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Abstract: This paper compares the energy economy and vertical vibration characteristics of in-wheel
drive electric vehicles (IEVs), in-wheel drive electric hydraulic hybrid vehicles (IHVs) and centralized
drive electric vehicles (CEVs). The dynamic programming (DP) algorithm is used to explore the
optimal energy consumption of each vehicle. The energy economy analysis shows that the IEV
consumes more energy than the CEV due to its relatively lower electric motor efficiency, even with
fewer driveline components. The IHV consumes much more energy than the IEV and CEV because of
the energy loss in the hydraulic driveline. The vertical vibration analysis demonstrates that both IEV
and IHV degrade the vehicle driving comfort due to increased unsprung mass. Taking the advantage
of high power density of the hydraulic motor, IHV have less unsprung mass when compared with
the IEV, which helps to mitigate the vibration problems caused by increased unsprung mass.

Keywords: electric hydraulic hybrid vehicle; in-wheel drive; energy economy analysis; vibration analysis

1. Introduction

Transportation electrification is an important solution for environmental degradation
and non-renewable energy shortage problems. Various electric vehicle configurations have
been proposed in academia and industry. At the moment, most of the electric vehicles on
the market such as Tesla, Mercedez-Benz EQC, Nissan Leaf and BMW i3 are equipped
with single gear transmissions owing to the large speed range and low-speed high-torque
characteristics of electric motors [1,2]. Some electric vehicles use two motors on the front
axle and rear axle respectively to further improve the vehicle dynamic performance [3].
The multi-gear and multi-motor powertrains are widely researched in academia with the
motivation of improving the electric vehicle energy economy and dynamic performance.
The automated manual transmission (AMT) [4,5], dual clutch transmission (DCT) [6],
automatic transmission (AT) [7,8] and continuous variable transmission (CVT) [9,10] have
been implemented in electric vehicles.

The in-wheel drive electric vehicles (IEV) in which electric motors are directly con-
nected to wheels have been considered as one of the most important formats of electric
vehicles [11]. The IEV could eliminate all of the driveline components so that the trans-
mission power loss is cancelled. The vehicle handling and stability performance are
significantly improved by the torque vector control based on the quick torque response
and outstanding controllability of electric motors [12,13]. In addition to the attractive
advantages of IEV, there are also some unsolved problems which hinder its implementa-
tion. Limited installation space makes it difficult for heat dissipation [14]. The vibration
caused by increased unsprung mass reduces the vehicle drive comfort and deteriorates
the suspension and motor bearing working conditions, which accelerates the components’
fatigue and failure [15].
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Compared with the electric motor, the hydraulic motor has a higher power density,
which means less unsprung mass will be added if the hydraulic motor is used for in-wheel
drive [16,17]. So the vibration problems caused by increased unsprung mass could be
mitigated. Besides, the hydraulic motor is driven by fluids, which naturally constitute the
cooling system. The wheels have to work under complex environments like in water or off
road, which proposes challenges for the high voltage electrical system. In contrast, the hy-
draulic system is more reliable in these complex working conditions. These advantages
make the hydraulic motor a potential candidate for in-wheel drive [18]. The hydraulic
motor has been used for vehicle driving in massive researches combined with electric
motors. The parallel electric hydraulic hybrid vehicle [19–21] and series electric hydraulic
hybrid vehicle [22] have been widely investigated. These vehicles take the advantage of
the high power density of hydraulic motors to recover more braking energy so that the
vehicle energy economy is improved. The hydraulic motor has also been used for in-wheel
drive [16]. However, in this proposal, the engine is used to generate the hydraulic power
so it still relies on traditional fossil fuel.

