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Dear Editor,  

 

We would like to submit the enclosed manuscript entitled ‘A Novel Ensemble 

Probabilistic Forecasting System for Uncertainty in Wind Speed’, which we revised 

as the suggestions and we also wish to be considered for publication in Applied Energy.  

The original title was " Uncertainty Wind Speed Modeling Based on Quantile 

Regression Bi-directional Long Short Term Memory Network, Ensemble Probabilistic 

Forecasting Strategy, and Improved Swarm Intelligence Optimization " and has been 

revised to " A Novel Ensemble Probabilistic Forecasting System for Uncertainty in 

Wind Speed " based on the comments of the reviewers. Thank you very much for 

emailing us the comments raised by the respected reviewers. This manuscript is our 

own work and the content of this paper has not been copied from elsewhere. This 

manuscript has not been published before nor submitted to another journal for the 

consideration of publication and all data measurements are genuine results and have 

not been manipulated. In addition, none of the authors have any financial or scientific 

conflicts of interest with regard to the research described in this manuscript. And this 

manuscript was supported by the National Natural Science Foundation of China (No. 

71671029).  
All authors have seen the revised manuscript and approved to submit to your journal. 

Thank you very much for your attention and consideration. 

 

Sincerely yours,  

Shuai Wang 

Cover Letter



Dear editors and reviewers 

Thank you very much for e-mailing us the comments raised by the respected 

editors/reviewers. The manuscript No. APEN-D-21-10889 “A Novel Ensemble 

Probabilistic Forecasting System for Uncertainty in Wind Speed” has been revised 

taking into account all of the helpful comments and suggestions. The details of the 

comments raised, the answers and the actions taken are presented here. All the changes 

made in the new revised manuscript have been marked in yellow. We appreciate for 

respected editors/reviewers’ warm work earnestly, and hope that the correction will 

meet with approval. We look forward to hearing from you.  

Best regards, 

Shuai Wang 

Comment raised by respected Reviewer #1: 

Comment 1: The title is too long. Please shorten it. 

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. We changed the title to “A Novel Ensemble Probabilistic 

Forecasting System for Uncertainty in Wind Speed”  

********************************************************************* 

Comment 2: Abstract needs to modify and to be revised to be more quantitative. You 

can absorb readers' consideration by having some numerical results in this section. 

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. We revised the abstract and added the quantitative results of 

evaluation metric values. Please see the revised abstract (the modified places are 

marked in yellow). 

The revised abstract: 

The quantification of wind speed uncertainty is of great significance for real-time 

control of wind turbines and power grid dispatching. However, the intermittence and 

fluctuation of wind energy present great challenges in modeling its uncertainty; 

research in this field is limited. A quantile regression bi-directional long short-term 

memory network (QrBiLStm) and a novel ensemble probabilistic forecasting strategy 

are proposed in this study to explore ensemble probabilistic forecasting. To verify the 

reliability of the proposed ensemble probabilistic forecasting system, the uncertainties 

of wind speed at wind farms in China were modeled as a case study. The results of 

comparative experiments including 15 other models demonstrate the superiority of this 

ensemble probabilistic forecasting system in terms of sharpness while maintaining high 

interval coverage. The forecasting interval coverage probability obtained by the 

proposed system is above 97%, and the sharpness is improved by at least 24.21% as 

Detailed Response to Reviewers



compared with the commonly used single models. The proposed ensemble probabilistic 

forecasting system can accurately quantify the uncertainty of wind speed and reduce 

the operation cost of power systems by improving the efficiency of wind energy 

utilization. 

********************************************************************* 

Comment 3: Novelty / Contribution of the paper should be more clear. 

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. We modified the contribution part, combining the advantages of 

the proposed model with wind energy utilization and power system management. 

Please see the revised contributions (the modified places are marked in yellow). 

The revised contributions: 

The main innovations and contributions of this study are summarized as 

follows: 

(1) The deep QrBiLStm model for wind speed uncertainty modeling was 

successfully designed, implemented, and tested. The proposed QrBiLStm model 

can obtain interval forecasting results with high interval coverage probability and 

narrower interval width, and provide more accurate information for wind energy 

utilization.  

(2) A pseudo interval was proposed, and pseudo-interval evaluation indicators 

were successfully designed as a foundation for the ensemble probabilistic 

forecasting system (EPFS). The pseudo-interval training approach enables separate 

optimization of the upper and lower bounds of the interval. Optimized wind-speed 

interval forecasting results are more accurate which means less wind estimation 

fluctuation and less uncertainty. Thus, the proposed EPFS is of great significance 

to the safety dispatch and operation of wind power generation. 

(3) An ensemble probabilistic forecasting system was proposed, and optimization 

objective functions for ensemble forecasting were designed. The experimental 

results show that the proposed EPFS based on QrBiLStm is a significant 

improvement over the single models. The EPFS overcomes the limitations of the 

single model forecast, making the wind speed forecasting results more stable and 

practical. 

(4) The tunicate swarm algorithm (TSa) was improved and used to perform 

interval ensemble optimization. The Tsa with the addition of archiving and a 

roulette wheel can output Pareto optimal solutions. Comparative experiments 

show that the TSa with three improved strategies has better global optimization 

ability and more stable optimization. The improved Tsa can ensure more stable 

wind-speed interval forecasting results at a faster speed. 

(5) Based on singular spectral analysis (SSa) and phase space reconstruction (PSr), the 

original wind speed sequence was decomposed and reconstructed, enabling the 

ensemble forecasting model to solve the chaos phenomenon and eliminate small 

fluctuations, with better forecasting results. 



********************************************************************* 

Comment 4: The authors have to add the state-of-the art references in the manuscripts. 

(1)A novel decomposition-ensemble learning framework for multi-step ahead wind 

energy forecasting  

(2)Ultra-short-term wind speed forecasting based on EMD-VAR model and spatial 

correlation 

(3)Hybrid multi-stage decomposition with parametric model applied to wind speed 

forecasting in Brazilian Northeast 

(4)Data-augmented sequential deep learning for wind power forecasting 

(5)Efficient bootstrap stacking ensemble learning model applied to wind power 

generation forecasting  

(6)Wind turbines anomaly detection based on power curves and ensemble learning  

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. We have carefully read all of the latest literature you have provided 

and considered its relevance to our article. We found all of the articles mentioned to be 

very informative and added these references where appropriate. The numbers of the 

references are: [57], [56], [51], [14], [32], and [12]. Please see the revised manuscript. 

********************************************************************* 

Comment 5: There are some occasional grammatical problems within the text. It may 

need the attention of someone fluent in English language to enhance the readability. 

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. We have adopted three approaches to make our article more 

readable. (1) This article has been edited by Elsevier Language Editing Services.  

 



(2) We checked the language of the full article, and revised the incoherent places.  

(3) We checked the grammar of the revised contents and additions. 

********************************************************************* 

Comment 6: The discussion section in the present form is relatively weak and should 

be strengthened with more details and justifications. 

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. We mainly through the following three aspects to improve the 

discussion of this article. 

(1) Our comparative experiment also includes the discussions and remarks of the 

model performance. In order to enhance readability, we combine the “4. Experimental 

results and analysis” and “5. Discussion” into “4. Experimental results and 

discussion”. 

(2) We added DM test in the discussion to verify whether the proposed model is 

significantly different from other models. 

(3) We added the advantages and disadvantages of the proposed EPFS and future 

research directions in the discussion. 

The current “Discussion” section includes: (1) 4.1~4.2 comparative discussion of 

different models; (2) 4.3. Statistical test (DM-test); (3) 4.4.Fist-order and second-order 

forecasting effectiveness evaluation； (4) 4.5. Improvement ratio； (5) 4.6. Stability 

analysis； (6) 4.7. Advantages and disadvantages compared to the existing studies. 

Please see pages 14-28 of the revised manuscript (the modified places are marked in 

yellow). 

********************************************************************* 

Comment 7: In tables 2 and 3 the best results should be in bold font. 

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. We have highlighted the best results in Table 2 and Table 3 in bold. 

Please see the revised manuscript (the modified places are marked in yellow). 

********************************************************************* 

Comment 8: Was cross validation performed on the data? How many folds were used? 

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. We did not perform cross-validation on the data. Because 

conventional K-fold cross-validation is not suitable for time series data. For example, 

when we do the K-fold cross-validation, we may use the future data as the training set 

and the past data as the testing set, so that the observed error indicator values and model 

performance have no practical significance. Therefore, instead of doing the K-fold 

cross-validation, (1) we determined the hyperparameter values by the performance of 

the model on the validation set, and (2) we did a stability analysis in “Discussion” to 

illustrate the changes in the results of our model in multiple predictions. 



********************************************************************* 

Comment 9: What about the hyperparameters of optimization techniques? How were 

they used? 

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. All the hyperparameters required by the model, the determined 

parameter values and the methods of determining the hyperparameter values are 

described in detail in Table A1 of Appendix A (page 30). 

********************************************************************* 

Comment 10: What about prediction data, how was it divided into training, validation, 

and testing? Presented in Section 3, item 1, explain better. 

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. We added the “3.1 Data description” section. Here we describe the 

data collection information and the division of datasets in detail. In addition, we share 

the datasets behind the ‘conclusion’ for readers to use.  

Please see page 12 of the revised manuscript (the modified places are marked in yellow). 

********************************************************************* 

Comment 11: What are the limitations behind this study? This topic should be 

highlighted somewhere in the text of manuscript. 

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. In the “Conclusion” section, we added the limitations of this study 

and described the future work. Please see page 29 of the revised manuscript (the 

modified places are marked in yellow). 

********************************************************************* 

Comment 12: What are the advantages and disadvantages of this study compared to the 

existing studies in this area? This topic should be highlighted somewhere in the text of 

manuscript. 

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. Section 4.7 “Advantages and disadvantages compared to the 

existing studies” (pages 24-25) is set up to highlight this aspect.  

Please see the revised manuscript (the modified places are marked in yellow). 

********************************************************************* 

Comment 13: In conclusion section, limitations and recommendations of this research 

should be highlighted. 

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. In the conclusion section, we highlight the limitations and the 



contribution of this paper. The revised part of conclusion reads as follows: 

The main limitations of the proposed EPFS are as follows: (1) Because quantile loss is 

discontinuous and nondifferentiable around 0 point, this EPFS has not been applied to 

the field of deterministic forecasts; (2) It is not combined with other linear models or 

interval forecasting models based on distribution in ensemble forecasting. However, 

this EPFS can optimize the upper and lower bounds of the interval separately and does 

not need to assume the distribution in advance. This study provides a novel approach 

for wind speed ensemble probabilistic forecasting and can be used as a powerful 

decision tool in the power system scheduling process.  

Comment raised by respected Reviewer #2: 

Comment: The paper is well written with detailed technical content. I would 

recommend publication of this paper after some minor corrections are made and/or 

clarification questions raised above are properly addressed. 

Response: Thank you for your comments and they are all valuable and very helpful for 

revising and improving our paper. We have studied the comments carefully and made 

corrections in the revised manuscript which we hope to meet with approval. 

********************************************************************* 

Comment 1: The acronym IMOTa, which was mentioned in the Introduction first, was 

later defined in Line 138 as Improved Multi-Objective Tunicate swarm algorithm 

(IMOTa). It would be good to define the acronym when it first appears in the manuscript. 

I also notice that all acronyms are defined in Table A2 (Line 526).  

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. In the Introduction section (page 3), we redefined the Tunicate 

swarm algorithm as a TSa. In Section 2.3, Part B (page 9), we define the Improved 

Tunicate Swarm Optimization Algorithm as IMOTA.  

Please see the revised manuscript (the modified places are marked in yellow). 

********************************************************************* 

Comment 2: Fig. 5: Although it is obvious that SPICP is the same as std(PICP), it 

should be defined. The same argument applies to SPINAW, SAIS. 

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. We have changed S(PICP), S(PINAW), and S(AIS) in Fig.5 to 

std(PICP),std(PINAW) and std(AIS), respectively.  

Please refer to Fig.5 in the revised manuscript. 

********************************************************************* 

Comment 3: Table 5, I think PIMWP should be PINAW. In this table, only PINAW 

and AIS are considered. Why not also considering PICP?  

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. We changed the PIMWP in Table 6 to PINAW. For the problem 



that the PICP is not considered in the lifting rate: we show in the paper that the proposed 

EPFS can significantly reduce the interval width, but in some cases it will slightly 

reduce the interval coverage probability. Therefore, in order to comprehensively 

measure the final interval prediction effect, we observe the improvement rate of AIS, a 

comprehensive index, to reflect the total improvement effect of the proposed EPFS, and 

use the improvement rate of PINAW to reflect the effect of EPFS on shortening the 

interval width. In addition, in Section 4.5 (page 23, lines 484-487) of the revised 

manuscript, we explained why we only consider the promotion rate of PINAW and AIS. 

It reads as follows: 

In this paper, the improvement rate of AIS is calculated to reflect the overall 

improvement ratio of the proposed EPFS compared with other models, and the 

improvement rate of PINAW reflects the contribution of the proposed EPFS to 

shortening the interval width. 

********************************************************************* 

Comment 4: Lines 261-262, it was mentioned that the parameter settings for all 

models are presented in Table A1 in Appendix A. Which machine-learning software 

was used in this study? Will the dataset be made available for interested readers to 

reproduce the results in this paper?  

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. (1) We explained before section 4.1 (page 14, line 277) that the 

experiments were based on Matlab2020a. It reads as follows: 

“The proposed EPFS and comparative models were implemented on Matlab2020a.” 

(2) We added a data availability section to the appendix to make our data publicly 

available for replication by other readers. 

Data Availability 

10-minute wind speed data of three Sites in Shandong Peninsula: 

https://data.mendeley.com/datasets/sjyf2nhzdt/draft?a=af12330a-125b-499a-9473-

6840ed7044f9 

Please refer to the revised manuscript (the modified places are marked in yellow). 

********************************************************************* 

Comment 5: Lines 270-271, Eq. (25),  

 a. N is the length of the interval to be predicted. Can you elaborate N (an integer) 

here or how N is determined?  

 b. α is the confidence level. How many α were used in this study? I presume 

α=0.1 and 0.05 (see Lines 460-461).  

 c. Is PINC=1- α (in %)? For example, is α=0.1 the same as PINC=90% (or 1-

0.1)?  

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper.  

a. N is the length of the divided testing set. In section 3, we added a more detailed 

description to the division of the data set. 

b. We used 0.05   and 0.1   in this study. 

https://data.mendeley.com/datasets/sjyf2nhzdt/draft?a=af12330a-125b-499a-9473-6840ed7044f9
https://data.mendeley.com/datasets/sjyf2nhzdt/draft?a=af12330a-125b-499a-9473-6840ed7044f9


c.  1 100%PINC    . 

In addition, we also explained the above problems in this paper, and the contents 

(page 14, lines 288-292) are as follows: 

a. where N  is the length of the testing set. 

b. In this paper, interval prediction is implemented based on 0.05   and 0.1   

c. confidence levels. And  1 100%PINC    . 

Please see page 14 of the revised manuscript (revised places are marked in yellow). 

********************************************************************* 

Comment 6: The symbol  i  was used twice in Eqs. (28) and (29), respectively, 

with different meanings. The authors could use, e.g.,  i  and  i  to be different. 

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. We have changed  i  to  i  in formula (29). Accordingly, 

we have also modified the text description of symbols.  

Please refer to the revised manuscript (the modified places are marked in yellow). 

********************************************************************* 

Comment 7: Lines 280-281, Eq. (26), I believe that N here is the same N as in Eq. 

(25). R is the range of observation values. Is R an integer? How is R determined?  

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. N in the Eq. (26) is the same as N in Eq. (25), we explained this 

point in section 4.1 (page 14, lines 298-299) of the revised manuscript. R is an 

integer, it is determined by the maximum of the observation values on the testing set 

minus its minimum. 

Please refer to the revised manuscript (the modified places are marked in yellow). 

********************************************************************* 

Comment 8: Line 282, Sharpness, a reference about the definition of sharpness is 

needed.  

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. We had added a reference about the definition of sharpness in 

section 4.1 (page 14, line 303). It reads as follows: 

The sharpness combines the two metrics for assessment of prediction intervals [50]; 

[50] Cui M, Krishnan V, Hodge BM, Zhang J. A Copula-Based Conditional 

Probabilistic Forecast Model for Wind Power Ramps. IEEE Trans Smart Grid 

2019. https://doi.org/10.1109/TSG.2018.2841932. 

Please refer to the revised manuscript (the modified places are marked in yellow). 

********************************************************************* 

Comment 9: Lines 312-313, “A smaller PINAW indicates a narrower interval width 

with more uncertainty information.” Can you explain a narrower interval width 

indicates more uncertainty information?  

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. First, let's explain it by an example. Case1: Tomorrow's 



temperature is between 10 and 20 degrees; Case2: Tomorrow's temperature will be 

between 12 and 18 degrees. Obviously, the uncertainty of the case 2 is smaller, and the 

more (uncertainty) information it contains.  

In addition, we added " The PINAW metric indicates the interval width which 

determines the practicality and informative of interval [51]" and added references to it 

in the revised version.  

[51] Quan H, Srinivasan D, Khosravi A. Uncertainty handling using neural 

network-based prediction intervals for electrical load forecasting. Energy 2014. 

https://doi.org/10.1016/j.energy.2014.06.104. 

Please refer to page 15 (lines 332-333) of the revised manuscript. 

********************************************************************* 

Comment 10: Lines 328-329, “The AIS value is generally less than 0; a higher AIS 

value indicates a more effective forecasting interval.” Do you mean a higher AIS 

value (<0) is for a lower absolute value of AIS?  

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. Yes, a higher AIS value (<0) is for a lower absolute value of AIS. 

In order to facilitate readers to check the optimal results, the optimal results in Table 2 

and Table 3 are marked in bold. Please see the revised manuscript.  

********************************************************************* 

Comment 11: Fig. 3, AIS bar charts, colors for QrBiLStm and Proposed EPFS are the 

same (Blue), and they should be different to be distinguishable.  

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. We've changed the color of the Proposed EPFS to a different color 

to make it easier to distinguish.  

Please refer to Fig. 3 of the revised manuscript. 

********************************************************************* 

Comment 12: Lines 399-400,  

 a. “…the forecasting effectiveness (FE) approach [52] was modified for 

uncertainty forecasting.” How was FE in [52] modified?  

 b. “The required bias in FE is defined as AIS…”. I believe AIS here is the same 

as that defined in Eq. (27). Please explain.  

 Response: Thank you for the valuable advice and it is quite helpful for improving 

the quality of our paper. 

 a. Literature [52] is the original FE, which is mainly used to evaluate the point 

prediction results. In this paper, we modified it to measure the results of interval 

prediction. How to modified it is explained in b. 

 b. In the FE formula of point prediction, the bias (that is, the real value minus the 

predicted value) is needed. In the interval prediction, we also need a bias, so we employ 

“interval score” (part of the AIS), which can measure both the interval coverage and 

the interval width, as bias of interval forecast. We also revised the original description 

as “The required bias in FE is modified as interval score which is defined as Eq. (31)”.  



 Please see section 4.4 of the revised manuscript (page 22, lines 455-456). 

********************************************************************* 

Comment 13: Line 408, 1 , 1, 2, ,iQ n i n  . I think 
iQ i n . Is n here same as N 

in Eq. (27)? Again, are N in Eqs. (25)-(27) the same?  

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. Firstly, 1 , 1, 2, ,iQ n i n   is correct; because 

1

1,  0
n

i i

i

Q Q


  , Because the prior information cannot be obtained, equal probability is 

taken for each observation point on the test set, so 1iQ n . Secondly, n is same as N 

in Eq. (27). We also added “where n is the length of the testing set” (page 22, lines 459-

460) to explain this point in section 4.4 of the revised manuscript.  

********************************************************************* 

Comment 14: Line 413, “…the second-order FE is defined as 

   
2

1 2 1 2 1, 1g g g g gFE
 

   
 

 

 a. Please explain this definition.  

 b. How can this definition be extended to  1 2 3, ,g g gFE  

 c. Is there any advantage to include the 3rd-order FE in the analysis to assess the 

forecasting performance?  

 Response: Thank you for the valuable advice and it is quite helpful for improving 

the quality of our paper. 

a. This definition is given by reference [52], and this paper only applies this index to 

evaluate the prediction results from another angle. Specific information can refer to 

these two articles: “Research on model for combination forecasting based on second-

order forecast effective measure” and “Research on superior combination forecasting 

model based on forecasting effective measure.”. 

b.c. At present, the research only defines the first-order and second-order forecasting 

effectiveness. Please refer to two articles in “a.” for specific information. 

********************************************************************* 

Comment 15: Lines 439-441, “…increased by more than 30% compared with EPFMs 

based on other denoising methods. Compared with EPFMs based on other 

optimization algorithms, the improvement ratio is approximately 5–10%...”  

 

 a. How was 30% above related to the four denoising methods calculated? IR at 

Site 1 for PINC=90% and 95% is between 0.1894 and 0.4774.  

 b. How was 5-10% above related to the four optimization algorithms calculated? 

IR at Site 1 for PINC=90% and 95% is between 0.0208 (MOAa for PINC=90%) and 

0.2360 (MODa for PINC=95%).  

 Response: Thank you for the valuable advice and it is quite helpful for improving 



the quality of our paper. 

 a. The 30% value is the average of the AIS values for the four denoising methods 

at the three Sites with PINC=90% and PINC=95%. We found the description a bit vague, 

so we revised the sentence. It reads as follows: 

 Taking into account 90%PINC   and 95%PINC   of the three Sites, the 

proposed EPFS represents a minimum of 12.96% improvement in AIS metrics 

compared to the EPFMs based on the other four denoising methods. 

 b. 5% to 10% is determined by the average of the AIS values for the four 

optimization algorithms at the three Sites (considering PINC=90% and PINC=95%). 

We found the description a bit vague, so we revised the sentence. It reads as follows: 

 Compared with EPFMs based on other optimization algorithms, the improvement 

ratio of the AIS metric is 1.57% to 23.60%. 

 Please refer to Section 4.5 (page 24, lines 496-500) of the revised manuscript (the 

modified places are marked in yellow). 

********************************************************************* 

Comment 16: Line 482, Note, what is PMAPE?  

Response: Thank you for the valuable advice and it is quite helpful for improving the 

quality of our paper. This is our writing mistake. We modified the Note in Table 6 (page 

26), which reads as follows: 
Note: The table above reports the IR of the proposed EPFS from other twelve models. The AIS and 

PINAW are used to measure the IR, and the corresponding indicator can be defined as 

 com pro com

MetricIR Metric Metric Metric  
 

, where 
com

Metric  is the metric values of 

compared model, and the 
pro

Metric  indicates the metric value of the proposed EPFS. 

********************************************************************* 



 Developed a novel deep QrBiLStm that can perform probabilistic forecasts. 

 An ensemble probabilistic forecasting system was proposed.  

