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Abstract—Mobile robot navigation is an essential problem in
robotics. We propose a method for constructing and training
fuzzy logic controllers (FLCs) to coordinate a robotic team
performing collision-free navigation and arriving simultaneously
at a target location in an unknown environment. Our FLCs
are organised in a multi-layered architecture to reduce the
number of tunable parameters and improve the scalability of the
solution. In addition, in contrast to simple traditional switching
mechanisms between target seeking and obstacle avoidance, we
develop a novel rule-embedded FLC to improve the navigation
performance. Moreover, we design a grouping and merging
mechanism to obtain transparent fuzzy sets and integrate this
mechanism into the training process for all FLCs, thus increasing
the interpretability of the fuzzy models. We train the proposed
FLCs using a novel multi-objective hybrid approach combining
a genetic algorithm and particle swarm optimisation. Simulation
results demonstrate the effectiveness of our algorithms in reliably
solving the proposed navigation problem.

Index Terms—Fuzzy logic controller, multi-objective hybrid
GA-PSO, Multi-robot navigation, simultaneous arrival.

I. INTRODUCTION

Multi-robot navigation control has attracted interest in re-
cent years because it can be used in various applications,
suchas autonomous vehicles in surveillance or territory ex-
ploration mission and self-driving cars in the smart transport
system [1]–[4]. Missions of a robotic team often require co-
ordinating the order of individual robots to complete assigned
tasks. In particular, this study investigates a method to coor-
dinate the arrival time on target for a multiagent robotic team
while ensuring no collisions occur. The simultaneous arrival
problem has become an emerging application of multiagent
systems, especially in transport of goods and services [5],
[6]. Such applications usually aim to minimize the overall
transport time and the delay of arrival time of a given mission.
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For example, automatic delivery systems might consider un-
manned vehicle routing with simultaneous pickup and delivery
to provide the customers with a satisfactory service [7], [8].
There is a significant body of research dedicated to this
problem.

In [1], Yao et al. developed a dynamical system to adjust
both the path length and the speed for each robot to achieve si-
multaneous arrival. A cooperative localisation technique with a
proportional navigation guidance law was used in [2] to ensure
that multiple unmanned vehicles could simultaneously reach a
moving target in a GPS-denied environment. In [3], Babel et
al. proposed an optimal path assignment method to coordinate
the simultaneous arrival of multiple air vehicles. However,
these methods assume that the map of the environment is static
and known a priori. Thus, they may not be suitable for more
practical scenarios, i.e., multi-robot coordination in a dynamic
and unknown environment. Also, neither of these methods is
scalable to high-dimensional input spaces.

Fuzzy system is a feasible approach to provide robust
control and scalability for robot navigation and has been
widely used in such problems. In [9], Pothal et al. proposed an
adaptive neuro-fuzzy controller for robot navigation in a highly
cluttered environment considering robot behaviours such as
obstacle avoidance, target seeking and speed control. The
controller was trained in a supervised manner. This method
relies on the availability of precise input-output training data.
Juang et al. in [10] used a particle swarm optimisation (PSO)-
based algorithm to tune a fuzzy controller applied for robot
navigation in unknown environments. This method does not
require training data and can be trained in a real-time manner.
Chen et al. in [11] propose a knowledge-based neural fuzzy
controller which adopted a knowledge-based evolutionary
strategy to train a fuzzy neural network for mobile robot
navigation control. Those studies has shown that fuzzy systems
can alleviate the negative impacts of sensor noise and provide
robust control for robot navigation.

Another advantage of fuzzy systems is that they possess in-
terpretability because they learn knowledge from data and then
represent it in the form of fuzzy rules. Such a mechanism can
enable a human to understand the inherent knowledge captured
by a fuzzy model. Ishibuchi et al. [12] and Cococcioni et al.
[13] designed interpretable fuzzy systems by minimising the
number of fuzzy rules and fixing the partitioning granularity of
the input space during the optimisation process. Furthermore,
to keep balance between the accuracy and interpretability
of fuzzy systems, several approaches using multi-objective
optimization [14]–[19] have been developed. The authors of
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[14]–[17] imposed a constraint condition to assign a proper
distribution of fuzzy sets in each input variable to preserve
the transparency of the fuzzy sets after tuning of their free
parameters. Furthermore, a means of measuring the relevance
of fuzzy rules has been proposed to identify fuzzy-based
redundancy in the feature space, which helps to reduce the
complexity of the fuzzy rules and achieve a suitable trade-
off in performance between accuracy and interpretability for
multi-objective optimisation algorithms [18], [19].

