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Exploring Covert States of Brain Dynamics
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Abstract— Human brain inherently exhibits latent mental
processes which are likely to change rapidly over time.
A framework that adopts a fuzzy inference system is pro-
posed to model the dynamics of the human brain. The fuzzy
inference system is used to encode real-world data to repre-
sent the salient features of the EEG signals. Then, an unsu-
pervised clustering is conducted on the extracted feature
space to identify the brain (external and covert) states
that respond to different cognitive demands. To understand
the human state change, a state transition diagram is
introduced, allowing visualization of connectivity patterns
between every pair of states. We compute the transition
probability between every pair of states to represent the
relationships between the states. This state transition dia-
gram is named as the Fuzzy Covert State Transition Dia-
gram (FCOSTD), which helps the understanding of human
states and human performance. We then apply FCOSTD
on distracted driving experiments. FCOSTD successfully
discovers the external and covert states, faithfully reveals
the transition of the brain between states, and the route
of the state change when humans are distracted during
a driving task. The experimental results demonstrate that
different subjects have similar states and inter-state transi-
tion behaviour (establishing the consistency of the system)
but different ways to allocate brain resources as different
actions are being taken.

Index Terms— Human factors, state estimation, brain-
computer interfaces (BCI), fuzzy neural networks.

I. INTRODUCTION

BRAIN states can be defined as the intermediate repre-
sentation of brain dynamics, which are generally recog-
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nized by electroencephalography (EEG), functional magnetic
resonance imaging (MRI) or magnetoencephalography. Over
the past decades, many brain-computer interface (BCI) sys-
tems based on EEG measurement technologies have been
proposed for real-life applications [1]–[5]. Particularly, some
passive BCI systems [4]–[11] have been developed for lapse
detection, fatigue monitoring, attention evaluation, or accident
prevention based on the characterization of the relationship
between brain dynamics and behaviours, such as a subject’s
reaction time (RT) in response to a particular task or external
stimuli. In previous studies, brain signals have been found to
exhibit a highly stochastic temporal evolution associated with
stable patterns of brain activity in response to external stimuli
(external brain state) [1], [5], [9], [10], [12], [13]. However, the
human brain also inherently exhibits latent mental processes
(covert brain states). The underlying brain sources and their
interactions might differ dramatically for different states [14].
These uncertainties in the human brain dramatically influence
BCI performance [15]. Investigating the brain states, therefore,
became a critical problem associated with BCI development
and its performance.

Several approaches have been developed to resolve this
problem. Study [16] proposed a decoding-based approach
based on functional magnetic resonance imaging (fMRI) data
to categorise unconscious and conscious mental states. In [17],
the initial state of brain activity was identified by applying
PCA on magnetoencephalography (MEG) data. This initial
state then was used to trace brain activity in the state space
as the subject received visual stimulus. These two studies
considered spatial features that might not be able to discover
time-dependent transition state. Taghia et al. [15] developed
a system based on first-order Markov model to discover
covert brain state by analysing functional connectivity from
fMRI data. Kringelbach et al. [18] developed a framework
that models the state transition in the brain based on the
information extracted from neuroimaging data. This frame-
work also used Markov model to observe state changes. Both
[15] and [18] provide time-dependent approaches that enable
the transition state being observed. The approaches for brain
state discovery discussed so far rely on fMRI or neuroimag-
ing data that offer only second-level observations on brain
activity.

However, the alteration in mental state occurs in
millisecond-level. And EEG device can record brain activity
many times in a second, which provide more sophisticate
information for brain state observation. Additionally, some
covert states might be not directly measurable on its own
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and should be identified through representative features of
brain activity response to a task [19], [20]. For example,
in case of a learning task, the brain resource is reallo-
cated across the whole brain to response different cognitive
demands [19], [21], [22]. Some states and their transitions
occurring in brain resource reallocation may not be directly
detectable by traditional BCI systems. Many existing methods
[15]–[18] rely on neuroimaging to define the states and analyse
their transitions. Therefore, exploring the covert state and
its continuous transition from brain signals can benefit the
development of BCI.

To obtain representative features of brain activities for
covert state identification, we consider a fuzzy system (FS)
to extract features from the brain dynamics. We assumed that
every single fuzzy rule represents one specific brain pattern
associated with a specific behaviour or latent mental process
during the task. More specifically, the firing strength of a fuzzy
rule can be the membership (degree) of a particular brain
activity, which provides representative information to explicate
the brain states [23]–[25]. In this study, the firing strength
of fuzzy rules is used to provide intermediate information to
explicate the brain states, and then an unsupervised density-
based clustering method is exploited to define external states
as well as the covert states of the brain. Another consideration
of using the FSs is to defeat the uncertainty of brain activities.
The fuzzification operation and if-then-rule architecture in FSs
have been demonstrated to address uncertainty [23], [26]–[28].
The fuzzification operation translates the data into membership
degrees using the Gaussian membership function and provides
a tolerance for uncertainty, such as noise and variations in data
[23], [26]–[29].

