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Abstract

The popularisation of electric vehicles (EVs) and the development of dynamic wireless
charging technology have created an emerging trend of transportation electrification, which
strengthens the coupling between electrified transportation network (ETN) and power dis-
tribution network (PDN). Meanwhile, the stochastic routing behaviour of EVs and predic-
tion error of traffic demand pose a severe challenge to the coordinated ETN-PDN opera-
tion problem. This paper proposes a new hybrid optimisation method using stochastic user
equilibrium (SUE)/information gap decision theory (IGDT) to study the impact of the
unavoidable uncertainties on the coordinated ETN-PDN operation, which consists of the
following two stages. In the first stage, a collaborative optimisation model based on SUE
and Dist-Flow equations is established to deal with the stochastic EV routing behaviour.
Built upon this model, the second stage continues to consider the traffic demand prediction
error and establish a risk decision model using IGDT. The proposed model can provide
proper road congestion tolls and local generator production schedules to lead to a mini-
mum expected socio-economic cost. Also, two different coordinated operation strategies,
that is, risk-seeker and risk-averse strategies, are provided to deal with the uncertainties.
Case studies are carried out to demonstrate the effectiveness of the hybrid SUE/IGDT
optimisation method.

1 INTRODUCTION

With the continuous development of battery, fast charging,
and dynamic wireless charging (DWC) technologies [1], electric
vehicles (EVs) are gradually replacing traditional vehicles pow-
ered by fossil fuels owing to their eco-friendly and cost-efficient
advantages, which creates an emerging trend of transportation
electrification [2]. However, the large-scale application of EVs
significantly increases the electricity demand of the power dis-
tribution network (PDN). Meanwhile, the stochastic and disor-
dered charging behaviour of EVs may increase the power sys-
tem network loss, worsen the power quality, cause distribution
line congestion, which brings a series of negative effects on the
safe and economic operation of PDNs. Moreover, because the
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charging facilities are set up along the road of the electrified
transportation network (ETN), the choices of charging location
and driving route of EVs will influence the distribution of traffic
flow, which further impact the operation status of ETN [3].

In order to minimise the negative impact of EVs on the PDN
and ETN, an appropriate EV routing along the ETN and charg-
ing scheduling in PDN is needed [4, 5], but a single scheduling
scheme considering only the PDN or ETN cannot maximise
the social benefits. A scheduling scheme with a high degree of
coordination between PDN and ETN can not only reduce the
adverse impact of large-scale EV charging load on the PDN
but also alleviate the potential congestion in ETN. Therefore,
coordinated ETN-PDN operation has become an emerging hot
research topic [6].
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Considering conventional plug-in charging [7, 8] for EVs,
there are already existing studies on the coordinated transporta-
tion and power network operation. In [9, 10], electricity prices
and road tolls are optimised simultaneously to regulate EV
charging demands and driving path towards optimum costs of
the coupled networks. Meanwhile, the operational data privacy
of each system is considered in [10]. A comprehensive mod-
elling framework is proposed in [11], which demonstrates the
existence of equilibrium states in coupled networks. In [12], a
bi-directional information exchange mechanism and a routing
strategy are developed to obtain an optimum operating point
of the two networks. In order to shave bi-peak and smooth bi-
ramp in coupled networks, a hierarchical optimisation approach
is investigated in [13]. In [14], considering the elastic response of
EVs to electricity charging price, a smart charging management
system and a distributed coordination pricing method are pre-
sented for the coupled network. In [15], an EV charging sched-
ule in coupled constrained networks is studied, which analyses
the impact of EV departure time on mitigating the congestion
of the two networks.

Compared with conventional plug-in charging mode, the
DWC mode increases the spatial-temporal nature of EV-
charging operations, leading to a tighter coupling between the
transportation network and power network [6]. The coupling
points of the two include not only fast-charging stations with
fixed geographical location but also dynamically changed loca-
tions along wireless charging lanes, which improves the enthusi-
asm and timeliness of interaction between users and the power
grid. Therefore, the coordinated operation of the two networks
in wireless charging mode has caused more attention recently.
For example, reference [16] investigates the impact of mobile
EV charging load on the direct current location marginal price
under DWC. Reference [17] analyses the influence of limited
road capacity on the coupling network operation. Consider-
ing the transportation and power systems being managed sepa-
rately or simultaneously, the integrated pricing models of roads
and electricity are established in [18]. In [19], an economic dis-
patch model for power transmission networks and traffic net-
works is proposed based on an alternating direction method
of multipliers. Aiming at minimising the total operation cost of
the two systems, an optimal traffic-power flow model is pre-
sented in [20]. On the basis of [20], a multi-period optimal
traffic-power flow model is further established in [21] using a
semi-dynamic traffic flow model. Note that the above studies
adopt the direct current optimal power flow model or alternat-
ing current optimal power flow to describe power flow distri-
bution, and queuing network model, Wardrop social optimal or
user equilibrium (UE) [22] principles to characterise traffic flow
distribution.

Based on the above discussions, it is found that the current
literature suffers from the following inadequacies. On the one
hand, most existing studies mainly focus on the deterministic
traffic demand between origin-destination (OD) without con-
sidering the uncertainty. But from an engineering viewpoint,
the time-varying traffic demand is difficult to be predicted with
high accuracy. Especially for EVs, the prediction error of traffic
demand cannot be ignored because the battery power consump-

tion and charging demand of EVs are significantly affected by
driving speed and habits amongst other factors. On the other
hand, the widely used UE principle has a strong assumption that
each road traveller in ETN can accurately receive the operation
state of the whole ETN, charging electricity price, congestion
tolls and other information, and they are perfectly rational when
choosing the path to drive. Obviously, in real life, the charging
and driving route choices of road travellers are highly stochas-
tic, for example, different drivers have different estimates and
conclusions for the same path due to different subjective under-
standing and perception. Therefore, these uncertainties caused
by the prediction error of traffic demand and stochastic rout-
ing behaviour of EVs cannot be ignored, which may have a
significant impact on the coordinated operation of PDN and
ETN.

In the modelling of coordinated ETN-PDN operation prob-
lem, a major challenge arises in addressing the above unavoid-
able uncertainties. Motivated by the aforementioned facts, this
paper endeavours to present an optimisation and modelling
framework to investigate the impact of the unavoidable uncer-
tainties on the coordinated ETN-PDN operation, that is, a
new hybrid optimisation method using stochastic UE and
information gap decision theory (SUE/IGDT) is proposed.
The major contributions of this paper are summarised as
follows.

1. Based on the hybrid SUE/IGDT optimisation method, a
collaborative optimisation model and a risk decision model
are proposed for a coupled transportation and power dis-
tribution systems (CTPDS) considering stochastic EV rout-
ing behaviours and travel demand prediction error. The pro-
posed hybrid model can provide proper road congestion tolls
and local generator production schedules for CTPDS to lead
to a minimum expected socio-economic cost while address-
ing the unavoidable uncertainties.