With the motivation of exploiting the merits of in-wheel drive and electrification, an in-
wheel drive electric hydraulic hybrid vehicle (IHV) is investigated in this paper where
the hydraulic motor is used for in-wheel drive and an electric motor is used as the power
source. The energy economy and vertical vibration characteristics of the IHV are compared
with the IEV and a centralized drive electric vehicle (CEV). The dynamic programming
(DP) algorithm is adopted in the energy management strategy design, which helps to find
the optimal energy economy of each vehicle. Due to the vehicle vertical vibration having a
significant impact on the vehicle driving comfort, the vertical characteristics of each vehicle
are compared based on a quarter car model.

The remainder of this paper is presented as follows: Section 2 introduces the vehicle
powertrain configurations and working principles of each vehicle. In Section 3, the dy-
namic models of vehicle powertrains are built. Section 4 designs the energy management
strategies based on dynamic programming. In Section 5, simulations are conducted to
analyze the energy consumption of each vehicle. Section 6 analyses the vertical vibration
characteristics of each vehicle. In Section 7, conclusions are drawn for this paper.

2. Vehicle Powertrain Configurations and Working Principles

The configurations of CEV, IEV and IHV are shown in Figure 1. In the CEV, two central
electric motors (CEM) are installed on the front axle and rear axle, respectively. Single speed
transmissions are used to adjust the CEM speed and torque to coordinate with the vehicle
maximum speed and dynamic performance demand.
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Figure 1. Powertrain configurations of different vehicles. (a) CEV; (b) IEV; (c) IHV. Figure 1. Powertrain configurations of different vehicles. (a) CEV; (b) IEV; (c) IHV.
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In IEV, the in-wheel electric motors (IEM) are used to drive the vehicle. In this research,
an IEM produced by Protean electric is used for analysis. The IEM parameters such as
speed, torque and power are specifically designed for in-wheel drive so it can be directly
installed in wheel without any additional gears for speed and torque adjustment.

In IHV, in-wheel hydraulic motors (IHM) are installed in wheel to drive the vehicle. At the
moment, there is no hydraulic motor designed for in-wheel drive. However, considering the
vehicle wheel speed and torque demand during driving, the dual functional axial piston
hydraulic motor is a suitable candidate for in-wheel drive owning to its high power
density and high speed advantages. The high pressure accumulator (HPA) is used to store
energy and the low pressure accumulator (LPA) is used as an oil tank. During driving,
the IHM works as a motor and the oil flows from the HPA to the LPA. During regenerative
braking, the IHM works as a pump and the oil flows from the LPA to the HPA. In addition
to regenerative braking, the HPA could also be charged by the central hydraulic motor
(CHM). In this charging condition, the CEM drives the CHM to charge the HPA. The HPA
can also be used to charge the battery through the CHM and CEM.

3. Modelling of the Vehicle Powertrains
3.1. Electric Motor Model

The electromagnetic response of power electronics presents a higher frequency than
that of mechanical driveline so the frequency oscillations from the power electronics
systems can be overlooked to improve the computation efficiency and simplify the control
problem [23]. The maximum electric motor torque is modelled as a lookup table regarding
the motor speed. The real-time electric motor torque output Tm according to the driver’s
command can be expressed as:

Tm = αpTm_max(ωm) (1)

where αp is the accelerator pedal opening and Tm_max(ωm) is the tested maximum electric
motor torque at speed ωm.

3.2. Battery Modelling

The battery parameters are affected by many factors like temperature, state of charge
(SoC) and charging rate. An accurate dynamic model is difficult to build and would be
very complicated. Therefore, in this paper, the battery is modelled as a simplified internal
resistance model [24,25]. Those battery parameters which could truly reflect the battery
characteristics were obtained from the test. Based on the model, the SoC change rate is
described by Equation (2).

•
SoC =

√
U2

oc − 4RbPb − Uoc

2QmaxRb
(2)

where Uoc is the open circuit voltage, Rb is the battery internal resistance, Qmax is the
maximum capacity and Pb is the battery power which is calculated by Equation (3).

Pb =

{
Tmωm/ηm Tm > 0
Tmωmηm Tm < 0

(3)

where ηm is the electric motor efficiency, which is modelled as a 2-D lookup table regarding
to the output torque and speed.