After obtaining representative information of brain activity,
we use unsupervised learning to automatically identify covert
and external brain states without external supervision. Thus,
we used an unsupervised density-based clustering method to
automatically identify brain states. One of the advantages of
density-based clustering algorithms is that they do not require
prior knowledge to determine the number of clusters, unlike
centre-based clustering algorithms, such as K -means and
K -medoids [30]–[32]. In addition, Density-based clustering
algorithms calculate the local density of data so that arbitrarily
shaped clusters can be detected, whereas most centre-based
clustering algorithms might fail to identify clusters with an
arbitrary shape [30], [32], [33].

To observe the changes between the brain states, we intro-
duced the concept of Markov model [15], [34]–[37] to
the captured brain states to obtain probability of transi-
tion between every pair of states. The transition proba-
bility of Markov model is not deterministic; it inherently
cannot predict the future states from the present with cer-
tainty. However, this transition probability allows the user
to find the possible feature states [15], [34]. Therefore,
we can assign transition probability to brain states to gen-
erate moment-by-moment connectivity patterns, called the
fuzzy covert state transition diagram (FCOSTD), which helps
us to understand brain dynamics in relation to a cognitive
task.

Fig. 1. The proposed FCOSTD. The fuzzy state identification includes
a fuzzy neural network, clustering, and Markov chain, and then the
FCOSTD can be generated.

The contribution of this research is threefold:
• A novel application of FSs that can encode brain activities

as representative information by firing strength of fuzzy
rules.

• The covert states of brain activity are identified by
using an unsupervised clustering algorithm and linked
to specific behaviour or latent mental process during the
task.

• The brain (external and covert) states and transitions over
time are visualised by the proposed FCOSTD.

The rest of the paper is organized in the following man-
ner. Section 2 introduces the proposed framework, including
the FNN, density-based clustering approach and FCOSTD.
In Section 3, the FCOSTD is applied to EEG data collected
from a series of distracted driving experiments of 11 subjects.
Section 4 discusses and demonstrates the results of the three
experiments. Finally, Section 5 describes the conclusions and
future work concerning the application of the FCOSTD.

II. METHODOLOGY

Figure 1 interprets the generation of the FCOSTD based on
EEG signals. Here the FNN plays an important role, providing
plentiful information to carry out unsupervised clustering,
brain state representation and state change visualization. The
fuzzy inference system (FIS) of the FNN is used to encode
brain activity based on frequency-domain EEG data.

A. Fuzzy Neural Network

To develop a brain-state-drift classifier that can overcome
the subjective uncertainty of EEG signals and train the clas-
sifier with fewer segmental patterns, we exploited a SONFIN
model [24], [28], a famous online-learning FNN, to classify
incoming brain activity patterns. The SONFIN model includes
an on-line structure learning algorithm to determine the num-
ber of fuzzy rules. In the initial stage of training, the SONFIN
model has no fuzzy rules. Fuzzy rules are generated when
the incoming training data cannot activate any existing rules.
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This on-line structure learning algorithm ensures that each
input datum is properly covered by a rule in the input space.
Assume the input X (t) = [x1(t), . . . , xn(t)]T ∈ R

n×1, and the
SONFIN has learnt the structure with r rules. The FNN used
in this study can be depicted as shown in Figure 1. The layers
of the network, from the first to the fifth, realize a fuzzy-rule-
based inference model of the following form:

Rule : IF x1 is Ai
1 and . . . xn is Ai

n

THEN wi = ai
0 + ai

1x1 + · · · + ai
nxn, (1)

where Ai
j is the i -th fuzzy set defined on the j-th input variable

and ai
0, . . . , ai

n are the coefficients of the linear consequent of
the rule. Note that the number of the consequent parameters
corresponds one plus the dimension of the input variable X .
To illustrate the structure of the FNN in detail, the FNN is
introduced in this section layer by layer.

1) Layer 1 (Input Layer): The number of nodes in this layer
equals the length of one input pattern vector. Each node, which
performs no computation, transmits input data to the next
layer. The outputs of the j -th node in this layer can be defined
as O(1

j ) = x j (t).
2) Layer 2 (Membership Layer): In layer 2, each node rep-

resents a fuzzy set and evaluates the membership value of an
input variable from layer 1 with the corresponding membership
function. We use a Gaussian membership function in this
study. Thus, the output of each layer-2 node can be calculated
as O(2

i j ) = μi
j = ex p[−(O(1

j ) − mi
j )

2/(σ i
j )

2], where μi
j is the

membership value corresponding to the j-th input variable of
the i -th rule and mi

j and σ i
j are, respectively, the centre and

the width of the Gaussian membership function.
3) Layer 3 (Rule Antecedent Layer): A node in layer 3 repre-

sents one fuzzy rule and receives corresponding membership
values from the nodes in layer 2 to compute the firing strength
value of the rule by performing a fuzzy AND operation. Here,
fuzzy AND operation is utilized to calculate the node outputs,
taking the algebraic product of the membership values of
the atomic clauses associated with a rule. Given r rules, the
output of each layer-3 node can be computed as O(3)

i = ϕi =�n
j O(2)

i j .
4) Layer 4 (Normalization Layer): The size of this layer

equals the size of layer 3. Each layer-4 node represents the
normalized firing strength of the associated rule antecedent
whose output is calculated by O(4)

i = ϕ̄i = O(3)
i /

�r
k O(3)

k .