2. The SUE assignment model based on the logit function
is adopted to describe EV stochastic routing behaviour
and traffic flow distribution in ETN, and a comprehen-
sive comparison between the traffic flow assignment results
of SUE and UE is presented. Additionally, a sensitiv-
ity analysis is carried out to investigate the effect of the
SUE stochastic parameter on the collaborative optimisation
model.

3. Two different coordinated operation strategies, that is, risk-
seeker strategy (RSS) and risk-averse strategy (RAS), are
provided by the risk decision model for the CTPDS to
deal with uncertainties. Meanwhile, impact analysis of dif-
ferent objective deviation factor and risk strategy selection is
presented.

The remainder of this paper is organised as follows. In Sec-
tion 2, the system descriptions of the CTPDS are presented,
and the modelling of ETN and PDN are given. In Section 3,
the hybrid SUE/IGDT optimisation method is presented. In
Section 4, the solution method is developed. Various simulation
results are discussed in Section 5. Finally, the main conclusions
are drawn in Section 6.
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FIGURE 1 Framework of coupled transportation and power distribution
systems

2 System description and mathematical
modelLing

2.1 Description of CTPDS

The system sketch of CTPDS is illustrated in Figure 1. The
CTPDS is composed of ETN and PDN, which are coupled by
wireless charging station and mobile EVs. When EVs need to be
charged, DWC systems can continuously charge EVs through
specified charging lanes installed on roadways [23]. Each charg-
ing lane in the ETN can be powered by the corresponding
electrical power node/bus/substation from the PDN alone or
by one electrical power node/bus/substation to multiple sec-
tions of the electrified lanes in a certain area. To simplify the
analysis, we assume that each lane of ETN is equipped with
wireless charging facilities and serviced by one electrical bus
from the PDN. Meanwhile, similar to many existing studies
[20, 21], we also assume that the presented CTPDS is managed
by a non-profit entity, called the independent system operator
(ISO).

2.2 The ETN model

A simplified ETN consists of origins, destinations, intersec-
tions, lanes or roadway segments, which can be represented by
a connected graph GT(NT ,AT ), where NT and AT denote the
sets of nodes and links (or roads), respectively. A link (road)
is denoted by an element a ∈ AT , and 𝜓a represents the cor-
responding traffic flow on the link (i.e. the number of vehi-
cles on that link). In the ETN, every vehicle starts and com-
pletes its travel plan from an origin r ∈ R to its destination
s ∈ S , which is called travel OD pair w ∈ WOD. Each OD pair
w ∈ WOD is connected by a set of effective paths Kw , and the
corresponding traffic demand (i.e. number of vehicles to travel
in each OD pair) qw will be assigned to these paths. Every
path consists of a set of links, and this relationship can be

expressed with the help of an indicator variable xa,k,w . If the
path k includes a link a, then let xa,k,w=1; otherwise, xa,k,w= 0.
Notice that this variable is known and given in advanced accord-
ing to the effective paths Kw . Let Hk,w be the traffic flow on the
path k between OD pair w, then the link flow 𝜓a is given as
follows:

𝜓a=

NWOD∑
w=1

N Kw∑
k=1

Hk,wxa,k,w , ∀a ∈ AT (1)

Equation (1) represents that the traffic flow on each link is
equal to the sum of the flows on all effective paths passing
through the link.

Total path travelling time is a major consideration for road
travellers to choose a route, and it depends on the congestion
level of each road on the route. The road congestion level is usu-
ally quantified by a latency function 𝜒a (𝜓a ) related to link flow
𝜓a, which represents travelling time needed on this link a. In the
actual operation of transportation system, the more vehicles a
link carries, the longer it will take to travel through that road.
Therefore, the latency function 𝜒a (𝜓a ) is an increasing function
of link flow 𝜓a. It is often represented by the following Bureau
of Public Roads function [24]:

𝜒a (𝜓a ) = 𝜒0
a

[
1 + 0.15

(
𝜓a

Ca

)4]
, ∀a ∈ AT (2)

where 𝜒0
a equals the length of link a divided by speed limit,

called the free flow travelling time. Notation Ca denotes the link
capacity.

Based on the link travelling time 𝜒a (𝜓a ), the travelling time

of each path can be calculated by 𝜏k,w =
∑N AT

a=1 𝜒a (𝜓a )xa,k,w .
To alleviate traffic congestion, a congestion toll Ta is charged in
each link; then, drivers will choose the route according to the
total travel expense. The travel expense of a driver experienced
on the path k becomes the summation of travelling time cost
and congestion tolls, which is given by

𝜁k,w =

N AT∑
a=1

[
𝜂𝜒a (𝜓a ) + Ta

]
xa,k,w , ∀k ∈ Kw , w ∈ WOD (3)

where the weight parameter 𝜂 is the monetary value of travelling
time.

Assuming that all road travellers in ETN have stochastic rout-
ing behaviour, they always try to find the path with the lowest
travel expense to drive, but usually they cannot correctly and
accurately estimate the travel expense of each path. Thus, a con-
sequence of all drivers’ decisions will lead to an SUE [25], which
can be captured by a logit model as follows:

𝜎k,w =
exp(−𝜃𝜁k,w )∑N Kw

k=1 exp(−𝜃𝜁k,w )
, ∀k ∈ Kw , w ∈ WOD (4)

Hk,w = qw𝜎k,w , ∀k ∈ Kw , w ∈ WOD (5)
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Equation (4) represents the traffic distribution proportion (or
selection probability) of each effective path between each OD
pair. 𝜃 is a non-negative stochastic coefficient, which represents
the cognitive level (or familiarity level) of drivers to ETN. With
the growth of the stochastic coefficient 𝜃, drivers’ cognitive lev-
els become higher, bringing in a smaller variance of estimating
the minimum travel expenses. Equation (5) indicates that the
allocated traffic flow of each effective path is equal to the traffic
demand of the corresponding OD pair multiplied by the selec-
tion probability. For simplicity, Equations (4) and (5) are called
SUE conditions.

Thus, Equations (1)–(5) denote the traffic flow model of
ETN, which are the ETN constraints of the proposed hybrid
SUE/IGDT optimisation method to describe EV stochastic
routing behaviour and traffic flow distribution in ETN. Fol-
lowing the paradigm in [26], it turns out that Equations (1)–
(5) can be used to constitute the Karush–Kuhn–Tucker (KKT)
conditions of the following optimisation problem, which is
called a traffic assignment problem based on SUE (TAP-
SUE):

min FTAP−SUE = 𝜂
∑N AT

a=1 ∫ 𝜓a

0
𝜒a (𝜑) d𝜑 +

∑N AT
a=1 Ta𝜓a

+
1

𝜃

∑NWOD
w=1

∑N Kw
k=1 Hk,w

(
ln Hk,w − 1

)
s.t. 𝜓a=

∑NWOD
w=1

∑N Kw
p=1 Hk,wxa,k,w , ∀a ∈ AT

qw=
∑N Kw

k=1 Hk,w , ∀w ∈ WOD

Hk,w ≥ 0, ∀k ∈ Kw , w ∈ WOD

(6)

Because the latency function 𝜒a (𝜓a ) is differentiable and
strictly increasing, the integral term contained in the objective
function can be calculated as

𝜂

N AT∑
a=1

∫
𝜓a

0
𝜒a (𝜑) d𝜑=𝜂

N AT∑
a=1

𝜒0
a

[
𝜓a + 0.03

(𝜓a )5

(Ca )4

]

It is easy to find that problem (6) is a convex programming
problem with linear constraints and can be solved by traditional
non-linear solvers. For a more detailed explanation, the readers
are referred to [22, 25]. In view of the equivalence between the
optimal solution of a convex program and the stationary point
of its KKT conditions [27], the traffic flow model in Equations
(1)–(5) can be transformed by Equation (6) to solve, which will
be applied in the uncoordinated operating mode (case 1) in Sec-
tion 5.