In this work, we consider scenarios in which agents cannot
rely on a map because it may be outdated or change mid-
mission. To coordinate a team of robots in such an environ-
ment, we construct a multi-layered system of FLCs to achieve
multi-robot navigation and simultaneous arrival-time control.
The control system consists of two levels of controllers: a high-
level controller to ensure the same time of arrival for all robots
at a destination point and a low-level controller to enable
each robot to perform collision-free navigation. Moreover, the
interpretability of the FLCs is improved by using transparent
fuzzy sets, which are highly distinguishable and can properly
represent the universe of discourse of the data space. Specifi-
cally, we develop a grouping and merging mechanism to obtain
transparent fuzzy sets and integrate this mechanism into the
training process for the FLCs. This mechanism is based on a
distance metric to measure the similarity between fuzzy sets in
terms of the centre and variance of each. Any two fuzzy sets
with a similarity above a given threshold will be merged into a
single set. The main contributions of this paper are four-fold:

• This paper proposes a scalable FLC-based method to en-
able multi-robot navigation in an unknown and complex
environment. This method is based on a feature-splitting
strategy, which can significantly reduce the number of
parameters to be learned in the fuzzy rules without
compromising navigation performance.

• In contrast to traditional switching mechanisms [10], [20],
[21] between target seeking and obstacle avoidance, this
paper proposes a novel and robust rule-embedded FLC
to improve navigation performance.

• This paper develops a grouping and merging mechanism
to obtain more transparent fuzzy sets and integrates this
mechanism into the training process for all developed
FLCs, thus increasing the interpretability of the FLCs.

• A new multi-objective hybrid method combining a ge-
netic algorithm (GA) and PSO (M-GA-PSO) is pre-
sented to train all of the proposed FLCs. The M-GA-
PSO method outperforms its single-objective counterpart
in terms of both coordination accuracy and navigation
performance. Specifically, the proposed method is based
on performance and similarity grouping such that each
swarm has its own adaptive neighbourhood.

The rest of this paper is structured as follows. In Section II,
we design the proposed controllers, identify the tunable param-
eters that define their fuzzy rules and discuss their input/output
structures. In Section III, we describe the M-GA-PSO method
of training the FLCs and propose the grouping and merging
mechanism to further enhance the interpretability of the FLCs.
Section IV gives the details of the training process. Simula-

tions are presented in Section V, and Section VI concludes
the paper.

II. FUZZY CONTROLLERS FOR MULTI-ROBOT
NAVIGATION AND COORDINATION

We consider the following scenario. A team of agents is
to navigate through a cluttered (possibly dynamic) area to
arrive at a designated destination point, which might also
change during the mission. Each agent is equipped with a
2D lidar sensor that has an 80 m range and a 180◦ scanning
angle. The agents cannot stop while in transit, and there is
a limit on their angular velocity. Such a scenario requires
a set of reactive controllers that take readings from the on-
board sensors of the agents and are stable with respect to
input noise. Fuzzy inference system (FIS) control is a natural
choice in these circumstances. To alleviate the dimensional
issues of the problem, we create a two-layered system (Fig. 1)
for multi-robot navigation and coordination. The lower-level
controller (FLC1) is responsible for the safe navigation of
an individual robot, and the higher-level controller (FLC2)
provides coordination for simultaneous arrival by adjusting the
speeds and headings of all robots. As shown in Fig. 2, FLC1
consists of an obstacle avoidance controller and a behaviour
selector.

Multi-robot
navigation task

FLC1

FLC2

FLC1

R1

R1

Rn

R2

R3 Rn

inp1

inpn

inp

θ1(t)

θn(t)

Fig. 1. Block diagram of the control configuration for multi-
robot navigation and arrival-time control.

FLC1
θtgt(t)

Dtgt(t)

θcmd(t)
Avoid

Obstacle
Behaviour
Selector

→L(t)

Fig. 2. The low-level individual navigation controller.

A. Scalable FLC for Obstacle Avoidance

The obstacle avoidance controller is constructed as a first-
order Takagi-Sugeno-Kang (TSK)-type FIS with 15 fuzzy
rules of the following form:

Rj : IF xj1 is Aj
1 AND xj2 is Aj

2 AND xj3 is Aj
3,

THEN θj = bj0 +
∑3

i=1b
j
ix

j
i ,

where Aj
1, Aj

2, and Aj
3 are fuzzy sets defined by Gaussian

membership functions, j = 1, . . . , 15, and the AND operation
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is implemented as the algebraic product. The inputs are
provided by the lidar sensor of the controlled agent, as shown
in Fig. 3. For each sector, the shortest distance to a detected
obstacle is returned, L1, . . . , L7. To improve the scalability

Fig. 3. Scanning area of a 2D lidar system in the simulation
setting.

of the controller, we arrange the scanner readings into three
groups, ~xright = (L1, L2, L3), ~xfront = (L3, L4, L5) and
~xleft = (L7, L6, L5), to represent the features on the right
side, on the left side and in front of the sensor, respectively.
Then, we map them to the inputs of the fuzzy rules, xj1, xj2,
and xj3, in the following way:

input j = 1, . . . , 5 j = 6, . . . , 10 j = 11, . . . , 15

xj1 L1 L3 L7

xj2 L2 L4 L6

xj3 L3 L5 L5

For the last 5 rules, we make use of the left-right symmetry
of the lidar sensor. The inputs from the sectors located on the
sensor’s left-hand side are taken in reverse order to match the
corresponding sectors on the right-hand side. This allows us
to re-use the membership functions of the first 5 fuzzy rules
for their antecedent parts and flip the signs of the parameters
defining their consequent parts, thus reducing the number of
tunable parameters for this controller from 150 to 100.