 A pseudo-interval training method for ensemble probabilistic forecast is designed. 

 Improved the optimizer with three strategies. 
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Abstract 

The quantification of wind speed uncertainty is of great significance for real-time 

control of wind turbines and power grid dispatching. However, the intermittence and 

fluctuation of wind energy present great challenges in modeling its uncertainty; 

research in this field is limited. A quantile regression bi-directional long short-term 

memory network (QrBiLStm) and a novel ensemble probabilistic forecasting strategy 

are proposed in this study to explore ensemble probabilistic forecasting. To verify the 

reliability of the proposed ensemble probabilistic forecasting system, the uncertainties 

of wind speed at wind farms in China were modeled as a case study. The results of 

comparative experiments including 15 other models demonstrate the superiority of this 

ensemble probabilistic forecasting system in terms of sharpness while maintaining high 

interval coverage. The forecasting interval coverage probability obtained by the 

proposed system is above 97%, and the sharpness is improved by at least 24.21% as 

compared with the commonly used single models. The proposed ensemble probabilistic 

forecasting system can accurately quantify the uncertainty of wind speed and reduce 

the operation cost of power systems by improving the efficiency of wind energy 

utilization. 

Keywords: Wind speed forecasts; Multi-objective optimization algorithm; Deep 

learning; ensemble probabilistic strategy; Forecast uncertainty 

1. Introduction 

Wind energy has attracted extensive attention as an inexhaustible, clean, and 

inexpensive form of renewable energy. According to the Global Wind Report released 

by GWEC in 2021, the 93GW of new installations brings global cumulative wind power 

capacity up to 743 GW [1]. However, volatility and randomness of wind energy pose 

great challenges to wind energy grid connection and grid scheduling [2]. Decision-

makers must calculate and process the forecasted wind speed to obtain corresponding 

energy information [3]. Thus, wind-speed forecasting is critical for wind energy 

utilization. 

Wind speed forecasting approximates or extracts the potential relationship behind 

the data; point-oriented forecasting is the most common form [4]. A data-driven model 

of point forecasting can use traditional statistical models and artificial intelligence 

models. Traditional statistical models include autoregressive moving average (ARMA) 

[5], autoregressive integrated moving average (ARIMA) [6], and Kalman filtering [7], 

etc. These models are based on a linear assumption, and produce forecasting results that 
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are not accurate with nonlinear sequences [8]. With continuous development of 

artificial intelligence technology, researchers have begun to apply artificial neural 

networks to wind speed forecasts. Shallow models including the back propagation 

neural network (BPNN) [9], the extreme learning machine (ELM) [10], and support 

vector regression (SVR) [11] were first used. This type of supervised AI model can 

capture the nonlinear characteristics of wind speed series and manage long series [12]; 

the forecasting accuracy is higher than that of traditional statistical models [13]. 

However, there are some defects such as under-fitting, over-fitting, and long training 

time. With the development of deep learning technology, variants of recurrent neural 

networks (RNNs) [14] such as long short-term memory (LStm), gated recurrent units 

(GRu), and BiLStm networks have demonstrated excellent performance in time series 

forecasting [15]. This type of model can store historical information and facilitate 

capture of nonlinear features in wind speed series. These models often have many 

hyperparameters that must be set and weights to be updated; thus, they are subject to 

long training time and difficulty in parameter optimization [16].  

As wind speed data usually fluctuate, point-oriented forecasting can be inaccurate 

for grid scheduling purposes; thus, interval forecasting has become popular [17]. 

Interval forecasting approaches include mean-variance estimates (MVE) [18], 

bootstrap [19], Bayesian [20], and the lower upper bound estimation (LUBE) [21]. 

These methods have advantages and disadvantages, summarized in Table 1. Quantile 

regression (Qr) [22] is usually used in uncertainty forecasting for its strong 

interpretability in estimating the conditional distribution of the dependent variable. 

With the limitations of Qr with nonlinear series, research has begun to focus on 

combining Qr and artificial intelligence models to expand uncertainty forecasting 

ability [23,24]. In 2000, Taylor [25] proposed a method for combining Qr with a neural 

network that could solve both linear and nonlinear problems. Based on QrNN, 

researchers began to combine Qr with other single models. Support Vector Quantile 

Regression (SVQr) [26] was developed to forecast the probability density of short-term 

wind power, and can effectively quantify the uncertainty of time series data. He et al 

[27] forecasted the probability density of electricity consumption based on QrLASso. 

This method can better learn high-dimensional data, with more accurate forecasting 

results. As RNNs have more advantages in time series forecasting, researchers have 

combined Qr with LStm and GRU, proposing QrLStm [28] and QrGRu [29], which 

further improve forecasting accuracy. Wang et al. [30] incorporated Qr into a 

convolution-simplified long-term and short-term memory network. This improved 

model shortened the training time without reducing the accuracy. Based on these studies, 

we incorporated Qr with BiLStm, proposing QrBiLStm to quantify the uncertainty of 

wind speed.  

The shortcomings of a single model are obvious. In practical applications, the 

forecasting accuracy of a single model can be high or low in different regions. Thus, 

another focus of this study is the ensemble forecasting strategy [31]. The ensemble 

model weighs several well-performing models according to errors using an intelligent 

optimization algorithm [32]; forecasting is more stable and accurate than with single 

models [33]. Ensemble forecasting research focuses mostly on point-oriented 

forecasting. Liu et.al. [34] developed a multi-objective version of the mayfly 

optimization algorithm, combining several accurate single models to achieve more 

accurate forecasting. Wang et.al. [35] proposed the addition of two deep learning 

models to the ensemble forecasting framework, and used the improved dragonfly 
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optimization algorithm to obtain more accurate point forecasting results. However, 

research on ensemble probabilistic forecasting has received little attention, limiting 

further development. Niu et al. [36] proposed the use of multiple single models for 

interval forecasting based on the distribution assumption, and used an optimization 

algorithm to integrate the results of the single models to obtain the final forecasting 

results. This approach provides ideas for ensemble probabilistic forecasting. However, 

with the need to fit the data distribution and estimate the parameters, its usability is 

limited in practice. The accuracy of the ensemble model depends on the forecasting 

performance of single models; thus, we propose two QrBiLStm models with excellent 

performance as benchmark models and use an improved optimization algorithm to 

realize ensemble probabilistic forecasting.  

The main innovations and contributions of this study are summarized as 

follows: 

(1) The deep QrBiLStm model for wind speed uncertainty modeling was 

successfully designed, implemented, and tested. The proposed QrBiLStm model 

can obtain interval forecasting results with high interval coverage probability and 

narrower interval width, and provide more accurate information for wind energy 

utilization.  

(2) A pseudo interval was proposed, and pseudo-interval evaluation indicators 

were successfully designed as a foundation for the ensemble probabilistic 

forecasting system (EPFS). The pseudo-interval training approach enables separate 

optimization of the upper and lower bounds of the interval. Optimized wind-speed 

interval forecasting results are more accurate which means less wind estimation 

fluctuation and less uncertainty. Thus, the proposed EPFS is of great significance 

to the safety dispatch and operation of wind power generation. 

(3) An ensemble probabilistic forecasting system was proposed, and optimization 

objective functions for ensemble forecasting were designed. The experimental 

results show that the proposed EPFS based on QrBiLStm is a significant 

improvement over the single models. The EPFS overcomes the limitations of the 

single model forecast, making the wind speed forecasting results more stable and 

practical. 

(4) The tunicate swarm algorithm (TSa) was improved and used to perform 

interval ensemble optimization. The Tsa with the addition of archiving and a 

roulette wheel can output Pareto optimal solutions. Comparative experiments 

show that the TSa with three improved strategies has better global optimization 

ability and more stable optimization. The improved Tsa can ensure more stable 

wind-speed interval forecasting results at a faster speed. 

(5) Based on singular spectral analysis (SSa) and phase space reconstruction (PSr), the 

original wind speed sequence was decomposed and reconstructed, enabling the 

ensemble forecasting model to solve the chaos phenomenon and eliminate small 

fluctuations, with better forecasting results.  
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Table 1  1 

Advantages and disadvantages of wind speed forecasting models. 2 

Models References Advantages Disadvantages 

ARMA, ARIMA, and 

Kalman filtering 
[6, 7] 

The model is simple and only needs endogenous variables; 

Accurately forecast the linear sequences. 

Low forecasting accuracy in nonlinear data; 

The data is required to be stable or differentially 

stable. 

AI Model (BPNN, 

ELM, SVR, LStm, and 

GRu) 

[9–11], [37] 

Strong robustness and fault tolerance to noise data; Have the 

ability of association, and can approximate any nonlinear 

relationship. 

The calculation burden is high, and the 

interpretability is poor; It is difficult to 

determine the hyperparameter values. 

Ensemble Model [34], [38,39] 
The forecasting accuracy on different data types can be ensured; 

Take advantages of each single model. 

Need to train multiple models and choose 

efficient empowerment technique. 

MVE [18,40] The computational burden is relatively small. 

The accuracy is largely affected by the effect of 

numerical predictions associated with it; the 

underestimation of data variance will result in 

low coverage of real data by prediction 

intervals. 

Bootstrap [41,42] High efficiency in small-scale data. Is a resampling method that requires significant 

computational cost for large data sets. 

Bayesian [20] Improve the generalization ability of model.  

The calculation burden is large, which requires 

the calculation of the Hessian matrix. When the 

data size is not large enough, the accuracy 

largely depends on prior knowledge. 

LUBE [21,43] 
It avoids the problem of numerical calculation of the Jacobian 

matrix and Hessian matrix. 

Heavy computational burden. No suitable 

parameter initialization method. 

Quantile Regression 

（Qr） 
[25,44] 

Ability to resolve heterogeneity issues; Tail features of the 

distribution can be captured. 

Traditional Qr model can't solve nonlinear 

problems, so it is necessary to select a suitable 

neural network to combine with Qr. 

 3 
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2. Ensemble probabilistic forecasting system (EPFS) 4 

In the EPFS, SSa [42] is used to decompose the reconstructed sequence, and PSr 5 

[43] is used to reconstruct an one-dimensional sequence into a dynamic chaotic space. 6 

The processed sequences are forecasted in two QrBiLStm units. The proposed IMOTa 7 

algorithm is used to aggregate the two QrBiLStm units to generate an effective wind 8 

speed forecasting interval. The details of the QrBiLStm, SSa, PSr, and IMOTa 9 

algorithms are described as follows.  10 

2.1.  Quantile Regression Bi-directional Long Short Term Memory Network  11 

This section introduces the basic structure of BiLStm and the generation of 12 

QrBiLStm. 13 

2.1.1. Bi-directional Long Short Term Memory Network 14 

LStm proposed by S. Hochreiter [44], and is an RNN variant [45]. Owing to its 15 

cell structure, LStm can solve the problems of gradient disappearance and gradient 16 

explosion in long-sequence training. The cell structure consists of an input gate ( t ), a 17 

forgetting gate ( t ), and an output gate (t ); the structure is shown in Figure.1A. 18 
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 (1) 19 

In Eq. (1), W  and Bias  represent the weight and bias of LStm cells, respectively; 20 

t  is the current cell state,   is the candidate cell state, and  tanh  represents a 21 

hyperbolic tangent function. 22 

BiLStm [46] is composed of a forward LStm layer and a backward LStm layer. In 23 

the forward layer, the sequence t  is input into the LStm model to calculate the output 24 

state 
t,i


. In the backward layer, the inverse form of the input sequence is input into 25 

the LStm model to calculate the reverse layer output state 
t,i


. This structure can 26 

extract the forward and backward relations of the wind speed series and connect them 27 

to the same output. The network structure is illustrated in Figure 1B. 28 

The output of the BiLStm layer at time t is 1 2

T

, , , ,
, , , , ,

t t t t i t T
        , 29 

where ,t i
  contains 

t,i


 and 
t,i


 which can be expressed as Eq. (2). 30 
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 (2) 31 

where t,i -1


 indicates the cell state of the (i-1)th input time step in the forward LStm 32 

layer at time t; t,i+1


 is the cell state of the (i+1)th input time step in the backward 33 

LStm layer at time t. 34 

2.1.2. Quantile Regression  35 

Quantile regression (Qr) can explore the relationship between the conditional 36 

quantiles of the independent and dependent variables. The linear Qr can be expressed 37 

as Eq. (3). 38 

        linearQ X F| ,
tY t t tX X     , 1 2t n , , ,  (3) 39 

where  
tY t

 |
linear

Q X  is the  th condition quantile of the dependent variable t
Y  and 40 

 0 1,τ . Regression coefficients         0 1 mτ τ τ, , ,     .  41 

The estimated value  ̂   of     can be obtained by minimizing Eq. (4). 42 

      
1

Φτ= argmin Y Xˆ
n

t t

t

   


 
 

 
  (4) 43 

where  Φ
τ

 indicates an asymmetric function that can be written as 44 
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 (5) 45 

From these equations, the  th condition quantile of t
Y  can be estimated as 46 

     Q X X| ~ ˆ
t

linear
Y t t    (6) 47 

2.1.3. Quantile Regression BiLStm (QrBiLStm) 48 

Based on the BiLStm and Qr, QrBiLStm was used for uncertainty modeling by 49 

modifying the cell structure and loss function of BiLStm. The loss function can be 50 

modified as   
1

ΦQrBiLStm Y X
n

Pinball loss
t t

t

L   



  . The condition quantile of t
Y  obtained 51 

by QrBiLStm can be formulated as  52 

           Y
Q X X W| ,

t

BiLStm

t t t
f         (7) 53 

where  W  indicates the weight matrix of  , and      t,i t,it
     

 
  
 

 

. 54 

The novel QrBiLStm network combines quantile regression with bi-directional 55 

data processing, and can effectively learn the hidden correlation between the pre- and 56 

post-time-step data in a time series, with better uncertainty modeling. 57 
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 58 
Fig.1. Cell structures of LStm and BiLStm 59 

2.2. Original signal preprocessing 60 

In this section, the principles of SSa and PSr are introduced in decomposing and 61 

reconstructing sequences. 62 

2.2.1. Singular Spectral analysis (SSa) 63 

The principal objective of SSa is to decompose the original series into a sum of 64 

series, identified as either a trend, a periodic or quasi-periodic component, or noise [47]. 65 

The flow of SSa can be summarized as follows. 66 

(A). Embedding procedure 67 

Based on the original sequence ini
T  and Karhunene–Loeve decomposition of the 68 

covariance matrix, the sequence  1 2

T

HS , ,
i

i i Y    of the L-dimensional vector 69 

is constructed. 70 

  

0

1 1

HS

M

Y T 

 
 


 
  

 (8) 71 

where, 1M T Y    and HS  is a Hankel matrix with equal elements on the 72 

diagonals.  73 

(B) Singular value disintegration 74 

The matrix SS
T

 is calculated to determine its eigenvalues using triples 75 

 E F, ,
i i i

x  by SVD [51]. The eigenvalues of SS
T

 are defined as i
ζ , 1 2, , ,i Y   76 

in descending order. E
i
 and F

i
 are the ith left and right eigenvectors, respectively, 77 

of SS
T

. Assuming  HS
i

r rank , the trajectory matrix HS  can be expressed as 78 

  
1

H H HS S S ,
r

    HS E F
i

T
i i ix  (9) 79 

where i
x  is the singular value of HS , and  1 2HS , , ,

i

i r   are matrices of 80 

1rank  . 81 
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 83 

(C). Reconstruction  84 

Step 3.1 (Grouping): The indices 1 2, , ,K r  are grouped into V  disjoint subsets 85 

 1 2, , ,k k k

VG G G  corresponding to splitting the elementary matrices  1 2HS , , ,
i

i r   86 

into V  groups. Each group contains a set of indices as  1 pG , ,k d d . The resultant 87 

matrix is defined as 
d,1 d,2 d, p

G
S S S Sk     . Thus, 

1 2
H

G G G
S S S S

, , ,
k k k

V
   , 88 

where HS  is the sum of G
k

 resultant matrices. 89 

Step 3.2 (Diagonal averaging): Each matrix 
G

S
,

k

j
1 2 , , ,j V  is transferred into a 90 

time series. Let HS  be a  Y M  matrix with elements s
i,j

, with  min*
,Y Y M91 

and  max
*

,M Y M . Define 
i,j

i,j

j,i

S
S

S

,
*

,

Y M

otherwise


 


. 92 

Matrix HS  is transformed into sequence 0 1 1
, , ,

T
  

  using Eq. (10). 93 
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


    








 (10) 94 

The averaging of the elements along the diagonal 2i j b   , applied to a 95 

resultant matrix 
G

S
,

k

j
, produces a time series T  of length T. Thus, the original series 96 

ini
T  is decomposed into the sum of V sequences. Defining the decomposed series as97 

de
T , it can be expressed as

1de
T T T

V    98 

2.2.2. Phase Space reconstruction (PSr) 99 

In the prediction of chaotic time series, the phase space reconstruction (PSr) 100 

method can be used to reconstruct a one-dimensional series into a dynamic chaotic 101 

space to obtain better forecasting results [48]. In this study, the C–C method was used 102 

to determine two important parameters of the PSr algorithm: delay time   and 103 

embedding dimension  . The PSr process is expressed as 104 

  

 

 

 

1 1 1 1

11 2

1

, , ,
Tini

P i i iP

P P P

  

  

  

  

     

  

  

  

  

 
 
 
   
  
 
 
  

 (11) 105 
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where  1 2| , , ,
i

i Z   signifies the samples of the sequence; Z  indicates the 106 

length of the initial sequences, and  1P Z      . Accordingly, the target matrix 107 

R
tar

P corresponding to 
ini

P  can be expressed as Eq. (12). 108 

  
   1 1 1 1 2 1

T T

R R R R, , , , , ,
tar

P P Z        
    

  
 (12) 109 

2.3. Improved Tunicate Swarm Optimization Algorithm (IMOTa) 110 

This section illustrates the mechanism of the original optimizer, the multi-111 

objective optimization, and three improved optimization strategies. 112 

A. Tunicate swarm algorithm (TSa) 113 

The TSa was proposed by Kaur et al. [49], who regarded the optimal solution as 114 

the food source in the ocean, and the process of finding the optimal solution as the 115 

movement behavior combination of the capsule animals looking for food. The 116 

comprehensive mathematical principle of the TSa is presented as following. 117 

Behavior 1. (avoidance) This behavior of tunicates aims to avoid collisions between 118 

individuals, and is defined by A G Svo raf ocf . Avo  is driven mainly by gravity 119 

and social forces. The gravity force is counteracted by the water flow  2 R 1Watf   , 120 

and is defined as    R 1 R 2G Wraf atf   . The social force is driven mainly by 121 

initial speed IniS  and subordinate speed SubS . The social force is defined as 122 

   R 1S Inis Subs Inisocf     . In the definition, IniS  is preset as 1, SubS  is 123 

preset as 4, and R  is a matrix with elements that are all random values ranging from 124 

 0 1, . 125 

Behavior 2. (movement) Tunicates move in the direction of their best neighbors. This 126 

behavior can be mathematically defined as  f tD Pos Posis rand k   . Dis  127 

measures the absolute distance between the optimal solution and the agent. In this 128 

behavior, fPos  indicates the position of the optimal solution, and  tPos k  refers to 129 

the position of the kth individual. 130 

Behavior 3. (convergence) Tunicates begin to advance toward food sources by means 131 

of Avo  and Dis . The tunicates update their positions according to Eq. (13). 132 

   
0 5

0 5

f

f

Pos Avo Dis
Pos

Pos Avo Dis <

, .

, .
u

rand
k

rand

   
 

 

 (13) 133 

Behavior 4. (swarm behavior) The best two solutions are retained, and the positions of 134 

other individuals relative to the food source are updated. The swarm behavior can be 135 

mathematically expressed as Eq. (14). 136 

          1 2 1t tPos Pos Pos Ruk k k    
 

 (14) 137 

B. Improved multi-objective tunicate swarm algorithm (IMOTa) 138 

This study developed three improvement strategies: the multi-objective approach 139 
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(MOJ), the elite opposition learning approach (EOLA), and the exponential function 140 

step approach (EFSA). The MOJ produces multiple objective functions in the 141 

optimization algorithm to achieve better optimization results. The EOLA can improve 142 

the convergence speed of the algorithm. The EFSA can improve the global optimization 143 

and robustness. 144 

a. Multi-objective tunicate swarm algorithm (MOTa) 145 

To achieve multi-objective optimization, this section introduces the dominant 146 

strategy, the Pareto optimal solution and archiving with a roulette wheel. The ability of 147 

the MOTa system to find the Pareto optimal solution is demonstrated using the 148 

definitions. 149 

Definition 1. Let  1 2J , , , iJ J J  and  1 2K , , , iK K K  be two vectors; J  150 

strictly dominates K , if      n , f J f Kn n1,2,..., N   ; J  partially dominates 151 

K , if      n , f J f Kn n1,2,..., N   . J  dominates K , if 152 

             n , f J f K n , f J f Kn n n n1,2,..., N 1,2, ..., N         
   

(15) 153 

where  n
f  indicates the n-th objective function and N is the number of functions. 154 

Definition 2. If      K  | f K f J: n nn 1,2, ..., N K     , that is, none of the 155 

obtained solutions dominates J , then J  is the Pareto optimal solution. 156 

Definition 3. Archiving with a roulette wheel is a matrix used to store the optimal 157 

solutions. When the archive is full, the individuals with the most adjacent solutions are 158 

eliminated by the roulette wheel. The probability that an individual is eliminated is 159 

i iPe = Ns cq ,cq >1 , where iNs  indicates the number of adjacent solutions, and cq  160 

is a constant. 161 

Suppose that the fitness function corresponding to the objective function is  fit  , 162 

and the optimal position 
*

P  of the individual in MOTA is the weight of two QrbiLStm 163 

units,  *
We P . It is proved that 

*
P  is the optimal weight of two QrbiLStm units 164 

through reduction to absurdity. 165 

Proof 166 

If there exists at least one adjacent position * *
Q P   , the weights satisfy 167 

 n 1,2,...,N ,       n n
We Q We P

* *fit fit 

  n 1,2,...,N ,    n

We Q
*fit >168 

  n
We P

*fit 
 , and 

*
Q  is stored in the Archive. As  *

We Q  dominates  *
We P , 169 

and the capacity of Archive with Roulette-Wheel is limited, *
P  is deleted from 170 