2.3 The ETN model

A typical PDN is generally a radial network with tree topology,
which can be described as a graph GE(NE ,LE ), where NE and
LE represent the sets of buses and distribution lines, respec-
tively. In order to represent power flows of PDN, the following
second-order cone (SOC)-based Dist-Flow model proposed in

[28] is employed:

Pi, j + PG, j −

Nj∑
h=1

Pj ,h − Ii, j Ri, j − PL, j = 0, ∀ (i, j ) ∈ LE

(7)

Qi, j + QG, j −

Nj∑
h=1

Q j ,h − Ii, j Xi, j − QL, j = 0, ∀ (i, j ) ∈ LE

(8)

Ui −Uj = 2
(
Ri, j Pi, j + Xi, j Qi, j

)
−
[(

Ri, j
)2
+
(
Xi, j

)2]
Ii, j ,

∀ (i, j ) ∈ LE
(9)

Ii, jUi ≥ (
Pi, j

)2
+
(
Qi, j

)2
, ∀ (i, j ) ∈ LE (10)

Furthermore, the following security constraints of PDN are
also considered:

U min
j ≤ Uj ≤ U max

j , ∀ j ∈ NE (11)

I min
i, j ≤ Ii, j ≤ I max

i, j , ∀ (i, j ) ∈ LE (12)

Pmin
G,m ≤ PG,m ≤ Pmax

G,m , ∀m ∈ MG (13)

Qmin
G,m ≤ QG,m ≤ Qmax

G,m , ∀m ∈ MG (14)

The above equations are the PDN constraints of the pro-
posed hybrid SUE/IGDT optimisation method to describe the
power flow in each distribution line and the voltage at each bus
of the PDN.

2.4 Coupling relationship between ETN
and PDN

The charging demand of the wireless charging station in each
link is the key coupling point of ETN and PDN. Referring to
existing research in [17], the charging demand on each wireless
charging station is proportional to the corresponding link traffic
flow. Thus, the power demand of each bus in PDN is able to be
calculated by Equation (15), which consists of two parts: One
part is the regular power demand PLc, j , and the other part is
related to the charging demand and is equal to the total traffic
flow of all links served by bus j multiplied by parameter 𝛾:

PL, j=PLc, j + 𝛾

Na∈ j∑
a=1

𝜓a, ∀ j ∈ NE (15)

where parameter 𝛾 denotes the charging rate of unit traffic flow
and can be determined from operating experiences [20]. The
equations in Equation (15) are the coupling constraints of the
proposed hybrid SUE/IGDT optimisation method.
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3 COORDINATED OPERATION OF
THE CTPDS WITH UNCERTAIN FACTORS
BASED ON HYBRID SUE/IGDT METHOD

Considering the impact of stochastic routing behaviour of EVs
and prediction error of travel demand on the CTPDS, a new
hybrid SUE/IGDT optimisation method is proposed to coor-
dinate the operation of ETN and PDN. This method is divided
into two stages: In the first stage, a collaborative optimisation
model considering EV stochastic routing behaviour is estab-
lished. From this model, the second stage continues to consider
the traffic demand prediction error and establish a risk decision
model based on IGDT.

3.1 Collaborative optimisation model of the
CTPDS considering stochastic EV routing
behaviour

This subsection presents a collaborative optimisation model for
CTPDS to coordinate the intertwined traffic and power flows
in the coupled networks. The ISO can apply the collaborative
optimisation model to determine proper road congestion tolls
and optimal local generator production schedules. In the pro-
posed approach, the uncertainties related to stochastic EV rout-
ing behaviour are characterised via the SUE logit model.

Subjected to traffic flow, power flow and coupling con-
straints, the objective of the collaborative optimisation model
is to minimise the socio-economic cost F of CTPDS based on
forecasted traffic demand qw . The corresponding optimisation
model can be formulated as follows:

min = FE + FT
s.t. Electrified transportation network constraints (1) − (5)
Power distribution network constraints (7) − (14)
Coupling constraint (15)

(16)
The objective function consists of two parts. The first term

FE represents the operational cost of PDN presented in Equa-
tion (17), including the power generation cost of local genera-
tors as well as the cost of purchasing power from the main grid:

FE =

NG∑
m=1

[
am
(
PG,m

)2
+ bmPG,m

]
+

N0∑
j=1

𝜌subPsub, j (17)

The second term FT is the total operational cost of ETN pre-
sented in Equation (18), which consists of the travelling time
cost and the congestion tolls:

FT =
N AT∑
a=1

𝜂𝜒a (𝜓a )𝜓a +
N AT∑
a=1

Ta𝜓a

=
N AT∑
a=1

𝜂𝜒0
a

[
1 + 0.15

(
𝜓a

Ca

)4]
𝜓a +

N AT∑
a=1

Ta𝜓a

(18)

3.2 Risk decision model of the CTPDS
considering the prediction error of travel
demand

In the collaborative optimisation model constructed in the pre-
vious subsection, it is assumed that the prediction of traffic
demand is accurate, and the ETN and PDN are coordinated and
optimised according to the predicted value of traffic demand qw .
However, in a practice transportation system, the traffic demand
has large uncertainty. IGDT is a non-probabilistic interval opti-
misation method, which is very effective to handle uncertainties
with large prediction error [29]. Therefore, this subsection uses
the IGDT from [30] to further describe the prediction error of
traffic demand and constructs the corresponding risk decision
model based on the proposed collaborative optimisation model.
By the proposed risk decision model, the ISO can pursue two
different strategies to deal with traffic demand uncertainty: RAS
and RSS.

3.2.1 Traffic demand uncertainty model

In the existing research of IGDT, the related models describ-
ing uncertain input parameters are energy bound, slope
bound, envelope bound models, and so forth. Because
the fluctuation range of traffic demand has a great influ-
ence on the CTPDS, it is necessary to limit the over-
all uncertainty fluctuation to ensure the safety and reliabil-
ity of the coupled system. Therefore, the envelope bound
model [31] is used to describe the uncertainty of traffic
demand, and the corresponding uncertainty set is formulated as
follows:

⎧⎪⎨⎪⎩
qreal,w ∈ U

(
𝛼, qw

)
U

(
𝛼, qw

)
=

{
qreal,w ∶

||||qreal,w − qw

qw

|||| ≤ 𝛼

} , ∀w ∈ WOD

(19)
where 𝛼 is the uncertainty horizon parameter, qw and qreal,w are

the forecasted traffic demand and actual traffic demand, respec-
tively. U (𝛼, qw ) indicates that the uncertainty horizon parame-
ter 𝛼 deviates from the predicted value qw within the range of
𝛼|qw|.