B. FLC for Robot Behaviour Selection

In this section, we develop a robust rule-embedded FLC
to achieve behaviour switching between the default mode of
moving towards the target, i.e., seek behaviour, and avoiding
obstacles, i.e., avoid behaviour. The switching rules in [10],
[20], [21] are simply based on certain pre-defined conditions
to control behaviour switching. It is clear that such simple
rules cannot guarantee safe navigation, especially in a cluttered
environment. The robot behaviour selector proposed in this
paper consists of 6 fuzzy rules with the following structure:

R1 : IF θtgt is ΘF AND C1 is True, THEN Avoid;

R2 : IF θtgt is ΘR AND C2 is True, THEN Avoid;

R3 : IF θtgt is ΘL AND C3 is True, THEN Avoid;

R4 : IF θtgt is ΘF AND C4 is False, THEN Seek;

R5 : IF θtgt is ΘR AND C5 is False, THEN Seek;

R6 : IF θtgt is ΘL AND C6 is False, THEN Seek.

Here, θtgt is the scaled angle to the target, and ΘF , ΘL and
ΘR are fuzzy sets of directions corresponding to the scenarios

in which the target is in front or on the left or right side of
the robot, respectively.
C [1,6] are defined as follows:

C1 :=Rfront,1 OR Rright,1 OR Rleft,1,

C2 :=Rfront,2 OR Rright,2 OR Rleft,2,

C3 :=Rfront,3 OR Rright,3 OR Rleft,3,

C4 :=Inverse of C1,

C5 :=Inverse of C2,

C6 :=Inverse of C3,

(1)

where

Rfront,1 =(L3 is MF AND dL3
is Zd),

Rfront,2 =(L4 is MF AND dL4
is Zd),

Rfront,3 =(L5 is MF AND dL5 is Zd),

Rright,1 =(L1 is MR AND dL1 is Zd),

Rright,2 =(L2 is MR AND dL2
is Zd),

Rright,3 =(L3 is MR AND dL3
is Zd),

Rleft,1 =(L5 is ML AND dL5
is Zd),

Rleft,2 =(L6 is ML AND dL6 is Zd),

Rleft,3 =(L7 is ML AND dL7 is Zd).

(2)

Here, MF, ML and MR are fuzzy sets of distances corre-
sponding to the scenarios in which the target is in front or
on the left or right side of the robot, respectively; Zd is pre-
defined by the user and determines the status of reaching the
target, i.e., True or False; and dLi

= Li−dtgt, where dtgt is the
distance to the target. The above fuzzy rules can be interpreted
as follows: If there is an obstacle between the target and the
robot, then one of the rules R1, R2 and R3 is triggered, and
the robot changes its behaviour to Avoid. If the robot has a
direct line to the target, then one of the rules R4, R5 and R6

is triggered, and the robot changes its behaviour to Seek.

C. FLC for Arrival-Time Coordination

FLC2 is a centralised controller that synchronises the
robots’ arrival times at the target. During each control loop, the
agents are ranked in ascending order based on their (estimated)
distances to the target. Let Xrank1 denote the robot that is the
closest to the destination point, and let Xrankn denote the robot
that is the farthest away. In this paper, we do not take all
of the robots’ speeds as input information, as this is not a
scalable approach. Instead, we directly control only the speeds
of the closest robot and the farthest one, and the speeds of the
others can then be obtained through interpolation. FLC2 takes
five inputs: the movement speeds of robots Xrank1 and Xrankn ,
v1 and vn); their distances to the target, D1 and Dn; and
∆D = D1−Dn. The controller is constructed as a zero-order
TSK fuzzy system with 5 inputs, 2 outputs and 10 fuzzy rules
of the following form:

Rj : IF D1 is Bj
1 AND . . . AND ∆D is Bj

5, THEN ~α is ~aj .

Here, ~aj ∈ R2 is the consequent component of rule j , and
Bj

1, . . . , B
j
5 are Gaussian membership functions. There are 120
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tunable parameters in FLC2. We used the weighted average
defuzzification method [22] to calculate the output values for
all FLCs in this study. The outputs of the FLC2 are the speed
scaling factors scaling factors ~α = [α1, αn] ∈ [0.5, 1.5] for the
first- and last-ranked robots, respectively. The scaling factors
for the rest of the robots are calculated as follows:

αi =
i− 1

n− 1
(αn − α1) + α1, i = 2, . . . , n− 1. (3)

The updated velocities are calculated as v̂i = αivi. The
velocities are allowed to vary within ±50% of the user-defined
value. To make the lengths of the robots’ paths roughly equal,
FLC2 also adjusts each robot’s heading angle. The heading
adjustment for robot i in time step t is calculated as follows:

θadj,i(t) = θtgt,i(t) + βiθmax adj, (4)

where θtgt,i(t) is the target bearing (in the body coordinates),
θmax adj is the maximum allowed angular adjustment, and βi
is a scaling factor that determines the strength of heading
angle adjustment and is calculated from Dn, Di (the estimated
distances to the target for robots n and i calculated in time
step (t− 1)) and αi as follows:

βi =
√

(1−Di/Dn) /αi. (5)

III. MULTI-OBJECTIVE HYBRID GA-PSO ALGORITHM

F1

N N

Iteration Ic Iteration Ic+1

M-GA

M-PSO
Non-
Dominated
Sorting

Fl

Fl/2

Fig. 4. Learning configuration in the M-GA-PSO algorithm.
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Fig. 5. The process of updating the local-best bank.

In M-GA-PSO, each particle or individual represents a
whole solution to a specific problem. A block diagram of
the procedure for the creation of new individuals is shown in
Fig. 4. In each iteration, non-dominated sorting is performed
to categorise N new solutions into l fronts based on their
performances. A front is formed of individuals that cannot
be dominated by each other because their fitness values are
not directly comparable. Then, the top half of the ranked
individuals are updated by a multi-objective PSO algorithm
(M-PSO), and the rest of the solutions are updated by a multi-
objective GA (M-GA). In every iteration, after new solutions
are generated, M-GA-PSO updates the local-best bank (Fig. 5).

Suppose that there are N new solutions categorised into l
fronts. The first-ranked solutions are kept and mixed with those
in the old local-best bank. Non-dominated sorting is applied to
the mixed set of local-best solutions, and only the first-ranked
individuals form the new local-best bank for the next iteration.

A. M-GA

The crossover operation of M-GA is performed when the
local-best bank has more than two entries. A new particle
vector ~snew = (s1new, . . . , s

M
new) is created as follows:

sjnew =

{
rcP

j
1 + (1− rc)P j

2 , j = 1, . . . , τ,

(1− rc)P j
1 + rcP

j
2 , j = τ + 1, . . . ,M,

(6)

where rc is a random number from [0, 1], ~P1 and ~P2 are two
parents randomly selected from the local-best bank, τ denotes
a randomly selected crossover site, and M is the length of the
solution vector. After the crossover operation, mutations occur
with a pre-defined probability pm. The mutation operation is
implemented as follows:

sjnew ← sjnew + cmr
j
m(sjmax − s

j
min), j = 1, . . . ,M, (7)

where rjm is a random number from [−1, 1], cm is a coefficient
that restricts the strength of mutation, and ~smax and ~smin are
the upper and lower bounds of the solution space, respectively.
The initial velocity vector of each new solution is assigned by
means of the following formula:

~vnew = cm(~r1(~P1 − ~snew) + ~r2(~P2 − ~snew)), (8)

where ~r1 and ~r2 are vectors of random numbers on [0, 1].
If there is only one global solution in the bank, then M-

GA performs an asexual reproduction operation to generate
new solutions. This operation is implemented via Gaussian
sampling. Suppose that there is only one local-best solution
P g . Each element of P g is set as the centre of a Gaussian
density function, and the standard deviation is set to 0.1.
The asexual reproduction operation is followed by a mutation
operation to prevent the new solutions from being too similar
to each other.

B. M-PSO

In addition to M-GA, M-GA-PSO incorporates the velocity
and position update mechanism of M-PSO to ensure that
all solutions explore a relatively optimal area during the
optimisation process. The swarm is divided into Ng groups in
the same manner as in [10]. Neighbours are particles within
the same group. The neighbourhood best position, ~P g

z , is the
leading particle in group z, selected as follows:

~P g
z = arg max

1≤k≤n
SPD(~si, ~P

g
k ). (9)

Here, n is the size of the global-best bank, and SPD is a metric
based on the similarity and fitness of the particles, defined as

SPD(~si, ~P
g
k ) =

‖~si − ~P g
k ‖Dp(~P g

k )

‖~f(~si)‖ − ‖~f(~P g
k )‖

, (10)
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where ~si is the i-th particle in the group, ~P g
k is the k-th local-

best solution, and ~f = [f1i , . . . , f
Nobj
i ] is an Nobj-dimensional

objective vector. To discriminate among the solutions in a
front, we introduce a crowding distance Dp(·). The solutions
are sorted by their crowding distance values in ascending
order. The crowding distance of the i-th solution Dp(~si) is
obtained as follows:

Dp(~si) =
1

Nobj

Nobj∑
j=1

uji , (11)

with

uji =
|f ji+1 − f

j
i−1|

f jmax − f jmin

, j = 1, . . . , Nobj, (12)

where f jmax and f jmin are the maximum and minimum values,
respectively, of the j-th objective and i is the running index
for the solutions in a group. The crowding distances of the
two boundary solutions are both set to 1.