Archive with the i
prob Ns cq  or ranked behind 

*
Q . The position with the highest 171 

fitness value in Archive is selected as the optimal position. Corresponding, the optimal 172 

weights of QrBiLStm is  *
We Q  instead of  *

We P . ■ 173 

b. Elite opposition learning (EOLA)-MOTa 174 

The IMOTa based on EOLA was proposed to improve the convergence 175 

performance of the optimizer. The principle of EOLA is to calculate and evaluate the 176 
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opposition solution of a feasible solution, and select the better solution as the next 177 

generation. In this study, the elite tunicate is defined as the individual that obtains the 178 

highest fitness value. 179 

Definition 4. (opposition point) Let  , , ,j,1 j,2 j,dx x x jX  be a point in d-180 

dimensional space (regarded as a feasible solution),  x b , b
i i i

l u , and its 181 

corresponding opposition point  , , ,j 1 2 dX x x x


  are defined in Eq. (16) 182 

  -x b + b x
i i i i

l u  (16) 183 

Definition 5. (elite opposition solution) Suppose that  j j,1 j,2 j,dX x x x, , ,  is a 184 

common tunicate, and the corresponding extreme value of itself is the elite tunicate 185 

 elite
j j,1 j,2 j,dX x x x, , ,e e e . The elite opposition solution 186 

 , , ,elite e e e

j j,1 j,2 j,d
X x x x  can be defined as formula (17). 187 

   e e

j,i j j j,ix dlb + dub - x   (17) 188 

where e

j,i j jx dlb ,dub    ;  0,1c U ; 
j jb , b  dl du  is the dynamic boundary of the 189 

ith dimension search space, which can be calculated according to Eq. (18). 190 

     ,j j,i j j,ib = x b = xdl min du max  (18) 191 

Replacing the fixed boundary with the dynamic boundary of the search space is 192 

conducive to preserving the search experience, such that the generated opposition 193 

solution can be located in the gradually reduced search space. However, it has the 194 

possibility of causing 
e

j,i
x  to exit 

j jb , b  dl du . If 
e

jx < b
j,i

dl  or 
e

jx > b
j,i

du , then 195 

 j,i j j jx dub - dlb dub
e +  , where   is a random value between 0 and 1. 196 

c. Exponential function steps (EFSA)-MOTa 197 

In Behaviors 3 and 4 of the original TSA, the approach to promote the location 198 

update is random linear. This updating approach cannot guarantee individuals to find 199 

the optimal solution, which ultimately leads to poor optimization and robustness. Thus, 200 

improving the piecewise linear random step using EFSA is proposed. The new location 201 

update strategy can be mathematically expressed as Eq. (19). 202 

     0 5 2fPos Pos Avo Dis. rand
u k rand       (19) 203 

C. Design of the multi-objective optimization function of EPFS 204 

To simultaneously optimize the reliability and interval width of the forecasting 205 

system, two pseudo-interval indicators were designed. The purpose of constructing 206 

pseudo-intervals is to optimize the upper and lower bounds of the intervals, respectively, 207 

to achieve better optimization results. Based on the two pseudo-interval indicators that 208 

measure reliability and resolution, the objective functions for multi-objective 209 

optimization are developed. 210 

a. Pseudo-interval indicators 211 

The pseudo-interval is a half-interval composed of the observed values and the 212 

upper or lower bound of the interval. Thus, the indicators for evaluating the reliability 213 
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and resolution of the pseudo-interval can be designed as  half
PICP , and214 

 half
PINAW .  215 

Two indicators for evaluating the upper pseudo-interval can be defined as 216 

   
1

1 M

upper

iM




 half half

iPICP Γ , 
 
 

1

0

i i

i i

Obse

Obse





 
 



,

,

half

half

i half

UB V

UB V
  (20) 217 

     
1

1 M

upper i i

i

Obse
MR

 


   half half
PINAW UB V  (21) 218 

where  i half
UB  is the upper bound of the forecasting interval corresponding to  . 219 

i
ObseV  is the observation value, M  is the number of observation values, and R  is 220 

the range of observation values.  221 

Accordingly, the two indicators for evaluating the lower pseudo interval can be 222 

defined as: 223 

   
1

1half half

i
PICP Γ

M

lower

iM




  , 
 
 

1

0

half

half

i half

LB V

LB V


,

,

i i

i i

Obse

Obse





 
  


 (22) 224 

     
1

1half half
PINAW V LB

M

lower i i

i

Obse
MR

 


     (23) 225 

where  i half
LB  is the lower bound of the forecasting interval corresponding to  . 226 

b. Multi-objective optimization function  227 

The objective functions for multi-objective optimization can be determined as: 228 

  
   

     

1 2

1 exp 1

half

1

half half

2

Of PICP
min

Of PINAW PICP

    



          

 (24) 229 

where 0  is the penalty coefficient. A larger   indicates a greater degree of 230 

punishment. 231 

3. Framework of the proposed Ensemble probabilistic forecasting system 232 

This section presents the description of the material analyzed (section 3.1) and 233 

the ensemble probabilistic forecasting system applied in this study (section 3.2). 234 

3.2. Dataset description  235 

The three experimental datasets were collected from Shandong Peninsula with an 236 

interval of 10 minutes. In each dataset, extract 2880 points as the experimental sequence 237 

and select 75% of the total length as training set 1, with a length of 2160. The remaining 238 

720 points are divided into training set 2 and testing set. Training set 2 accounts for 75% 239 

of the remaining length, with a length of 540 and a testing set of 180.  240 

3.3. Flow of the proposed Ensemble probabilistic forecasting system 241 

In accordance with the aforementioned data processing approaches and forecasting 242 

models, the proposed ensemble probabilistic forecasting system includes SSa 243 

decomposition and reconstruction, phase space reconstruction of the C–C method, 244 
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principal forecasts based on two QrBiLStm units, and construction of pseudo-intervals 245 

to optimize the upper and lower bounds. The process is presented; the complete system 246 

structure and procedure are shown in Fig. 2. 247 

 248 

Step 1: Segment the original wind speed sequence into two training sets and a testing 249 

set. A total of 2,880 data were collected. Training set 1 included 2,160 points, Training 250 

set 2 included 540 points, and Test set included 180 points. 251 

Step 2: Use SSa to decompose and reconstruct the wind speed sequence 252 

 | 1, 2,j j n X  to obtain the denoised wind speed sequence  | 1, 2,j j n X . 253 

Step 3: Use the C–C method to find the optimal parameter values of PSr and 254 

reconstruct the sequence to adapt to the chaotic system. 255 

Step 4: Implement uncertainty forecasting quantization on Training Set 1, based on two 256 

QrBiLStm network units. 257 

Step5: Construct the pseudo-intervals based on the forecasting values and observation 258 

values of Training Set 2 obtained in Step 4. 259 

Step 6: Use the IMOTa and the designed interval optimization objective function; the 260 

pseudo-interval is input for optimization, and the final probabilistic forecasting results 261 

on the testing set are obtained.  262 

 263 

Fig.2. Flow of the proposed EPFS. 264 

 265 

 266 
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 267 

 268 

 269 

 270 

4. Experimental results and discussion 271 

This section describes the evaluation metrics of uncertainty modeling. Three 272 

comparative experiments and their corresponding analyses are described to verify the 273 

forecasting effectiveness of the proposed EPFS. The whole experiment is implemented 274 

on the personal computer with AMD Ryzen 5 5600H six-core processor with Radeon 275 

Graphics 3.30 GHz, 16 GB of RAM and a single NVIDIA GeForce GTX 1650 of GPU. 276 

The proposed EPFS and comparative models were implemented on Matlab2020a. 277 

The parameter settings for all models designed for the experiments are presented 278 

in Table A1 in Appendix A.  279 

4.1. Evaluation metrics  280 

The wind speed prediction interval was evaluated based on reliability, resolution, 281 

and sharpness. 282 

Reliability 283 

Reliability is based on the significance level   to evaluate the coverage 284 

probability of the forecasting interval. In this study, the reliability was characterized by 285 

the PICP metric which is expressed as Eq. (25). 286 

   
1

1
ΦPICP

N

i

iN




  , 
   

   

1, ,
Φ

0, ,

V LB UB

V LB UB

i i i

i

i i i

Obse

Obse

 

 

    
 

    

 (25) 287 

where N  is the length of the testing set,   is the confidence level, and iObseV  288 

indicates the observation value.  i LB  and  i UB  are the lower and upper bounds 289 

of the prediction interval, respectively, corresponding to  . In this paper, interval 290 

prediction is implemented based on 0.05   and 0.1   confidence levels. And 291 

 1 100%PINC    . 292 

Resolution 293 

Measurement of interval resolution (interval width) [50] is important for effective 294 

interval prediction. A prediction interval that is too broad contains a small amount of 295 

valuable information, which is less practical [51]. Thus, PINAW largely reflects the 296 

information contained in the forecast interval and can be represented by Eq. (26). R  is 297 

the range of observation values, it is determined by the maximum of the observation 298 

values on the testing set minus its minimum. And N  is the length of the testing set. 299 

       
1

1
PINAW UB LB

N

i i

iNR
  



     (26) 300 

Sharpness 301 

Both PINAW and PICP are one-sided in evaluating the quality of forecast intervals. 302 

The sharpness combines the two metrics for assessment of prediction intervals [54]; the 303 
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AIS metric [19] meets the requirements, and is expressed as Eq. (27): 304 

     N

i=1
=


 AIS S   (27)305 

 

      

     

      

2 4 ,

2 , ,

2 4 ,

i i i i

i i i i

i i i i i

Obse if Obse

if Obse

Obse if Obse



   

   

   



   


     

   

ξ LB V V LB

S ξ V LB UB

ξ V UB V UB

 (28) 306 

where      i i i   ξ UB LB . 307 

4.2. Comparative experiments 308 

This section presents a comparison of the proposed EPFS with commonly used 309 

single and ensemble probabilistic forecasting models (EPFMs). Probabilistic 310 

forecasting single models include the QrLASso, QrLStm, Qr convolution neural 311 

network (QrCNn), QrGRu, Gaussian process regression (GPr), the Bayesian regression 312 

model (BLgm), and the proposed QrBiLStm. The EPFMs include models with different 313 

denoising methods and optimizers. The interval forecasting chart of the proposed EPFS 314 

and the metric values of the other single models is shown in Fig. 3. 315 

The compared denoising methods include empirical mode decomposition (Emd) 316 

[56], ensemble Emd (Eemd), complete Eemd with adaptive noise (CeemdAN) [57], and 317 

wavelet transform (Wt). The compared optimizers include MOTa, MO dragonfly 318 

algorithm (MODa), MO grasshopper algorithm (MOGa), and MO antlion algorithm 319 

(MOAa). 320 

4.2.1. Comparative Experimental Analysis with Single Models 321 

Reliability 322 

PICP shows the reliability of intervals; when the PICP is higher than the prediction 323 

interval nominal confidence (PINC), the forecasting interval is considered to be reliable. 324 

As shown in Table 2, all single models and EPFS except QrCNN are valid for all Sites.  325 

The proposed QrBiLStm obtains 1PICP  for both 90%PINC  and 326 

95%PINC  for all three sites, indicating that it has better reliability for interval 327 

prediction. The EPFS optimized based on the two QrBiLStm benchmark models also 328 

has high PICP values, and is also reliable. For Site 1, when 90%PINC , EPFS obtains 329 

0.9833PICP ; when 95%PINC  , EPFS obtains 0.9944PICP .  330 

Resolution 331 

The PINAW metric indicates the interval width which determines the practicality 332 

and informative of interval [55]. A smaller PINAW indicates a narrower interval width 333 

with more uncertainty information. Not considering the invalid model 334 

(    PICP PINC  ), the interval width of QrBiLStm is the narrowest of all single 335 

models. This is reflected in the PINAW values. For 95%PINC , QrBiLStm is 336 

obtained at three sites: 
1 0.2674

PINC=95%
SitePINAW , 

2 0.2471
PINC=95%

SitePINAW , and337 

3 0.3306
PINC=95%

SitePINAW . Thus, compared with other single models, the proposed 338 

QrBiLStm has the narrowest interval width and is more effective in interval forecasting 339 

than the model based on distribution hypothesis and other single models not based on 340 

distribution. 341 

Compared with the single models, EPFS is greatly optimized in terms of the 342 
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interval width. The experimental results show that QrBiLStm has the narrowest interval 343 

width. The interval width forecasted by EPFS was 27.1387% ~ 56.6055%  smaller than 344 

that obtained by QrBiLStm, indicating that the forecasting of EPFS is greatly improved 345 

compared with that of a single model. 346 

 347 

 348 

Sharpness 349 

The AIS metric simultaneously considers coverage and interval width, punishing 350 

an interval that does not contain observation values and interval width. The AIS value 351 

is generally less than 0; a higher AIS value indicates a more effective forecasting 352 

interval. The AIS value of the proposed EPFS is the lowest at all sites and all PINCs, 353 

indicating that the proposed EPFS can provide more uncertainty information. 354 

Compared with single models, EPFS is greatly optimized in interval width; its 355 

coverage rate is also high, resulting in the best interval prediction. For 95%PINC , 356 

the AIS values obtained by EPFS at the three sites are 
1

95% 0.1273Site

PINCAIS    , 357 

2

95% 0.1216Site

PINCAIS    , and 
3

95% 0.1324Site

PINCAIS    .  358 

Remark: Compared with other single models, the proposed QrBiLStm can obtain the 359 

highest interval coverage and the narrowest interval width. Thus, the proposed 360 

QrBiLStm is more reliable and effective than the model based on the distribution 361 

hypothesis and other Qr–deep learning models not based on distribution. The proposed 362 

EPFS optimized using two QrBiLStm units can further reduce the interval width while 363 

ensuring high interval coverage. The proposed EPFS can provide more uncertainty 364 

information. 365 

 366 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

17 

 

Table 2  367 
Interval prediction metric values of single models with PINC=90% and PINC=95%. 368 

Dataset Models PICP PINAW AIS 

  PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% 

Site 1 SSa-PSr-QrLASso 0.9556 0.9778 0.4554 0.5341 -0.5439 -0.3055 

SSa-PSr-QrLStm 1.0000 1.0000 0.5160 0.5835 -0.5152 -0.2928 

SSa-PSr-QrGRu 1.0000 1.0000 0.5337 0.5986 -0.5334 -0.2964 

SSa-PSr-QrCNN 0.9611 0.8944 0.3147 0.7572 -0.3726 -0.4743 

SSa-PSr-QrBiLStm 1.0000 1.0000 0.3489 0.4249 -0.3500 -0.2086 

SSa-PSr-GPr 0.9944 1.0000 0.4457 0.5311 -0.4557 -0.2712 

SSa-PSr-BLgm 1.0000 1.0000 0.4460 0.5317 -0.4556 -0.2716 

Proposed EPFS 0.9833 0.9944 0.1893 0.2674 -0.1805 -0.1273 

Site 2 SSa-PSr-QrLASso 0.8611 0.9111 0.3028 0.4918 -0.4409 -0.3389 

SSa-PSr-QrLStm 0.9778 0.9833 0.4770 0.5417 -0.5063 -0.2884 

SSa-PSr-QrGRu 0.9778 0.9889 0.4710 0.5729 -0.4905 -0.2930 

SSa-PSr-QrCNN 0.9833 1.0000 0.3734 1.1707 -0.3954 -0.5868 

SSa-PSr-QrBiLStm 1.0000 1.0000 0.3734 0.3494 -0.3802 -0.1748 

SSa-PSr-GPr 1.0000 1.0000 0.4547 0.5419 -0.4685 -0.2791 

SSa-PSr-BLgm 1.0000 1.0000 0.4555 0.5428 -0.4695 -0.2797 

Proposed EPFS 0.9778 0.9889 0.1620 0.2471 -0.1590 -0.1216 

Site 3 SSa-PSr-QrLASso 0.8944 0.9889 0.4122 0.6835 -0.4157 -0.3049 

SSa-PSr-QrLStm 0.9889 1.0000 0.5568 0.7498 -0.4633 -0.3110 

SSa-PSr-QrGRu 0.9833 1.0000 0.5502 0.7138 -0.4539 -0.2933 

SSa-PSr-QrCNN 0.9111 0.9222 0.4586 0.4362 -0.4508 -0.2351 

SSa-PSr-QrBiLStm 1.0000 1.0000 0.3384 0.4537 -0.2771 -0.1835 

SSa-PSr-GPr 0.9889 1.0000 0.5029 0.5992 -0.4248 -0.2519 

SSa-PSr-BLgm 0.9944 1.0000 0.5080 0.6047 -0.4286 -0.2544 

Proposed EPFS 0.9833 0.9889 0.2180 0.3306 -0.1784 -0.1324 

Note: The table above presents the reliability, resolution and comprehensive information of intervals obtained by different models. When PICP>PINC, the forecasting 369 
intervals are reliable. When the intervals are reliable, the narrower the interval width, the better the interval forecasting effect, which can be measured by 370 

     
1

1
  



   
N

i i

i

PINAW UB LB
NR

. Metric     
N a

i=1
AIS = S  can comprehensively evaluate the interval forecasting effect. 371 
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4.2.2. Comparative Experimental Analysis with Ensemble Models 372 

Reliability 373 

The EPFM based on other denoising methods has high interval coverage, whether 374 

at 90%PINC  or at 95%PINC . However, the reliability of the prediction interval 375 

is not always guaranteed when other algorithms are used to perform the optimization. 376 

Of the four other optimization algorithms, only MOTa–EPFM and MODa–EPFM can 377 

obtain reliable interval prediction results in all cases (three sites and two confidence 378 

levels), similar to the proposed EPFS. For Site 1, the interval coverage rates of MOTa 379 

and MODa are 90% 0.9833MOTA

PINCPICP   , 1
PINC=95%

MOTaPICP , 0.9778
PINC=90%

MODaPICP , and 380 

1
PINC=95%

MODaPICP , respectively. The Emd, Eemd, CeemdAN, Wt-based PSr–EPFM, 381 

MOTa–EPFM, MODa–EPFM, and the proposed EPFS are better in terms of reliability. 382 

Resolution 383 

The interval width obtained by EPFMs using other denoising methods is 384 

significantly greater than that of the proposed EPFS, which is evident from the PINAW 385 

values. For Site 2, the PINAW values of Emd–EPFM, Eemd–EPFM, CeemdAN–EPFM, 386 

Wt–EPFM, and the proposed EPFS are 387 

 
1

90% 0.2921,0.3027,0.3577,0.2517,0.1620PINAW
Site

PINC   and 
1

95%PINAW
Site

PINC 388 

 0.3371,0.3335,0.3980,0.2844,0.2471 when 90%PINC and 95%PINC , 389 

respectively.  390 

The predicted interval widths of EPFMs using other optimization algorithms are 391 

similar to that of the proposed EPFS. However, EPFMs based on other algorithms have 392 

less reliability in their prediction results (manifested as low PICP values), with narrow 393 

interval widths. For Site 1, the PINAW values for MOGa–EPFM are 0.1755 at 394 

90%PINC  and 0.2414 at 95%PINC ; the corresponding PICP values are 0.9167 395 

and 0.9611, respectively, and lower than those of all other models. 396 

Sharpness 397 

The interval prediction results after optimization are better than those of the single 398 

models, and other ensemble models cannot obtain interval reliability and interval width 399 

simultaneously. To better evaluate the effect of interval prediction, the AIS value was 400 

used to evaluate the uncertainty information contained in the prediction interval. A 401 

larger AIS value (AIS is generally a negative number), produces a better interval 402 

prediction. Considering all cases (three sites and two confidence levels), the proposed 403 

EPFS obtained the lowest AIS values, indicating that the proposed EPFS has better 404 

global optimization ability and better ability to optimize multiple objectives. The metric 405 

values of all three sites are presented in Table 3 and Fig. 4. 406 

Remark: Although EPFMs denoised by other methods have strong reliability, their 407 

resolution is not high; thus, the interval forecasting effect is not satisfying. EPFMs using 408 

other optimization algorithms cannot simultaneously optimize the interval reliability 409 

and interval resolution. The proposed EPFS has the best interval prediction results. 410 
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Table 3  411 
Interval prediction metric values of ensemble models with PINC=90% and PINC=95%. 412 

Dataset Models 
PICP PINAW AIS 

PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% 

Site 1 SSa-PSr-MOTa-EPFM 0.9833 1.0000 0.2048 0.2828 -0.1997 -0.1353 
SSa-PSr-MODa-EPFM 0.9778 1.0000 0.1979 0.3413 -0.1899 -0.1666 
SSa-PSr-MOGa-EPFM 0.9167 0.9611 0.1755 0.2414 -0.1887 -0.1223 
SSa-PSr-MOAa-EPFM 0.9333 1.0000 0.1769 0.2805 -0.1843 -0.1336 
Emd-PSr-EPFM 0.9778 1.0000 0.2538 0.3903 -0.2527 -0.1892 
Eemd-PSr-EPFM 0.9889 1.0000 0.2276 0.3824 -0.2226 -0.1845 
Wt-PSr-EPFM 0.9944 0.9944 0.3513 0.4031 -0.3453 -0.1941 
CeemdAN-PSr-EPFM 1.0000 1.0000 0.2868 0.3848 -0.2795 -0.1832 
Proposed EPFS 0.9833 0.9944 0.1893 0.2674 -0.1805 -0.1273 

Site 2 SSa-PSr-MOTa-EPFM 0.9778 0.9556 0.1692 0.2476 -0.1627 -0.1291 
SSa-PSr-MODa-EPFM 0.8833 0.9500 0.1454 0.2512 -0.1569 -0.1364 
SSa-PSr-MOGa-EPFM 0.8833 0.9500 0.1570 0.2342 -0.1707 -0.1248 
SSa-PSr-MOAa-EPFM 0.8500 0.8778 0.1475 0.2385 -0.1737 -0.1518 
Emd-PSr-EPFM 1.0000 1.0000 0.2921 0.3371 -0.2887 -0.1633 
Eemd-PSr-EPFM 0.9944 0.9944 0.3027 0.3335 -0.2991 -0.1612 
Wt-PSr-EPFM 1.0000 1.0000 0.3577 0.3980 -0.3523 -0.1945 
CeemdAN-PSr-EPFM 0.9944 0.9778 0.2517 0.2844 -0.2505 -0.1445 
Proposed EPFS 0.9778 0.9889 0.1620 0.2471 -0.1590 -0.1216 

Site 3 SSa-PSr-MOTa-EPFM 0.9667 0.9833 0.2489 0.3605 -0.2035 -0.1465 

SSa-PSr-MODa-EPFM 0.8833 0.9722 0.2170 0.3337 -0.1810 -0.1378 

SSa-PSr-MOGa-EPFM 0.9500 0.9611 0.2003 0.3431 -0.1846 -0.1448 

SSa-PSr-MOAa-EPFM 0.9833 0.9889 0.2172 0.3179 -0.1876 -0.1345 

Emd-PSr-EPFM 0.9611 0.9778 0.3240 0.3798 -0.2707 -0.1572 

Eemd-PSr-EPFM 0.9778 0.9833 0.3300 0.3843 -0.2692 -0.1581 

Wt-PSr-EPFM 0.9667 0.9833 0.3726 0.4324 -0.3200 -0.1873 

CeemdAN-PSr-EPFM 0.9889 0.9944 0.3253 0.3935 -0.2650 -0.1583 

Proposed EPFS 0.9833 0.9889 0.2180 0.3306 -0.1784 -0.1324 

 413 
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 414 

Fig.3. Forecasting results of proposed EPFS and other single models. 415 
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 416 