Note that the collaborative optimisation model proposed
in the first stage assumes that the prediction of traffic
demand is accurate, and the ETN and PDN are coordi-
nated and optimised according to the predicted value of traf-
fic demand qw . Therefore, considering the uncertainty of traf-
fic demand, the risk decision model needs to modify the
constraints related to the forecasted traffic demand. The
forecasted traffic demand qw will be replaced by the actual
traffic demand qreal,w . Thus, Equation (5) can be revised
as

Hk,w = qreal,w𝜎k,w , ∀k ∈ Kw , w ∈ WOD (20)
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3.2.2 RAS model

The RAS desires to find robust road congestion tolls and opti-
mal production schedules of local generators to coordinate the
operation of ETN and PDN in a way to be immune against
higher socio-economic cost due to unfavourable traffic demand
deviations from the forecasted values. This can be represented
as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max𝛼ra
s.t. max F ≤ (1 + 𝛽ra ) F0

(1 − 𝛼ra ) qw ≤ qreal,w ≤ (1 + 𝛼ra ) qw , ∀w ∈ WOD
𝛼ra ≥ 0, ∀w ∈ WOD

qreal,w=
∑N Kw

k=1 Hk,w , ∀w ∈ WOD
Hk,w = qreal,w𝜎p,w , ∀k ∈ Kw , w ∈ WOD
ETNconstraints ∶ (1)−(4)
PDNconstraints ∶ (7) − (14)
Couplingconstraint(15)

(21)
The model presented by Equation (21) indicates that RAS

transforms the collaborative optimisation model into another
problem to seek the maximum uncertainty of traffic demand
that can be tolerated, where socio-economic cost is not exceed-
ing (1 + 𝛽ra )F0. In other words, when the traffic demand
changes within the range [ (1 − 𝛼ra )qw , (1 + 𝛼ra )qw ], the coor-
dinated operation scheme under RAS can ensure that the total
socio-economic cost is less than or equal to the expected value
(1 + 𝛽ra )F0. Boundary value F0 is a socio-economic cost for
the collaborative optimisation model. 𝛼ra and 𝛽ra denote traffic
demand uncertainty and socio-economic cost deviation factor
of RAS, respectively.

3.2.3 RSS model

Contrary to the RAS, RSS is optimistically treating the uncer-
tainty of traffic demand that may have positive effects on the
objective function. Therefore, the RSS wishes to coordinate the
operation of ETN and PDN at low socio-economic cost by
using the positive effects, which can be represented as follows.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min𝛼rs
s.t. min F ≤ (1 − 𝛽rs ) F0

(1 − 𝛼rs ) qw ≤ qreal,w ≤ (1 + 𝛼rs ) qw , ∀w ∈ WOD
𝛼rs ≥ 0, ∀w ∈ WOD

qreal,w=
∑N Kw

k=1 Hp,w , ∀w ∈ WOD
Hk,w = qreal,w𝜎k,w , ∀k ∈ Kw , w ∈ WOD
ETNconstraints ∶ (1)−(4)
PDNconstraints ∶ (7) − (14)
Couplingconstraint(15)

(22)

The model presented by Equation (22) indicates that RSS
transforms the collaborative optimisation model into a new
problem to seek the minimum uncertainty of traffic demand
that can be used, where a socio-economic cost is limited

by (1 − 𝛽rs )F0. In other words, when the traffic demand
changes within the range [ (1 − 𝛼rs )qw , (1 + 𝛼rs )qw ], the coor-
dinated operation scheme under RSS has the opportunity to
make socio-economic cost less than or equal to the expected
value (1 − 𝛽rs )F0. Here, 𝛼rs and 𝛽rs denote traffic demand
uncertainty and socio-economic cost deviation factor of RSS,
respectively.

4 SOLUTION METHOD

The risk decision models established in this paper are bi-level
programming problems, which can be solved by the typical solu-
tion methods for bi-level models directly [32], but it may take a
long computing time. To solve this issue, it is helpful to note
that the proposed risk decision models can be transformed into
equivalent single-level optimisation problems according to [33].
Because the road latency in Equation (2) is a high-order power
function and the power demand of each bus in PDN is calcu-
lated by Equation (15), the socio-economic cost of the CTPDS
is directly related to traffic demand.

For the RAS, both the operational costs in PDN and ETN
in the lower-level programming model grow significantly when
the traffic demand increases. Therefore, when the actual value
of traffic demand is far greater than the predicted value, that
is, qreal,w = (1 + 𝛼ra )qw , the corresponding operational cost is
the largest. In this case, the ‘max F ’ in Equation (21) can be
reduced to ‘F ’ equivalently, and the corresponding RAS needs
the following additional Constraints (23) and (24) to replace bi-
level model constraints min F ≤ (1 − 𝛽rs )F0 and (1 − 𝛼rs )qw ≤
qreal,w ≤ (1 + 𝛼rs )qw in Equation (21):

F ≤ (1 + 𝛽ra ) F0 (23)

qreal,w = (1 + 𝛼ra ) qw , ∀w ∈ WOD (24)

Similarly, for the RSS, both the operation costs in PDN
and ETN in the lower-level programming model drop signifi-
cantly when the traffic demand decreases. Therefore, when the
actual value of traffic demand is far less than the predicted
value, that is, qreal,w = (1 − 𝛼rs )qw , the corresponding opera-
tional cost is the least. In this case, the ‘min F ’ in Equation (22)
can be reduced to ‘F ’ equivalently, and the corresponding RSS
needs to the following additional Constraints (25) and (26) to
replace the bi-level model constraints min F ≤ (1 − 𝛽rs )F0 and
(1 − 𝛼rs )qw ≤ qreal,w ≤ (1 + 𝛼rs )qw in Equation (22):

F ≤ (1 − 𝛽rs ) F (25)

qreal,w ≤ (1 − 𝛼rs ) qw , ∀w ∈ WOD (26)

Based on the above models, the flowchart of the proposed
hybrid SUE/IGDT optimisation method is depicted in Fig-
ure 2. First, based on the forecasted value of traffic demand,
the collaborative optimisation model in the first stage is solved
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FIGURE 2 Flowchart of the proposed hybrid stochastic user equilibrium
and information gap decision theory optimisation method

by IPOPT solver to obtain socio-economic cost F0. Then,
using the acceptable socio-economic cost deviation factor, the
previously obtained F0, and the risk decision model, the ISO
selects the RAS and RSS according to their decision intention.
Finally, the corresponding traffic demand uncertainty, road con-
gestion tolls and production schedules of local generators are
obtained.