The velocity ~vi of each particle i in group z is updated
using its individual best position, ~Pi, and the neighbourhood
best position, ~P g

z :

~vi(t+ 1) =

χ((~vi(t) + c1~r1(~Pi − ~si(t)) + c2~r2(~P g
z − ~si(t))),

(13)

where χ is a constriction factor that controls the magnitude
of ~vi and c1 and c2 are positive acceleration coefficients. This
method forces different groups to locate different optima and
thus reduces the chance of all solutions becoming trapped
in a local minimum. Each particle changes its position in
accordance with the following formula:

~si(t+ 1) = ~si(t) + ~vi(t+ 1). (14)

C. Interpretability Improvement

This study considers the transparency of fuzzy sets to im-
prove the interpretability of an FLC. Specifically, transparent
fuzzy sets should 1) be sufficiently distinguishable and 2)
represent the universe of discourse of the input variables.
Additionally, the antecedent of the fuzzy model should be
as simple as possible. Generally, a smaller number of fuzzy
sets is more desirable. In this paper, we propose a grouping
and merging mechanism to obtain transparent fuzzy sets and
integrate the proposed method into the FLC training process.

The grouping mechanism finds similar fuzzy sets in a
partition of an input variable by using a distance measure and
a pre-defined distance threshold δg . Given input xi and under
the assumption that Bj

i is a fuzzy set of rule j, the Gaussian
membership function can be described in the following form:

µj
i (xi) = exp

−
(
xi −mj

i

)2
σj
i

2

 , (15)

where µj
i is the membership value of Bj

i with input xi. Then,
the distance between two fuzzy sets in input variable i, Bj

i

and Bl
i, is defined as follows:

ρm (Bp
i , B

q
i ) =

√
(mp

i −m
q
i )

2
+ (σp

i − σ
q
i )

2
. (16)

A cut-off distance ρcutoff is set for grouping fuzzy sets in an
input variable. The fuzzy set grouping algorithm is shown in
Algorithm 1. To group fuzzy sets in input variable i, the fuzzy
sets are sorted in ascending order of their centres as follows:
B̃1

i , . . . , B̃
r
i . The grouping algorithm sequentially evaluates the

distance ρm starting from B̃1
i , and those fuzzy sets that are

located within ρcutoff will be grouped in the first group, G1. If
a fuzzy set Bj

i satisfies ρm
(
B̃1

i , B̃
j
i

)
> ρcutoff, then Bk

i will
be assigned to a new group, G2. The algorithm continuously
evaluates ρm between each pair of fuzzy sets Bj

i until every
fuzzy set is assigned to a group. After the fuzzy sets have been
grouped, a reference centre is generated for each group. Every
reference centre is obtained by calculating the arithmetic mean
of the centres of the fuzzy sets assigned to the corresponding
group. The reference centres are then used to guide the fuzzy
sets belonging to the same group; the fuzzy sets of input
variable i are updated as follows:

m̂p
i = mp

i + r3(m
Gj

i −m
p
i ), B̃p

i ∈ Gj , (17)

where mp
i is the centre of fuzzy set B̃p

i , m̂p
i is the updated

centre and r3 ∈ [0, 1] is a uniform random number. The update
of the centres occurs after the position update of M-PSO; fuzzy
sets in the same group will move closer to each other during
the learning process. Significant overlap between neighbouring
fuzzy sets may occur due to the changes in their centres and
widths. Let the degree of overlap be denoted by δ; given
sorted fuzzy sets

{
B̃p

i , B̃
q
i , . . .

}
∈ Gj , the degree of overlap

between B̃p
i and B̃q

i can be evaluated as follows:

δpq = max (µp
i (mq

i ), µq
i (mp

i )) , (18)

where µp
i (mq

i ) is the membership value of B̃p
i fed with mq

i ,
the centre of B̃q

i , and µq
i (mp

i ) is the membership value of B̃q
i

fed with mp
i . A higher δpq indicates greater overlap between

B̃p
i and B̃q

i . If δpq is larger than the pre-set threshold value
δth, then these two neighbouring fuzzy sets will be merged
together. The centre of the new fuzzy set is set equal to the
average of the centres of the two merged fuzzy sets, and
similarly, the width is set to the average width. The parameters
of the two merged fuzzy sets in the solution vector will
be replaced by the parameters of the new fuzzy set. Fig. 6
shows the pipeline of the interpretable fuzzy controller training
process based on M-GA-PSO.