Fig.4. Forecasting results of proposed EPFS and other ensemble models. 417 

4.3. Statistical tests 418 

A Diebold-Mariano (DM) test [58] was implemented to validate whether the time-419 

series forecasting results of two different models exist for the same or significantly 420 

different accuracy. A hypothesis test is conducted, where the null hypothesis says that 421 

there is no difference between the forecasting accuracy of the models compared, and 422 

the alternative hypothesis says that the forecasting error of the model proposed is 423 

different with the compared one. In this study, the hypothetical form can be defined as 424 

Eq. (29): 425 

  

     
     

0

1

:

:

a b

i i

a b

i i

H E L E L

H E L E L

 

 

   
   

   
   

 (29) 426 

in which  L   is the loss function of forecasting bias. In point-oriented forecasting, 427 

i
  is defined as the ith forecasting value minus the corresponding actual value. In 428 

interval forecast, 
i
  represented by Eq. (30). is defined as the interval score of the ith 429 

point.  430 
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   


     

   

 (30) 431 

If the null hypothesis is rejected, it is possible to say that there is statistical 432 

evidence that there exists a significant difference between the proposed model 433 

regarding the compared model at the   level of significance. The DM test results are 434 

shown in Table 4. 435 

Table 4  436 
Statistics of DM test for statistical comparison of proposed approach versus other models 437 

Model 
Site 1 Site 2 Site 3 

PINC=95%  PINC=90%  PINC=95%  PINC=90%  PINC=95%  PINC=90%  

SSa-PSr-QrLASso -10.2893***  -6.7006***  -2.9187***  -3.8964*** -19.8818***  -4.2333***  

SSa-PSr-QrLStm -68.6604***  -66.8613***  -4.5813*** -6.6625*** -42.4881*** -23.2736*** 

SSa-PSr-QrGRu -45.0164***  -65.5619*** -11.1758*** -7.9645*** -35.1313*** -20.3249*** 

SSa-PSr-QrCNN -4.0386***  -4.5426*** -41.1140*** -9.2481*** -2.9096*** -7.3515*** 

SSa-PSr-QrBiLStm -49.3264***  -48.2301*** -2.4558**  -33.6391*** -14.4810*** -9.2998*** 

SSa-PSr-GPr -49.1107***  -59.7660*** -11.7846*** -44.0720*** -30.8004*** -21.7912*** 

SSa-PSr-BLgm -48.4703***  -60.4071*** -11.8552*** -44.0617*** -31.3836*** -23.5181*** 

Emd-PSr-EPFM -30.5495***  -5.8206*** -1.7031* -17.1494*** -3.0018*** -8.0663*** 

Eemd-PSr-EPFM -28.5660***  -13.4367*** -1.6236 -21.1340*** -3.1871*** -6.6468*** 

Wt-PSr-EPFM -23.4755***  -28.0409*** -4.0643***  -23.3569*** -2.2902** -3.8406*** 

CeemdAN-PSr-EPFM -18.1712***  -32.4127*** -1.6707*  -9.6597*** -5.0214*** -6.5898*** 

SSa-PSr-MOTa-EPFM -7.2410***  -5.0958*** -1.3035  0.3255 -6.5390*** -3.5052*** 

SSa-PSr-MODa-EPFM -39.8391***  -5.0069*** -1.2672  -0.6341 -1.7147* -1.0823 

SSa-PSr-MOGa-EPFM -0.6505  -1.6847*  -1.4715  -2.6176***  -1.9806**  -1.9018* 

SSa-PSr-MOAa-EPFM -2.0946** -1.5301  -1.7845*  -2.7302***  -1.3332  -1.5073 

Note: ***, **, and * indicate that the results are significant at the 1%, 5%, and 10% confidence 438 

levels, respectively. 439 

The proposed EPFS is significantly different from the commonly used single 440 

models in that the absolute values of the DM test results are all greater than the threshold 441 

0.01/2 2.58Z  . Compared with the EPFM based on different denoising methods, only 442 

Site 2 when PINC=95%, the EPFM based on Eemd is not significantly different from 443 

the proposed EPFS; In other forecasting scenarios, the proposed EPFS is significantly 444 

different from EPFM based on other denoising methods. Compared with EPFM based 445 

on different optimization algorithms, the accuracy was not significantly different in a 446 

few forecasting situations. Take Site 2 as an example, when PINC=95%, the DM value 447 

of SSa-PSr-MOGa-EPFM is -0.6505. Table 4 shows that the EPFM based on different 448 

optimization algorithms is significantly different in most forecasting situations, so it is 449 

important to use the improved optimization algorithm, i.e., IMOTA to perform the 450 

optimization task. 451 

4.4. Fist-order and second-order forecasting effectiveness evaluation 452 

In this study, the forecasting effectiveness (FE) approach [52] was modified for 453 

uncertainty forecasting; its first-order and second-order values were used to measure 454 

the availability of models. The required bias in FE is modified as interval score which 455 

is defined as Eq. (31), and the first-order FE and second-order FE are obtained. The 456 

details of this indicator are provided as follows. 457 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

23 

 

The element of the kth order FE can be calculated as 
1

n
k k

i i

i

g Q A


 , where iA  458 

refers to the forecasting accuracy that can be measured by 1 iiA    , where n is the 459 

length of the testing set, and 
i  can be mathematically expressed by Eq. (29). iQ  460 

indicates the discrete probability distribution, and 
1

1,  0
n

i i

i

Q Q


  . As prior 461 

information for iQ  cannot be obtained, it is commonly determined as 462 

1/ ,  1,2, ,iQ n i n  . 463 

   

      

     

      

2 Φ 4 ,

2 Φ , ,

2 Φ 4 ,

LB Obse Obse LB

ξ Obse LB UB

Obse UB Obse UB

i i i i i

i i i i i

i i i i i

V V

V

V V

   

    

   

   


     

   

(31) 464 

where      Φ UB LBi i i    . 465 

Thereafter, a function  1 2, , ,g g g
kFE  that contains k elements is designed to 466 

assess the kth order FE. Recall that 
1


n

k k

i i

i

g Q A , the first-order FE, can be defined as 467 

 1 1
g gFE  , and the second-order FE is designed as    

2
1 2 1 2 1, 1g g g g gFE

 
   

 
. 468 

The FE values are presented in Table 5. 469 

According to the design mechanism of FE, a higher FE value indicates greater 470 

availability of models. By comparing the first- and second-order FE values with 471 

reference models, we can determine that, apart from some results for Site 2, the 472 

proposed EPFS has the strongest availability. For Site 1, considering both Order = 1 473 

and Order = 2, the FE values of the proposed EPFS are higher than those of other 474 

forecasting models. The FE values obtained using the proposed EPFS were 475 
1 0.8195

1st -order
SiteFE  and 

1 0.7548
2-order

SiteFE , indicating that the proposed EPFS can 476 

fully assimilate the merits of benchmark units and achieve the most satisfactory results 477 

at all three sites. 478 

4.5. Improvement ratio 479 

The indicator 
Metric

IR  was used to assess the improvement in forecasting 480 

accuracy of the EPFS. 
Metric

IR  can be defined as 481 

     
 

com pro com

MetricIR Metric Metric Metric  (32) 482 

where com
Metric  is the metric value of the compared model, and pro

Metric  indicates 483 

the metric value of the proposed EPFS. In this paper, the improvement rate of AIS is 484 

calculated to reflect the overall improvement ratio of the proposed EPFS compared with 485 

other models, and the improvement rate of PINAW reflects the contribution of the 486 

proposed EPFS to shortening the interval width. Table 6 presents the improvement ratio 487 

results. According to the 
Metric

IR , the following conclusions can be drawn. 488 

Compared with all other single models, the forecasting performance of the 489 

proposed QrBiLStm is improved, indicating that the proposed QrBiLStm is effective. 490 
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The EPFS obtained by optimizing two efficient QrBiLStm units can further improve 491 

forecasting, manifested as a lower interval width and higher resolution. At Site 1, when 492 

90%PINC   and 95%PINC  , the improvement ratios of the proposed EPFS to the 493 

AIS value of a single model are 
90%PINC

AISIR


  494 

 66.8235%,64.9752%,66.1685%,51.5732%,48.4414% and 95%

AIS

PINCIR  495 

 58.3401%,56.5286%,57.0647%,73.1684%,39.0008% . Taking into account 496 

90%PINC   and 95%PINC   of the three Sites, the proposed EPFS represents a 497 

minimum of 12.96% improvement in AIS metrics compared to the EPFMs based on the 498 

other four denoising methods. Compared with EPFMs based on other optimization 499 

algorithms, the improvement ratio of the AIS metric is 1.57% to 23.60% and the 500 

forecasting results are more stable. This indicating that the proposed IMOTa has better 501 

global optimization ability and better ability to optimize multiple objectives. 502 

4.6. Stability analysis 503 

As most swarm intelligence optimization methods incorporate randomness or 504 

probabilistic mechanisms into their operation, the forecasting results for each trial are 505 

generally different, even with the same parameters and conditions. Thus, the stability 506 

of swarm intelligence optimization is one of the most important factors affecting 507 

prediction performance.  508 

The stability is measured by the standard deviations of three evaluation metrics; 509 

the equation is expressed as    
2

1

N k

t tt
Std Metric Metric Metric N


  , where N 510 

is the number of testing trials; k
Metric  indicates the kth error metric (PINAW and AIS) 511 

values in the testing trial, and 
t

Metric  refers to the average metric values of all testing 512 

trials. A lower  Std Metric value indicates a greater degree of stability.  513 

Fig. 5a, b, and d show the distribution of different results from ten trials using 514 

IMOTA for the three indicators at 90%PINC  ; Fig. 5 e, f, and h show the distribution 515 

of different results at 95%PINC  ; Fig. 5 c and g show the  Std Metric  results for 516 

ten trials at 90%PINC  and 95%PINC . The stability analysis is conducted using 517 

Site 1 as an example. Generally, the  Std Metric  values are small for both 0.1   518 

and 0.05  , manifested as    
Site1

0.0240,0.0228Std PICP
α=0.1,α=0.05

 , 519 

 
Site1

std PINAW
α=0.1,α=0.05

 0.0117,0.0104 , and  
Site1

std AIS
α=0.1,α=0.05

 520 

 0.0082,0.0048 . In ten trials, the values of the three indicators fluctuated little. The 521 

values of the three indicators were analyzed. For 90%PINC , the minimum value of 522 

PICP in the ten trials was 0.9389, and the maximum value was 0.9889. PINAW had a 523 

maximum of 0.2086, and a minimum of 0.1752. The minimum AIS value was -0.2021, 524 

and the maximum value was -0.1783. For PINC = 95%, the minimum value of PICP in 525 

the ten trials was 0.9222, and the maximum value was 0.9944. The PINAW maximum 526 

was 0.2657, and the minimum was 0.2303. The minimum AIS value was -0.1311, and 527 

the maximum value was -0.1163. 528 

In practical applications, future values are not available to calculate the metrics for 529 

comparison. However, through the stability analysis, we found that the proposed EPFS 530 
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can achieve accurate forecasting results in all trials, which shows that the proposed 531 

EPFS is highly available. 532 

4.7. Advantages and disadvantages compared to the existing studies 533 

The advantages and disadvantages of this study compared with the existing models 534 

in this field and the future work are analyzed in this section. 535 

 536 

Advantages 537 

(1) Firstly, compared with the existing QR- machine learning models such as QrGRu 538 

[29], QrLStm [30], , QrLASso [27], QrCNN, etc., this study adopts the cell structure of 539 

BiLStm, which can train the network by inputting historical information forward and 540 

backward. Based on this network structure, more accurate interval forecasting results 541 

can be obtained. This conclusion can be drawn from the results of comparative 542 

experiment 1 (section 4.2.1). Secondly, this study proposes a probabilistic ensemble 543 

forecasting system, which can combine the forecasting results of two well-behaved 544 

single models to get more accurate forecasting results, specifically by reducing the 545 

interval width under the condition of ensuring high interval coverage. 546 

(2) Compared with the existing probabilistic ensemble forecasting models. Firstly, the 547 

proposed EPFS is based on Qr theory, which can optimize the upper and lower bounds 548 

of the interval respectively. This optimization strategy is more flexible, ensuring that 549 

both the upper bound and the lower bound are optimal results. For example, Niu’s 550 

model [36] is based on data distribution, and the upper and lower bound forecasting 551 

results are optimized simultaneously. Secondly, the objective functions of probabilistic 552 

ensemble optimization are designed to find the solution with high coverage and narrow 553 

interval width as the optimal solution. 554 

Disadvantages 555 

(1) The calculation burden is increased while the upper and lower bounds of the 556 

forecasting interval are optimized respectively. Every interval forecasting result 557 

obtained by EPFS needs to be optimized twice, which increases the operation time. 558 

(2) The distribution information of data is not used to construct the interval. In this 559 

paper, loss function of the neural network is designed as pinball loss to obtain different 560 

quantile forecasting results, which is a supervised machine learning method without 561 

data distribution information. Although the EPFS based on Qr can get accurate interval 562 

forecasting results after optimization, it is possible to get better forecasting results if the 563 

distribution information of historical data can be fully utilized. This is the future work. 564 

(3) The EPFS is based on historical wind-speed data without considering other 565 

influence factors, such as pressure and temperature. Probabilistic ensemble forecast of 566 

multivariate time series is also the future research direction. 567 

 568 
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Table 5 569 
The forecasting effectiveness of the proposed EPFS and other existing models. 570 

Model  

Site 1 Site 2 Site 3 

PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

SSa-PSr-QrLASso 0.4561  0.3296  0.6945  0.6149  0.5591  0.3384  0.6611  0.4336  0.5843  0.4315  0.6951  0.6476  

SSa-PSr-QrLStm 0.4848  0.4591  0.7072  0.6889  0.4937  0.3964  0.7116  0.6228  0.5367  0.4978  0.6890  0.6643  

SSa-PSr-QrGRu 0.4666  0.4407  0.7036  0.6714  0.5095  0.4227  0.7070  0.6611  0.5461  0.4979  0.7067  0.6758  

SSa-PSr-QrCNN 0.6274  0.4947  0.5257  0.3193  0.6046  0.5458  0.4132  0.3823  0.5492  0.4249  0.7649  0.6015  

SSa-PSr-GPr 0.5443  0.5407  0.7288  0.7285  0.5315 0.5311 0.7209  0.7206  0.5707  0.5574  0.7481 0.7472  

SSa-PSr-BLgm 0.5444  0.5426  0.7284  0.7271  0.5305  0.5287  0.7203  0.7188  0.5734  0.5532  0.7456  0.7443  

SSa-PSr-QrBiLStm 0.6500  0.6131  0.7914  0.7577  0.6198  0.5771  0.8252  0.7941  0.7229  0.6775  0.8165  0.7815  

Emd-PSr-EPFM 0.7473  0.6834  0.8108  0.7721  0.7113  0.6645  0.8367  0.7951  0.7293  0.6630  0.8428  0.7864  

Eemd-PSr-EPFM 0.7774  0.7330  0.8155  0.7761  0.7009  0.6523  0.8388  0.7960  0.7308  0.6770  0.8419  0.7839  

Wt-PSr-EPFM 0.6547  0.6034  0.8059  0.7627  0.6477  0.5934  0.8055  0.7660  0.6800  0.5679  0.8127  0.7041  

CeemdAN-PSr-EPFM 0.7205  0.6742  0.8168  0.7691  0.7495  0.7019  0.8555  0.7854  0.7351  0.6874  0.8417  0.8008  

SSa-PSr-MOTa-EPFM 0.8003  0.7309  0.8647  0.8266  0.8373  0.7728  0.8710  0.7661  0.7965  0.7357  0.8535  0.8073  

SSa-PSr-MODa-EPFM 0.8101  0.7372  0.8334  0.8017  0.8431  0.7561  0.8636  0.7278  0.8190  0.7211  0.8622  0.7936  

SSa-PSr-MOGa-EPFM 0.8113  0.7006  0.8777  0.8111  0.8293  0.7378  0.8752  0.7773  0.8154  0.6985  0.8552  0.7766  

SSa-PSr-MOAa-EPFM 0.8157  0.7135  0.8578  0.7401  0.8264  0.7228  0.8482  0.6991  0.8124  0.7082  0.8655  0.7893  

Proposed EPFS 0.8195  0.7548  0.8727  0.8302  0.8410  0.7660  0.8784  0.8072  0.8216  0.7477  0.8676  0.8232  

Note: This table shows the circumstantial values of the first-order and second-order FE of sixteen models. The first-order FE is defined as  1 1
FE g g . When 571 

this continues function contains two variables, the 2nd-order FE can be denoted by    
2

1 2 1 2 1, 1FE g g g g g
 

   
 

.  572 
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Table 6  573 
The improvement ratio of the proposed EPFS. 574 

Models 

Site 1 Site 2 Site 3 

PINAW AIS PINAW AIS PINAW AIS 

PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% 

SSa-PSr-QrLASso 0.5844 0.4994 0.6682 0.5834 0.4650 0.4976 0.6394 0.6412 0.4712 0.5164 0.5708 0.5657 

SSa-PSr-QrLStm 0.6332 0.5417 0.6498 0.5653 0.6604 0.5439 0.6860 0.5784 0.6085 0.5591 0.6149 0.5743 

SSa-PSr-QrGRu 0.6454 0.5533 0.6617 0.5706 0.6560 0.5687 0.6759 0.5850 0.6038 0.5369 0.6069 0.5486 

SSa-PSr-QrCNN 0.3984 0.6469 0.5157 0.7317 0.5662 0.7890 0.5980 0.7928 0.5247 0.2421 0.6042 0.4370 

SSa-PSr-GPr 0.5753  0.4966  0.6040  0.5307  0.6437  0.5440  0.6607  0.5643  0.5665  0.4483  0.5800  0.4745  

SSa-PSr-BLgm 0.5756  0.4971  0.6039  0.5314  0.6443  0.5448  0.6614  0.5653  0.5709  0.4533  0.5837  0.4797  

SSa-PSr-QrBiLStm 0.4574 0.3708 0.4844 0.3900 0.5661 0.2928 0.5819 0.3042 0.3558 0.2714 0.3562 0.2787 

SSa-PSr-MOTa-EPFM 0.0758 0.0545 0.0965 0.0596 0.0423 0.0020 0.0229 0.0578 0.1243 0.0829 0.1231 0.0961 

SSa-PSr-MODa-EPFM 0.0436 0.2166 0.0500 0.2360 -0.1143 0.0164 0.0132 0.1083 -0.0047 0.0093 0.0141 0.0395 

SSa-PSr-MOGa-EPFM -0.0787 -0.1075 0.0438 0.0407 -0.0317 -0.0550 0.0690 0.0256 -0.0883 0.0364 0.0334 0.0860 

SSa-PSr-MOAa-EPFM -0.0702 0.0466 0.0208 0.0471 -0.0983 -0.0360 0.0846 0.1988 -0.0038 -0.0399 0.0487 0.0157 

Emd-PSr-EPFM 0.2542 0.3150 0.2859 0.3274 0.4453 0.2670 0.4494 0.2553 0.3273 0.1296 0.3408 0.1580 

Eemd-PSr-EPFM 0.1685 0.3008 0.1894 0.3104 0.4647 0.2592 0.4686 0.2457 0.3394 0.1397 0.3372 0.1625 

Wt-PSr-EPFM 0.4612 0.3368 0.4774 0.3442 0.5470 0.3792 0.5488 0.3747 0.4150 0.2354 0.4424 0.2930 

CeemdAN-PSr-EPFM 0.3399 0.3051 0.3544 0.3052 0.3563 0.1311 0.3654 0.1584 0.3299 0.1599 0.3264 0.1639 

Note: The table above reports the IR of the proposed EPFS from other twelve models. The AIS and PINAW are used to measure the IR, and the 575 

corresponding indicator can be defined as  com pro com

MetricIR Metric Metric Metric  
  , where com

Metric  is the metric values of compared model, 576 

and the pro
Metric  indicates the metric value of the proposed EPFS.577 
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 578 

Fig.5. Stability analysis results of the proposed EPFS. 579 
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5. Conclusion 586 

To generate high-quality wind speed prediction intervals and obtain 587 

comprehensive potential uncertainty information, an EPFS that combines SSa, PSr, 588 

QrBiSLStm, pseudo-interval construction, and multi-objective optimization was 589 

proposed. SSa and PSr were implemented successively, and time-frequency 590 

decomposition and reconstruction of the sequence were performed. The conditional 591 

quantiles of the sequences were obtained using the proposed QrBiLStm, and prediction 592 

intervals with different confidence levels were constructed. A pseudo-interval was 593 

constructed as the training set based on the forecasting results of two QrBiLStm units, 594 

and the proposed IMOTa was used for combinatorial optimization to obtain the final 595 

interval forecasting results. Comparison experiments were performed on three datasets, 596 

and the forecasting results were comprehensively evaluated in terms of reliability, 597 

resolution, and sharpness. Based on the analysis, we can draw the following conclusions: 598 

(1) a decomposition and reconstruction mechanism based on SSa and PSr can 599 

significantly improve forecasting performance, which can greatly improve uncertainty 600 

forecasting performance of the EPFS; (2) reliable uncertainty forecasts can be obtained 601 

from newly constructed QrBiLStm units; the forecasting results of this model far exceed 602 

those of other single models based on distribution hypothesis, and those of other Qr–603 

deep learning models; (3) an ensemble probabilistic forecasting strategy based on 604 

pseudo-interval construction can effectively optimize the upper and lower bounds of 605 

the interval and further improve the forecasting performance of the main forecasting 606 

model; (4) the improved MOTa has better global optimization ability and stability, and 607 

produces more effective and stable prediction results. The main limitations of the 608 

proposed EPFS are as follows: (1) Because quantile loss is discontinuous and 609 

nondifferentiable around 0 point, this EPFS has not been applied to the field of 610 

deterministic forecasts; (2) It is not combined with other linear models or interval 611 

forecasting models based on distribution in ensemble forecasting. However, this EPFS 612 

can optimize the upper and lower bounds of the interval separately and does not need 613 

to assume the distribution in advance. This study provides a novel approach for wind 614 

speed ensemble probabilistic forecasting and can be used as a powerful decision tool in 615 

the power system scheduling process. 616 
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Appendix A 621 