The Uoc and Rb, along with SoC, are shown in Figure 2. In this model, the battery
characteristics are calibrated with 25 ◦C temperature.
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3.3. Hydraulic Motor Modelling

The hydraulic motor torque is generated by the pressure difference between HPA
and LPA. By adjusting the swashplate angle, both positive and negative torques are avail-
able for vehicle driving and braking. The hydraulic motor torque is described by the
following equation:

Th =


∆pd2

4 npR tan βηh Th > 0
∆pd2

4ηh
npR tan β Th < 0

(4)

where d is the hydraulic motor cylinder diameter, np is the number of the hydraulic motor
cylinders, R is the cylinder pitch radius [26,27], ∆p is the hydraulic motor working pressure.
ηh is the hydraulic motor mechanical efficiency, which is mainly affected by the working
pressure, speed and displacement.

3.4. Accumulator Modelling

The accumulator stores energy by compressing the inert gas. In this model, the com-
pression and expansion process is considered as an adiabatic process [28]. So the energy
loss due to heat exchange with the environment is neglected as it is much less than the
energy transferred in the charging and discharging process. Compared with the inert gas,
the oil compressibility is much lower and is therefore ignored in this model [29].

The energy stored in the accumulator is described by:

E =
P0V0

k − 1

[(
P
P0

) k−1
k

− 1

]
(5)

where E is the accumulator stored energy, P0 is the accumulator pre-charged pressure, V0 is
the inert gas volume under the pressure P0, k is the gas ploy index and P is the accumulator
working pressure.

3.5. Vehicle Resistance Model

The vehicle resistance mainly consists of rolling resistance, aerodynamic drag resis-
tance and road slope resistance. The total vehicle resistant torque is derived as:

TL =

(
MV g sin ϕ +

1
2

ρair AVCDV2 + MV g fT cos ϕ

)
RW (6)

where g is the gravitational acceleration, ϕ is the road slope, ρair is the air density, AV is the
vehicle frontal area, CD is the air drag coefficient, V is the vehicle speed, fT is the rolling
resistance coefficient, RW is the tyre radius.
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4. Energy Management Strategy Design Based on Dynamic Programming

The DP is a widely used optimization method for vehicle energy consumption analy-
sis [30–32]. In this paper, the DP is adopted to explore the optimal energy economy of each
vehicle so that the comparison is more convincing. Firstly, the driving cycle is divided into
N points. At each point of 0, 1, 2, . . . . . . , N − 1, N, the vehicle speed and acceleration is
determined by the driving cycle so the power demand is calculated. Besides, at each point,
state variables are chosen to describe the concerned targets. In the CEV and IEV, the state
variable is the battery SoC, which directly reflects the energy consumption of each vehicle.
In the IHV, the state variables are the battery SoC and the HPA pressure. The HPA pressure
of IHV determines how much driving torque is available.

How the state variables transfer from the current point to next point is determined by
the control inputs in the current point:

X(n + 1) = f (X(n), U(n)) (7)

X is the state variables. U is the control input. With different control inputs, the energy
consumption is different. In CEV, the control inputs are the front CEM torque and the
rear CEM torque. In the IEV, four IEMs are adopted, so there are potentially four control
inputs. However, the driving torque is normally allocated to the left wheels and right
wheels evenly to reduce control complexity [33,34]. Only when there are stability control
or steering control requirements are all four IEMs independently controlled to generate a
yaw moment for vehicle lateral dynamic control. In IHV, the front IHM torque, rear IHM
torque, and CHM torque and speed are selected as the control inputs.