5 CASE STUDY

In this section, two test systems are adopted to demonstrate the
effectiveness of the proposed hybrid SUE/IGDT method. The
presented model is coded in MATLAB aided by YALMIP with
IPOPT, and all case studies are implemented on a PC with Intel
(R) Core (TM) i5-10210U CPU (2.11 GHz) and 16GB RAM.

In order to demonstrate the effectiveness of the proposed
hybrid SUE/IGDT method for mitigating negative effects
caused by uncertain factors in wireless charging mode, the fol-
lowing four cases are presented:

Case 1: Uncoordinated operation mode of CTPDS con-
sidering stochastic routing behaviour of EVs. There is
no congestion toll to mitigate negative effects caused
by traffic overload, and all EV users choose routes
according to travelling time cost and self-perception.
The uncoordinated operating mode is divided into two
steps: In the first step, the TAP-SUE model In Equa-
tion (6) with the given link toll parameter Ta = 0 is
solved to capture the spatial distribution of traffic flow;
then, the electrified transportation authority calculates
the total operation cost FT . In the second step, the
power distribution system operator will minimise the
PDN operation cost FE by solving the optimal power
flow model in Equations (17), (7) to (14) with the link
charging demand corresponding to the obtained traffic
TAP-SUE pattern.

Case 2: Coordinated operation mode of CTPDS consider-
ing stochastic routing behaviour of EVs. This is indeed
the first stage of the proposed hybrid SUE/IGDT
method.

Case 3: On the basis of cases 2 and 3 further considers the
prediction error of traffic demand. This is the proposed
hybrid SUE/IGDT method, which contains two strate-
gies: RAS and RSS.

Case 4: Coordinated operation mode of CTPDS consider-
ing optimal route selections of EVs (Wardrop UE). This
is the modelling method in [20], which does not take
into account the stochastic routing behaviour of EVs
and the prediction error of traffic demand.

To ensure a feasible solution for case 1 under high traffic den-
sity, it is assumed that the lower bound of voltage can be violated
at the cost of a penalty. The operation cost of PDN FE in the
four cases is modified as follows:

FE =

NG∑
m=1

[
am
(
PG,m

)2
+ bmPG,m

]
+

N0∑
j=1

𝜌subPsub, j+𝜅

NE∑
j=1

ΔUj

where the penalty coefficient is chosen as 𝜅=50000 $/p.u. [20];
meanwhile, the voltage boundary constraints in Equation (11)
become the following constraints:

U min
j − ΔUj ≤ Uj ≤ U max

j , ΔUj ≥ 0, ∀ j ∈ NE

It is worth emphasising that the main intention of this paper
is to mitigate the impact of stochastic EV routing behaviour and
the traffic demand prediction error on the coordinated opera-
tion of CTPDS. Thus, case 1 can be treated as a base case to val-
idate the effectiveness of the presented collaborative optimisa-
tion model. In addition, compared with references [17–21], case
3 addresses the unavoidable uncertainties caused by the predic-
tion error and stochastic routing behaviour, which are ignored in
these existing studies. To demonstrate the necessity to consider
these uncertainties, a similar case in [20] (called case 4) is con-
sidered and compared. The analysis and corresponding results
are given as follows.

5.1 Test system 1: Single OD pair electrified
transportation system and five nodes power
distribution system

The test system 1 is a simple CTPDS. Its topology is shown
in Figure 3. The ETN includes one pair of origin and destina-
tion, three nodes, five links, and six paths. The PDN consists of
five buses, five distribution lines and one generation unit G. The
generation unit G is connected to bus 2. The characteristics of
links and physical connections are summarised in Table 1. The
traffic demand is 30 p.u. from T1 to T3. The base values of traf-
fic flow and power demand are 100 vehicles/h and 10 MVA,
respectively. The stochastic coefficient and objective deviation
factor are set as 𝜃 = 1.5 and 𝛽ra∕𝛽rs = 0.1.
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FIGURE 3 Topology of test system 1

TABLE 1 The physical connections and characteristics of electrified
transportation network (ETN)

Link Ca (p.u.) 𝝌 0
a (min)

Connectedpower

distribution network

(PDN) node

a1 6 6 E2

a2 8 10 E4

a3 5 6.5 E5

a4 9.8 5 E3

a5 7 5.5 E1

5.1.1 Results and analysis of cases 1 to 3

To analyse the effectiveness and advantages of the proposed
hybrid SUE/IGDT method, the cost, traffic flow and power
flow of case 1 to 3 are compared.

The comparison results of various costs, traffic flow and
power flow in cases 1 to 3 are given in Tables 2 and 3 and Fig-

TABLE 2 Costs in cases 1 to 3

Scenario

Total

cost ($)

PDN

costFE ($)

ETN

cost FT ($)

Penalty

cost of

voltage ($)

Uncertain

parameter

(%)

Case 1 1272.77 1139.41 133.36 304.43 /

Case 2 968.42 822.65 145.77 0 /

Case 3
risk-averse
strategy
(RAS)

1065.26 880.67 184.59 0 6.31

Case 3
risk-seeker
strategy
(RSS)

871.58 758.78 112.80 0 7.24

TABLE 3 Voltage magnitude and active power

Voltage magnitude (p.u.)

Node E1 E2 E3 E4 E5

Case 1 0.9845 1.0199 0.9394 0.9827 0.9077

Case 2 0.9784 1.0141 0.9381 0.9736 0.9110

Case 3
RAS

0.9779 1.0154 0.9374 0.9712 0.9110

Case 3 RSS 0.9786 1.0122 0.9388 0.9760 0.9110

Active power (p.u.)

Node E2-E1 E0-E2 E2-E3 E2-E4 E3-E5

Case 1 0.33 0.02 0.66 0.27 0.23

Case 2 0.33 0.12 0.62 0.29 0.19

Case 3
RAS

0.34 0.09 0.64 0.32 0.19

Case 3 RSS 0.31 0.15 0.60 0.26 0.20

FIGURE 4 Distribution of traffic flow in electrified transportation
network

ure 4, respectively. It can be seen that case 1 has the maximum
total operation cost $1272.77, which includes maximum PDN
cost $1139.41 and minimum ETN cost $133.36. Because in the
uncoordinated operation mode, most travellers choose the path
with the minimum travel time, which results in heavy traffic
flows of link 3. Also, link 3 is connected to the terminal buses
E5 of PDN, which causes the voltage magnitude at bus E5 to
drop to 0.9077 p.u., which violates the lower bound. It poses a
threat to the voltage instability of PDN, and then a penalty cost
of $304.43 for voltage violation is increased in case1. In cases
2 and 3, the link T3 is charged for the toll that makes some
travellers choose other routes, which helps to alleviate traffic
overload on link T3. In this way, the voltage magnitudes at bus
E5 reach their lower bounds but never exceed the bounds. The
above indicates that the stochastic routing behaviours of EVs
might pose a threat to the security of PDN in the uncoordinated
operation mode, and the proposed hybrid SUE/IGDT method
can reduce the total cost and realise the coordinated operation
of the CTPDS.
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FIGURE 5 Socio-economic cost under different stochastic parameter