5) Layer 5 (Consequence Layer): Layer-5 nodes are called
consequent nodes. Each node receives the output deliv-
ered from layer 4 and the input variables of layer 1. The
output of layer 5 is obtained as O(5)

i = wi · O(4)
i =��n

j ai
j x j + ai

0

�
· O(4)

i .

6) Layer 6 (Output Layer): A node of layer 6 corresponds to
one output variable. Here, the nodes operate integration as a
defuzzification process with O(6) = y(t) = �r

i O(5)
i .

The parameter-learning phase carries out supervised learn-
ing to optimize all the free FNN parameters. The parameters
of fuzzy rules are learned via the gradient descent (GD)
algorithm, and the structure is learned by an online cluster-
ing algorithm [28]. Considering the single-output case for

simplicity, the error function E to be minimized is defined
by E = �N

t=1
1
2 [y (t) − yd (t)]2, where N is the number of

training samples and yd is the desired output for the layer-6
nodes.

B. Covert State Transition Diagram

After the optimised FNN is obtained, each rule antecedent
component can learn a specific brain activity pattern corre-
sponding to human behaviour. The outputs of each layer-
4 node (normalised layer) represent the degree of matching
levels between the input pattern and a particular brain activity
pattern that has been stored as centres in a rule. Figure 1
shows the generation of the FCOSTD. Suppose that the FNN
learned r rules from the frequency-domain EEG data, every
observation X (t) can be decomposed into r rules (stored
patterns) and corresponding firing values (matching levels) that
are encoded as a firing strength vector �̄ (t) = �

ϕ̄t
1, ϕ̄

t
2 . . . , ϕ̄t

r

�
.

We then utilise unsupervised clustering to categorise similar
firing strength vectors into K clusters. According to the
dominant label in each cluster, the K cluster can be defined
as K states and connected to corresponding real behaviours or
physical meanings by external labels of each cluster. The states
here are covert states because they are identified based on the
intermediate relationship of stored brain activity patterns. The
relationships among the K covert states are then established
to form a covert state transition diagram.

1) Density-Based Clustering Algorithm: We use the density
peaks clustering algorithm (DPCA) [30] to cluster normalised
firing strength vectors �̄s. Here, we define each strength vector
�̄ as a data point. To find cluster centres for the whole set
of �̄, DPCA computes the local density ρi and the distance
δi to higher-density points for each datum point i . We use the
Euclidean metric to calculate distances di j = ���̄ (i) − �̄ ( j)

��.
The local density ρi is estimated by a Gaussian kernel function
defined as

ρi =
	
j �=i

ex p


− �

di j /dc
�2


, (2)

where di j is the Euclidean distance between data points i
and j , and dc is the cut-off distance predefined by the user.
Here, dc is set according to Rodriguez’s study [30], and a
chosen dc can satisfy that the average number of neighbours
is approximately 20% of the total number of data points,
e.g., dc = 0.07. Given ρ1 ≥ ρ2 ≥ · · · ≥ ρN , where N is
the number of data points, and the δi can be determined by

δi = max
j :ρ j >ρi

di j . (3)

Here δi represents the maximum distance between datum
point i and other higher-density points. With these two quan-
tities, we can define a γi value as follows:

γi = ρi · δi . (4)

A high γi value of a datum point reflects that it simul-
taneously has crowding neighbours and is located far from
other higher-density points. We can use this γi value to deter-
mine cluster centres. For other non-central points, clustering
assignment is implemented by the nearest-neighbour approach.
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Suppose Z be the set of points which have already been
assigned clusters and we want xi to assign its cluster. Let
di j be the distance between xi and x j ∈ Z . Then the index of
the nearest neighbour xk of xi is found as

k = argmin
j

�
di j |ρ j > ρi ; x j ∈ Z

�
. (5)

Then xi is assigned the same cluster label as that of xk .
Afterwards, each non-central point is assigned to the same
cluster as its neighbour datum point of higher density.