The DP calculates the energy consumption reversely from the Nth point to the 0th
point. For point N to N − 1, it calculates all the possible control inputs and finds the
minimum energy consumption J∗(N − 1) from point N − 1 to N:

J∗(N − 1) = min
U(N−1)

L(X(N − 1), U(N − 1)) (8)

where L(X, U) is the instantaneous energy consumption determined by X and U. Then the
calculation keeps going recursively from N − 1 and the minimum energy consumption
J∗(n) from the point n to point N is obtained:

J∗(n) = min
U(n)

(L(X(n), U(n)) + J∗(n + 1)) (9)

When the calculation reaches the point 0, the minimum energy consumption J for the
whole driving cycle is obtained accompanied by the optimal control inputs sequence:

J =
N−1

∑
n=0

L(X(n), U(n)) (10)

There are boundary conditions for the state variables and control inputs which should
be satisfied during the whole process. These boundary conditions are caused by the
components’ physical characteristics.

In CEV, the control inputs are the front CEM torque Tf _CEM and the rear CEM torque
Tr_CEM:

U =
[

Tf _CEM, Tr_CEM

]
(11)

The CEM torque is restricted between the minimum and maximum torque:

Tf _CEM_min ≤ Tf _CEM ≤ Tf _CEM_max
Tr_CEM_min ≤ Tr_CEM ≤ Tr_CEM_max

(12)

In IEV, there are four IEMs. However, the driving torque is only allocated between
the front wheels and the rear wheels. The left wheels and the right wheels are with the
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same torque. Therefore, the control inputs are the front IEM torque Tf _IEM and rear IEM
torque Tr_IEM:

U =
[

Tf _IEM, Tr_IEM

]
(13)

The IEM torque is restricted between the minimum and maximum torque:

Tf _IEM_min ≤ Tf _IEM ≤ Tf _IEM_max
Tr_IEM_min ≤ Tr_IEM ≤ Tr_IEM_max

(14)

In IHV, the driving torque demand is allocated to the front wheels and the rear wheels.
Similar to the IEV, the driving torque is evenly allocated between the left wheels and the
right wheels. Besides, the CEM and CHM are used to transfer energy between the battery
and HPA. The CEM and CHM are decoupled from the wheels so that their speeds and
torques could be optimized to achieve the best energy economy. The control inputs in the
IHV are selected as the front IHM torque Tf _IHM, rear IHM torque Tr_IHM, CHM torque
TCHM and speed nCHM:

U =
[

Tf _IHM, Tr_IHM, TCHM, nCHM

]
(15)

In IHV, the hydraulic motor swashplate angle could only be adjusted between its
minimum and maximum limits, so they have limited output torques. The CHM speed
nCHM and CEM speed nCEM are restricted by their speed limits. The HPA pressure Ph
should also be maintained between its maximum and minimum values. The boundary
conditions in IHV are:

Tf _IHM_min ≤ Tf _IHM ≤ Tf _IHM_max
Tr_IHM_min ≤ Tr_IHM ≤ Tr_IHM_max

TCHM_min ≤ TCHM ≤ TCHM_max
TCEM_min ≤ TCEM ≤ TCEM_max

nCHM_min ≤ nCHM ≤ nCHM_max
nCEM_min ≤ nCEM ≤ nCEM_max

Ph_min ≤ Ph ≤ Ph_max

(16)

5. Energy Consumption Simulation Analysis

The vehicle simulation models are built with Matlab to investigate their energy con-
sumption. In this research, a production SUV with CEV configuration is selected as the
benchmark vehicle. Its vehicle parameters are shown in Table 1. The energy consump-
tion research is based on the world harmonized light-duty vehicle test procedure class 3
(WLTP-3). It combines urban and high speed driving conditions, which are widely used to
investigate the energy consumption of hybrid vehicles and electric vehicles. The WLTP-3
profile is shown in Figure 3.

Table 1. Parameters of the CEV.