Compared to case 2, the impacts of uncertainty caused by
travel demand prediction error is considered in case 3. In an
uncertain environment, the RAS obtains the coordinated oper-
ation strategy with underestimated traffic demand by sacrificing
part of the objective function values, and the RSS gives a coor-
dinated operation strategy with overestimated traffic demand
considering the positive effect of uncertainty on the objective
function. For the RAS, when the upper limit of the total
cost is increased to Fra = (1 + 0.1) × $968.42 = $1065.26, the
maximum value of the uncertain parameter 𝛼ra is 0.0631, and
the toll charged in link 3 is $2.24 more than $1.44 in case 2. It
indicates that when the total expected cost of sacrifice does not
exceed 10%, the maximum travel demand prediction error that
can be borne by CTPDS is 6.31%. At this point, a bigger toll
is needed to compensate for the impact of this underestimated
uncertainty. Conversely, for the RSS, when the upper limit of the
total cost is decreased to Frs = (1 − 0.1) × $968.42 = $871.58,
the minimum value of the uncertain parameter 𝛼rs is 0.0724,
and the toll charged in link 3 is $0.74 less than $1.44 in case 2.
It indicates that the RSS is able to reduce 10% of the expected
total cost only when the travel demand is at least 7.24%
lower than the predicted value. Now, due to the decrease of
congestion level, only a small toll is needed in RSS.

5.1.2 Sensitivity analysis of stochastic parameter

The stochastic parameter 𝜃 is an important influencing factor
in the SUE assignment model, and the change of this parame-
ter will determine whether the presented collaborative optimisa-
tion model (case 2) has a promising application in the real world.
Therefore, the sensitivity of the stochastic parameter 𝜃 is anal-
ysed, and the corresponding simulation results are provided in
Figures 5–7.

Figure 5 shows the changes in socio-economic cost F against
stochastic parameter 𝜃. It can be seen that the socio-economic
cost F decreases gradually when the stochastic parameter
increases, and this is because the increase of stochastic parame-
ter improves the cognitive level of travellers, which makes more
travellers choose better routes that have a lower travel expense.
However, when the stochastic parameter reaches a certain value,
the socio-economic cost is no longer reduced by the accurate

FIGURE 6 Travel cost of each path under different stochastic parameter

FIGURE 7 Traffic flow of each path under different stochastic parameter

estimation of travellers. This means that the individual travellers
have a higher cognition level at this moment, and most of them
have found out the best way to the destination according to
the latest information on the congestion level and toll charge
of each road.

The travel expense and traffic flow of each path under differ-
ent stochastic parameter are shown in Figures 6 and 7, respec-
tively. As can be seen, the travel expenses of path a3 − a4
and a3 − a5 decline remarkably, while that of path a1 − a4 and
a2 − a4 grow when the stochastic parameter becomes bigger.
Meanwhile, the gap between travel expense for each path is nar-
rowed with the increase of the stochastic parameter, while the
gap between traffic flows is widen. It further illustrates that the
improvement of cognitive level enables more travellers to esti-
mate the travel expense accurately, which makes them shift from
expensive to cheaper paths. Also, the travel expense of all these
paths is close to the same optimal value for a big stochastic
parameter 𝜃.

5.1.3 Impact analysis of objective deviation
factor and risk strategy selection in the risk decision
model

When 𝛽ra and 𝛽rs change in the range of 0%–15%, the trajec-
tories of traffic demand uncertainty 𝛼ra and 𝛼rs , as well as total
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FIGURE 8 Maximum deviations of traffic demand and total
socio-economic costs in risk-averse strategy with different objective deviation
factors

FIGURE 9 Minimum deviations of traffic demand and total
socio-economic costs in risk-seeker strategy with different objective deviation
factors

socio-economic costs Fra and Frs , are obtained by solving the
risk decision model (case 3), and they are shown in Figures 8
and 9.

As presented in Figure 8, the maximum deviation of traf-
fic demand 𝛼ra increases gradually with the increase of objec-
tive deviation factor 𝛽ra in the RAS; meanwhile, the total
socio-economic cost Fraalso increases gradually. Because the
RAS considers the negative impact of traffic demand predic-
tion error, to obtain a conservative robust decision-making,
more expected objective values must be sacrificed. Moreover,
a higher value of 𝛼raimplies a higher risk of traffic demand
uncertainty.

In the RSS, as presented in Figure 9, the minimum devia-
tions of traffic demand 𝛼rs increase similarly with the increase
of objective deviation factor 𝛽rs ; however, the total operation
cost Frs decreases gradually. Because the RSS considers the pos-
itive impact of traffic demand prediction error, the uncertainty
of traffic demand will bring additional revenue. A higher value
of 𝛼rs will give a bigger benefit brought by the uncertainty
of traffic demand, which results in a smaller socio-economic
cost.

In order to further analyse the impact of different risk
decision models and different objective deviation factor val-

FIGURE 10 Actual and forecasted traffic demands under six scenarios

ues on the coordinated operation of the CTPDS, we specially
design six scenarios with different forecasted error of traffic
demand. As presented in Figure 10, in scenarios 1 to 3, the
traffic demand is underestimated, whereas in scenarios 4 to 6,
the traffic demand is mostly overestimated. The correspond-
ing forecasted errors are –3%, –5%, –7%, 7%, 5% and 3%,
respectively.

Table 4 displays the total socio-economic costs for coordi-
nated operation of CTPDS under different traffic demands. It
is found that in scenarios 1 to 3, the results of RAS are closer
to the socio-economic cost of actual traffic demand, but in
scenarios 4 to 6, the results of RSS are closer to the socio-
economic cost of actual traffic demand. It confirms that for an
underestimated circumstance, the RAS is more suitable, whereas
for an overestimating circumstance, the RSS is more appropri-
ate. However, the RAS (RSS) has different results for differ-
ent objective deviation factors, which means that the objec-
tive deviation factor set by the system manager will have a
non-negligible impact on the coordinated operation results of
CTPDS.

5.2 Test system 2: 11 OD pairs electrified
transportation system and 20 buses power
distribution system

To further discuss the characteristics of proposed models for
larger systems, the 12 nodes ETN and 20 buses PDN are inte-
grated and employed as test system 2. Its topology is shown
in Figure 11. The traffic demand and the other parameter set-
tings have been reported elsewhere [20]. The stochastic coef-
ficient and objective deviation factor are set as 𝜃 = 1.5, and
𝛽ra∕𝛽rs = 0.05, respectively.

In test system 2, we further analyse the effect of the proposed
hybrid SUE/IGDT method under different traffic density by
multiplying the traffic demand with a factor 𝜌 from 0.85 to 1.1.
In addition, this coupling network is adopted to clarify the ben-
efits of employing the SUE model rather than the Wardrop UE
model and the necessity of considering traffic demand predic-
tion error.