Table A1 622 

Parameters setting. 623 

Models Symbol Meaning Determination method determined value 

Eemd Ns STD of added noise Preset 0.05 

 NR Realization Number Preset 50 

 Ms Maximum Sifting Iteration Preset 500 

CeemdAN Ns STD of added noise Preset 0.05 

 NR Realization Number Preset 50 

 Ms Maximum Sifting Iteration Preset 500 

Wt D1 Decomposition Layer Number Trial and error approach 5 

SSa W Window Length Trial and error approach 50 

 D2 Primary Ingredient Disintegration Number Karhunene Loeve decomposition 20 

QrLStm Nl Number of hidden layers Trial and error approach 2 

 Nn Number of hidden nodes Trial and error approach 50 

QrBILStm Nl Number of hidden layers Trial and error approach 1 

 Nn Number of hidden nodes Trial and error approach 50 

QrGRu Nl Number of hidden layers Trial and error approach 2 

 Nn Number of hidden nodes Trial and error approach 50 

QrCNN Ck Convolution kernel size Trial and error approach 2*2 

 Nn Number of hidden layer nodes Trial and error approach 35 

MOGa, MOAa, MODa 
As Archive Size Preset 10 

 In Iteration Number Preset 200 

 Ni Individual Number Trial and error approach 40 

MOTa, IMOTa Si Initial Speed Preset 1 

 Nt Number of tunicate Trial and error approach 40 

 Ss Subordinate Speed Preset 4 

 As Archive Size Trial and error approach 10 

 In Iteration Number Trial and error approach 200 

PSr   Embedded dimension C-C method Site 1~3: 4, 5,5 

 M Delay time C-C method Site 1~3: 31, 28, 28 

 624 
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Table A2 625 

List of abbreviations. 626 

ARIMA Auto Regressive Integrated Moving Average LStm Long short-term memory neural network 

ARMA Autoregressive moving average LUBE lower upper bound estimation 

BiLStm Bi-directional Long Short Term Memory Network MO Multi-objective 

BLgm Bayesian regression model MOAa MO Antlion Algorithm 

BPNN Back propagation neural network MODa MO Dragonfly Algorithm 

CeemdAN 
Complete ensemble Empirical Mode Decomposition with 

Adaptive Noise MOGa MO Grasshopper Algorithm 

Eemd Ensemble Empirical Mode Decomposition MVE mean-variance estimates 

EFS Exponential function steps PINC prediction interval nominal confidence 

ELM Extreme learning machine PSr Phase space reconstruction 

Emd Empirical Mode Decomposition Qr quantile regression 

EOL Elite opposition learning QrCNN Quantile regression convolution neural network 

EPFM Ensemble probabilistic forecasting model QrGRu Quantile regression gated recurrent unit 

EPFS Ensemble probabilistic forecasting system QrLStm Quantile regression Long Short-Term Memory Network 

GPr Gaussian Process Regression RNN Recurrent neural network 

GRu Gated recurrent unit SSa Singular Spectral Analysis 

GW Gigawatt SVQr Support Vector Quantile Regression 

GWEC Global wind energy councile SVR Support Vector Regression 

IMOTa Improved multi-objective tunicate swarm algorithm Wt Wavelet Transform 

627 
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Data Availability 628 

10-minute wind speed data of three Sites in Shandong Peninsula: 629 

https://data.mendeley.com/datasets/sjyf2nhzdt/draft?a=af12330a-125b-499a-9473-630 

6840ed7044f9 631 
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Abstract 

The quantification of wind speed uncertainty is of great significance for real-time 

control of wind turbines and power grid dispatching. However, the intermittence and 

fluctuation of wind energy present great challenges in modeling its uncertainty; 

research in this field is limited. A quantile regression bi-directional long short-term 

memory network (QrBiLStm) and a novel ensemble probabilistic forecasting strategy 

are proposed in this study to explore ensemble probabilistic forecasting. To verify the 

reliability of the proposed ensemble probabilistic forecasting system, the uncertainties 

of wind speed at wind farms in China were modeled as a case study. The results of 

comparative experiments including 15 other models demonstrate the superiority of this 

ensemble probabilistic forecasting system in terms of sharpness while maintaining high 

interval coverage. The forecasting interval coverage probability obtained by the 

proposed system is above 97%, and the sharpness is improved by at least 24.21% as 

compared with the commonly used single models. The proposed ensemble probabilistic 

forecasting system can accurately quantify the uncertainty of wind speed and reduce 

the operation cost of power systems by improving the efficiency of wind energy 

utilization. 

Keywords: Wind speed forecasts; Multi-objective optimization algorithm; Deep 

learning; ensemble probabilistic strategy; Forecast uncertainty 

1. Introduction 

Wind energy has attracted extensive attention as an inexhaustible, clean, and 

inexpensive form of renewable energy. According to the Global Wind Report released 

by GWEC in 2021, the 93GW of new installations brings global cumulative wind power 

capacity up to 743 GW [1]. However, volatility and randomness of wind energy pose 

great challenges to wind energy grid connection and grid scheduling [2]. Decision-

makers must calculate and process the forecasted wind speed to obtain corresponding 

energy information [3]. Thus, wind-speed forecasting is critical for wind energy 

utilization. 

Wind speed forecasting approximates or extracts the potential relationship behind 

the data; point-oriented forecasting is the most common form [4]. A data-driven model 

of point forecasting can use traditional statistical models and artificial intelligence 

models. Traditional statistical models include autoregressive moving average (ARMA) 

[5], autoregressive integrated moving average (ARIMA) [6], and Kalman filtering [7], 

etc. These models are based on a linear assumption, and produce forecasting results that 
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are not accurate with nonlinear sequences [8]. With continuous development of 

artificial intelligence technology, researchers have begun to apply artificial neural 

networks to wind speed forecasts. Shallow models including the back propagation 

neural network (BPNN) [9], the extreme learning machine (ELM) [10], and support 

vector regression (SVR) [11] were first used. This type of supervised AI model can 

capture the nonlinear characteristics of wind speed series and manage long series [12]; 

the forecasting accuracy is higher than that of traditional statistical models [13]. 

However, there are some defects such as under-fitting, over-fitting, and long training 

time. With the development of deep learning technology, variants of recurrent neural 

networks (RNNs) [14] such as long short-term memory (LStm), gated recurrent units 

(GRu), and BiLStm networks have demonstrated excellent performance in time series 

forecasting [15]. This type of model can store historical information and facilitate 

capture of nonlinear features in wind speed series. These models often have many 

hyperparameters that must be set and weights to be updated; thus, they are subject to 

long training time and difficulty in parameter optimization [16].  

As wind speed data usually fluctuate, point-oriented forecasting can be inaccurate 

for grid scheduling purposes; thus, interval forecasting has become popular [17]. 

Interval forecasting approaches include mean-variance estimates (MVE) [18], 

bootstrap [19], Bayesian [20], and the lower upper bound estimation (LUBE) [21]. 

These methods have advantages and disadvantages, summarized in Table 1. Quantile 

regression (Qr) [22] is usually used in uncertainty forecasting for its strong 

interpretability in estimating the conditional distribution of the dependent variable. 

With the limitations of Qr with nonlinear series, research has begun to focus on 

combining Qr and artificial intelligence models to expand uncertainty forecasting 

ability [23,24]. In 2000, Taylor [25] proposed a method for combining Qr with a neural 

network that could solve both linear and nonlinear problems. Based on QrNN, 

researchers began to combine Qr with other single models. Support Vector Quantile 

Regression (SVQr) [26] was developed to forecast the probability density of short-term 

wind power, and can effectively quantify the uncertainty of time series data. He et al 

[27] forecasted the probability density of electricity consumption based on QrLASso. 

This method can better learn high-dimensional data, with more accurate forecasting 

results. As RNNs have more advantages in time series forecasting, researchers have 

combined Qr with LStm and GRU, proposing QrLStm [28] and QrGRu [29], which 

further improve forecasting accuracy. Wang et al. [30] incorporated Qr into a 

convolution-simplified long-term and short-term memory network. This improved 

model shortened the training time without reducing the accuracy. Based on these studies, 

we incorporated Qr with BiLStm, proposing QrBiLStm to quantify the uncertainty of 

wind speed.  

The shortcomings of a single model are obvious. In practical applications, the 

forecasting accuracy of a single model can be high or low in different regions. Thus, 

another focus of this study is the ensemble forecasting strategy [31]. The ensemble 

model weighs several well-performing models according to errors using an intelligent 

optimization algorithm [32]; forecasting is more stable and accurate than with single 

models [33]. Ensemble forecasting research focuses mostly on point-oriented 

forecasting. Liu et.al. [34] developed a multi-objective version of the mayfly 

optimization algorithm, combining several accurate single models to achieve more 

accurate forecasting. Wang et.al. [35] proposed the addition of two deep learning 

models to the ensemble forecasting framework, and used the improved dragonfly 
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optimization algorithm to obtain more accurate point forecasting results. However, 

research on ensemble probabilistic forecasting has received little attention, limiting 

further development. Niu et al. [36] proposed the use of multiple single models for 

interval forecasting based on the distribution assumption, and used an optimization 

algorithm to integrate the results of the single models to obtain the final forecasting 

results. This approach provides ideas for ensemble probabilistic forecasting. However, 

with the need to fit the data distribution and estimate the parameters, its usability is 

limited in practice. The accuracy of the ensemble model depends on the forecasting 

performance of single models; thus, we propose two QrBiLStm models with excellent 

performance as benchmark models and use an improved optimization algorithm to 

realize ensemble probabilistic forecasting.  

The main innovations and contributions of this study are summarized as 

follows: 

(1) The deep QrBiLStm model for wind speed uncertainty modeling was 

successfully designed, implemented, and tested. The proposed QrBiLStm model 

can obtain interval forecasting results with high interval coverage probability and 

narrower interval width, and provide more accurate information for wind energy 

utilization.  

(2) A pseudo interval was proposed, and pseudo-interval evaluation indicators 

were successfully designed as a foundation for the ensemble probabilistic 

forecasting system (EPFS). The pseudo-interval training approach enables separate 

optimization of the upper and lower bounds of the interval. Optimized wind-speed 

interval forecasting results are more accurate which means less wind estimation 

fluctuation and less uncertainty. Thus, the proposed EPFS is of great significance 

to the safety dispatch and operation of wind power generation. 

(3) An ensemble probabilistic forecasting system was proposed, and optimization 

objective functions for ensemble forecasting were designed. The experimental 

results show that the proposed EPFS based on QrBiLStm is a significant 

improvement over the single models. The EPFS overcomes the limitations of the 

single model forecast, making the wind speed forecasting results more stable and 

practical. 

(4) The tunicate swarm algorithm (TSa) was improved and used to perform 

interval ensemble optimization. The Tsa with the addition of archiving and a 

roulette wheel can output Pareto optimal solutions. Comparative experiments 

show that the TSa with three improved strategies has better global optimization 

ability and more stable optimization. The improved Tsa can ensure more stable 

wind-speed interval forecasting results at a faster speed. 

(5) Based on singular spectral analysis (SSa) and phase space reconstruction (PSr), the 

original wind speed sequence was decomposed and reconstructed, enabling the 

ensemble forecasting model to solve the chaos phenomenon and eliminate small 

fluctuations, with better forecasting results.  
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Table 1  

Advantages and disadvantages of wind speed forecasting models. 

Models References Advantages Disadvantages 

ARMA, ARIMA, and 

Kalman filtering 
[6, 7] 

The model is simple and only needs endogenous variables; 

Accurately forecast the linear sequences. 

Low forecasting accuracy in nonlinear data; 

The data is required to be stable or differentially 

stable. 

AI Model (BPNN, 

ELM, SVR, LStm, and 

GRu) 

[9–11], [37] 

Strong robustness and fault tolerance to noise data; Have the 

ability of association, and can approximate any nonlinear 

relationship. 

The calculation burden is high, and the 

interpretability is poor; It is difficult to 

determine the hyperparameter values. 

Ensemble Model [34], [38,39] 
The forecasting accuracy on different data types can be ensured; 

Take advantages of each single model. 

Need to train multiple models and choose 

efficient empowerment technique. 

MVE [18,40] The computational burden is relatively small. 

The accuracy is largely affected by the effect of 

numerical predictions associated with it; the 

underestimation of data variance will result in 

low coverage of real data by prediction 

intervals. 

Bootstrap [41,42] High efficiency in small-scale data. Is a resampling method that requires significant 

computational cost for large data sets. 

Bayesian [20] Improve the generalization ability of model.  

The calculation burden is large, which requires 

the calculation of the Hessian matrix. When the 

data size is not large enough, the accuracy 

largely depends on prior knowledge. 

LUBE [21,43] 
It avoids the problem of numerical calculation of the Jacobian 

matrix and Hessian matrix. 

Heavy computational burden. No suitable 

parameter initialization method. 

Quantile Regression 

（Qr） 
[25,44] 

Ability to resolve heterogeneity issues; Tail features of the 

distribution can be captured. 

Traditional Qr model can't solve nonlinear 

problems, so it is necessary to select a suitable 

neural network to combine with Qr. 
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2. Ensemble probabilistic forecasting system (EPFS) 

In the EPFS, SSa [42] is used to decompose the reconstructed sequence, and PSr 

[43] is used to reconstruct an one-dimensional sequence into a dynamic chaotic space. 

The processed sequences are forecasted in two QrBiLStm units. The proposed IMOTa 

algorithm is used to aggregate the two QrBiLStm units to generate an effective wind 

speed forecasting interval. The details of the QrBiLStm, SSa, PSr, and IMOTa 

algorithms are described as follows.  

2.1.  Quantile Regression Bi-directional Long Short Term Memory Network  

This section introduces the basic structure of BiLStm and the generation of 

QrBiLStm. 

2.1.1. Bi-directional Long Short Term Memory Network 

LStm proposed by S. Hochreiter [44], and is an RNN variant [45]. Owing to its 

cell structure, LStm can solve the problems of gradient disappearance and gradient 

explosion in long-sequence training. The cell structure consists of an input gate ( t ), a 

forgetting gate ( t ), and an output gate (t ); the structure is shown in Figure.1A. 
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













 


  
   

   



  


   
    

 (1) 

In Eq. (1), W  and Bias  represent the weight and bias of LStm cells, respectively; 

t  is the current cell state,   is the candidate cell state, and  tanh  represents a 

hyperbolic tangent function. 

BiLStm [46] is composed of a forward LStm layer and a backward LStm layer. In 

the forward layer, the sequence t  is input into the LStm model to calculate the output 

state 
t,i


. In the backward layer, the inverse form of the input sequence is input into 

the LStm model to calculate the reverse layer output state 
t,i


. This structure can 

extract the forward and backward relations of the wind speed series and connect them 

to the same output. The network structure is illustrated in Figure 1B. 

The output of the BiLStm layer at time t is 1 2

T

, , , ,
, , , , ,

t t t t i t T
        , 

where ,t i
  contains 

t,i


 and 
t,i


 which can be expressed as Eq. (2). 
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, , ; ,

, , ; ,

tm t

tm t

F i T

B i T
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  

  

   

   

 

  
  

 
  

   
 

  
    

 (2) 

where t,i -1


 indicates the cell state of the (i-1)th input time step in the forward LStm 

layer at time t; t,i+1


 is the cell state of the (i+1)th input time step in the backward 

LStm layer at time t. 

2.1.2. Quantile Regression  

Quantile regression (Qr) can explore the relationship between the conditional 

quantiles of the independent and dependent variables. The linear Qr can be expressed 

as Eq. (3). 

        linearQ X F| ,
tY t t tX X     , 1 2t n , , ,  (3) 

where  
tY t

 |
linear

Q X  is the  th condition quantile of the dependent variable t
Y  and 

 0 1,τ . Regression coefficients         0 1 mτ τ τ, , ,     .  

The estimated value  ̂   of     can be obtained by minimizing Eq. (4). 

      
1

Φτ= argmin Y Xˆ
n

t t

t

   


 
 

 
  (4) 

where  Φ
τ

 indicates an asymmetric function that can be written as 

    
    

      

0
Φ

1 0
τ

Y X Y X

Y X

Y X Y X

,

,

t t t t

t t

t t t t

    
 

    

   


  
   



 (5) 

From these equations, the  th condition quantile of t
Y  can be estimated as 

     Q X X| ~ ˆ
t

linear
Y t t    (6) 

2.1.3. Quantile Regression BiLStm (QrBiLStm) 

Based on the BiLStm and Qr, QrBiLStm was used for uncertainty modeling by 

modifying the cell structure and loss function of BiLStm. The loss function can be 

modified as   
1

ΦQrBiLStm Y X
n

Pinball loss
t t

t

L   



  . The condition quantile of t
Y  obtained 

by QrBiLStm can be formulated as  

           Y
Q X X W| ,

t

BiLStm

t t t
f         (7) 

where  W  indicates the weight matrix of  , and      t,i t,it
     

 
  
 

 

. 

The novel QrBiLStm network combines quantile regression with bi-directional 

data processing, and can effectively learn the hidden correlation between the pre- and 

post-time-step data in a time series, with better uncertainty modeling. 
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Fig.1. Cell structures of LStm and BiLStm 

2.2. Original signal preprocessing 

In this section, the principles of SSa and PSr are introduced in decomposing and 

reconstructing sequences. 

2.2.1. Singular Spectral analysis (SSa) 

The principal objective of SSa is to decompose the original series into a sum of 

series, identified as either a trend, a periodic or quasi-periodic component, or noise [47]. 

The flow of SSa can be summarized as follows. 

(A). Embedding procedure 

Based on the original sequence ini
T  and Karhunene–Loeve decomposition of the 

covariance matrix, the sequence  1 2

T

HS , ,
i

i i Y    of the L-dimensional vector 

is constructed. 

  

0

1 1

HS

M

Y T 

 
 


 
  

 (8) 

where, 1M T Y    and HS  is a Hankel matrix with equal elements on the 

diagonals.  

(B) Singular value disintegration 

The matrix SS
T

 is calculated to determine its eigenvalues using triples 

 E F, ,
i i i

x  by SVD [51]. The eigenvalues of SS
T

 are defined as i
ζ , 1 2, , ,i Y   

in descending order. E
i
 and F

i
 are the ith left and right eigenvectors, respectively, 

of SS
T

. Assuming  HS
i

r rank , the trajectory matrix HS  can be expressed as 

  
1

H H HS S S ,
r

    HS E F
i

T
i i ix  (9) 

where i
x  is the singular value of HS , and  1 2HS , , ,

i

i r   are matrices of 

1rank  . 
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(C). Reconstruction  

Step 3.1 (Grouping): The indices 1 2, , ,K r  are grouped into V  disjoint subsets 

 1 2, , ,k k k

VG G G  corresponding to splitting the elementary matrices  1 2HS , , ,
i

i r   

into V  groups. Each group contains a set of indices as  1 pG , ,k d d . The resultant 

matrix is defined as 
d,1 d,2 d, p

G
S S S Sk     . Thus, 

1 2
H

G G G
S S S S

, , ,
k k k

V
   , 

where HS  is the sum of G
k

 resultant matrices. 

Step 3.2 (Diagonal averaging): Each matrix 
G

S
,

k

j
1 2 , , ,j V  is transferred into a 

time series. Let HS  be a  Y M  matrix with elements s
i,j

, with  min*
,Y Y M

and  max
*

,M Y M . Define 
i,j

i,j

j,i

S
S

S

,
*

,

Y M

otherwise


 


. 

Matrix HS  is transformed into sequence 0 1 1
, , ,

T
  

  using Eq. (10). 
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





 


  


    
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
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


    
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





 (10) 

The averaging of the elements along the diagonal 2i j b   , applied to a 

resultant matrix 
G

S
,

k

j
, produces a time series T  of length T. Thus, the original series 

ini
T  is decomposed into the sum of V sequences. Defining the decomposed series as

de
T , it can be expressed as

1de
T T T

V    

2.2.2. Phase Space reconstruction (PSr) 

In the prediction of chaotic time series, the phase space reconstruction (PSr) 

method can be used to reconstruct a one-dimensional series into a dynamic chaotic 

space to obtain better forecasting results [48]. In this study, the C–C method was used 

to determine two important parameters of the PSr algorithm: delay time   and 

embedding dimension  . The PSr process is expressed as 

  

 

 

 

1 1 1 1

11 2

1

, , ,
Tini

P i i iP

P P P

  

  

  

  

     

  

  

  

  

 
 
 
   
  
 
 
  

 (11) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

9 

 

where  1 2| , , ,
i

i Z   signifies the samples of the sequence; Z  indicates the 

length of the initial sequences, and  1P Z      . Accordingly, the target matrix 

R
tar

P corresponding to 
ini

P  can be expressed as Eq. (12). 

  
   1 1 1 1 2 1

T T

R R R R, , , , , ,
tar

P P Z        
    

  
 (12) 

2.3. Improved Tunicate Swarm Optimization Algorithm (IMOTa) 

This section illustrates the mechanism of the original optimizer, the multi-

objective optimization, and three improved optimization strategies. 

A. Tunicate swarm algorithm (TSa) 

The TSa was proposed by Kaur et al. [49], who regarded the optimal solution as 

the food source in the ocean, and the process of finding the optimal solution as the 

movement behavior combination of the capsule animals looking for food. The 

comprehensive mathematical principle of the TSa is presented as following. 

Behavior 1. (avoidance) This behavior of tunicates aims to avoid collisions between 

individuals, and is defined by A G Svo raf ocf . Avo  is driven mainly by gravity 

and social forces. The gravity force is counteracted by the water flow  2 R 1Watf   , 

and is defined as    R 1 R 2G Wraf atf   . The social force is driven mainly by 

initial speed IniS  and subordinate speed SubS . The social force is defined as 

   R 1S Inis Subs Inisocf     . In the definition, IniS  is preset as 1, SubS  is 

preset as 4, and R  is a matrix with elements that are all random values ranging from 

 0 1, . 

Behavior 2. (movement) Tunicates move in the direction of their best neighbors. This 

behavior can be mathematically defined as  f tD Pos Posis rand k   . Dis  

measures the absolute distance between the optimal solution and the agent. In this 

behavior, fPos  indicates the position of the optimal solution, and  tPos k  refers to 

the position of the kth individual. 

Behavior 3. (convergence) Tunicates begin to advance toward food sources by means 

of Avo  and Dis . The tunicates update their positions according to Eq. (13). 

   
0 5

0 5

f

f

Pos Avo Dis
Pos

Pos Avo Dis <

, .

, .
u

rand
k

rand

   
 

 

 (13) 

Behavior 4. (swarm behavior) The best two solutions are retained, and the positions of 

other individuals relative to the food source are updated. The swarm behavior can be 

mathematically expressed as Eq. (14). 

          1 2 1t tPos Pos Pos Ruk k k    
 

 (14) 

B. Improved multi-objective tunicate swarm algorithm (IMOTa) 

This study developed three improvement strategies: the multi-objective approach 
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(MOJ), the elite opposition learning approach (EOLA), and the exponential function 

step approach (EFSA). The MOJ produces multiple objective functions in the 

optimization algorithm to achieve better optimization results. The EOLA can improve 

the convergence speed of the algorithm. The EFSA can improve the global optimization 

and robustness. 

a. Multi-objective tunicate swarm algorithm (MOTa) 

To achieve multi-objective optimization, this section introduces the dominant 

strategy, the Pareto optimal solution and archiving with a roulette wheel. The ability of 

the MOTa system to find the Pareto optimal solution is demonstrated using the 

definitions. 