Vehicle Parameters Value CEM Parameters Value

Tyre radius 0.382 m Maximum power 175 kW
Rolling resistance coefficient 0.018 Maximum torque 800 Nm

Air drag coefficient 0.36 Maximum speed 4200 rpm
Frontal area 2.45 m2 Continuous power 119 kW
Vehicle mass 2200 kg Continuous torque 455 Nm

Gear ratio 3 Mass 140 kg
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5.1. Energy Consumption of CEV

The front CEM and rear CEM working points are shown in Figure 4. Most of the time
it could be found that only rear CEM is used to drive the vehicle. This indicates that the
CEV driving system is much oversized for normal driving conditions. The vehicle power
demand and torque demand during the WLTP-3 are shown in Figure 5. It is demonstrated
that the power demand is much less than the equipped motor power. However, the large
motor improves the vehicle dynamic performance during accelerating and climbing.
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5.2. Energy Consumption of IEV

There are not any IEVs on the market at the moment. However, the PD18 IEM
designed by protean electric has been produced and promoted to the market. This IEM
targets in-wheel drive passenger vehicles. Therefore, it is selected to drive as the benchmark
vehicle to investigate the IEV energy consumption. With four IEMs, the IEV driving system
power is similar to the CEV. The IEM parameters are shown in Table 2 and its efficiency
map is shown in Figure 6. The IEM is designed for in-wheel drive, so it is installed on the
wheel directly without any additional gears.

Table 2. IEM parameters.

Parameters Value Parameters Value

Maximum torque 1250 Nm Continuous torque 650 Nm
Maximum power 80 kW Continuous power 60 kW
Maximum speed 1600 rpm Mass 36 kg
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By simulation, the IEM working points during WLTP-3 are shown in Figure 6. It is
shown that the rear IEM covers most of the driving torque, which means the powertrain
is also oversized in IEV. Compared with CEV, the driving torque is allocated more to the
front wheels.

5.3. Energy Consumption of IHV

The IHV is a novel vehicle configuration proposed in this paper, so the powertrain
parameters need to be designed here. To make sure the IHV has similar vehicle dynamic
performance with the CEV and IEV, the IHM power is selected to be close to the IEM. In IHV,
a reduction gear is adopted to adjust the IHM speed and torque. The CHM and CEM
are disconnected with the wheels, so they just need to satisfy the vehicle power demand
but not the torque demand. From Figure 5, the vehicle power demand is moderate while
the torque demand is high. Therefore, only one CEM is reserved in the IHV powertrain.
The CHM is selected as being of a similar power to the CEM. The parameters of the IHV
are listed in Table 3.

The IHM working points during WLTP-3 are shown in Figure 7. It is shown that the
IHVs also try to use only rear IHM for driving. It could also be found that the rear IHM
working points distribution are different from the rear IEM. This is determined by the
different efficiency maps of IHM and IEM.
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Table 3. Parameters of IHV.

Parameters Value Parameters Value

IHM CHM
Maximum speed 8750 rpm Maximum speed 6150 rpm

Maximum displacement 28 cm3 Maximum displacement 80 cm3

Maximum working pressure 40 MPa Maximum working pressure 40 MPa
Maximum torque 160 Nm Maximum torque 455 Nm
Maximum power 96 kW Maximum power 185 kW

Mass 16 kg Mass 36 kg
IHM gear ratio 5.47

HPA LPA
Maximum working pressure 40 MPa Maximum working pressure 33 MPa

Mass 71 kg Mass 33 kg
Nominal volume 20 L Nominal volume 10 L
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The HPA inert gas real time pressure and volume are shown in Figure 8. It is shown
that HPA pressure is always lower than its maximum working pressure. When the HPA is
used for regenerative braking, the battery charging burden is relieved.
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The CEM and CHM working points are shown in Figure 9. As mentioned before,
in IHV, the CEM and CHM are disconnected from the wheels. Therefore, under a certain
power demand, the CEM and CHM could work at the most efficient point.
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5.4. Energy Consumption Comparison