2) Visualization of State Changes: To take a solid consider-
ation for state representation of the proposed system, we must
not only determine the covert states but also the relationships
among them. We build a cover-state transition diagram taking
transition probabilities into account to discover the temporal
changes of the observed system via a Markov chain [34]–[36].
All connections among observable states are updated based on
the state transition matrix. Given K states found by the DPCA,
the state transition matrix can be defined as

P =
⎡
⎢⎣

p11 · · · p1K
...

. . .
...

pK 1 · · · pK K

⎤
⎥⎦ . (6)

The columns of the matrix refer to the state for the next
time point, and the rows of the matrix refer to the current
state. Each transition probability pi j between two states is
estimated by the maximum likelihood approach, which is
pi j = Ti j

�
L, where Ti j is the number of direct transitions

from state i to state j and L is the total number of times the
system arrived at the state i , irrespective of how it has arrived.
Thus

�K
j=1 pi j = 1; i = 1, 2, . . . , K . Once the state transition

matrix is obtained, we can observe the path of transition from
state to state as the observed system reacts to the stimuli or
tasks.

III. EXPERIMENT

A. Experimental Design

The human brain is a complex system, and brain dynam-
ics change rapidly depending on stimuli, tasks or emotion.
To demonstrate the feasibility of the proposed FCOSTD, the
EEG signals recorded from the distracted driving experiment
were selected because the participant must switch their atten-
tion between the designed tasks over time. We used a 10-20
electrode placement cap with a 32 Ag/AgCl electrodes (Neu-
roScan, NeuroScan Inc., Herndon, VA, USA) to collect EEG
signals at 500-Hz sampling rate. All electrodes of the EEG
cap were referenced to linked two mastoids of the participant,
and a single ground electrode was attached to the forehead.
All references and ground are built in the device. The contact
points between the EEG electrodes and the scalp were applied
with conductive gel to reduce the contact impedance to less
than 5 k�.

The experiment was designed in a driving simulator on
a dynamic 6-degree-of-freedom motion platform with 360◦
driving scenes rendered on the seven LCD projectors [9], [38].
The simulator provides authentic visual and kinesthetic stimuli
of the driving situation on a highway to the participants.

The participants experience real-time kinematic feedback
from the motion platform regarding their operations, such as
turning the steering wheel. The simulator emulates car cruising
at a fixed speed of 100 km/hr on a highway scene in the night
throughout the entire experiment. There are two tasks: one
driving task and a mental calculation task. In the driving task,
the car deviates to either the left or right from the cruising lane
randomly, and the participants are asked to turn the steering
wheel to control the car back to the cruising lane immediately.
In the mental calculation task, the participants need to verify
a two-digit addition equation (i.e., whether the equation is
correct or incorrect) displayed on the front screen when the
task comes in. The numbers of correct and incorrect equations
are the same, and the difficulty level is set the same as well.
There are two buttons mounted on the left and right sides of the
steering wheel. The participants can easily use the right thumb
to press the button mounted on the right side of the steering
wheel to report the correctness of the mathematical equation.
To evaluate behaviour performance, the latency between even
on-set to proper response is defined as reaction time (RT). For
the driving task, the RT is the latency between the deviation
on-set and turning the steering wheel. Similarly, the latency
between the presentation of the equation and the button press
is the RT of the mathematical task.

Thirteen neurologically healthy volunteers aged 20–28 years
participated in a distracted driving experiment. Continuous
EEG data were recorded during the time a participant was
involved in the experiment. All participants were required
to have a driver’s license and good driving habits. This
experiment was conducted at National Chiao Tung University,
Hsinchu, Taiwan [9], [10]. Every participant had two training
sessions before the experiment to acquaint themselves with
the two tasks and the virtual-reality environment. After two
training sessions, every participant had four 15-min experi-
mental sessions separated by 10-min rests. Each participant
was recorded as many as 100 trials in each session to ensure
that the number of tasks was adequate for statistical analysis.
A more detailed explanation of the designed distracted driving
can be found in our previous studies [9], [38].

B. EEG Data Preprocessing

In the preprocessing phase, the continuous EEG recordings
are filtered using a zero-phase finite impulse response band-
pass filter, which has been widely used for EEG signal prepos-
sessing [39]–[41]. We set the lower cut-off frequency to 1 Hz,
and the higher cut-off frequency is 50 Hz. The selected cut-
off frequencies enable the filter to capture all the variations in
event-related spectral perturbation of collected EEG signals in
the designated bandwidth and filter out the noise from the
power line, movement-related artifacts, and sweat artifacts.
Afterwards, the continuous EEG data were segmented into a
set of epochs, of which the length was from −1 second (prior
to the first stimuli on-set) to 5 seconds (following the first
stimuli on-set) to comprise all relevant activations. We manu-
ally eliminated those epochs with large eye movements, body
movements, and amplifier saturation. Other wide variety of
artifacts are then removed via independent component analysis
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TABLE I
THE PERFORMANCE OF FNN AND CLUSTERING ON THE DISTRACTED DRIVING EXPERIMENTS. THE NUMBER IN THE FIRST ROW REPRESENTS