IV. CONTROLLER TRAINING

All three controllers introduced in Section II are trained
separately in a cascaded manner. We firstly train the robot to
move along the boundary of an obstacle, which can be used in
the second and third phases of training as the obstacle avoid-
ance behaviour. After the first phase of training is complete,
the behaviour selector part of FLC1 is trained to navigate
a robot in a cluttered environment towards its destination
point. The parameters of the obstacle avoidance controller are
fixed during this phase of training. Finally, FLC2 is trained to
coordinate a group of robots (each carrying an already trained
FLC1) to achieve simultaneous arrival. The maps used for
training are shown in Fig. 7. The separated training strategy
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Algorithm 1 Fuzzy Set Grouping Algorithm

Require: B̃1
i , . . . , B̃

r
i , fuzzy sets sorted in ascending order

Initialisation: Set empty groups Gj ← ∅(1 ≤ j ≤ r)
j ← 1, set the index of group j to 1
Gj ← B̃1

i , assign B̃1
i to the first group

for p = 1, . . . , r do
for q = p+ 1, . . . , r do

if ρm
(
B̃p

i , B̃
q
i

)
< ρcutoff then

Gj ← Gj ∪ B̃q
i , assign Bq

i to Gk

else
p← q
j ← j + 1

end if
end for

end for

Fig. 6. Flowchart of the M-GA-PSO algorithm.

enables a complex task to be decomposed into several simple
sub-tasks to reduce the complicity of the training. Furthermore,
each controller can learn a particular function and ensure
proper performance for a sub-task. We, therefore, can design
a fuzzy controller performing boundary following movement,
which can be used in different environments with various
shapes of obstacles.

A. Phase 1—Training for Obstacle Avoidance

During phase 1 of training, the robot moves around the
obstacle shown in Fig. 7(a) and stops when the following

(a) (b) (c)

Fig. 7. Maps for the 3 phases of controller training.

constraint is violated:

min(L1, L2, L3, L4, L5, L6, L7) > Dmin. (19)

Here, Dmin is a user-specified value which determines the
collision condition of the robot, i.e. Dmin = 0.1 m. When
the robot stops, the number of time steps taken is recorded as
Ttotal. The distance from the obstacle that the robot maintains
in every time step is used as the other criterion for performance
evaluation. Thus, we have two objectives, f1 and f2:

f1 =

∑Ttotal
t=1 |L7(t)−DBF|

Ttotal
, f2 = 1/Ttotal. (20)

DBF is a user-specified value.

B. Phase 2—Collision-Free Navigation

A robot equipped with boundary-following knowledge is
now placed in a more complex environment (Fig. 7(b)). The
goal is to safely navigate from the starting point to the target
location relying only on sensor data. The boundary-following
behaviour is fixed. The second part of FLC1 acts as a switch
between two modes: moving towards the target and avoiding
an obstacle. The fitness value of a solution is determined
by running a simulation. The simulation stops either when
a pre-set number of steps is reached or when the distance
to the target location becomes less than a user-defined value
Dmiss. The robot’s trajectory is given a rating based on its final
distance from the target (Dfinal), the number of collisions with
obstacles (Nc), and the total length of the trajectory (L). This
gives us two objective functions:

f3 = Nc + P, f4 = L+ P, (21)

where P is a penalty function defined as

P =

{
0, if Dfinal ≤ Dmiss,

1000Dfinal, if Dfinal > Dmiss.
(22)

The penalty value is added to both objective functions in (21)
to gradually eliminate particles that fail to reach the target.

C. Phase 3—Training for Arrival-Time Coordination

For arrival-time coordination, a team of 4 agents is placed
in a single scenario, as shown in Fig. 7(c). Each robot is
equipped with a trained FLC1 and a 2D lidar sensor. A
single destination point is selected. The scenario set-up is
fixed during the training process. The evaluation of controller
performance involves a complete simulation run from start to
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end until either all robots arrive at their target or the simulation
time limit is reached. At the end of the run, the robots are
ranked by their arrival times, and the first (T1) and last (Tn)
of these times are used to generate two objective values as
follows:

f5 = |Tn − T1|, f6 = (T1 + Tn)/2. (23)

When f5 reaches its minimum, the robots arrive at their
destination point simultaneously; f6 keeps all robots moving at
their maximum speeds by minimising the average arrival time
of the two robots positioned at opposite ends of the ranking.

M-GA-PSO vs. PSO

To compare the optimisation performance of M-GA-PSO
with that of single-objective PSO, we conducted 10 runs
for each training phase using each algorithm for statistical
evaluation. When using PSO, we combined the objective
functions defined in (20)–(23) using cascading weights:

fPSO1 = 0.1f1 + 10f2,

fPSO2 = 10f3 + 0.1f4,

fPSO3 = 10f5 + 0.1f6.

(24)

From each run of M-GA-PSO, we selected the fitness pair with
the smallest combined value for comparison. The results are
summarised in Table I. In Table I, M-GA-PSO considers the
transparency of the fuzzy sets during the optimisation process,
while M-GA-PSO No Interpret. excludes the interpretability
improvement and does not consider the transparency of the
fuzzy sets. In our opinion, M-GA-PSO succeeds in forcing
the particles to explore a wider area and thus finds a better
solution, and the proposed interpretability improvement mech-
anism has no impact on the control performance of M-GA-
PSO.

