provided
as input, one fixed input for each class, and the SNN is trained
using surrogate-gradient to produce the C3, C4 channel template.
However, during this training process, the perturbation layer (in
Figure 1) remains inactive.

Figures 3A,B shows the two-channel EEG reconstruction
from the training (template) signal before and after the training
process and the corresponding reorganization neuron’s spiking
information from the hidden layer (see the yellow box in
Figure 3B, indicating that the learning process is effective in
reorganizing the spike trains after training). As previously
mentioned, for MI reconstruction, C3 and C4 channel data
generated by SNN (orange line in Figure 3A) were initially
random and eventually converged to the EEG template (blue
line). We further verified the similarity of reconstructed power
spectra to that of the training signals as shown in Figure 3C,
where the bold lines present the original power spectrum and
dashed line represent the reconstructed line for each channel, i.e.,
C3 and C4 individually for LH-MI (blue line) and RH-MI (red
line). Figure 3D shows that the loss, i.e., the mean squared error
(MSE) between the SNN generated signal and the template signal,
converges quickly after a few iterations or epochs. This trained
model is later used for generating multiple artificial signals by
activating the perturbation layer.

3.2. SNN for SSVEP
SSVEP is the other highly utilized modality for BCI
communications. It is detected by the presence of contrasting
high power at a frequency similar to the flickering stimulus
visually focused on by a user. SSVEP is usually detected from
the occipital region, and recordings are typically analyzed
from the O1, O2, and Oz electrodes (Zhang et al., 2013). For
example, if a user focuses on a 15 Hz flickering stimulus, the
EEG signal from the occipital region displays high power at 15
Hz in the frequency domain. Since SSVEP has a high signal-
to-noise ratio and is easily traceable with a single electrode,
Oz channels data of 10 and 11 Hz SSVEP was considered
for SNN-based reconstruction. Contrary to MI, the template
signal from SSVEP data is extracted by averaging the available
samples. Similar to MI template reconstruction, one fixed 10
Hz Poisson spike train matrix for each class is used as input
for reconstructing 10 and 11 Hz Oz’s SSVEP signal. Since the
targeted frequency lies in the low-frequency range, the dataset
was band-pass filtered between 0.5 and 20 Hz and has a sampling
rate of 250Hz.

As shown in Figures 4A,B, the similarity of the original
and reconstructed signal and hidden layer’s spike reorganization
before and after SNN training. The SNN training processes
were able to successfully re-produce EEG signal (orange
line in Figure 4A) closely matching the original template
(blue line). Additionally, Figure 4C shows the resemblance
of the reconstructed signal’s power spectrum (dashed line)
to that of the training signal (bold line). And, for both
the 10 Hz signal (blue line) and 11 Hz signal (red line),

the reconstruction has the presence of a strong peak (an
SSVEP biomarker) at their respective frequencies in the
power spectrum. According to Figure 4D, similar to MI, the
loss (MSE), converged within a few epochs of the training
process.

3.3. Synthetic EEG Signal Validation
After successfully training the SNN to reconstruct EEG signal, the
neural perturbation layer was activated to generate synthetic EEG
data. The number of Poisson neurons (or noise neurons) and the
firing rate (or noise frequency) were varied to generate synthetic
data in different variance levels. To validate the synthetic data,
100 samples per class were generated for a given combination of
neurons and their firing frequency.

Two validation procedures were implemented, validation-a: a
classifier was trained with the original dataset and tested with the
synthetic dataset, and validation-b: vice-versa, i.e., a classifier is
trained with synthetic data and tested with original data. This
validation was performed independently with the data generated
by each perturbation combination (see Figure 5). The classifiers
used for validating artificial MI and SSVEP data include CSP with
LDA and multi-layer perceptron (MLP), respectively.