THE INDEX OF THE SUBJECTS. THE FIRST AND SECOND ROWS PRESENT THE NUMBER OF RULES (r) THAT FNN GENERATED AND ITS

RECOGNITION RATE (RR), RESPECTIVELY. THE PERFORMANCE OF CLUSTERING IS EVALUATED BY USING THE SILHOUETTE

SCORE (SI) AND FOWLKES-MALLOWS SCORE (FI), AS SHOWN IN THE THIRD AND FOURTH ROW, RESPECTIVELY

(ICA) [42], [43]. The independent component analysis (ICA)
models the EEG signals from different brain sources into linear
aggregation. The electrical activities of all individual EEG
channels and artifactual sources can be effectively isolated
by the ICA [42], [43]. Therefore, the artifacts, such as eye
blinks and muscle activities, can be detected and removed
easily. Once the artifact-free EEG data are produced, it was
segmented into a 1.2-second interval from the time a task
is on-set, and we call it a trial. Then, every trial is further
divided into 17 observation samples with overlapping 400-ms
windows advancing in 50-ms steps. Every observation sample
was transferred from the time domain to the frequency domain
using the fast Fourier transform (FFT). We normalised the
EEG power spectra of each frequency by subtracting from the
mean of each spectrum in the baseline. The baseline was taken
from the pre-stimulus period (from −1 second to 0 second).
We selected six components, the frontal, central, parietal,
occipital, left motor and right motor regions, for further
processing. The mean powers in the delta (1–3 Hz), theta
(4–7 Hz), alpha (8–12 Hz), and low beta (13–20 Hz) bands
were then extracted from the selected components. Note that
previous studies [1], [9], [23], [38], [44] have demonstrated
that the brain dynamics in these selected components are
highly associated with visual perception, visual processing,
motor control, attention and planning. The findings in [10]
and [47] also suggest that human mental states can change
significantly within 1.2 seconds after the task is on-set during
the driving. For the training process of the FNN, all 17 obser-
vation samples from one trial are assigned one single label,
either driving or math. For a single participant, the size of input
data fed to FNN equals to Number of Trails × 17 observation
samples. For every single observation sample, the dimension
of feature is 24 (4 bands × 6 components).

C. Experimental Results

The FNN, in this study, is trained subject-by-subject because
different subjects have various brain activity patterns. The
output of FNN is binary. 0 represents driving and 1 is math.
We use mean squared error (MSE) as the loss function for
training. The learning rate for update rule of gradient descent
algorithm is set to 0.001, and the learning epoch is set to 100.
The single-subject performance of all experiments is shown in
Table I. The second and third rows, respectively, present the
number of rules (r) that FNN generated and its recognition

rate. The fourth and fifth rows present the performance of
clustering on firing strength vectors �̄ extracted from the
trained FNN. The performance of clustering is evaluated by
using the Silhouette score (SI) [51] and the Fowlkes-Mallows
score (FI) [46]. The Silhouette score in Table I is the mean
value across the estimated compactness values of each cluster,
while the Fowlkes-Mallows score shown in the next row (in
its right lower box) evaluates the geometric mean of the
precision and the recall. The number of clusters for all subjects
is determine by γi value in formula (4), more details are
described in section IV-A.

The FNN trained with data from subject_5 has the highest
recognition rate of 96.09%, but the silhouette score of its
clustering result stands at a relatively low level, with a value
of 0.3949. On the other hand, the recognition rate for the
experiment with subject_6 is 89.99%, which is in the second-
lowest place, but the Silhouette score is 0.6096, which is
in the first place. These two subjects have low performance
either in terms of recognition rate or in terms of silhouette
score. Subject_4 has the lowest recognition rate at 87.82%,
but its Silhouette and Fowlkes-Mallows scores are 0.52 and
0.57 that are both acceptable clustering performance. The
performances of both subject_7 and subject_8 are similar to
that of subject_5; its recognition rate is relatively high, but
the silhouette score is relatively low. Subject_9, subject_10
and subject_11 all perform well in terms of recognition rate
as well as Fowlkes-Mallows Score, but the Silhouette scores
of subject_10 and subject_11 both are lower than 0.5.

We categorised the driving behaviour as three types: dis-
tracted driver (poor driving performance), dynamic driver
(medium performance in driving and mental calculation) and
focused driver (best driving performance). We choose the
experiments of other subjects whose recognition rate and
clustering performance both are relatively higher, e.g., the
recognition rate is over 90% and the silhouette scores is
over 0.5%, as representative subjects for the analysis of the
three driving behaviour types. Subject_1 is a distracted driver,
has shortest RT (1.596 sec) in doing math, but longest RT
(0.775 sec) in driving, which is a distracted driving behaviour,
as shown in Table II. Subject_2 is a focused driver, has a
relatively low RT (0.663 sec) in driving, but its RT of doing
math is the longest value (1.709 sec), which is a case of highly
focusing on driving. Subject_3 is a dynamic driver, performed
well both in driving and doing math, the RTs is 0.648 sec
and 1.53 sec, respectively. We emphasize that the analysis
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Fig. 2. (a), (b) and (c) present clustering results of subject_1, subject_2 and subject_3, respectively. The math label and driving label refer to the
mental calculation task and driving task, respectively. The percentage over each bar represents the sharing rate of the dominating label.