V. RESULTS AND DISCUSSION

A. FLC1 Behaviour Selector vs. Simple Switching Mechanism

To compare the performance of the FLC1 behaviour selector
with that of hand-coded switching logic, we ran 20 robots in
a test environment. The results are shown in Fig. 8. Panel (a)
shows the trajectories produced by robots equipped with both
parts of FLC1: FLC1-AC (the obstacle avoidance controller)
and FLC1-BS (the embedded behaviour selector). Panel (b)
shows the trajectories produced by robots equipped with
FLC1-AC and a hand-coded switching mechanism [10]. The
hand-code switching mechanism includes a fuzzy controller

TABLE I
COMPARISON OF M-GA-PSO WITH AND WITHOUT THE

INTERPRETABILITY IMPROVEMENT AND PSO FOR
CONTROLLER TRAINING.

f1 f2 f3 f4 f5 f6

M-GA-PSO AVG 4.2051 0.0033 0.0 186.83 0.41 432.9
STD 0.9760 0.0 0.0 3.14 0.053 35.3

M-GA-PSO
No Interpret.

AVG 4.0651 0.0033 0.0 185.24 0.48 430.62
STD 0.7247 0.0 0.0 2.58 0.045 32.6

PSO AVG 5.4971 0.0036 0.0 187.57 0.63 458.6
STD 0.7080 0.0005 0.0 1.56 0.097 30.8

for obstacle avoidance behaviour. This fuzzy controller had left
and right rule in a symmetric manner to deal with obstacles
locating on the left and right side, respectively. The hand-
code switching mechanism determines the robot’s left or right
avoidance behaviours by comparing the distance between the
left-side and the right-side obstacle. For example, if the sensor
reading of the left-side is greater than the right side, then the
robot performs the right-side avoidance behaviour. This simple
control logic might cause rapid switches between the left or
right avoidance behaviours when the robot is straightforwardly
approaching a convex corner of an obstacle, as shown in Fig. 8
(b), because there was not much difference between the sensor
readings of the left-side and right-side. In this situation, the
robot cannot determine its behaviour and switches between the
left and right-side avoidance behaviour, leading the robot to
collide with the obstacle.

We observe that FLC1-BS (the embedded behaviour selec-
tor) achieves collision-free navigation more reliably than its
hand-coded counterpart, as shown in Fig. 8 (a). The proposed
embedded behaviour selector includes fuzzy rules that received
the sensor readings from the right side, on the left side and
the front to determine movements of the avoidance behaviour.
The designed fuzzy rules successfully improve the flaw of
hand-coded switching mechanism; prevent the rapid switches
between the left or right avoidance behaviours. As a result,
the proposed embedded behaviour selector can deal with more
complicated shape obstacles and environments than the hand-
coded switching mechanism.

B. Arrival-Time Coordination
To give FLC2 the ability to handle teams of various sizes

without retraining, we constructed it such that it directly
controls only two agents (the farthest from and the nearest
to the destination point) by producing two speed adjustment
factors for those agents. For the rest of the team, the speed
adjustment factors are calculated using (3). FLC2 also controls
the heading angles of the agents via (4) and (5).

Figs. 9 and 10 show the results for controller-managed
teams of 10, 20 and 30 agents in two different test environ-
ments. In Fig. 9, the target point is set to (x, y) = (100, 350).
The controller achieves a 1-time-step time difference between
the fastest robot and the slowest robot and takes 788 time steps
to complete the navigation task when controlling 30 robots.
When the number of robots is reduced to 10, the controller
achieves zero time difference with a 786 time-step completion
time. In Fig. 10, the target point is set to (x, y) = (400, 100).
FLC2 achieves perfect time control for all three teams, but the
completion time increases with the size of the team. It takes a
team of 10 agents 795 time steps to complete the task, whereas
a team of 30 needs 924 time steps. These simulation results
demonstrate that the proposed controller has good scalability
and robustness; without any retraining, it is able to coordinate
varying numbers of robots with acceptable performance.

C. Interpretable Fuzzy Controller for Arrival-Time Coordina-
tion

This section presents the knowledge learned by the inter-
pretable fuzzy controller for arrival-time coordination. Table II
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Fig. 8. Trajectories produced by (a) the trained behaviour selector and (b) a hand-coded switching mechanism as in [10], [23].
Each line represents a robot’s trajectory.

Fig. 9. Arrival-time coordination of robotic teams of various sizes. The numbers of robots in (a), (b) and (c) are 10, 20 and
30, respectively.