Definition 1. Let  1 2J , , , iJ J J  and  1 2K , , , iK K K  be two vectors; J  

strictly dominates K , if      n , f J f Kn n1,2,..., N   ; J  partially dominates 

K , if      n , f J f Kn n1,2,..., N   . J  dominates K , if 

             n , f J f K n , f J f Kn n n n1,2,..., N 1,2, ..., N         
   

(15) 

where  n
f  indicates the n-th objective function and N is the number of functions. 

Definition 2. If      K  | f K f J: n nn 1,2, ..., N K     , that is, none of the 

obtained solutions dominates J , then J  is the Pareto optimal solution. 

Definition 3. Archiving with a roulette wheel is a matrix used to store the optimal 

solutions. When the archive is full, the individuals with the most adjacent solutions are 

eliminated by the roulette wheel. The probability that an individual is eliminated is 

i iPe = Ns cq ,cq >1 , where iNs  indicates the number of adjacent solutions, and cq  

is a constant. 

Suppose that the fitness function corresponding to the objective function is  fit  , 

and the optimal position 
*

P  of the individual in MOTA is the weight of two QrbiLStm 

units,  *
We P . It is proved that 

*
P  is the optimal weight of two QrbiLStm units 

through reduction to absurdity. 

Proof 

If there exists at least one adjacent position * *
Q P   , the weights satisfy 

 n 1,2,...,N ,       n n
We Q We P

* *fit fit 

  n 1,2,...,N ,    n

We Q
*fit >

  n
We P

*fit 
 , and 

*
Q  is stored in the Archive. As  *

We Q  dominates  *
We P , 

and the capacity of Archive with Roulette-Wheel is limited, *
P  is deleted from 

Archive with the i
prob Ns cq  or ranked behind 

*
Q . The position with the highest 

fitness value in Archive is selected as the optimal position. Corresponding, the optimal 

weights of QrBiLStm is  *
We Q  instead of  *

We P . ■ 

b. Elite opposition learning (EOLA)-MOTa 

The IMOTa based on EOLA was proposed to improve the convergence 

performance of the optimizer. The principle of EOLA is to calculate and evaluate the 
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opposition solution of a feasible solution, and select the better solution as the next 

generation. In this study, the elite tunicate is defined as the individual that obtains the 

highest fitness value. 

Definition 4. (opposition point) Let  , , ,j,1 j,2 j,dx x x jX  be a point in d-

dimensional space (regarded as a feasible solution),  x b , b
i i i

l u , and its 

corresponding opposition point  , , ,j 1 2 dX x x x


  are defined in Eq. (16) 

  -x b + b x
i i i i

l u  (16) 

Definition 5. (elite opposition solution) Suppose that  j j,1 j,2 j,dX x x x, , ,  is a 

common tunicate, and the corresponding extreme value of itself is the elite tunicate 

 elite
j j,1 j,2 j,dX x x x, , ,e e e . The elite opposition solution 

 , , ,elite e e e

j j,1 j,2 j,d
X x x x  can be defined as formula (17). 

   e e

j,i j j j,ix dlb + dub - x   (17) 

where e

j,i j jx dlb ,dub    ;  0,1c U ; 
j jb , b  dl du  is the dynamic boundary of the 

ith dimension search space, which can be calculated according to Eq. (18). 

     ,j j,i j j,ib = x b = xdl min du max  (18) 
Replacing the fixed boundary with the dynamic boundary of the search space is 

conducive to preserving the search experience, such that the generated opposition 

solution can be located in the gradually reduced search space. However, it has the 

possibility of causing 
e

j,i
x  to exit 

j jb , b  dl du . If 
e

jx < b
j,i

dl  or 
e

jx > b
j,i

du , then 

 j,i j j jx dub - dlb dub
e +  , where   is a random value between 0 and 1. 

c. Exponential function steps (EFSA)-MOTa 

In Behaviors 3 and 4 of the original TSA, the approach to promote the location 

update is random linear. This updating approach cannot guarantee individuals to find 

the optimal solution, which ultimately leads to poor optimization and robustness. Thus, 

improving the piecewise linear random step using EFSA is proposed. The new location 

update strategy can be mathematically expressed as Eq. (19). 

     0 5 2fPos Pos Avo Dis. rand
u k rand       (19) 

C. Design of the multi-objective optimization function of EPFS 

To simultaneously optimize the reliability and interval width of the forecasting 

system, two pseudo-interval indicators were designed. The purpose of constructing 

pseudo-intervals is to optimize the upper and lower bounds of the intervals, respectively, 

to achieve better optimization results. Based on the two pseudo-interval indicators that 

measure reliability and resolution, the objective functions for multi-objective 

optimization are developed. 

a. Pseudo-interval indicators 

The pseudo-interval is a half-interval composed of the observed values and the 

upper or lower bound of the interval. Thus, the indicators for evaluating the reliability 
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and resolution of the pseudo-interval can be designed as  half
PICP , and

 half
PINAW .  

Two indicators for evaluating the upper pseudo-interval can be defined as 

   
1

1 M

upper

iM




 half half

iPICP Γ , 
 
 

1

0

i i

i i

Obse

Obse





 
 



,

,

half

half

i half

UB V

UB V
  (20) 

     
1

1 M

upper i i

i

Obse
MR

 


   half half
PINAW UB V  (21) 

where  i half
UB  is the upper bound of the forecasting interval corresponding to  . 

i
ObseV  is the observation value, M  is the number of observation values, and R  is 

the range of observation values.  

Accordingly, the two indicators for evaluating the lower pseudo interval can be 

defined as: 

   
1

1half half

i
PICP Γ

M

lower

iM




  , 
 
 

1

0

half

half

i half

LB V

LB V


,

,

i i

i i

Obse

Obse





 
  


 (22) 

     
1

1half half
PINAW V LB

M

lower i i

i

Obse
MR

 


     (23) 

where  i half
LB  is the lower bound of the forecasting interval corresponding to  . 

b. Multi-objective optimization function  

The objective functions for multi-objective optimization can be determined as: 

  
   

     

1 2

1 exp 1

half

1

half half

2

Of PICP
min

Of PINAW PICP

    



          

 (24) 

where 0  is the penalty coefficient. A larger   indicates a greater degree of 

punishment. 

3. Framework of the proposed Ensemble probabilistic forecasting system 

This section presents the description of the material analyzed (section 3.1) and 

the ensemble probabilistic forecasting system applied in this study (section 3.2). 

3.2. Dataset description  

The three experimental datasets were collected from Shandong Peninsula with an 

interval of 10 minutes. In each dataset, extract 2880 points as the experimental sequence 

and select 75% of the total length as training set 1, with a length of 2160. The remaining 

720 points are divided into training set 2 and testing set. Training set 2 accounts for 75% 

of the remaining length, with a length of 540 and a testing set of 180.  

3.3. Flow of the proposed Ensemble probabilistic forecasting system 

In accordance with the aforementioned data processing approaches and forecasting 

models, the proposed ensemble probabilistic forecasting system includes SSa 

decomposition and reconstruction, phase space reconstruction of the C–C method, 
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principal forecasts based on two QrBiLStm units, and construction of pseudo-intervals 

to optimize the upper and lower bounds. The process is presented; the complete system 

structure and procedure are shown in Fig. 2. 

 

Step 1: Segment the original wind speed sequence into two training sets and a testing 

set. A total of 2,880 data were collected. Training set 1 included 2,160 points, Training 

set 2 included 540 points, and Test set included 180 points. 

Step 2: Use SSa to decompose and reconstruct the wind speed sequence 

 | 1, 2,j j n X  to obtain the denoised wind speed sequence  | 1, 2,j j n X . 

Step 3: Use the C–C method to find the optimal parameter values of PSr and 

reconstruct the sequence to adapt to the chaotic system. 

Step 4: Implement uncertainty forecasting quantization on Training Set 1, based on two 

QrBiLStm network units. 

Step5: Construct the pseudo-intervals based on the forecasting values and observation 

values of Training Set 2 obtained in Step 4. 

Step 6: Use the IMOTa and the designed interval optimization objective function; the 

pseudo-interval is input for optimization, and the final probabilistic forecasting results 

on the testing set are obtained.  

 

Fig.2. Flow of the proposed EPFS. 
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4. Experimental results and discussion 

This section describes the evaluation metrics of uncertainty modeling. Three 

comparative experiments and their corresponding analyses are described to verify the 

forecasting effectiveness of the proposed EPFS. The whole experiment is implemented 

on the personal computer with AMD Ryzen 5 5600H six-core processor with Radeon 

Graphics 3.30 GHz, 16 GB of RAM and a single NVIDIA GeForce GTX 1650 of GPU. 

The proposed EPFS and comparative models were implemented on Matlab2020a. 

The parameter settings for all models designed for the experiments are presented 

in Table A1 in Appendix A.  

4.1. Evaluation metrics  

The wind speed prediction interval was evaluated based on reliability, resolution, 

and sharpness. 

Reliability 

Reliability is based on the significance level   to evaluate the coverage 

probability of the forecasting interval. In this study, the reliability was characterized by 

the PICP metric which is expressed as Eq. (25). 

   
1

1
ΦPICP

N

i

iN




  , 
   

   

1, ,
Φ

0, ,

V LB UB

V LB UB

i i i

i

i i i

Obse

Obse

 

 

    
 

    

 (25) 

where N  is the length of the testing set,   is the confidence level, and iObseV  

indicates the observation value.  i LB  and  i UB  are the lower and upper bounds 

of the prediction interval, respectively, corresponding to  . In this paper, interval 

prediction is implemented based on 0.05   and 0.1   confidence levels. And 

 1 100%PINC    . 

Resolution 

Measurement of interval resolution (interval width) [50] is important for effective 

interval prediction. A prediction interval that is too broad contains a small amount of 

valuable information, which is less practical [51]. Thus, PINAW largely reflects the 

information contained in the forecast interval and can be represented by Eq. (26). R  is 

the range of observation values, it is determined by the maximum of the observation 

values on the testing set minus its minimum. And N  is the length of the testing set. 

       
1

1
PINAW UB LB

N

i i

iNR
  



     (26) 

Sharpness 

Both PINAW and PICP are one-sided in evaluating the quality of forecast intervals. 

The sharpness combines the two metrics for assessment of prediction intervals [54]; the 
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AIS metric [19] meets the requirements, and is expressed as Eq. (27): 

     N

i=1
=


 AIS S   (27)

 

      

     

      

2 4 ,

2 , ,

2 4 ,

i i i i

i i i i

i i i i i

Obse if Obse

if Obse

Obse if Obse



   

   

   



   


     

   

ξ LB V V LB

S ξ V LB UB

ξ V UB V UB

 (28) 

where      i i i   ξ UB LB . 

4.2. Comparative experiments 

This section presents a comparison of the proposed EPFS with commonly used 

single and ensemble probabilistic forecasting models (EPFMs). Probabilistic 

forecasting single models include the QrLASso, QrLStm, Qr convolution neural 

network (QrCNn), QrGRu, Gaussian process regression (GPr), the Bayesian regression 

model (BLgm), and the proposed QrBiLStm. The EPFMs include models with different 

denoising methods and optimizers. The interval forecasting chart of the proposed EPFS 

and the metric values of the other single models is shown in Fig. 3. 

The compared denoising methods include empirical mode decomposition (Emd) 

[56], ensemble Emd (Eemd), complete Eemd with adaptive noise (CeemdAN) [57], and 

wavelet transform (Wt). The compared optimizers include MOTa, MO dragonfly 

algorithm (MODa), MO grasshopper algorithm (MOGa), and MO antlion algorithm 

(MOAa). 

4.2.1. Comparative Experimental Analysis with Single Models 

Reliability 

PICP shows the reliability of intervals; when the PICP is higher than the prediction 

interval nominal confidence (PINC), the forecasting interval is considered to be reliable. 

As shown in Table 2, all single models and EPFS except QrCNN are valid for all Sites.  

The proposed QrBiLStm obtains 1PICP  for both 90%PINC  and 

95%PINC  for all three sites, indicating that it has better reliability for interval 

prediction. The EPFS optimized based on the two QrBiLStm benchmark models also 

has high PICP values, and is also reliable. For Site 1, when 90%PINC , EPFS obtains 

0.9833PICP ; when 95%PINC  , EPFS obtains 0.9944PICP .  

Resolution 

The PINAW metric indicates the interval width which determines the practicality 

and informative of interval [55]. A smaller PINAW indicates a narrower interval width 

with more uncertainty information. Not considering the invalid model 

(    PICP PINC  ), the interval width of QrBiLStm is the narrowest of all single 

models. This is reflected in the PINAW values. For 95%PINC , QrBiLStm is 

obtained at three sites: 
1 0.2674

PINC=95%
SitePINAW , 

2 0.2471
PINC=95%

SitePINAW , and

3 0.3306
PINC=95%

SitePINAW . Thus, compared with other single models, the proposed 

QrBiLStm has the narrowest interval width and is more effective in interval forecasting 

than the model based on distribution hypothesis and other single models not based on 

distribution. 

Compared with the single models, EPFS is greatly optimized in terms of the 
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interval width. The experimental results show that QrBiLStm has the narrowest interval 

width. The interval width forecasted by EPFS was 27.1387% ~ 56.6055%  smaller than 

that obtained by QrBiLStm, indicating that the forecasting of EPFS is greatly improved 

compared with that of a single model. 

 

 

Sharpness 

The AIS metric simultaneously considers coverage and interval width, punishing 

an interval that does not contain observation values and interval width. The AIS value 

is generally less than 0; a higher AIS value indicates a more effective forecasting 

interval. The AIS value of the proposed EPFS is the lowest at all sites and all PINCs, 

indicating that the proposed EPFS can provide more uncertainty information. 

Compared with single models, EPFS is greatly optimized in interval width; its 

coverage rate is also high, resulting in the best interval prediction. For 95%PINC , 

the AIS values obtained by EPFS at the three sites are 
1

95% 0.1273Site

PINCAIS    , 

2

95% 0.1216Site

PINCAIS    , and 
3

95% 0.1324Site

PINCAIS    .  

Remark: Compared with other single models, the proposed QrBiLStm can obtain the 

highest interval coverage and the narrowest interval width. Thus, the proposed 

QrBiLStm is more reliable and effective than the model based on the distribution 

hypothesis and other Qr–deep learning models not based on distribution. The proposed 

EPFS optimized using two QrBiLStm units can further reduce the interval width while 

ensuring high interval coverage. The proposed EPFS can provide more uncertainty 

information. 
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Table 2  
Interval prediction metric values of single models with PINC=90% and PINC=95%. 

Dataset Models PICP PINAW AIS 

  PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% 

Site 1 SSa-PSr-QrLASso 0.9556 0.9778 0.4554 0.5341 -0.5439 -0.3055 

SSa-PSr-QrLStm 1.0000 1.0000 0.5160 0.5835 -0.5152 -0.2928 

SSa-PSr-QrGRu 1.0000 1.0000 0.5337 0.5986 -0.5334 -0.2964 

SSa-PSr-QrCNN 0.9611 0.8944 0.3147 0.7572 -0.3726 -0.4743 

SSa-PSr-QrBiLStm 1.0000 1.0000 0.3489 0.4249 -0.3500 -0.2086 

SSa-PSr-GPr 0.9944 1.0000 0.4457 0.5311 -0.4557 -0.2712 

SSa-PSr-BLgm 1.0000 1.0000 0.4460 0.5317 -0.4556 -0.2716 

Proposed EPFS 0.9833 0.9944 0.1893 0.2674 -0.1805 -0.1273 

Site 2 SSa-PSr-QrLASso 0.8611 0.9111 0.3028 0.4918 -0.4409 -0.3389 

SSa-PSr-QrLStm 0.9778 0.9833 0.4770 0.5417 -0.5063 -0.2884 

SSa-PSr-QrGRu 0.9778 0.9889 0.4710 0.5729 -0.4905 -0.2930 

SSa-PSr-QrCNN 0.9833 1.0000 0.3734 1.1707 -0.3954 -0.5868 

SSa-PSr-QrBiLStm 1.0000 1.0000 0.3734 0.3494 -0.3802 -0.1748 

SSa-PSr-GPr 1.0000 1.0000 0.4547 0.5419 -0.4685 -0.2791 

SSa-PSr-BLgm 1.0000 1.0000 0.4555 0.5428 -0.4695 -0.2797 

Proposed EPFS 0.9778 0.9889 0.1620 0.2471 -0.1590 -0.1216 

Site 3 SSa-PSr-QrLASso 0.8944 0.9889 0.4122 0.6835 -0.4157 -0.3049 

SSa-PSr-QrLStm 0.9889 1.0000 0.5568 0.7498 -0.4633 -0.3110 

SSa-PSr-QrGRu 0.9833 1.0000 0.5502 0.7138 -0.4539 -0.2933 

SSa-PSr-QrCNN 0.9111 0.9222 0.4586 0.4362 -0.4508 -0.2351 

SSa-PSr-QrBiLStm 1.0000 1.0000 0.3384 0.4537 -0.2771 -0.1835 

SSa-PSr-GPr 0.9889 1.0000 0.5029 0.5992 -0.4248 -0.2519 

SSa-PSr-BLgm 0.9944 1.0000 0.5080 0.6047 -0.4286 -0.2544 

Proposed EPFS 0.9833 0.9889 0.2180 0.3306 -0.1784 -0.1324 

Note: The table above presents the reliability, resolution and comprehensive information of intervals obtained by different models. When PICP>PINC, the forecasting 

intervals are reliable. When the intervals are reliable, the narrower the interval width, the better the interval forecasting effect, which can be measured by 

     
1

1
  



   
N

i i

i

PINAW UB LB
NR

. Metric     
N a

i=1
AIS = S  can comprehensively evaluate the interval forecasting effect. 
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4.2.2. Comparative Experimental Analysis with Ensemble Models 

Reliability 

The EPFM based on other denoising methods has high interval coverage, whether 

at 90%PINC  or at 95%PINC . However, the reliability of the prediction interval 

is not always guaranteed when other algorithms are used to perform the optimization. 

Of the four other optimization algorithms, only MOTa–EPFM and MODa–EPFM can 

obtain reliable interval prediction results in all cases (three sites and two confidence 

levels), similar to the proposed EPFS. For Site 1, the interval coverage rates of MOTa 

and MODa are 90% 0.9833MOTA

PINCPICP   , 1
PINC=95%

MOTaPICP , 0.9778
PINC=90%

MODaPICP , and 

1
PINC=95%

MODaPICP , respectively. The Emd, Eemd, CeemdAN, Wt-based PSr–EPFM, 

MOTa–EPFM, MODa–EPFM, and the proposed EPFS are better in terms of reliability. 

Resolution 

The interval width obtained by EPFMs using other denoising methods is 

significantly greater than that of the proposed EPFS, which is evident from the PINAW 

values. For Site 2, the PINAW values of Emd–EPFM, Eemd–EPFM, CeemdAN–EPFM, 

Wt–EPFM, and the proposed EPFS are 

 
1

90% 0.2921,0.3027,0.3577,0.2517,0.1620PINAW
Site

PINC   and 
1

95%PINAW
Site

PINC 

 0.3371,0.3335,0.3980,0.2844,0.2471 when 90%PINC and 95%PINC , 

respectively.  

The predicted interval widths of EPFMs using other optimization algorithms are 

similar to that of the proposed EPFS. However, EPFMs based on other algorithms have 

less reliability in their prediction results (manifested as low PICP values), with narrow 

interval widths. For Site 1, the PINAW values for MOGa–EPFM are 0.1755 at 

90%PINC  and 0.2414 at 95%PINC ; the corresponding PICP values are 0.9167 

and 0.9611, respectively, and lower than those of all other models. 

Sharpness 

The interval prediction results after optimization are better than those of the single 

models, and other ensemble models cannot obtain interval reliability and interval width 

simultaneously. To better evaluate the effect of interval prediction, the AIS value was 

used to evaluate the uncertainty information contained in the prediction interval. A 

larger AIS value (AIS is generally a negative number), produces a better interval 

prediction. Considering all cases (three sites and two confidence levels), the proposed 

EPFS obtained the lowest AIS values, indicating that the proposed EPFS has better 

global optimization ability and better ability to optimize multiple objectives. The metric 

values of all three sites are presented in Table 3 and Fig. 4. 

Remark: Although EPFMs denoised by other methods have strong reliability, their 

resolution is not high; thus, the interval forecasting effect is not satisfying. EPFMs using 

other optimization algorithms cannot simultaneously optimize the interval reliability 

and interval resolution. The proposed EPFS has the best interval prediction results. 
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Table 3  

Interval prediction metric values of ensemble models with PINC=90% and PINC=95%. 

Dataset Models 
PICP PINAW AIS 

PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% 

Site 1 SSa-PSr-MOTa-EPFM 0.9833 1.0000 0.2048 0.2828 -0.1997 -0.1353 
SSa-PSr-MODa-EPFM 0.9778 1.0000 0.1979 0.3413 -0.1899 -0.1666 
SSa-PSr-MOGa-EPFM 0.9167 0.9611 0.1755 0.2414 -0.1887 -0.1223 
SSa-PSr-MOAa-EPFM 0.9333 1.0000 0.1769 0.2805 -0.1843 -0.1336 
Emd-PSr-EPFM 0.9778 1.0000 0.2538 0.3903 -0.2527 -0.1892 
Eemd-PSr-EPFM 0.9889 1.0000 0.2276 0.3824 -0.2226 -0.1845 
Wt-PSr-EPFM 0.9944 0.9944 0.3513 0.4031 -0.3453 -0.1941 
CeemdAN-PSr-EPFM 1.0000 1.0000 0.2868 0.3848 -0.2795 -0.1832 
Proposed EPFS 0.9833 0.9944 0.1893 0.2674 -0.1805 -0.1273 

Site 2 SSa-PSr-MOTa-EPFM 0.9778 0.9556 0.1692 0.2476 -0.1627 -0.1291 
SSa-PSr-MODa-EPFM 0.8833 0.9500 0.1454 0.2512 -0.1569 -0.1364 
SSa-PSr-MOGa-EPFM 0.8833 0.9500 0.1570 0.2342 -0.1707 -0.1248 
SSa-PSr-MOAa-EPFM 0.8500 0.8778 0.1475 0.2385 -0.1737 -0.1518 
Emd-PSr-EPFM 1.0000 1.0000 0.2921 0.3371 -0.2887 -0.1633 
Eemd-PSr-EPFM 0.9944 0.9944 0.3027 0.3335 -0.2991 -0.1612 
Wt-PSr-EPFM 1.0000 1.0000 0.3577 0.3980 -0.3523 -0.1945 
CeemdAN-PSr-EPFM 0.9944 0.9778 0.2517 0.2844 -0.2505 -0.1445 
Proposed EPFS 0.9778 0.9889 0.1620 0.2471 -0.1590 -0.1216 

Site 3 SSa-PSr-MOTa-EPFM 0.9667 0.9833 0.2489 0.3605 -0.2035 -0.1465 

SSa-PSr-MODa-EPFM 0.8833 0.9722 0.2170 0.3337 -0.1810 -0.1378 

SSa-PSr-MOGa-EPFM 0.9500 0.9611 0.2003 0.3431 -0.1846 -0.1448 

SSa-PSr-MOAa-EPFM 0.9833 0.9889 0.2172 0.3179 -0.1876 -0.1345 

Emd-PSr-EPFM 0.9611 0.9778 0.3240 0.3798 -0.2707 -0.1572 

Eemd-PSr-EPFM 0.9778 0.9833 0.3300 0.3843 -0.2692 -0.1581 

Wt-PSr-EPFM 0.9667 0.9833 0.3726 0.4324 -0.3200 -0.1873 

CeemdAN-PSr-EPFM 0.9889 0.9944 0.3253 0.3935 -0.2650 -0.1583 

Proposed EPFS 0.9833 0.9889 0.2180 0.3306 -0.1784 -0.1324 
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Fig.3. Forecasting results of proposed EPFS and other single models. 
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Fig.4. Forecasting results of proposed EPFS and other ensemble models. 