Fig. 3. (a), (b) and (c) present state transition diagram of subject_1, subject_2 and subject_3, respectively. The digits adjacent to each connection
line are the transition probabilities.

TABLE II
THE RT OF SUBJECT_1, SUBJECT_2 AND SUBJECT_3 DURING THE

MENTAL CALCULATION TASK AND DRIVING TASK. UNIT: SECONDS

that follows would be equally valid for other subjects, but we
choose subject_1, subject_2, and subject_3 so that the outcome
of this study becomes easier to visualize by any reader.

D. Distracted Driver (Poor Driving Performance)

Figure 2 shows the content of each clustering, and each
index on the horizontal axis represents a cluster, i.e., Cn, n = 1,
2, 3, and 4, represent the n-th cluster. There are four clusters
generated by the collected data from the subject_1, as shown
in Figure 2 (a). Each cluster has its own dominating label,
for which the occupancy rate is the greatest. The math label
(the blue part of a bar) indicates that the participant doing
or paying attention to the mental calculation task, while the
driving label (the saffron part of a bar) represents the driving
task. Table III reveals the distribution percentage of each label
in different clusters.

In Figure 2 (a), the clusters C1 and C2 are dominated by
math labels, which means that for most of the trails included

in these two clusters this subject allocates most of the brain
resources to math tasks. Particularly, there are more samples
labelled as solving math in C2. Based on the label distribution,
we define C1 and C2 as a pure calculating and a covert
state from mental calculating to driving, respectively. There
are more samples labelled as driving in C3 and C4 (ref.
Figure 2 (a)). Here, the state (cluster) C4 is almost a pure state
representing driving behaviour due to the 96.93% occupancy
rate of the driving label. The state C3 consists of 20.4% math
labels and 79.60% driving labels. Thus, it is reasonable to
consider C3 a covert state of driving but relatively close to
the calculating behaviour.

Figure 3 (a) is a state transition diagram for subject_1.
The four solid circles on the diagram correspond to the four
different clusters/states, as shown in Figure 2 (a). The directed
connection between every two states represents the potential
transition with the probability indicated therein. Table IV sum-
marises the transition probabilities between every two states.
For example, between C1 and C2, there are two connection
lines: one starts at C1 and ends at C2, and the other is the
opposite direction. C1 and C2 exhibit bidirectional transitions.
More specifically, the conditional probability of transition from
C1 to itself (C1) is 0.8653 and that from C1 to C2 and
C3 are 0.0943 and 0.0404, respectively. This probability of
transition from C1 to any other state including itself does
not depend on the state of the system before it came to C1
(i.e., it is a Markov chain). It is worth noting that there is no
transition from C1 to C4 which is very reasonable because



2470 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

TABLE III
THE DISTRIBUTION PERCENTAGE OF EACH LABEL IN ALL CLUSTERS OF SUBJECT_1, SUBJECT_2 AND SUBJECT_3

TABLE IV
TRANSITION PROBABILITY BETWEEN EACH TWO IDENTIFIED STATES OF SUBJECT_1, SUBJECT_2 AND SUBJECT_3

C1 is a pure Math-state and C4 is almost a pure driving
state.

For Subject 1, although there is a very low probability of
transition from C4 to C1, there is no direct transition C1 to
C4. A natural question comes – are there indirect transitions
from C1 to C4. Further analysis of the data shows that there
was no indirect transition from C1 to C4 via C2 or C3. Here,
by indirect transition we refer to the situation when the system
switches from C1 to C2 and then C2 to C1 in two successive
time instants, i.e., without making any transition from C2 to
itself. This again emphasizes the stability of the identified
brain states. It is interesting to note that C2 is not a pure
state, but this is a very stable internal (Covert) state because
the conditional probability of transition from C2 to itself is
0.9343. Consequently, the conditional probability of transitions
to C1, C3 and C4 are very small, 0.0131, 0.0488, and 0.0038,
respectively. Similarly, the covert state C4 is a very stable one,
for which the conditional probability of transition from C4 to
itself is the highest, 0.9791.