The energy consumption and SoC of each vehicle is shown in Figure 10 and listed in
Table 4. It could be found that the IEV consumes slightly more energy than the CEV.
The main reason is that the IEM has lower efficiency than the CEM, especially at a low speed
area. These results indicate that although the driveline is simplified in IEV, which helps
reduce power loss, the lower IEM efficiency makes the IEV not very competitive on the en-
ergy economy. However, as mentioned above, the advantage of the IEV is in improving the
vehicle stability and handling performance by torque vector control. The energy consump-
tion of IHV is 40% more than the CEV and 34% more than the IEV, which demonstrates
a bad energy economy of the IHV. The reason for this is that the hydraulic accumulator
has a much lower energy density than the battery, so when the CEM is used to charge the
HPA, it is equivalent to use the CEM to drive the vehicle. The total driveline efficiency is
degraded by the hydraulic circuit.
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Table 4. Energy consumption and SoC comparison.

Vehicle Initial SoC Final SoC Energy
Consumption (kWh)

CEV 0.95 0.82 5.131
IEV 0.95 0.815 5.344
IHV 0.95 0.763 7.346

6. Vertical Vibration Analysis

The vehicle unsprung mass of IEV and IHV are increased by in-wheel motors. The in-
creased unsprung mass remarkably changes the vehicle vertical vibration characteristics
and degrades the vehicle driving comfort [35]. In this section, the vertical vibration charac-
teristics of each vehicle are compared. A quarter car dynamic model is built to research
the vertical vibration as shown in Figure 11. In the model, the stiffness and damping
are considered as constant parameters [36,37]. For different vehicles, they have the same
quarter car model but with different parameters.
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The quarter car model is described by Equation (17):{
ms

..
xs = −ks(xs − xu)− cs(

.
xs −

.
xu)

mu
..
xu = ks(xs − xu) + cs(

.
xs −

.
xu)− kt(xu − xg)

(17)

where ms is the sprung mass, xs is the sprung mass displacement, ks is the suspension
stiffness, cs is the suspension damping, mu is the unsprung mass, xu is the unsprung mass
displacement, kt is the tyre stiffness, xg is the road excitation. In this model, the tyre
damping is ignored due to its small effect on the vertical vibration [38]. The parameters of
each vehicle are shown in Table 5. In IEV, two CEMs are removed so that the sprung mass
is reduced compared with CEV. The IEMs increase the unsprung mass. In IHV, one CEM
is removed but a CHM and two accumulators are installed on-board, so the sprung mass
does not significantly change. As mentioned, the IHM has a higher power density than
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the IEM, so the IHM mass is much smaller than the IEM with same power, which explains
why the IHV unsprung mass is smaller than the IEV.

Table 5. Model parameters of different vehicles.

Parameter CEV IEV IHV

Sprung mass (kg) 510 426.5 506.5
Unsprung mass (kg) 40 74 56

Suspension stiffness (N/m) 32,000
Suspension damping (Ns/m) 2830

Tyre stiffness (N/m) 200,000

To investigate the vehicle vertical vibration characteristics under the road excitation,
the state function and output functions are built as follows:{ .

X = AX + BU
Y = CX + DU

(18)

In the equation, the sprung mass displacement, sprung mass velocity, unsprung mass
displacement, and unsprung mass velocity are selected as the state vector X. The sprung
mass acceleration, unsprung mass acceleration, suspension deformation and tyre defor-
mation are selected as the output vector Y [39]. The road excitation is selected as the
input vector.

X =
[
xs,

.
xs, xu,

.
xu
]T , Y =

[ ..
xs,

..
xu, xs − xu, xu − xg

]T , U =
[
xg
]

(19)

From Equation (17), the state function and output function are obtained as shown in
Equations (20) and (21).