4.3. Statistical tests 

A Diebold-Mariano (DM) test [58] was implemented to validate whether the time-

series forecasting results of two different models exist for the same or significantly 

different accuracy. A hypothesis test is conducted, where the null hypothesis says that 

there is no difference between the forecasting accuracy of the models compared, and 

the alternative hypothesis says that the forecasting error of the model proposed is 

different with the compared one. In this study, the hypothetical form can be defined as 

Eq. (29): 

  

     
     

0

1

:

:

a b

i i

a b

i i

H E L E L

H E L E L

 

 

   
   

   
   

 (29) 

in which  L   is the loss function of forecasting bias. In point-oriented forecasting, 

i
  is defined as the ith forecasting value minus the corresponding actual value. In 

interval forecast, 
i
  represented by Eq. (30). is defined as the interval score of the ith 

point.  
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 (30) 

If the null hypothesis is rejected, it is possible to say that there is statistical 

evidence that there exists a significant difference between the proposed model 

regarding the compared model at the   level of significance. The DM test results are 

shown in Table 4. 

Table 4  

Statistics of DM test for statistical comparison of proposed approach versus other models 

Model 
Site 1 Site 2 Site 3 

PINC=95%  PINC=90%  PINC=95%  PINC=90%  PINC=95%  PINC=90%  

SSa-PSr-QrLASso -10.2893***  -6.7006***  -2.9187***  -3.8964*** -19.8818***  -4.2333***  

SSa-PSr-QrLStm -68.6604***  -66.8613***  -4.5813*** -6.6625*** -42.4881*** -23.2736*** 

SSa-PSr-QrGRu -45.0164***  -65.5619*** -11.1758*** -7.9645*** -35.1313*** -20.3249*** 

SSa-PSr-QrCNN -4.0386***  -4.5426*** -41.1140*** -9.2481*** -2.9096*** -7.3515*** 

SSa-PSr-QrBiLStm -49.3264***  -48.2301*** -2.4558**  -33.6391*** -14.4810*** -9.2998*** 

SSa-PSr-GPr -49.1107***  -59.7660*** -11.7846*** -44.0720*** -30.8004*** -21.7912*** 

SSa-PSr-BLgm -48.4703***  -60.4071*** -11.8552*** -44.0617*** -31.3836*** -23.5181*** 

Emd-PSr-EPFM -30.5495***  -5.8206*** -1.7031* -17.1494*** -3.0018*** -8.0663*** 

Eemd-PSr-EPFM -28.5660***  -13.4367*** -1.6236 -21.1340*** -3.1871*** -6.6468*** 

Wt-PSr-EPFM -23.4755***  -28.0409*** -4.0643***  -23.3569*** -2.2902** -3.8406*** 

CeemdAN-PSr-EPFM -18.1712***  -32.4127*** -1.6707*  -9.6597*** -5.0214*** -6.5898*** 

SSa-PSr-MOTa-EPFM -7.2410***  -5.0958*** -1.3035  0.3255 -6.5390*** -3.5052*** 

SSa-PSr-MODa-EPFM -39.8391***  -5.0069*** -1.2672  -0.6341 -1.7147* -1.0823 

SSa-PSr-MOGa-EPFM -0.6505  -1.6847*  -1.4715  -2.6176***  -1.9806**  -1.9018* 

SSa-PSr-MOAa-EPFM -2.0946** -1.5301  -1.7845*  -2.7302***  -1.3332  -1.5073 

Note: ***, **, and * indicate that the results are significant at the 1%, 5%, and 10% confidence 

levels, respectively. 

The proposed EPFS is significantly different from the commonly used single 

models in that the absolute values of the DM test results are all greater than the threshold 

0.01/2 2.58Z  . Compared with the EPFM based on different denoising methods, only 

Site 2 when PINC=95%, the EPFM based on Eemd is not significantly different from 

the proposed EPFS; In other forecasting scenarios, the proposed EPFS is significantly 

different from EPFM based on other denoising methods. Compared with EPFM based 

on different optimization algorithms, the accuracy was not significantly different in a 

few forecasting situations. Take Site 2 as an example, when PINC=95%, the DM value 

of SSa-PSr-MOGa-EPFM is -0.6505. Table 4 shows that the EPFM based on different 

optimization algorithms is significantly different in most forecasting situations, so it is 

important to use the improved optimization algorithm, i.e., IMOTA to perform the 

optimization task. 

4.4. Fist-order and second-order forecasting effectiveness evaluation 

In this study, the forecasting effectiveness (FE) approach [52] was modified for 

uncertainty forecasting; its first-order and second-order values were used to measure 

the availability of models. The required bias in FE is modified as interval score which 

is defined as Eq. (31), and the first-order FE and second-order FE are obtained. The 

details of this indicator are provided as follows. 
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The element of the kth order FE can be calculated as 
1

n
k k

i i

i

g Q A


 , where iA  

refers to the forecasting accuracy that can be measured by 1 iiA    , where n is the 

length of the testing set, and 
i  can be mathematically expressed by Eq. (29). iQ  

indicates the discrete probability distribution, and 
1

1,  0
n

i i

i

Q Q


  . As prior 

information for iQ  cannot be obtained, it is commonly determined as 

1/ ,  1,2, ,iQ n i n  . 
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(31) 

where      Φ UB LBi i i    . 

Thereafter, a function  1 2, , ,g g g
kFE  that contains k elements is designed to 

assess the kth order FE. Recall that 
1


n

k k

i i

i

g Q A , the first-order FE, can be defined as 

 1 1
g gFE  , and the second-order FE is designed as    

2
1 2 1 2 1, 1g g g g gFE

 
   

 
. 

The FE values are presented in Table 5. 

According to the design mechanism of FE, a higher FE value indicates greater 

availability of models. By comparing the first- and second-order FE values with 

reference models, we can determine that, apart from some results for Site 2, the 

proposed EPFS has the strongest availability. For Site 1, considering both Order = 1 

and Order = 2, the FE values of the proposed EPFS are higher than those of other 

forecasting models. The FE values obtained using the proposed EPFS were 
1 0.8195

1st -order
SiteFE  and 

1 0.7548
2-order

SiteFE , indicating that the proposed EPFS can 

fully assimilate the merits of benchmark units and achieve the most satisfactory results 

at all three sites. 

4.5. Improvement ratio 

The indicator 
Metric

IR  was used to assess the improvement in forecasting 

accuracy of the EPFS. 
Metric

IR  can be defined as 

     
 

com pro com

MetricIR Metric Metric Metric  (32) 

where com
Metric  is the metric value of the compared model, and pro

Metric  indicates 

the metric value of the proposed EPFS. In this paper, the improvement rate of AIS is 

calculated to reflect the overall improvement ratio of the proposed EPFS compared with 

other models, and the improvement rate of PINAW reflects the contribution of the 

proposed EPFS to shortening the interval width. Table 6 presents the improvement ratio 

results. According to the 
Metric

IR , the following conclusions can be drawn. 

Compared with all other single models, the forecasting performance of the 

proposed QrBiLStm is improved, indicating that the proposed QrBiLStm is effective. 
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The EPFS obtained by optimizing two efficient QrBiLStm units can further improve 

forecasting, manifested as a lower interval width and higher resolution. At Site 1, when 

90%PINC   and 95%PINC  , the improvement ratios of the proposed EPFS to the 

AIS value of a single model are 
90%PINC

AISIR


  

 66.8235%,64.9752%,66.1685%,51.5732%,48.4414% and 95%

AIS

PINCIR  

 58.3401%,56.5286%,57.0647%,73.1684%,39.0008% . Taking into account 

90%PINC   and 95%PINC   of the three Sites, the proposed EPFS represents a 

minimum of 12.96% improvement in AIS metrics compared to the EPFMs based on the 

other four denoising methods. Compared with EPFMs based on other optimization 

algorithms, the improvement ratio of the AIS metric is 1.57% to 23.60% and the 

forecasting results are more stable. This indicating that the proposed IMOTa has better 

global optimization ability and better ability to optimize multiple objectives. 

4.6. Stability analysis 

As most swarm intelligence optimization methods incorporate randomness or 

probabilistic mechanisms into their operation, the forecasting results for each trial are 

generally different, even with the same parameters and conditions. Thus, the stability 

of swarm intelligence optimization is one of the most important factors affecting 

prediction performance.  

The stability is measured by the standard deviations of three evaluation metrics; 

the equation is expressed as    
2

1

N k

t tt
Std Metric Metric Metric N


  , where N 

is the number of testing trials; k
Metric  indicates the kth error metric (PINAW and AIS) 

values in the testing trial, and 
t

Metric  refers to the average metric values of all testing 

trials. A lower  Std Metric value indicates a greater degree of stability.  

Fig. 5a, b, and d show the distribution of different results from ten trials using 

IMOTA for the three indicators at 90%PINC  ; Fig. 5 e, f, and h show the distribution 

of different results at 95%PINC  ; Fig. 5 c and g show the  Std Metric  results for 

ten trials at 90%PINC  and 95%PINC . The stability analysis is conducted using 

Site 1 as an example. Generally, the  Std Metric  values are small for both 0.1   

and 0.05  , manifested as    
Site1

0.0240,0.0228Std PICP
α=0.1,α=0.05

 , 

 
Site1

std PINAW
α=0.1,α=0.05

 0.0117,0.0104 , and  
Site1

std AIS
α=0.1,α=0.05

 

 0.0082,0.0048 . In ten trials, the values of the three indicators fluctuated little. The 

values of the three indicators were analyzed. For 90%PINC , the minimum value of 

PICP in the ten trials was 0.9389, and the maximum value was 0.9889. PINAW had a 

maximum of 0.2086, and a minimum of 0.1752. The minimum AIS value was -0.2021, 

and the maximum value was -0.1783. For PINC = 95%, the minimum value of PICP in 

the ten trials was 0.9222, and the maximum value was 0.9944. The PINAW maximum 

was 0.2657, and the minimum was 0.2303. The minimum AIS value was -0.1311, and 

the maximum value was -0.1163. 

In practical applications, future values are not available to calculate the metrics for 

comparison. However, through the stability analysis, we found that the proposed EPFS 
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can achieve accurate forecasting results in all trials, which shows that the proposed 

EPFS is highly available. 

4.7. Advantages and disadvantages compared to the existing studies 

The advantages and disadvantages of this study compared with the existing models 

in this field and the future work are analyzed in this section. 

 

Advantages 

(1) Firstly, compared with the existing QR- machine learning models such as QrGRu 

[29], QrLStm [30], , QrLASso [27], QrCNN, etc., this study adopts the cell structure of 

BiLStm, which can train the network by inputting historical information forward and 

backward. Based on this network structure, more accurate interval forecasting results 

can be obtained. This conclusion can be drawn from the results of comparative 

experiment 1 (section 4.2.1). Secondly, this study proposes a probabilistic ensemble 

forecasting system, which can combine the forecasting results of two well-behaved 

single models to get more accurate forecasting results, specifically by reducing the 

interval width under the condition of ensuring high interval coverage. 

(2) Compared with the existing probabilistic ensemble forecasting models. Firstly, the 

proposed EPFS is based on Qr theory, which can optimize the upper and lower bounds 

of the interval respectively. This optimization strategy is more flexible, ensuring that 

both the upper bound and the lower bound are optimal results. For example, Niu’s 

model [36] is based on data distribution, and the upper and lower bound forecasting 

results are optimized simultaneously. Secondly, the objective functions of probabilistic 

ensemble optimization are designed to find the solution with high coverage and narrow 

interval width as the optimal solution. 

Disadvantages 

(1) The calculation burden is increased while the upper and lower bounds of the 

forecasting interval are optimized respectively. Every interval forecasting result 

obtained by EPFS needs to be optimized twice, which increases the operation time. 

(2) The distribution information of data is not used to construct the interval. In this 

paper, loss function of the neural network is designed as pinball loss to obtain different 

quantile forecasting results, which is a supervised machine learning method without 

data distribution information. Although the EPFS based on Qr can get accurate interval 

forecasting results after optimization, it is possible to get better forecasting results if the 

distribution information of historical data can be fully utilized. This is the future work. 

(3) The EPFS is based on historical wind-speed data without considering other 

influence factors, such as pressure and temperature. Probabilistic ensemble forecast of 

multivariate time series is also the future research direction. 
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Table 5 

The forecasting effectiveness of the proposed EPFS and other existing models. 

Model  

Site 1 Site 2 Site 3 

PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

SSa-PSr-QrLASso 0.4561  0.3296  0.6945  0.6149  0.5591  0.3384  0.6611  0.4336  0.5843  0.4315  0.6951  0.6476  

SSa-PSr-QrLStm 0.4848  0.4591  0.7072  0.6889  0.4937  0.3964  0.7116  0.6228  0.5367  0.4978  0.6890  0.6643  

SSa-PSr-QrGRu 0.4666  0.4407  0.7036  0.6714  0.5095  0.4227  0.7070  0.6611  0.5461  0.4979  0.7067  0.6758  

SSa-PSr-QrCNN 0.6274  0.4947  0.5257  0.3193  0.6046  0.5458  0.4132  0.3823  0.5492  0.4249  0.7649  0.6015  

SSa-PSr-GPr 0.5443  0.5407  0.7288  0.7285  0.5315 0.5311 0.7209  0.7206  0.5707  0.5574  0.7481 0.7472  

SSa-PSr-BLgm 0.5444  0.5426  0.7284  0.7271  0.5305  0.5287  0.7203  0.7188  0.5734  0.5532  0.7456  0.7443  

SSa-PSr-QrBiLStm 0.6500  0.6131  0.7914  0.7577  0.6198  0.5771  0.8252  0.7941  0.7229  0.6775  0.8165  0.7815  

Emd-PSr-EPFM 0.7473  0.6834  0.8108  0.7721  0.7113  0.6645  0.8367  0.7951  0.7293  0.6630  0.8428  0.7864  

Eemd-PSr-EPFM 0.7774  0.7330  0.8155  0.7761  0.7009  0.6523  0.8388  0.7960  0.7308  0.6770  0.8419  0.7839  

Wt-PSr-EPFM 0.6547  0.6034  0.8059  0.7627  0.6477  0.5934  0.8055  0.7660  0.6800  0.5679  0.8127  0.7041  

CeemdAN-PSr-EPFM 0.7205  0.6742  0.8168  0.7691  0.7495  0.7019  0.8555  0.7854  0.7351  0.6874  0.8417  0.8008  

SSa-PSr-MOTa-EPFM 0.8003  0.7309  0.8647  0.8266  0.8373  0.7728  0.8710  0.7661  0.7965  0.7357  0.8535  0.8073  

SSa-PSr-MODa-EPFM 0.8101  0.7372  0.8334  0.8017  0.8431  0.7561  0.8636  0.7278  0.8190  0.7211  0.8622  0.7936  

SSa-PSr-MOGa-EPFM 0.8113  0.7006  0.8777  0.8111  0.8293  0.7378  0.8752  0.7773  0.8154  0.6985  0.8552  0.7766  

SSa-PSr-MOAa-EPFM 0.8157  0.7135  0.8578  0.7401  0.8264  0.7228  0.8482  0.6991  0.8124  0.7082  0.8655  0.7893  

Proposed EPFS 0.8195  0.7548  0.8727  0.8302  0.8410  0.7660  0.8784  0.8072  0.8216  0.7477  0.8676  0.8232  

Note: This table shows the circumstantial values of the first-order and second-order FE of sixteen models. The first-order FE is defined as  1 1
FE g g . When 

this continues function contains two variables, the 2nd-order FE can be denoted by    
2

1 2 1 2 1, 1FE g g g g g
 

   
 

.  
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Table 6  
The improvement ratio of the proposed EPFS. 

Models 

Site 1 Site 2 Site 3 

PINAW AIS PINAW AIS PINAW AIS 

PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% 

SSa-PSr-QrLASso 0.5844 0.4994 0.6682 0.5834 0.4650 0.4976 0.6394 0.6412 0.4712 0.5164 0.5708 0.5657 

SSa-PSr-QrLStm 0.6332 0.5417 0.6498 0.5653 0.6604 0.5439 0.6860 0.5784 0.6085 0.5591 0.6149 0.5743 

SSa-PSr-QrGRu 0.6454 0.5533 0.6617 0.5706 0.6560 0.5687 0.6759 0.5850 0.6038 0.5369 0.6069 0.5486 

SSa-PSr-QrCNN 0.3984 0.6469 0.5157 0.7317 0.5662 0.7890 0.5980 0.7928 0.5247 0.2421 0.6042 0.4370 

SSa-PSr-GPr 0.5753  0.4966  0.6040  0.5307  0.6437  0.5440  0.6607  0.5643  0.5665  0.4483  0.5800  0.4745  

SSa-PSr-BLgm 0.5756  0.4971  0.6039  0.5314  0.6443  0.5448  0.6614  0.5653  0.5709  0.4533  0.5837  0.4797  

SSa-PSr-QrBiLStm 0.4574 0.3708 0.4844 0.3900 0.5661 0.2928 0.5819 0.3042 0.3558 0.2714 0.3562 0.2787 

SSa-PSr-MOTa-EPFM 0.0758 0.0545 0.0965 0.0596 0.0423 0.0020 0.0229 0.0578 0.1243 0.0829 0.1231 0.0961 

SSa-PSr-MODa-EPFM 0.0436 0.2166 0.0500 0.2360 -0.1143 0.0164 0.0132 0.1083 -0.0047 0.0093 0.0141 0.0395 

SSa-PSr-MOGa-EPFM -0.0787 -0.1075 0.0438 0.0407 -0.0317 -0.0550 0.0690 0.0256 -0.0883 0.0364 0.0334 0.0860 

SSa-PSr-MOAa-EPFM -0.0702 0.0466 0.0208 0.0471 -0.0983 -0.0360 0.0846 0.1988 -0.0038 -0.0399 0.0487 0.0157 

Emd-PSr-EPFM 0.2542 0.3150 0.2859 0.3274 0.4453 0.2670 0.4494 0.2553 0.3273 0.1296 0.3408 0.1580 

Eemd-PSr-EPFM 0.1685 0.3008 0.1894 0.3104 0.4647 0.2592 0.4686 0.2457 0.3394 0.1397 0.3372 0.1625 

Wt-PSr-EPFM 0.4612 0.3368 0.4774 0.3442 0.5470 0.3792 0.5488 0.3747 0.4150 0.2354 0.4424 0.2930 

CeemdAN-PSr-EPFM 0.3399 0.3051 0.3544 0.3052 0.3563 0.1311 0.3654 0.1584 0.3299 0.1599 0.3264 0.1639 

Note: The table above reports the IR of the proposed EPFS from other twelve models. The AIS and PINAW are used to measure the IR, and the 

corresponding indicator can be defined as  com pro com

MetricIR Metric Metric Metric  
  , where com

Metric  is the metric values of compared model, 

and the pro
Metric  indicates the metric value of the proposed EPFS.
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Fig.5. Stability analysis results of the proposed EPFS. 
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5. Conclusion 

To generate high-quality wind speed prediction intervals and obtain 

comprehensive potential uncertainty information, an EPFS that combines SSa, PSr, 

QrBiSLStm, pseudo-interval construction, and multi-objective optimization was 

proposed. SSa and PSr were implemented successively, and time-frequency 

decomposition and reconstruction of the sequence were performed. The conditional 

quantiles of the sequences were obtained using the proposed QrBiLStm, and prediction 

intervals with different confidence levels were constructed. A pseudo-interval was 

constructed as the training set based on the forecasting results of two QrBiLStm units, 

and the proposed IMOTa was used for combinatorial optimization to obtain the final 

interval forecasting results. Comparison experiments were performed on three datasets, 

and the forecasting results were comprehensively evaluated in terms of reliability, 

resolution, and sharpness. Based on the analysis, we can draw the following conclusions: 

(1) a decomposition and reconstruction mechanism based on SSa and PSr can 

significantly improve forecasting performance, which can greatly improve uncertainty 

forecasting performance of the EPFS; (2) reliable uncertainty forecasts can be obtained 

from newly constructed QrBiLStm units; the forecasting results of this model far exceed 

those of other single models based on distribution hypothesis, and those of other Qr–

deep learning models; (3) an ensemble probabilistic forecasting strategy based on 

pseudo-interval construction can effectively optimize the upper and lower bounds of 

the interval and further improve the forecasting performance of the main forecasting 

model; (4) the improved MOTa has better global optimization ability and stability, and 

produces more effective and stable prediction results. The main limitations of the 

proposed EPFS are as follows: (1) Because quantile loss is discontinuous and 

nondifferentiable around 0 point, this EPFS has not been applied to the field of 

deterministic forecasts; (2) It is not combined with other linear models or interval 

forecasting models based on distribution in ensemble forecasting. However, this EPFS 

can optimize the upper and lower bounds of the interval separately and does not need 

to assume the distribution in advance. This study provides a novel approach for wind 

speed ensemble probabilistic forecasting and can be used as a powerful decision tool in 

the power system scheduling process. 
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Appendix A 

Table A1 

Parameters setting. 
Models Symbol Meaning Determination method determined value 

Eemd Ns STD of added noise Preset 0.05 

 NR Realization Number Preset 50 

 Ms Maximum Sifting Iteration Preset 500 

CeemdAN Ns STD of added noise Preset 0.05 

 NR Realization Number Preset 50 

 Ms Maximum Sifting Iteration Preset 500 

Wt D1 Decomposition Layer Number Trial and error approach 5 

SSa W Window Length Trial and error approach 50 

 D2 Primary Ingredient Disintegration Number Karhunene Loeve decomposition 20 

QrLStm Nl Number of hidden layers Trial and error approach 2 

 Nn Number of hidden nodes Trial and error approach 50 

QrBILStm Nl Number of hidden layers Trial and error approach 1 

 Nn Number of hidden nodes Trial and error approach 50 

QrGRu Nl Number of hidden layers Trial and error approach 2 

 Nn Number of hidden nodes Trial and error approach 50 

QrCNN Ck Convolution kernel size Trial and error approach 2*2 

 Nn Number of hidden layer nodes Trial and error approach 35 

MOGa, MOAa, MODa 
As Archive Size Preset 10 

 In Iteration Number Preset 200 

 Ni Individual Number Trial and error approach 40 

MOTa, IMOTa Si Initial Speed Preset 1 

 Nt Number of tunicate Trial and error approach 40 

 Ss Subordinate Speed Preset 4 

 As Archive Size Trial and error approach 10 

 In Iteration Number Trial and error approach 200 

PSr   Embedded dimension C-C method Site 1~3: 4, 5,5 

 M Delay time C-C method Site 1~3: 31, 28, 28 
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Table A2 

List of abbreviations. 