E. Focused Driver (Best Driving Performance)

The number of clusters used for subject_2, as shown in
Figure 2 (b), is also four, which is the same as that of
subject_1. Table III shows the distribution percentage of each
label in all four clusters. The samples categorised in C1 are
all math labels. C2 has math and driving labels mixed at
78.03% and 21.97%, respectively. In C3, the driving label
occupies 86.91%, while the math label occupies 16.81%. C4
contains almost pure driving labels of approximately 96.55%.
Therefore, we define C1 as a pure calculating behaviour,
C2 as the covert state from calculating to driving behaviour,
C3 as from driving to calculating to driving behaviour, and
C4 representing pure driving behaviour. Figure 3 (b) is the
corresponding state transition diagram for subject_2.

Table IV shows the conditional transition probabilities
between every two states for subject_2. Like Subject_1, the
high conditional probability of transition from any of the four

states to itself (more than 0.92) suggests that each of them
represents a valid state. Unlike Sublect_1, for Subject_2, there
is no transition from C4 to C1 and a very weak transition
probability from C1 to C4. This is just the opposite of
Subject_1. A possible reason for this may the fact that for
Subject_2, C4 is almost a pure driving state and C1 is almost
a pure math sate, but C4 is more strongly represented (with
much greater number of trials mapped in C4) than C1. On the
other hand, for Subject_1, C1, a pure math state, is much more
strongly represented than the almost pure driving state C4. So,
from these two subjects, what we observe is that between two
pure states, if one is represented by a smaller number of trials,
then there is a low chance of transition from the weaker one to
the stronger one. Like Subject 1, there is no indirect transition
between C4 and C1 (ref. Figure 3 (b)).

IV. DISCUSSION

A. Determining the Number of Clusters

In Figure 4 the panels (a), (b) and (c) depict the γ values
of subject_1, subject_2, and subject_3 in decreasing order,
respectively. Each solid circle represents one data point,
in which the label indicates the associated cluster. Figure 4
lists only samples with the top fifty percentages of sorted
γ values. The γ value can be used as a criterion to select
cluster centres. The sorted γ values approximately follow a
power low, as shown in Figure 4. There are four isolated
points strikingly distinctive from those who are close to the
horizontal axis. As explained earlier, if a point has a high
γi value (Ref. formula (4)), then that point has high-density
crowding neighbours and is located significantly away from
other higher-density points. Therefore, these distinctive points
are selected as centres for the clustering.

For example, in Figure 4 (a), the first point on the top has
the highest value of the product of highest density and longest
distance from other relatively high-density points. Thus, this
sample is defined as a centre. The rank-two sample is defined
as a second centre due to its second highest γ implying that
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Fig. 4. Distribution of sorted γ values in descending order. Only those samples with the top 50 percent high γ values are shown in (a), (b) and (c).
The indices on each dot indicate to which cluster belongs.

it is a high-density point as well as distant from other high-
density points. Followed by the third and fourth centres, they
both are high γ value samples. The remaining non-isolated
samples in Figure 4 (a), cannot be the centres because the
γ values of these instances are relatively smaller than those
in the selected four isolated cases. Then we take these four
data points as cluster centres and form four clusters around
them for subject_1, as shown in Figure 2. These four top-
ranked samples belonging to C3, C1, C4 and C2 correspond to
clusters 3, 1, 4 and 2, respectively, as labelled in Figure 2 (a).
Analysing the clusters, we have exhibited that these four
clusters correspond to four different types of brain states
associated with handling driving tasks and mathematical cal-
culation tasks. The same strategy is also applied to subject_2
and subject_3 and surprisingly for each of them the system
discovers four clusters representing four brain states.

B. State Change Analysis

We leveraged FCOSTD to explore the changes in human
states through brain dynamics during driving. Note that the
changes in human state can be linked with human behaviour
as humans perform driving tasks or mental calculations during
distracted driving. In this study, we demonstrated the changes
in human states by brain dynamics and listed two different
results in which two participants applied different strategies
when facing a high cognitive task (mental calculation) during
driving. The brain dynamics evolve continuously, and the sam-
ples are extracted only over 1200 ms. The driving task mainly
involves motor reflection in which the visual perception and
motor controlling resources are primarily involved [38], [47].
Meanwhile, visual perception, visual memory, and executive
functions in the human brain are highly associated with the
process of mental calculation [38], [48]. Based on the findings
of cognitive functions in the previous studies [9], [10], [38],
here we investigate the state changes over 1200 ms period and
leverage the behaviour performance (RTs) to infer the state
changes while performing math and driving.

Table V illustrates the switching time of each state. Let
us elaborate on how the switching time is computed. Each
trail is of 1200 ms (i.e., 1.2 sec). Each trial is divided into
17 segments, each segment is of length 400ms with an overlap
of 350 ms between two successive segments. Suppose the

kth segment (k < 17) of a trial is in state Cx (x = 1, 2,
3, 4), and the (k + 1)th segment of that trial is in some
other state Cy (y �= x) then the switching time for that trial
for state Cx is (1.2/17) ∗ (k + 1) . In Table V we report the
average value of the switching time for each state along with
its standard deviation. Each state is counted across all trials,
and the statistical data are shown in Table V.