Fig. 10. Arrival-time coordination of robotic teams of various sizes. The numbers of robots in (a), (b) and (c) are 10, 20 and
30, respectively.
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TABLE II
FUZZY RULES LEARNED BY M-GA-PSO WITH THE INTERPRETABILITY IMPROVEMENT

Rules Input 1 Input 2 Input 3 Input 4 Input 5 α1 αn

Rule 1 B2
1

(Middle Near)
B4

2

(Very Far)
B4

3

(Very Fast)
B1

4

(Slow)
B3

5

(Distant)
0.8635 1.9476

Rule 2 B1
1

(Reaching)
B1

2

(Very Near)
B1

3

(Very Slow)
B1

4

(Slow)
B1

5

(Closing)
1.5919 1.6165

Rule 3 B5
1

(Very Far)
B4

2

(Very Far)
B3

3

(Fast)
B1

4

(Slow)
B3

5

(Distant)
0.8785 1.8372

Rule 4 B1
1

(Reaching)
B2

2

(Near)
B4

3

(Very Fast)
B1

4

(Slow)
B2

5

(Not Distant)
0.3147 1.7453

Rule 5 B1
1

(Reaching)
B1

2

(Very Near)
B2

3

(Slow)
B1

4

(Slow)
B1

5

(Closing)
1.3919 1.6165

Rule 6 B3
1

(Middle)
B3

2

(Middle)
B4

3

(Very Fast)
B2

4

(Fast)
B1

5

(Closing)
0.8568 0.7833

Rule 7 B5
1

(Very Far)
B4

2

(Very Far)
B3

3

(Fast)
B3

4

(Very Fast)
B2

5

(Not Distant)
1.5635 1.9476

Rule 8 B3
1

(Middle)
B4

2

(Very Far)
B1

3

(Very Slow)
B1

4

(Slow)
B3

5

(Distant)
0.5705 1.9722

Rule 9 B2
1

(Middle Near)
B3

2

(Middle)
B4

3

(Very Fast)
B1

4

(Slow)
B4

5

(Very Distant)
0.9477 0.8103

Rule 10 B4
1

(Far)
B4

2

(Very Far)
B2

3

(Slow)
B2

4

(Fast)
B1

5

(Closing)
1.1705 0.7254

reveals the M-GA-PSO-designed fuzzy rules. We set the num-
ber of fuzzy rules to 10, and there are five input variables and
two consequent components in each rule. The fuzzy controller
here is fed D1, Dn, v1, vn, and ∆D. D1 and Dn are the
distances between the target and robots Xrank1 and Xrankn ,
respectively. v1 and vn are the movement speeds of robots
Xrank1 and Xrankn , respectively. ∆D is the difference in the
remaining distances of robots Xrank1 and Xrankn to the target,
that is, ∆D = D1 −Dn. The outputs of the fuzzy controller
are α1 and αn for the speed regulation of robots Xrank1 and
Xrankn , respectively. Fig. 11 shows the corresponding fuzzy
sets in the five input variables. Compared to the fuzzy sets
learned without the interpretability improvement, as shown in
Fig. 12, the transparency of the fuzzy sets in Fig. 11 is im-
proved, allowing humans to understand the learned knowledge
captured in the M-GA-PSO-designed fuzzy rules. For example,
Rule 1 represents the situation in which Xrank1 is moving
“Very Fast” and at a “Middle Near” distance to the target and
Xrankn is moving at a “Slow” speed and a “Very Far” distance.
Consequently, Rule 1 slows down Xrank1 with α1 = 0.8635
and speeds up Xrankn with α1 = 1.9476. If both Xrank1 and
Xrankn are located far from the target and are moving very
fast, then the firing strength of Rule 7 will become large; the
controller will speed up both Xrank1 and Xrankn . On the other
hand, if Xrank1 is approaching the target and moving fast while
Xrankn is still at a middle distance and moving slowly, then the
firing strength of Rule 4 will become large; the controller will
reduce the movement speed of Xrank1 and accelerate Xrankn to
catch up with Xrank1 .

Fig. 11. Fuzzy sets learned
by M-GA-PSO with the in-
terpretability improvement.

Fig. 12. Fuzzy sets learned
by M-GA-PSO without the
interpretability improvement.

VI. CONCLUSIONS

This paper investigated the problem of multi-robot navi-
gation and simultaneous arrival coordination in an unknown
environment. We presented a two-layer structure of FLCs
to ensure safe navigation with coordination of the arrival
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times. All three proposed controllers (for obstacle avoidance,
behaviour selection and arrival-time coordination) are based
on FISs and utilise the self-constructing neural fuzzy inference
network (SONFIN) [22] methodology for the construction of
fuzzy rules. By splitting the large-scale feature space into
several smaller ones, we reduced the number of parameters
to be learned without compromising the performance of the
low-level controller. Additionally, in contrast to traditional
behaviour switching mechanisms, we proposed a novel rule-
embedded FLC to improve the navigation performance. More-
over, we developed a grouping and merging mechanism to
obtain transparent fuzzy sets and integrated this mechanism
into the training process for all FLCs, thus increasing the
interpretability of the fuzzy models. To design these controllers
automatically and efficiently, we developed the hybrid M-GA-
PSO method, which simultaneously leverages the exploration
capability of a GA and the convergence capability of PSO.
Simulation results demonstrate that with our approach, various
numbers of robots can be successfully controlled to safely
navigate and reach their target simultaneously. In future work,
we will attempt to develop a systematic method for optimising
the hyper-parameters of such cascaded models, including the
number of rules in the controllers.
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