.
xs..
xs.
xu..
xu

 =


0 1 0 0

− ks
ms

− cs
ms

ks
ms

cs
ms

0 0 1 0
ks
mu

cs
mu

− kt+ks
mu

− cs
mu




xs.
xs
xu.
xu

+


0
0
0
kt
mu

[xg
]

(20)


..
xs..
xu

xs − xu
xu − xg

 =


− ks

ms
− cs

ms
ks
ms

cs
ms

ks
mu

cs
mu

− kt+ks
mu

− cs
mu

1 0 −1 0
0 0 1 0




xs.
xs
xu.
xu

+


0
kt
mu
0
−1

[xg
]

(21)

The frequency response analysis under road excitation with 1 m amplitude and
different frequencies is conducted and the results are shown in Figure 12. There are
two natural frequencies in the quarter car system. In IEV, the natural frequencies and
amplitudes are all greatly changed. In IHV, the first natural frequency is very close to the
CEV but the second natural frequency is decreased.

Figure 12a shows the sprung mass acceleration frequency response to the road ex-
citation. It is shown that the sprung mass acceleration is significantly increased in IEV
with both natural frequencies, which indicates a worse driving comfort. The IHV sprung
mass acceleration response is almost the same as the CEV at the first natural frequency.
At the second natural frequency, the IHV sprung mass acceleration response is only slightly
higher than the CEV. So from the vertical acceleration perspective, the IHV maintains the
vehicle driving comfort while the IEV degrades the driving comfort.

Figure 12b shows that the unsprung mass acceleration responses of all vehicles are
quite small at the first natural frequency. At the second natural frequency, the acceleration
response of IEV and IHV are reduced due to larger unsprung mass.
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The suspension deformation with different excitation frequencies is shown in Figure 12c.
The IEV has a reduced suspension deformation at the first natural frequency; however, it has
an increased suspension deformation at the second natural frequency. The IHV suspension
deformation is also larger than the CEV at the second natural frequency. It should also be
noticed that although the suspension deformations of IEV and IHV are increased at the
second natural frequency, they are still smaller than the CEV suspension deformation at
the first natural frequency.

The tyre deformation, which represents the dynamic wheel load, is shown in Figure 12d.
It is demonstrated that at the first natural frequency, the larger unsprung mass in IEV and
IHV do not remarkably increase the wheel loads. However, the wheel loads are increased a
lot at the second natural frequency in IEV and IHV, which proposes higher requirements
for tyre strength. The IHV dynamic wheel load is smaller than the IEV dynamic wheel load.

7. Conclusions

This paper compares the energy economy and vibration characteristics of CEV, IEV and
IHV. By the energy management strategy designed with the DP algorithm, the IEV and IHV
consume more energy than the CEV, which makes IEV and IHV incompetent for energy
saving. In addition to the advantages of independent wheel torque control, the IEV and
IHV also have the vibration problems caused by increased unsprung mass. The hydraulic
motor has a higher power density than the electric motor, and so less unsprung mass is
added in the IHV than the IEV. The vibration analysis results demonstrate that the vibration
problems caused by increased unsprung mass could be alleviated in IHV, especially in
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the vehicle body acceleration, which directly affects driving comfort. Besides, the heat
dissipation and IEM high voltage safety challenges are cancelled in IHV. Based on the above
analysis, the IHV is more suitable for off-road vehicles which work in harsh conditions
such as mining, forestry and agriculture vehicles. For these vehicles, the in-wheel drive
improves the vehicle handling performance and agility by independent wheel torque
control. Hydraulic motors also have a better reliability under bad working conditions such
as muddy ground.

In the future, the following researches could be conducted. Firstly, this paper re-
searches the optimal energy consumption of each vehicle by DP. It is a global optimiza-
tion method, which helps to find the least energy consumption over a known driving
condition. In real driving, it is hard to get prior driving condition information and so
rule-based or real-time optimization energy management strategies should be designed.
Secondly, the longitudinal vibration also deserves research. Comparisons could be made on
how the IHM and IEM torque affect the vehicle longitudinal vibration. Besides, the lateral
dynamics are also changed by different unsprung mass, which affects the steering control
and the torque vector control.
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