When subject_1 performs mental calculation during driving,
the subject’s present state switches quickly from the pure
mental calculation (C1) to covert states (C2 or C3); the average
time of switching from C1 to other states is 0.4228 ms
(Table V). Apart from the mental calculation, the low switch-
ing time from C4 to other states implies that subject_1
can quickly allocate brain resources to finish the driving
task and reallocate the whole brain resource for the next
task of mathematical calculation. The average switching time
from C4 to other states is 0.4291 ms. Figure 3 (a) implies
the same phenomena. The diagram shows a fully connected
graph except for the connection from C1 to C4; thus, the
brain states of subject_1 can switch from C1 to C2 or to
C3 and from C4 to other states but from C1 to C4. Sub-
ject_1, therefore, needs more brain resources to switch the
brain state to take action when the car deviates from the
lane.

In contrast, subject_2 exhibits significantly different behav-
iour and states compared to those of subject_1. The states
of subject_2 change less frequently, and the average RT is
lower when performing mental calculation. Subject_2 allo-
cates higher brain resources for mental calculation and has
a delay in switching between states compared to subject_1.
Its transition diagram also reflects this observation, as shown
in Figure 3 (b). The transition probabilities from C4 to C1
or to C2 as well as that from C2 to C4 are all zero, which
implies that the state cannot change directly from C4 to C1; it
needs to move to C3 or C2 first and then from there to reach
C1. More specifically, subject_2 needs more time to prepare
to perform mental calculations. Thus, subject_2 exhibited a
lower reaction time performance than subject_1. Due to the
high resources used for mental calculations, it is relatively slow
when the states change from C1 to C4 when subject_2 per-
forms mathematical calculation. However, the average value of
subject_2’s RT is smaller than that of subject_1’s RT. This is
because turning the steering wheel is sensory decision-making;
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TABLE V
SUMMARY OF SWITCHING TIME FROM ANY GIVEN

STATE TO ALL OTHER STATES

it uses lesser brain resources and can take action in response
to car deviation. This phenomenon can also be observed in the
driving task of subject_3.

Subject_3 prepares to correct the deviation of the car faster
than other subjects; hence, the distractive driving state (C3)
appears at an average switch time of 0.5904 sec, which
is earlier than that of subject_2 and subject_1. This earlier
switching of the driving state results in faster average reaction
time in the driving task. Apart from the driving task, subject_3
performed mental calculations with a 1.53-sec average RT
(ref. Table II); the states remained in C2 for many trials.
This is suggestive of the fact that subject_3 did not allocate
much brain resources for mental calculations and has a good
capability to address driving and mental calculations simul-
taneously. In Figure 3 (c), the transition diagram shows that
the transition probabilities from C1 to C4 and C4 to C1 are
both zero, which indicate that the two pure states, the mental
calculation (C1) and driving task (C4), cannot directly switch
from one to the other. However, the transition probability
from C4 to C2 is 0.0432, higher than that of both subject_1
and subject_2. This phenomenon implies that subject_3 can
quickly allocate brain resources for mental calculations from
driving tasks. Accordingly, we may infer that the load on
the brain of subject_3’s is not as heavy as that of subject_2
and subject_1 during the whole experiment. Consequently,
subject_3 can switch the brain states faster than others.

V. CONCLUSION

In the current study, we proposed FCOSTD which provides
an effective mechanism for discovery and representation of the
covert states and the transitions between states. We applied
FCOSTD to a distracted driving experiment. The proposed
system is capable of extracting useful features from the
dynamic patterns of brain signals using an FNN. The FNN,
leveraged by the fuzzy-inference mechanism, was successfully
used for feature encoding from the EEG data. We adopted
this approach because the inference mechanism of an FNN is
capable of representing/modelling human brain activities asso-
ciated with varying behaviours (RTs). These fuzzy-inference-
based features are then clustered to identify external and
covert states of human brain during the experiment involving
distracted driving. The clustering results are used to define and
interpret the states in terms of physical behaviours. Afterwards,
the relationship between different states is expressed by the
transition probability diagram. Because of the links between

pairs of states along with the link weights representing the
conditional transition probabilities, brain dynamics can be
easily visualized. We found that covert states do exist in the
brain when the subject is responding to on-set tasks during the
experiment. Moreover, the FCOSTD also provides a mech-
anism for describing state changes with their corresponding
probabilities and the Markov chain. Through the Markov
chain, the state changes can be easily visualized, which allows
us to understand how the brain resource was allocated as
different types of actions were taken up by a subject. In the
near future, we want to exploit the inherent interpretabliltiy of
if-then-rule architecture of FNN to explain brain state changes
in a different perspective, and the states discovered by the
FCOSTD can be used as one major factor for improving
human-machine autonomous systems.
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