For MI, from Figure 5A, it was observed that the synthetic
EEG can be classified accurately when the classifier is trained
with original data (validation-a). Figure 5B shows that although
the classification accuracies are not high (for validation-b),
the highest accuracy of approximately 80% is similar to the
performance when the original dataset is used both for training
and testing. And these validations were done independently for
each perturbation combination, ranging from 20 to 800 Hz noise
frequency and 10–220 noise neurons. This suggests that the
generated synthetic data covers the broad variance of the EEG
samples. Similarly for SSVEP, Figures 5C,D has shown that the
synthetic SSVEP passed the validation check with high accuracy.
In addition to successful classification, the synthetic data yielded
the highest accuracy of approximately 90% when used as a
training dataset.

For SSVEP, the perturbation covers a range of 10–50 noise
neurons and 10–850 Hz noise frequency. And, similar to MI,
SSVEP synthetic validation was done independently for each
perturbation combination. Overall, these validation results show
that, in addition to reconstructing the EEG signal, the SNN can
be used to generate synthetic EEG samples that are in agreement
with the original samples.

The configuration of the perturbation layer (i.e., the
combination of the number of noise neurons and its firing
rate) can be changed to generate data at various scales (or
different levels of noise) from the template. Few neurons with
low firing rates tend to produce EEG trials that are highly
similar to the template, while a perturbation layer with a huge
number of neurons and a high firing rate completely distort
the synthetic samples of the template. To further check the
effect of perturbation combination of artificial data, Pearson’s
correlation, a metric for estimating the linear correlation between
two variables, has been implemented. Figure 6 shows that for a
given EEG channel of a given class (in this case, RH-MI’s C4
channel), the correlation between the averaged (100 samples)
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synthetic sample and the template is inversely proportional to the
number of neurons and the firing rate of the perturbation layer.

3.4. Classification
Since detecting reliable MI features is difficult in comparison to
detecting SSVEP, we focused on the classification efficacy of MI-
BCI using artificial data. Therefore, for assessing synthetic MI-
EEG data, similar to validation-b, a classifier was trained with
synthetic data (100 samples per class) and tested with original
data. For a baseline comparison, a 100-fold cross-validation
process was applied for the original data, in which original data
were used for both training and testing. For each fold, 95% of
the original data (samples are randomly selected) form a training
set and the remaining 5% of the original data were labeled as
a test set. This process is repeated for each fold and average
accuracy across the fold is estimated to be the baseline accuracy.
The synthetic data generated by the perturbation configuration
that resulted in the highest accuracy during the validation process
(from Figure 5B) was used as the final artificial dataset. This
process is verified with multiple publicly available datasets (see
section 2.4).

Table 2 showcases the accuracy obtained by synthetic
data with LDA, SVM, KNN, and Gaussian classifiers. Each
classifier was implemented on a dataset basis and in total 13
different datasets were used in this study. When trained with
synthetic data, all the classifier was able to successfully predict
the labels of original samples and the overall performance
was comparable to baseline performance. In particular, LDA
resulted in the highest baseline performance (of 70.78%) as
commonly stated in literature and the generated synthetic
data enhanced the performance to 72.71% with LDA.
Considering all the classifiers, a given dataset has shown
enhanced performance with synthetic data. Interestingly,
for few datasets, the synthetic dataset able to enhance the
classification performance up to 9% (for the example dataset
4 with Gaussian classifier). As a cross-validation approach
was used to obtain each dataset’s baseline accuracy and the
distribution of these accuracies across the datasets is unknown,
a Wilcoxon signed-rank test was implemented for statistical
significance analysis (between performance with synthetic
data and original data) and obtained a p-value < 0.01 for all
the classifiers.

4. DISCUSSION

Understanding how chaotic neural activity reorganizes to allow
humans to perform a wide range of activities, such as walking,
running, and speech remains a topic of interest among the
neuroscience community. Previous studies have trained models
to produce such behavior using different learning methods,
such as FORCE, both in artificial neural networks and spiking
networks (Sussillo and Abbott, 2009; Nicola and Clopath, 2017;
DePasquale et al., 2018). These enforced behaviors are periodic
in nature, and training using non-stationary signals such as
EEG, is challenging, especially if the algorithm requires a
large hyper-parameter search space. Also, EEG signals vary
for the same stimulus, i.e., no two EEG samples produced