2122 GENG ET AL.

TABLE 4 Total cost for coordinated operation of coupled transportation and power distribution systems under different travel demands

Scenario

Total cost under

actual traffic

demand($)

Total cost under

forecasted traffic

demand($)

Total cost of RAS ($) Total cost of RSS ($)

𝜷ra = 5% 𝜷ra = 10% 𝜷rs = 5% 𝜷rs = 10%

1 578.48 561.02 589.07 617.12 532.97 504.92

2 825.90 776.20 815.01 853.82 737.39 698.58

3 1079.64 963.65 1011.83 1060.02 915.47 867.29

4 966.51 1074.55 1128.28 1182.00 1020.82 967.09

5 755.83 800.39 840.41 880.43 760.37 720.35

6 551.76 568.23 596.64 625.05 539.81 511.40

FIGURE 11 Topology of test system 2

5.2.1 Results and analysis of cases 1 to 3 under
different traffic density

Figure 12 suggests that the traffic conditions have a great influ-
ence on the total operational cost of CTPDS. For example,
total socio-economic costs in cases 1 to 3 grow remarkably
when the traffic demand increases, and this is because that the
road latency in Equation (2) is a high-order power function,
which causes higher transportation operational cost FT , and
more electricity is needed to meet the charging service, which

FIGURE 12 Socio-economic costs under different traffic demand factors

increases the PDN operational cost FE . Additionally, there are
three other findings: (1) When the load factor 𝜌 ≤ 1, the total
socio-economic cost of case 1 is slightly higher than that of
case 2, and due to light traffic conditions, the security of PDN
may not be compromised and the stochastic routing behaviour
of travellers is almost close to the optimal operation state of
the system; (2) when the load factor satisfies1 ≤ 𝜌 ≤ 1.05, the
PDN constraints of case 1 can still be maintained, but the cost
gap with case 2 increases because a medium traffic density in
case 1 leads to a higher load level of terminal buses, resulting
in higher power loss through the distribution line, whereas case
2 reduces the power loss by sacrificing a small amount of the
travelling time and toll cost; (3) as the traffic demand continues
to increase, voltage boundary constraints cannot be maintained
as shown in Figure 13 (𝜌 = 1.1); case 1 has no choice but to
pay for the voltage violation, incurring a higher socio-economic
cost, while cases 2 and 3 are able to prevent voltage violation by
charging tolls on the roads with minimal socio-economic costs
(see Table 5). The above three findings indicate that the pro-
posed hybrid SUE/IGDT method is effective under different
traffic densities.

Furthermore, different traffic densities will affect the predic-
tion error of traffic demand. From Figure 14, it is noted that
the traffic demand uncertainties 𝛼ra and 𝛼rs decrease gradually
with the growth of traffic density level. It means that for a high
traffic density, the RAS needs to sacrifice more socio-economic
cost to bear the uncertainty caused by the traffic demand



GENG ET AL. 2123

FIGURE 13 Voltage magnitude with traffic demand factor (𝜌 = 1.1)

TABLE 5 Costs in cases 1 to 3 (𝜌 = 1.1)

Case

Total cost

($)

PDN

costFE ($)

ETN

costFT ($)

Penalty

cost of

voltage ($)

Uncertain

parameter

(%)

Case 1 12,827.14 9520.39 3306.75 775.46 /

Case 2 11,728.28 8121.87 3606.41 0 /

Case 3 RAS 12,314.71 8277.73 4036.98 0 1.82

Case 3 RSS 11,141.88 7901.39 3240.49 0 2.03

prediction error, whereas the RSS can achieve the expected
socio-economic cost with less traffic demand prediction error.
It is also shown in Figure 15 that cases 2 and 3 can be solved in
a reasonable time (within 140 s) in all circumstances.

To further illustrate the accuracy of SOC relaxation, the error
index of each distribution line is calculated as follows:

Δi, j =
||||(Pi, j

)2
+
(
Qi, j

)2
− Ii, jUi

|||| , ∀ (i, j ) ∈ LE

Here, the traffic demand factor 𝜌 = 1 is taken as an example
to make a simulation analysis. The error results are shown in
Table 6. It can be seen that the error results of 96.25% are less

FIGURE 14 Uncertainty of traffic demand under different traffic
demand factors

FIGURE 15 Computation times under different traffic demand factors

TABLE 6 Error index of each distribution line in cases 1 to 3

Line Case 1 Case 2 Case 3 RAS

Case 3

RSS

E6-E1 9.98 × 10–9 9.98 × 10–9 9.11 × 10–9 9.27 × 10–9

E7-E2 9.98 × 10–9 9.98 × 10–9 9.10 × 10–9 9.29 × 10–9

E8-E3 9.98 × 10–9 9.99 × 10–9 9.82 × 10–9 9.54 × 10–9

E7-E4 9.98 × 10–9 9.98 × 10–9 9.15 × 10–9 9.33 × 10–9

E7-E5 9.98 × 10–9 9.98 × 10–9 9.07 × 10–9 9.27 × 10–9

E10-E6 9.97 × 10–9 9.97 × 10–9 8.87 × 10–9 9.08 × 10–9

E0-E7 9.96 × 10–9 1.04 × 10–8 8.39 × 10–9 8.75 × 10–9

E11-E8 9.97 × 10–9 9.98 × 10–9 9.52 × 10–9 9.19 × 10–9

E10-E9 9.98 × 10–9 9.98 × 10–9 9.18 × 10–9 9.33 × 10–9

E0-E10 9.95 × 10–9 1.09 × 10–8 7.96 × 10–9 8.38 × 10–9

E0-E11 9.94 × 10–9 9.94 × 10–9 6.97 × 10–9 8.13 × 10–9

E11-E12 9.98 × 10–9 9.98 × 10–9 9.25 × 10–9 9.23 × 10–9

E10-E13 9.98 × 10–9 9.98 × 10–9 9.09 × 10–9 9.20 × 10–9

E0-E14 9.96 × 10–9 1.18 × 10–8 8.30 × 10–9 8.68 × 10–9

E11-E15 9.97 × 10–9 9.98 × 10–9 9.21 × 10–9 9.13 × 10–9

E13-E16 9.99 × 10–9 9.98 × 10–9 9.43 × 10–9 9.42 × 10–9

E14-E17 9.98 × 10–9 9.98 × 10–9 9.12 × 10–9 9.31 × 10–9

E14-E18 9.98 × 10–9 9.98 × 10–9 9.09 × 10–9 9.29 × 10–9

E15-E19 9.98 × 10–9 9.98 × 10–9 9.33 × 10–9 9.26 × 10–9

E14-E20 9.98 × 10–9 9.98 × 10–9 9.03 × 10–9 9.23 × 10–9

than 1 × 10–8, and the whole error results almost close to zero,
so the SOC relaxation is strictly accurate.