ARIMA Auto Regressive Integrated Moving Average LStm Long short-term memory neural network 

ARMA Autoregressive moving average LUBE lower upper bound estimation 

BiLStm Bi-directional Long Short Term Memory Network MO Multi-objective 

BLgm Bayesian regression model MOAa MO Antlion Algorithm 

BPNN Back propagation neural network MODa MO Dragonfly Algorithm 

CeemdAN 
Complete ensemble Empirical Mode Decomposition with 

Adaptive Noise MOGa MO Grasshopper Algorithm 

Eemd Ensemble Empirical Mode Decomposition MVE mean-variance estimates 

EFS Exponential function steps PINC prediction interval nominal confidence 

ELM Extreme learning machine PSr Phase space reconstruction 

Emd Empirical Mode Decomposition Qr quantile regression 

EOL Elite opposition learning QrCNN Quantile regression convolution neural network 

EPFM Ensemble probabilistic forecasting model QrGRu Quantile regression gated recurrent unit 

EPFS Ensemble probabilistic forecasting system QrLStm Quantile regression Long Short-Term Memory Network 

GPr Gaussian Process Regression RNN Recurrent neural network 

GRu Gated recurrent unit SSa Singular Spectral Analysis 

GW Gigawatt SVQr Support Vector Quantile Regression 

GWEC Global wind energy councile SVR Support Vector Regression 

IMOTa Improved multi-objective tunicate swarm algorithm Wt Wavelet Transform 
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Data Availability 

10-minute wind speed data of three Sites in Shandong Peninsula: 

https://data.mendeley.com/datasets/sjyf2nhzdt/draft?a=af12330a-125b-499a-9473-

6840ed7044f9 
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Table 1  

Advantages and disadvantages of wind speed forecasting models. 

Models References Advantages Disadvantages 

ARMA, ARIMA, and 

Kalman filtering 
[6, 7] 

The model is simple and only needs endogenous variables; 

Accurately forecast the linear sequences. 

Low forecasting accuracy in nonlinear data; 

The data is required to be stable or differentially 

stable. 

AI Model (BPNN, 

ELM, SVR, LStm, and 

GRu) 

[9–11], [37] 

Strong robustness and fault tolerance to noise data; Have the 

ability of association, and can approximate any nonlinear 

relationship. 

The calculation burden is high, and the 

interpretability is poor; It is difficult to 

determine the hyperparameter values. 

Ensemble Model [34], [38,39] 
The forecasting accuracy on different data types can be ensured; 

Take advantages of each single model. 

Need to train multiple models and choose 

efficient empowerment technique. 

MVE [18,40] The computational burden is relatively small. 

The accuracy is largely affected by the effect of 

numerical predictions associated with it; the 

underestimation of data variance will result in 

low coverage of real data by prediction 

intervals. 

Bootstrap [41,42] High efficiency in small-scale data. Is a resampling method that requires significant 

computational cost for large data sets. 

Bayesian [20] Improve the generalization ability of model.  

The calculation burden is large, which requires 

the calculation of the Hessian matrix. When the 

data size is not large enough, the accuracy 

largely depends on prior knowledge. 

LUBE [21,43] 
It avoids the problem of numerical calculation of the Jacobian 

matrix and Hessian matrix. 

Heavy computational burden. No suitable 

parameter initialization method. 

Quantile Regression 

（Qr） 
[25,44] 

Ability to resolve heterogeneity issues; Tail features of the 

distribution can be captured. 

Traditional Qr model can't solve nonlinear 

problems, so it is necessary to select a suitable 

neural network to combine with Qr. 
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Table 2  

Interval prediction metric values of single models with PINC=90% and PINC=95%. 

Dataset Models PICP PINAW AIS 

  PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% 

Site 1 SSa-PSr-QrLASso 0.9556 0.9778 0.4554 0.5341 -0.5439 -0.3055 

SSa-PSr-QrLStm 1.0000 1.0000 0.5160 0.5835 -0.5152 -0.2928 

SSa-PSr-QrGRu 1.0000 1.0000 0.5337 0.5986 -0.5334 -0.2964 

SSa-PSr-QrCNN 0.9611 0.8944 0.3147 0.7572 -0.3726 -0.4743 

SSa-PSr-QrBiLStm 1.0000 1.0000 0.3489 0.4249 -0.3500 -0.2086 

SSa-PSr-GPr 0.9944 1.0000 0.4457 0.5311 -0.4557 -0.2712 

SSa-PSr-BLgm 1.0000 1.0000 0.4460 0.5317 -0.4556 -0.2716 

Proposed EPFS 0.9833 0.9944 0.1893 0.2674 -0.1805 -0.1273 

Site 2 SSa-PSr-QrLASso 0.8611 0.9111 0.3028 0.4918 -0.4409 -0.3389 

SSa-PSr-QrLStm 0.9778 0.9833 0.4770 0.5417 -0.5063 -0.2884 

SSa-PSr-QrGRu 0.9778 0.9889 0.4710 0.5729 -0.4905 -0.2930 

SSa-PSr-QrCNN 0.9833 1.0000 0.3734 1.1707 -0.3954 -0.5868 

SSa-PSr-QrBiLStm 1.0000 1.0000 0.3734 0.3494 -0.3802 -0.1748 

SSa-PSr-GPr 1.0000 1.0000 0.4547 0.5419 -0.4685 -0.2791 

SSa-PSr-BLgm 1.0000 1.0000 0.4555 0.5428 -0.4695 -0.2797 

Proposed EPFS 0.9778 0.9889 0.1620 0.2471 -0.1590 -0.1216 

Site 3 SSa-PSr-QrLASso 0.8944 0.9889 0.4122 0.6835 -0.4157 -0.3049 

SSa-PSr-QrLStm 0.9889 1.0000 0.5568 0.7498 -0.4633 -0.3110 

SSa-PSr-QrGRu 0.9833 1.0000 0.5502 0.7138 -0.4539 -0.2933 

SSa-PSr-QrCNN 0.9111 0.9222 0.4586 0.4362 -0.4508 -0.2351 

SSa-PSr-QrBiLStm 1.0000 1.0000 0.3384 0.4537 -0.2771 -0.1835 

SSa-PSr-GPr 0.9889 1.0000 0.5029 0.5992 -0.4248 -0.2519 

SSa-PSr-BLgm 0.9944 1.0000 0.5080 0.6047 -0.4286 -0.2544 

Proposed EPFS 0.9833 0.9889 0.2180 0.3306 -0.1784 -0.1324 

Note: The table above presents the reliability, resolution and comprehensive information of intervals obtained by different models. When PICP>PINC, the forecasting 

intervals are reliable. When the intervals are reliable, the narrower the interval width, the better the interval forecasting effect, which can be measured by 
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AIS = S  can comprehensively evaluate the interval forecasting effect. 
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Table 3  

Interval prediction metric values of ensemble models with PINC=90% and PINC=95%. 

Dataset Models 
PICP PINAW AIS 

PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% 

Site 1 SSa-PSr-MOTa-EPFM 0.9833 1.0000 0.2048 0.2828 -0.1997 -0.1353 
SSa-PSr-MODa-EPFM 0.9778 1.0000 0.1979 0.3413 -0.1899 -0.1666 
SSa-PSr-MOGa-EPFM 0.9167 0.9611 0.1755 0.2414 -0.1887 -0.1223 
SSa-PSr-MOAa-EPFM 0.9333 1.0000 0.1769 0.2805 -0.1843 -0.1336 
Emd-PSr-EPFM 0.9778 1.0000 0.2538 0.3903 -0.2527 -0.1892 
Eemd-PSr-EPFM 0.9889 1.0000 0.2276 0.3824 -0.2226 -0.1845 
Wt-PSr-EPFM 0.9944 0.9944 0.3513 0.4031 -0.3453 -0.1941 
CeemdAN-PSr-EPFM 1.0000 1.0000 0.2868 0.3848 -0.2795 -0.1832 
Proposed EPFS 0.9833 0.9944 0.1893 0.2674 -0.1805 -0.1273 

Site 2 SSa-PSr-MOTa-EPFM 0.9778 0.9556 0.1692 0.2476 -0.1627 -0.1291 
SSa-PSr-MODa-EPFM 0.8833 0.9500 0.1454 0.2512 -0.1569 -0.1364 
SSa-PSr-MOGa-EPFM 0.8833 0.9500 0.1570 0.2342 -0.1707 -0.1248 
SSa-PSr-MOAa-EPFM 0.8500 0.8778 0.1475 0.2385 -0.1737 -0.1518 
Emd-PSr-EPFM 1.0000 1.0000 0.2921 0.3371 -0.2887 -0.1633 
Eemd-PSr-EPFM 0.9944 0.9944 0.3027 0.3335 -0.2991 -0.1612 
Wt-PSr-EPFM 1.0000 1.0000 0.3577 0.3980 -0.3523 -0.1945 
CeemdAN-PSr-EPFM 0.9944 0.9778 0.2517 0.2844 -0.2505 -0.1445 
Proposed EPFS 0.9778 0.9889 0.1620 0.2471 -0.1590 -0.1216 

Site 3 SSa-PSr-MOTa-EPFM 0.9667 0.9833 0.2489 0.3605 -0.2035 -0.1465 

SSa-PSr-MODa-EPFM 0.8833 0.9722 0.2170 0.3337 -0.1810 -0.1378 

SSa-PSr-MOGa-EPFM 0.9500 0.9611 0.2003 0.3431 -0.1846 -0.1448 

SSa-PSr-MOAa-EPFM 0.9833 0.9889 0.2172 0.3179 -0.1876 -0.1345 

Emd-PSr-EPFM 0.9611 0.9778 0.3240 0.3798 -0.2707 -0.1572 

Eemd-PSr-EPFM 0.9778 0.9833 0.3300 0.3843 -0.2692 -0.1581 

Wt-PSr-EPFM 0.9667 0.9833 0.3726 0.4324 -0.3200 -0.1873 

CeemdAN-PSr-EPFM 0.9889 0.9944 0.3253 0.3935 -0.2650 -0.1583 

Proposed EPFS 0.9833 0.9889 0.2180 0.3306 -0.1784 -0.1324 
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Table 4  

Statistics of DM test for statistical comparison of proposed approach versus other models 

Model 
Site 1 Site 2 Site 3 

PINC=95%  PINC=90%  PINC=95%  PINC=90%  PINC=95%  PINC=90%  

SSa-PSr-QrLASso -10.2893***  -6.7006***  -2.9187***  -3.8964*** -19.8818***  -4.2333***  

SSa-PSr-QrLStm -68.6604***  -66.8613***  -4.5813*** -6.6625*** -42.4881*** -23.2736*** 

SSa-PSr-QrGRu -45.0164***  -65.5619*** -11.1758*** -7.9645*** -35.1313*** -20.3249*** 

SSa-PSr-QrCNN -4.0386***  -4.5426*** -41.1140*** -9.2481*** -2.9096*** -7.3515*** 

SSa-PSr-QrBiLStm -49.3264***  -48.2301*** -2.4558**  -33.6391*** -14.4810*** -9.2998*** 

SSa-PSr-GPr -49.1107***  -59.7660*** -11.7846*** -44.0720*** -30.8004*** -21.7912*** 

SSa-PSr-BLgm -48.4703***  -60.4071*** -11.8552*** -44.0617*** -31.3836*** -23.5181*** 

Emd-PSr-EPFM -30.5495***  -5.8206*** -1.7031* -17.1494*** -3.0018*** -8.0663*** 

Eemd-PSr-EPFM -28.5660***  -13.4367*** -1.6236 -21.1340*** -3.1871*** -6.6468*** 

Wt-PSr-EPFM -23.4755***  -28.0409*** -4.0643***  -23.3569*** -2.2902** -3.8406*** 

CeemdAN-PSr-EPFM -18.1712***  -32.4127*** -1.6707*  -9.6597*** -5.0214*** -6.5898*** 

SSa-PSr-MOTa-EPFM -7.2410***  -5.0958*** -1.3035  0.3255 -6.5390*** -3.5052*** 

SSa-PSr-MODa-EPFM -39.8391***  -5.0069*** -1.2672  -0.6341 -1.7147* -1.0823 

SSa-PSr-MOGa-EPFM -0.6505  -1.6847*  -1.4715  -2.6176***  -1.9806**  -1.9018* 

SSa-PSr-MOAa-EPFM -2.0946** -1.5301  -1.7845*  -2.7302***  -1.3332  -1.5073 

Note: ***, **, and * indicate that the results are significant at the 1%, 5%, and 10% confidence 

levels, respectively. 
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Table 5 

The forecasting effectiveness of the proposed EPFS and other existing models. 

Model  

Site 1 Site 2 Site 3 

PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

SSa-PSr-QrLASso 0.4561  0.3296  0.6945  0.6149  0.5591  0.3384  0.6611  0.4336  0.5843  0.4315  0.6951  0.6476  

SSa-PSr-QrLStm 0.4848  0.4591  0.7072  0.6889  0.4937  0.3964  0.7116  0.6228  0.5367  0.4978  0.6890  0.6643  

SSa-PSr-QrGRu 0.4666  0.4407  0.7036  0.6714  0.5095  0.4227  0.7070  0.6611  0.5461  0.4979  0.7067  0.6758  

SSa-PSr-QrCNN 0.6274  0.4947  0.5257  0.3193  0.6046  0.5458  0.4132  0.3823  0.5492  0.4249  0.7649  0.6015  

SSa-PSr-GPr 0.5443  0.5407  0.7288  0.7285  0.5315 0.5311 0.7209  0.7206  0.5707  0.5574  0.7481 0.7472  

SSa-PSr-BLgm 0.5444  0.5426  0.7284  0.7271  0.5305  0.5287  0.7203  0.7188  0.5734  0.5532  0.7456  0.7443  

SSa-PSr-QrBiLStm 0.6500  0.6131  0.7914  0.7577  0.6198  0.5771  0.8252  0.7941  0.7229  0.6775  0.8165  0.7815  

Emd-PSr-EPFM 0.7473  0.6834  0.8108  0.7721  0.7113  0.6645  0.8367  0.7951  0.7293  0.6630  0.8428  0.7864  

Eemd-PSr-EPFM 0.7774  0.7330  0.8155  0.7761  0.7009  0.6523  0.8388  0.7960  0.7308  0.6770  0.8419  0.7839  

Wt-PSr-EPFM 0.6547  0.6034  0.8059  0.7627  0.6477  0.5934  0.8055  0.7660  0.6800  0.5679  0.8127  0.7041  

CeemdAN-PSr-EPFM 0.7205  0.6742  0.8168  0.7691  0.7495  0.7019  0.8555  0.7854  0.7351  0.6874  0.8417  0.8008  

SSa-PSr-MOTa-EPFM 0.8003  0.7309  0.8647  0.8266  0.8373  0.7728  0.8710  0.7661  0.7965  0.7357  0.8535  0.8073  

SSa-PSr-MODa-EPFM 0.8101  0.7372  0.8334  0.8017  0.8431  0.7561  0.8636  0.7278  0.8190  0.7211  0.8622  0.7936  

SSa-PSr-MOGa-EPFM 0.8113  0.7006  0.8777  0.8111  0.8293  0.7378  0.8752  0.7773  0.8154  0.6985  0.8552  0.7766  

SSa-PSr-MOAa-EPFM 0.8157  0.7135  0.8578  0.7401  0.8264  0.7228  0.8482  0.6991  0.8124  0.7082  0.8655  0.7893  

Proposed EPFS 0.8195  0.7548  0.8727  0.8302  0.8410  0.7660  0.8784  0.8072  0.8216  0.7477  0.8676  0.8232  

Note: This table shows the circumstantial values of the first-order and second-order FE of sixteen models. The first-order FE is defined as  1 1
FE g g . When 

this continues function contains two variables, the 2nd-order FE can be denoted by    
2

1 2 1 2 1, 1FE g g g g g
 

   
 

. 
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Table 6  

The improvement ratio of the proposed EPFS. 

Models 

Site 1 Site 2 Site 3 

PINAW AIS PINAW AIS PINAW AIS 

PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% PINC=90% PINC=95% 

SSa-PSr-QrLASso 0.5844 0.4994 0.6682 0.5834 0.4650 0.4976 0.6394 0.6412 0.4712 0.5164 0.5708 0.5657 

SSa-PSr-QrLStm 0.6332 0.5417 0.6498 0.5653 0.6604 0.5439 0.6860 0.5784 0.6085 0.5591 0.6149 0.5743 

SSa-PSr-QrGRu 0.6454 0.5533 0.6617 0.5706 0.6560 0.5687 0.6759 0.5850 0.6038 0.5369 0.6069 0.5486 

SSa-PSr-QrCNN 0.3984 0.6469 0.5157 0.7317 0.5662 0.7890 0.5980 0.7928 0.5247 0.2421 0.6042 0.4370 

SSa-PSr-GPr 0.5753  0.4966  0.6040  0.5307  0.6437  0.5440  0.6607  0.5643  0.5665  0.4483  0.5800  0.4745  

SSa-PSr-BLgm 0.5756  0.4971  0.6039  0.5314  0.6443  0.5448  0.6614  0.5653  0.5709  0.4533  0.5837  0.4797  

SSa-PSr-QrBiLStm 0.4574 0.3708 0.4844 0.3900 0.5661 0.2928 0.5819 0.3042 0.3558 0.2714 0.3562 0.2787 

SSa-PSr-MOTa-EPFM 0.0758 0.0545 0.0965 0.0596 0.0423 0.0020 0.0229 0.0578 0.1243 0.0829 0.1231 0.0961 

SSa-PSr-MODa-EPFM 0.0436 0.2166 0.0500 0.2360 -0.1143 0.0164 0.0132 0.1083 -0.0047 0.0093 0.0141 0.0395 

SSa-PSr-MOGa-EPFM -0.0787 -0.1075 0.0438 0.0407 -0.0317 -0.0550 0.0690 0.0256 -0.0883 0.0364 0.0334 0.0860 

SSa-PSr-MOAa-EPFM -0.0702 0.0466 0.0208 0.0471 -0.0983 -0.0360 0.0846 0.1988 -0.0038 -0.0399 0.0487 0.0157 

Emd-PSr-EPFM 0.2542 0.3150 0.2859 0.3274 0.4453 0.2670 0.4494 0.2553 0.3273 0.1296 0.3408 0.1580 

Eemd-PSr-EPFM 0.1685 0.3008 0.1894 0.3104 0.4647 0.2592 0.4686 0.2457 0.3394 0.1397 0.3372 0.1625 

Wt-PSr-EPFM 0.4612 0.3368 0.4774 0.3442 0.5470 0.3792 0.5488 0.3747 0.4150 0.2354 0.4424 0.2930 

CeemdAN-PSr-EPFM 0.3399 0.3051 0.3544 0.3052 0.3563 0.1311 0.3654 0.1584 0.3299 0.1599 0.3264 0.1639 

Note: The table above reports the IR of the proposed EPFS from other twelve models. The AIS and PINAW are used to measure the IR, and the corresponding indicator 

can be defined as  com pro com

MetricIR Metric Metric Metric  
 

, where 
com

Metric  is the metric values of compared model, and the 
pro

Metric  indicates the 

metric value of the proposed EPFS. 
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Table A1 

Parameters setting. 
Models Symbol Meaning Determination method determined value 

Eemd Ns STD of added noise Preset 0.05 

 NR Realization Number Preset 50 

 Ms Maximum Sifting Iteration Preset 500 

CeemdAN Ns STD of added noise Preset 0.05 

 NR Realization Number Preset 50 

 Ms Maximum Sifting Iteration Preset 500 

Wt D1 Decomposition Layer Number Trial and error approach 5 

SSa W Window Length Trial and error approach 50 

 D2 Primary Ingredient Disintegration Number Karhunene Loeve decomposition 20 

QrLStm Nl Number of hidden layers Trial and error approach 2 

 Nn Number of hidden nodes Trial and error approach 50 

QrBILStm Nl Number of hidden layers Trial and error approach 1 

 Nn Number of hidden nodes Trial and error approach 50 

QrGRu Nl Number of hidden layers Trial and error approach 2 

 Nn Number of hidden nodes Trial and error approach 50 

QrCNN Ck Convolution kernel size Trial and error approach 2*2 

 Nn Number of hidden layer nodes Trial and error approach 35 

MOGa, MOAa, MODa 
As Archive Size Preset 10 

 In Iteration Number Preset 200 

 Ni Individual Number Trial and error approach 40 

MOTa, IMOTa Si Initial Speed Preset 1 

 Nt Number of tunicate Trial and error approach 40 

 Ss Subordinate Speed Preset 4 

 As Archive Size Trial and error approach 10 

 In Iteration Number Trial and error approach 200 

PSr   Embedded dimension C-C method Site 1~3: 4, 5,5 

 M Delay time C-C method Site 1~3: 31, 28, 28 
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Table A2 

List of abbreviations. 

ARIMA Auto Regressive Integrated Moving Average LStm Long short-term memory neural network 

ARMA Autoregressive moving average LUBE lower upper bound estimation 

BiLStm Bi-directional Long Short Term Memory Network MO Multi-objective 

BLgm Bayesian regression model MOAa MO Antlion Algorithm 

BPNN Back propagation neural network MODa MO Dragonfly Algorithm 

CeemdAN 
Complete ensemble Empirical Mode Decomposition with 

Adaptive Noise MOGa MO Grasshopper Algorithm 

Eemd Ensemble Empirical Mode Decomposition MVE mean-variance estimates 

EFS Exponential function steps PINC prediction interval nominal confidence 

ELM Extreme learning machine PSr Phase space reconstruction 

Emd Empirical Mode Decomposition Qr quantile regression 

EOL Elite opposition learning QrCNN Quantile regression convolution neural network 

EPFM Ensemble probabilistic forecasting model QrGRu Quantile regression gated recurrent unit 

EPFS Ensemble probabilistic forecasting system QrLStm Quantile regression Long Short-Term Memory Network 

GPr Gaussian Process Regression RNN Recurrent neural network 

GRu Gated recurrent unit SSa Singular Spectral Analysis 

GW Gigawatt SVQr Support Vector Quantile Regression 

GWEC Global wind energy councile SVR Support Vector Regression 

IMOTa Improved multi-objective tunicate swarm algorithm Wt Wavelet Transform 
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