by the human brain are the same, although they retain their
prominent biomarker (e.g., ERD/ERS rhythm for MI and high
power at flickering stimulus frequency in SSVEP). Since EEG
represents an accumulation of potentials of a spiking neuron,
a primary focus of this study is to understand how the
spiking neural network’s activity is organized to form EEG
signals and, in turn, generate different samples while retaining
the necessary biomarker. Therefore, this study developed a
procedure with feedforward SNN and surrogate gradient descent
to reconstruct the EEG template in a supervised fashion and
used neural perturbation to generate synthetic EEG signals.
The proposed model was successfully applied for MI and
SSVEP reconstruction, artificial data generation, and validated
the synthetic EEG through classification metrics. Additionally,
we showed that this network can be used with other BCI
modalities, such as P300 (see Supplementary Figure 1), and
is compatible with other neuron models at a computational
cost (see Supplementary Figures 2, 3). To the best of our
knowledge, this is the first study to generate synthetic EEG
using SNN.

As previously stated, the primary aim of generating synthetic
data from a machine learning perspective is to better train a
classifier. As shown in Table 2, synthetic data can be utilized
to enhance BCI performance, especially when the baseline
performance of the dataset is low. Although the performance
increment was not consistent among all datasets, the proposed
approach yielded a significant increase in performance for
certain datasets.

In the field of machine learning, the current state-of-the-art
model for data augmentation is GAN and its variants. However,
to generate artificial data, GAN requires a huge amount of
training samples which we find to be counterintuitive. Also,
existing EEG based GAN studies normalize the signal from
0∼1 or −1∼1 and often fail with EEG data at their original
scales. In contrast, the proposed method needs only a few
(one or two) samples for generating artificial data and can
handle both normalized and non-normalized EEG signals. To
this end, we compared recently published generative models and
GAN variants, such as VAE, W-GAN, and DCGAN, and class-
conditioned W-GAN (cc-WGAN) (Aznan et al., 2019; Panwar
et al., 2020), with SNN for MI data generation and validation
tests. The cc-WGANmodel was used to generate MI data for few
datasets. And previous studies usually mix the samples of original
and artificial for classification enhancement often fail to perform
validation-b. Appropriate synthetic data apart from enhancing
the classification performance should also pass this validation
check (see section 3.3). According to Supplementary Table 1, we
observed that the GAN-generated data failed in this validation
check with below chance level. The reason for this could be
of multitude such as the random noise in the GAN-generated
data improved the performance by chance, or limited amount
of data (the GAN was trained independently for each dataset
containing approximately 180 trials) failed to capture MI’s
biomarker. Contrarily, the proposed SNN approach passed this
validation check (Supplementary Table 1) and delivered close
to baseline or improved performance. Another major reason
for this could be because, since SNN generates data based on
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a template signal, the artificial trials with varying distribution
retrained MI-biomarker, and it in-turn able to make the classifier
extract better features. Since GAN accounts for the whole dataset
for training, the artifacts and noise present in the data could
have lead to the generation of improper samples. This hypothesis
could be explored in the future to fine-tune GAN’s and SNN’s
training samples.

In agreement with previous studies, we interestingly observed
a reorganization of neural activity (i.e., spike train) concerning
the output signal. For example, the SSVEP signal at a defined
frequency is slightly oscillatory (like a sine or cosine wave),
which is reflected in the periodic spiking activity of certain
neurons in the output layer (see Figure 4B).We further tested the
proposed model for robustness by randomly clipping synapses
and found that the overall signal trend was maintained despite
the 30% reduction in synapses (see Supplementary Figure 4).
According to Dale’s law, a neuron is only either excitatory
or inhibitory (Capano et al., 2015). However, this constraint
was omitted from this study for simplicity, although it would
be ideal to enforce the non-stationary behavior, such as in
EEG, to spiking neural networks to maintain Dale’s law in the
future. Additionally, the current study, being focused on MI and
SSVEP data, considered only a few channels. However, other
minor BCI-related concepts such as fatigue, attention, and other
physiological factors distribute their feature across a range of
EEG channels. Therefore, another future direction of this study
could be to test the limits of the model in terms of the number of
channels and categories.
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