5.2.2 Comparison of cases 3 and 4

First, we note that the SUE model in case 3 can simulate
the practical traffic flow in a better way than case 4. This is
because the Wardrop UE model in case 4 relies on a stronger
assumption that each road traveller in ETN can accurately
find optimal travel path, that is, the travelling costs on all used
paths are equal and minimal, while cases 3 can calculate the
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TABLE 7 Path selection results of cases 3 and 4 in origin-destination pair T4–T9 (𝜌 = 1)

Case 3 Case 4

Travel cost ($) Path flow (p.u.) Probability (%)
Travel

cost ($)

Path flow

(p.u.)
Path RAS RSS RAS RSS RAS RSS

1 T4-T8-T9-T10 16.84 15.29 4.25 3.61 41.55 37.12 16.36 5.88

2 T4-T5-T6-T10 17.71 15.73 1.16 1.87 11.32 19.21 16.36 0

3 T4-T5-T9-T10 16.83 15.22 4.28 4.03 41.81 41.42 16.36 4.12

4 T4-T8-T11-T12-T10 18.88 17.80 0.20 0.08 1.97 0.86 16.54 0

5 T4-T8-T9-T12-T10 18.99 17.98 0.17 0.06 1.67 0.66 16.54 0

6 T4-T5-T9-T12-T10 18.98 17.91 0.17 0.07 1.68 0.73 16.54 0

FIGURE 16 Socio-economic costs under different traffic demand factors

selected probability and traffic flow of each effective path using
the probability selection Formulas (4) and (5) to describe the
stochastic routing behaviour of travellers. Here, the OD pair
T1–T9 with six efficient paths is taken as an example to make
a detailed analysis. The corresponding path selection results of
cases 3 and 4 are listed in Table 7. It can be seen that in case
4, all travellers are assigned on paths 1 and 3 with the same
minimum travelling cost, while in case 3, nearly 80% of the
travellers prefer to use paths 1 and 3 with lower travelling cost,
11.32% (RAS) and 19.21% (RSS) of travellers choose the path
2, and only 5.32% (RAS) and 2.24% (RSS) of travellers choose
the paths 4 to 6 with higher travelling cost. This result indicates
that the SUE model in case 3 provides a solution close to the
true circumstance that most travellers always try to find the
path with the least travel expense, but it is impossible for every-
one to identify accurately the optimal path due to the various
reasons such as behaviour and cognitions. Thus, a small portion
of travellers eventually chooses the paths with high travel
expenses.

Second, the model formulation in case 4 has not consid-
ered the travel demand prediction error. Figure 16 shows
the socio-economic costs of cases 3 and 4 under different
traffic demand factors. We can see that there is a big differ-
ence in the socio-economic costs obtained by cases 3 and 4.
This indicates that the travel demand prediction error has a

significant impact on the coordinated operation of PDN and
ETN, and the prediction error of traffic demand cannot be
ignored.

The above analysis demonstrates the benefits of employing
the SUE model rather than the Wardrop UE model and the
necessity of considering traffic demand prediction error. The
proposed hybrid SUE/IGDT method considers the impact of
stochastic routing behaviour of EVs and travel demand predic-
tion error, and the model formulation in case 3 can provide
more reasonable dispatching and helpful decisions for schedul-
ing operators to deal with the risks brought by the uncertainties
in ETN.

6 CONCLUSION

Considering the impact of stochastic routing behaviour of
travellers and travel demand prediction error, this paper pro-
poses an optimisation modelling approach based on the hybrid
SUE/IGDT method for coordinated operation of CTPDS,
which is composed of the ETN and PDN, along with wireless
charging stations and mobile EVs. The main conclusions drawn
from simulation results are as follows:

1. The proposed hybrid SUE/IGDT method can quantify the
impact of stochastic routing behaviour of travellers and traf-
fic demand prediction error on the coordinated operation
of CTPDS, and it is very effective to reduce total socio-
economic cost and mitigate potential adverse effects on volt-
age violations of the PDN.

2. In light of the stochastic routing behaviour of travellers in a
practical traffic system, the necessity of using the SUE model
in the coordinated ETN-PDN is demonstrated to achieve
more accurate results. Additionally, according to the sensi-
tivity analysis of the stochastic parameter 𝜃, the total socio-
economic cost of CTPDS decreases with the improvement
of road travellers’ cognitive level.

3. By the impact analysis of different objective deviation factors
and risk strategy selections in the risk decision model, the
corresponding results can provide helpful decisions to deal
with the risks brought by the uncertainties in ETN.
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The effectiveness of the proposed hybrid SUE/IGDT opti-
misation method has been demonstrated through case studies
and comparisons; however, the random and uncertain power
output of renewable distributed generations (DGs) is not con-
sidered. As an immediate future step, renewable generations will
be incorporated within the CTPDS, and the hybrid SUE/IGDT
optimisation method will be expanded for the coordinated oper-
ation of ETN and PDN.
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NOMENCLATURE

Sets

AT set of links in the ETN
Kw set of available paths between OD pair w ∈ WOD
LE set of distribution lines in the PDN
MG set of local generators
NE set of buses in the PDN
NT set of nodes in the ETN

WOD set of OD pairs

Constants

𝜒0
a free flow travelling time for link a ∈ AT

Ca vehicular flow capacity of link a ∈ AT
qw forecasted traffic demand between OD pair w

xa,k,w if path k passes link a, xa,k,w = 1; otherwise,
xa,k,w= 0

NWOD numbers of OD pairs
N Kw numbers of available paths
N AT numbers of links (or roads)
am, bm electricity energy production cost coefficients of

generator m
Ri, j ,Xi, j resistance and reactance of distribution line con-

necting buses i and j, (i, j ) ∈ LE
Pmin

G,m , P
max

G,m active generation limits of generator m
Qmin

G,m,Q
max
G,m reactive generation limits of generator m

U min
j ,U max

j bounds of square voltage magnitude at bus j
U0 square voltage magnitude at the slack bus

I max
i, j square of current flow capacity of line (i, j ) ∈

LE
PLc, j regular power demand at bus j
QL, j reactive power demand at bus j
NG number of generators in the PDN
Nj number of child distribution lines connecting

bus j
N0 numbers of child distribution lines connecting

the main grid
Na∈ j numbers of links connected in bus j
𝜌sub electricity price of the main grid
𝜂 monetary value of travelling time
𝜃 non-negative stochastic coefficient

𝛾 charging rate of unit traffic flow
𝛽ra, 𝛽rs deviation factor of socio-economic cost in

RAS/RSS
𝜅 penalty coefficient of voltage exceeding limit

Variables

𝜓a traffic flow on link a ∈ A
Hk,w traffic flow on path k between OD pair w

qreal,w actual traffic demand considering prediction error
between OD pair w

𝜏k,w travelling time of path k between OD pair w
𝜁k,w travel expense of path k between OD pair w
𝜎k,w traffic distribution proportion of path k between

OD pair w
Ta congestion toll of link a

Pi, j ,Qi, j active/reactive power flow in line (i, j )
PG, j ,QG, j active/reactive power generation of generator at

bus j
Ii, j square of current magnitude in line (i, j )
Uj square of voltage magnitude at bus j

PL, j active power demand at bus j
𝛼ra, 𝛼rs traffic demand uncertainty in RAS/RSS
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